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Abstract: We provide a formal statistical theory of consistent estimation of the set of all arbitrage
portfolios that meet the description of being a stochastic arbitrage opportunity. Two empirical
likelihood ratio tests are developed: one for the null that a given arbitrage portfolio is qualified, and
another for the alternative that the portfolio is not qualified. Apart from considering generalized
concepts and hypotheses based on multiple host portfolios, the statistical assumption framework
is also more general than in earlier studies that focused on special cases with a single benchmark
portfolio. Various extensions and generalizations of the theory are discussed. A Monte Carlo
simulation study shows promising statistical size and power properties for testing the null, for
representative data dimensions. The results of an empirical application illustrate the importance of
selecting a proper blocking structure and moment estimation method.
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1. Introduction

Stochastic dominance (SD) is a celebrated investment decision-making criterion that
avoids specification error for investor risk preferences by relying on a general class of
utility functions instead of a parametric specification. It is particularly appealing when
the Gaussian distribution gives a poor approximation, for example, for analyzing dynamic
strategies and derivative securities.

The historical evolution of the theory, methodology and application of SD is described
in detail in the monographs by [1–3].

The application of SD was traditionally focused on the pairwise comparison of two
alternatives (e.g., two securities, two portfolios, or two funds), but over time, concepts and
methods were also developed for the multivariate analysis of a multitude or a continuum
of alternatives for asset pricing and portfolio analysis.

A milestone on this path was the modeling of non-smooth restrictions on the lower
partial moments of a portfolio relative to a given benchmark, which facilitated the develop-
ment of various problem formulations and optimization algorithms for building a portfolio
that stochastically dominates a given benchmark [4–8]. Ref. [9] develop a statistical theory
based on the empirical likelihood (EL) method for the associated efficient set and the
optimal portfolio.

The concepts and methods for multivariate analysis have made it possible to apply SD
to realistic, large-scale investment problems. For example, ref. [10] apply it to test pricing
efficiency in the market for stock index options; ref. [11] apply it to tactical asset allocation
across equity industries; and ref. [12] apply it to construct active combinations of stock
index options.
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Ref. [13] further generalize the concepts and methods by accounting for uncertainty
about the relevant benchmark portfolio or host portfolio. To account for this type of uncer-
tainty, they introduce the concept of a general stochastic arbitrage opportunity (SAO): a
zero-cost investment portfolio (arbitrage portfolio, hedge portfolio or overlay) that enhances
all hosts that can be constructed from a set of base assets (instead of a single benchmark
portfolio) for all elements of a general set of utility functions.

The SAO concept generalizes the classical concept of a pure arbitrage opportunity.
Since the latter generally suffers from a lack of discriminatory power in incomplete markets,
generalized arbitrage concepts have been developed, such as [14–17]. The distinguishing
feature of the SAO concept is that it builds on the generally accepted SD concept, and it
does so without assuming that the host is unique and known.

The generalized concepts and methods have several potential applications in asset
pricing and portfolio management. Examples of relevant applications include the following:

(a) In empirical asset pricing tests of market portfolio efficiency, the weights of the market
portfolio are generally latent, introducing the risk of specification error. The SAO
framework allows for a robust rejection of efficiency if it can be established that there
exist overlays that enhance a set of multiple market portfolio proxies.

(b) In the performance evaluation of mutual funds and hedge funds, the relevant style
benchmark often cannot be estimated with high accuracy due to the use of short time
series and changes in the investment style over time. The proposed tests can identify
robust outperformance if it can be established that a given fund enhances a set of
multiple style benchmarks.

(c) In asset allocation across specialized funds for multiple asset classes, the dominance
of individual funds over their single-asset benchmarks unfortunately does not guar-
antee improvement for multi-asset investors. A potential remedy is to restrict at-
tention to allocations that stochastically enhance all relevant mixtures of multiple
single-asset benchmarks.

For empirical estimation and statistical inference, ref. [13] sketch a theory of consistent
estimation of the set of all overlays that qualify as an SAO and consistent testing of
whether or not a given overlay is qualified. The present study provides a formalization of
that statistical theory, additional discussion about extensions and generalizations, and a
forward-looking research agenda.

We demonstrate how the analysis by [9] of optimization under SD restrictions can
be generalized to arbitrage portfolio choice under stochastic enhancement restrictions for
a general specification of the host portfolio set (K) and the utility class (U ). We utilize a
generalization of the weak independence assumption of [9] in order to obtain versions of
set consistency for the empirical SAOs, notably avoiding the use of (arbitrary) tolerance
parameters. The derivations are novel; they are, among other things, based on the construc-
tion of a set of approximate solutions to the empirical optimization problem that satisfy
restricted versions of the empirical dominance inequalities.

We also show how to perform statistical inference about the classification of an overlay
as an SAO/not an SAO using blockwise empirical likelihood ratio (BELR) tests, in the spirit
of the tests for the simpler concepts of dominance/non-dominance, efficiency/inefficiency
and optimality/non-optimality by [18–20]. Two empirical likelihood ratio tests are devel-
oped: one for the null that a given overlay is a true SAO, and another for the alternative
that it is not a true SAO. We furthermore introduce new robust versions of the testing
procedures that allow for the possibility that the set of binding dominance inequalities
is infinite.

Although the focus of this study is on the general case with a set of hosts and a set of
overlays, the results naturally also apply to simpler cases in which one of the two sets is
a singleton. The simplest special case arises for the pairwise analysis between two given
standard portfolios or, equivalently, the analysis of one overlay and one host. Other special
cases are the efficiency analysis of a given standard portfolio and portfolio optimization
with SD constraints relative to a given benchmark portfolio.
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The remainder of this study is organized as follows. Section 2 summarizes the relevant
economic concepts. Section 3 develops the statistical theory. Section 4 presents the results
of a Monte Carlo simulation experiment. Section 5 summarizes the results of an empirical
exercise that complements the empirical analysis by [13] of equity factor portfolios and
equity industry portfolios. Section 6 concludes by discussing various extensions and
generalizations of the theory, and ideas for further research.

2. Stochastic Arbitrage Opportunities
2.1. Host Portfolios, Arbitrage Portfolios and Combined Portfolios

The analysis is based on a standard one-period investment problem with N elementary
assets with risky payoffs at a future investment horizon, x := (x1 · · · xN)

T ∈ RN , N < ∞.
The prices of the assets are externally determined and collected in the price vector p ∈ RN .
Payoffs may be transformed to gross investment returns, r:= diag−1(p)x, without loss
of generality.

The joint probability distribution of the payoffs is represented by P; its support is a
subset of X N , where X := [a, b], −∞ < a < b < ∞. The distribution may be conditional
on the conditions of the general economy and the financial markets. Unless an empirical
version of P is specified, expectations and probabilities are evaluated with respect to P.

Utility functions u : R → R are used to evaluate alternatives based on the expected
utility of the payoffs. To avoid specification errors, we eschew the choice of a particular
functional form. Instead, a set of functions, U , is defined using general functional properties.
The set is assumed to be uniformly bounded and convex. It is assumed that utility functions
are continuously differentiable, strictly increasing and strictly concave. Without loss of
generality, the functions are standardized such that u(b) = 0 and u′(a) = 1.

All utility functions that fit the above description can be represented using strictly pos-
itive combinations of elementary [21] functions v2;ϕ(x) := −(ϕ − x)+, ϕ ∈ X . The totality
of these combinations form the class of utilities U2 := {u(x) =

∫
X v2;ϕ(x)dW(ϕ); W ∈ W}.

Here, W is the set of increasing cumulative weighting functions W : X → [0, 1].
U is endowed with the sup metric to facilitate the asymptotic theory of the inferential

procedures in Section 3. The asset pricing results in ([13], Theorem 3.3.1) rely on first-order
optimality conditions that require a stronger topology, like W1,∞(R); see [22].

The utility set U is not necessarily closed because singular utilities obtained as limits of
strictly increasing and concave functions are inconsequential for the analysis. The closure
of the set of utilities, cl(U ), is however useful for the numerical analysis and the analysis of
the limiting behavior of empirical constructs.

Two distinct and complementary portfolio sets are used to describe the available
portfolio possibilities: a set of benchmarks or hosts, denoted by K ⊆ RN, and a set of
overlays, denoted by ∆ ⊆ RN. A description of these two portfolios sets follows.

Host portfolios are standard portfolios that require a strictly positive net investment.
The asset holdings vector κ ∈ K should obey the budget condition pTκ = c for budget
c > 0. Asset holdings may be transformed to portfolio weights λ := c−1(p ⊙ κ).

It is assumed that K is closed and bounded, but convexity is not required. In case of
non-convexity, the convex hull is denoted by conv(K(0)); in case of convexity, the set of
extreme elements is denoted by K(0). If K takes a polyhedral shape, then the number of
extreme elements is finite; in this case, the continuous set K = conv(K(0)) can be replaced
by K(0) for numerical purposes.

In contrast to standard portfolios, arbitrage portfolios δ ∈ ∆ are mixtures of short
positions and long positions that are self-financing, or pTδ = 0. If an overlay is added as
an overlay to a host κ ∈ K, then the combined portfolio λ = (κ + δ) naturally is a standard
portfolio (pTλ = c). The vector subspace sum Λ0 := K+∆ defines the totality of all feasible
combined portfolios. Without loss of generality, the asset holdings may equivalently be
formulated using weights in the combined portfolio, or γ := c−1(p ⊙ δ).

The arbitrage portfolio set is assumed to be a bounded and convex polytope that is
defined by R linear inequality restrictions: ∆ :=

{
δ ∈ RN : Aδ ≤ a

}
; here, A is a (R × N)
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coefficient matrix, and a is a (R × 1) column vector. It is assumed that the ‘passive’ solution
0N ∈ ∆ is the default choice if SAOs do not exist.

Although the focus here is on general portfolio sets, the analysis also applies to
simpler cases in which K and/or ∆ is singleton. To make a pairwise comparison of two
given standard portfolios κ1 and κ2, we may simply apply our framework to K = {κ1} and
∆ = {κ2 − κ1}; to analyze the efficiency of a given standard portfolio κ1 relative to standard
portfolio set Λ and find an alternative portfolio λ ∈ Λ that stochastically dominates κ1, we
may simply set K = {κ1} and ∆ = Λ − κ1.

2.2. Stochastic Arbitrage Opportunities

Ref. [13] introduce two versions of the concepts of stochastic enhancement and SAO:
a strict version for asset pricing theory and a weak version for numerical purposes.

For brevity, the increase in expected utility that is achieved by laying an arbitrage
portfolio over a standard portfolio will be represented in this study by D(u, κ, δ,P) :=
E
[
u(xT(κ + δ))

]
−E

[
u(xTκ)

]
for (u, κ, δ) ∈ U × K × ∆.

Definition 1. (Strict SAO). An arbitrage portfolio δ ∈ ∆ (strictly) stochastically enhances a given
benchmark κ ∈ K, or (κ + δ) ≻(U ,P) κ, if D(u, κ, δ,P) > 0 for all u ∈ U . It is a (strict) SAO if
such enhancement is achieved for all κ ∈ K. The set of all feasible (strict) SAOs is given by

∆SAO
(U ,K,P) := {δ ∈ ∆ : D(u, κ, δ,P) > 0 ∀(u, κ) ∈ U × K}. (1)

Definition 2. (Weak SAO). An arbitrage portfolio δ ∈ ∆ (weakly) stochastically enhances a given
benchmark κ ∈ K, or (κ + δ) ?(U ,P) κ, if D(u, κ, δ,P) ≥ 0 for all u ∈ cl(U ). It is a (weak) SAO
if such enhancement is achieved for all κ ∈ K. The set of all feasible (weak) SAOs is given by

∆WAO
(U ,K,P) := {δ ∈ ∆ : D(u, κ, δ,P) ≥ 0 ∀(u, κ) ∈ cl(U )× K}. (2)

Thus, SAOs are solutions to the below semi-infinite system of inequalities:

D(u, κ, δ,P) ≥ 0 ∀(u, κ) ∈ cl(U )× K; (3)

δ ∈ ∆.

To perform numerical analysis using finite mathematical programming problems, it
is useful to employ finite discretizations of P, cl(U ) and K. Various common and general
discretizations are discussed below.

Monte Carlo simulation methods and lattice models can be used to discretize con-
tinuous distributions P. In empirical applications with discrete estimators, such as the
empirical distribution PT that was used by [13] or the probability distributions implied by
the generalized method of moments and generalized empirical likelihood that were used
by [9], these methods and models are naturally redundant.

If the benchmark set K is continuous, then a problem reduction is achieved by sub-
stituting K for its extreme elements, K(0). This substitution is harmless as a result of the
convexity feature of the stochastic enhancement relation with respect to the host positions.
It results in discretization if the number of extreme elements is finite, e.g., the vertices of
a polyhedron.

Similarly, the utility class cl(U ) may be substituted by its extreme elements, or U (0) :
cl(U ) = conv

(
U (0)

)
. This substitution is harmless because expected utility is a linear

function of u ∈ cl(U ), and cl(U ) is a convex set. The substitution is useful because the
extreme elements u ∈ U (0) are low-dimensional functions for common specifications of U ,
which simplifies the search over cl(U ). Notably, for the general specification of n-th degree
SD, U (0)

n is comprised the one-parameter singularity functions vn;ϕ(x) = −(ϕ − x)n−1
+ .

The total boundedness of the support, the Lipschitz continuity property of the positive part
operator (·)+ and the compactness of ∆ and K imply that the one-dimensional parameter space
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can be represented or approximated by a finite set with an arbitrary level of precision. For any
ϵ > 0, there exists a finite U (0)

n,ϵ ⊆ U (0)
n such that supκ,δ supϕ∈U (0) inf

ϕ⋆∈U (0)
n,ϵ

|D(un,ϕ, κ, δ,P)−

D(un,ϕ⋆ , κ, δ,P)| < ϵ; U (0)
n,ϵ approximates U (0) with precision ϵ. Such a finite discretization is

inconsequential for portfolio optimization for small enough values of the parameter.
Using the above replacements, system (3) can be reduced to

D(u, κ, δ,P) ≥ 0 ∀(u, κ) ∈ U (0) × K(0); (4)

δ ∈ ∆.

In what follows, it is assumed that K(0) is finite; this assumption is justified by the
fact that K is polyhedral in many applications. It is also assumed that, for any ϵ > 0, there
exists a finite U (0)

ϵ that approximates U (0) with precision ϵ. Since U ⊆ U2, and U2 is the
convex hull of U (0)

2 , this assumption is harmless.
Under these assumptions, the semi-infinite system of inequalities (3) can be repre-

sented or approximated by the following finite system, given some choice of ϵ:

D(u, κ, δ,P) ≥ 0 ∀(u, κ) ∈ U (0)
ϵ × K(0); (5)

δ ∈ ∆.

In typical applications, a concave objective function G(δ,P) is maximized subject to
system (5) for a given specification of U and K. As a result of the discretizations that are
used, this optimization problem is finite and convex.

3. Empirical Counterparts
3.1. Consistency Features

We assume that the unobserved distribution function P is estimated by the empirical
measure PT from a sample of T time-series observations (xt)t=1,...,T . The payoffs gener-
ally are not stationary random variables because they include trend components. This
statistical problem can be eliminated or mitigated by transforming the payoffs to gross in-
vestment returns r := diag−1(p)x and transforming the asset holdings to portfolio weights
λ := c−1(p ⊙ κ) (for hosts) and γ := c−1(p ⊙ δ) (for overlays), which do not change the
underlying investment decision-making problem. In order to isolate the effect of sampling
variation on the stochastic enhancement restrictions, we also assume that the restrictions
that define K and ∆ are deterministic and thus are not affected by sampling error.

The following empirically weak SAO set is constructed:

∆WAO
(U ,K,PT)

= {δ ∈ ∆ : D(u, κ, δ,PT) ≥ 0 ∀(u, κ) ∈ cl(U )× K} (6)

This empirical counterpart of the latent set of population SAOs has several attractive
statistical consistency features under three general assumptions that are stated below.

Assumption 1. (Stationarity and Mixing). The process (xt) is stationary and absolutely regular.
The asymptotic order of its mixing coefficients is O(k−r) for some r > 1.

These regularity conditions are compatible with stationary versions of ARMA-GARCH
or stochastic volatility models, or more generally, processes that satisfy a general class of
stochastic recurrence equations; see, for example, [23] (Section 6).

Assumption 2. (Lipschitz Continuity). The population goal G(·,P) is Lipschitz continuous in δ
with a Lipschitz coefficient that is continuous at P w.r.t. weak convergence.

Given the boundedness of the support of x0, Lipschitz continuity is easy to establish
for standard goals such as expected return and expected utility. A uniform integrability
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condition implied by the boundedness of the support ensures the required continuity of the
coefficient in these cases. The objective function of [13] (the weighted average of individual
appraisal ratios) also satisfies the assumption due to the CMT and the aforementioned
uniform integrability; the Lipschitz coefficient is in this case a continuous function of
moments, as long as the variance involved is strictly positive.

The final assumption generalizes the weak independence assumption of [9]. It is useful
to avoid consistency problems that may arise for the empirical solutions due to binding
inequalities (equivalences), or D(u, κ, δ,F ) = 0, for some non-constant utility functions
u ∈ cl(U ).

Assumption 3. (Joint Enhancement). For any non-constant v ∈ cl(U ), there exists some δ(v)
that solves (3), such that D(v, κ, δ(v),P) > 0 for all κ ∈ K.

The joint enhancement (henceforth, JE) assumption essentially ensures the existence
of some neighborhood of every weak SAO δ1 ∈ ∆WAO

(U ,K,P) that contains strict SAOs δ2 ∈
∆SAO
(U ,K,P), if strict SAOs exist. JE allows for different δ for different utility functions v instead

of a single δ for all such utilities. It mitigates the adverse effect of the binding inequalities on
consistency. Given any weak SAO δ for which D(v, κ, δ,P) = 0 for some (v, κ), consider the
portfolio defined using the Lebesgue integral γ :=

∫
U−U= δ(u)d((1 − c)wv + cw(u)), w ∈

W , where W is the set of strictly monotone Borel measures defined on U , and wv is the
degenerate measure at v, c ∈ (0, 1). JE implies that D(u, κ, γ,P) > 0 for all (u, κ) ∈
U − U= × K, and by choosing c appropriately small, it can be chosen to lie as close to δ
as desired.

Various consistency results are obtained based on the above assumptions. The limit
theory evolves as T → ∞. The squiggly arrow (⇝) represents convergence in distribu-

tion. The analysis also uses Painleve–Kuratowski (PK) convergence
(

PK
⇝

)
for sequences

of compact subsets of ∆. With high probability (w.h.p.) refers to probability converg-
ing to one. δ∗(P) represents the set of optimal weak SAOs, i.e., arg max∆WAO

(U ,K,P)
(G(δ,P)).

Given δ > 0, ∆(δ)(P) represents the set of δ-optimal weak SAOs, i.e., {γ ∈ ∆WAO
(U ,K,P) :

max∆WAO
(U ,K,P)

G(δ,P) − G(γ,P) ≤ δ}. ∆=
P denotes the set of trivial solutions{

δ ∈ ∆ : xTδ = 0 ∀x : P
(

∏N
i=1(−∞, xi]

)
> 0

}
; it obviously is a subset of the enlargement

∆WAO
(U ,K,P) − ∆SAO

(U ,K,P).

Theorem 1. Under Assumptions 1–3 the following results are obtained: (i) if ∆WAO
(U ,K,P) − ∆=

P ̸= ∅
and JE occurs, then for any v ∈ U − U= and for any cT → 0, such that mTcT → ∞, we have that

∆WAO
(U ,K,PT)

∩ ∆(cT)(P) PK
⇝ δ∗(P); (ii) if ∆WAO

(U ,K,P) − ∆=
P = ∅, then ∆WAO

(U ,K,PT)

PK
⇝ ∆=

P .

Proof of Theorem 1. Given that any element of ∆=
P belongs to ∆WAO

(U ,K,P) and that when non-

trivial weak SAOs do not exist, then ∆WAO
(U ,K,P) = ∆=

P , if δ /∈ ∆=
P , then ∃u ∈ U , κ ∈ K for

which D(u, κ, δ,P) < 0. Assumption 1 and the compactness of X , along with the FCLT
of [24] (Corollary 4.1), imply that lim supT→∞ P[D(u, κ, δ,PT) ≥ 0] = 0, which establishes
Theorem 1. (ii). Suppose next that non-trivial weak SAOs do not exist. Let cT = o(1) and
mTcT → ∞. Stationarity and mixing of (xt) and the compactness of X , with corollary
2.E of [25], imply that we need to consider only fixed u ∈ U in our derivations. For any
δ ∈ δ∗(P) that does not have any trivial equivalences, we have that minK D(u, κ, δ,P) > 0
for all u ∈ U − U=, thus lim infT→∞ P[minK D(u, κ, δ,PT) ≥ 0] = 1 for all u ∈ U . Suppose
then that δ has non-trivial equivalences. Then, for any u ∈ U −U= that does not correspond
to some equivalence or to some u ∈ U=, the previous analysis holds. If u ∈ U − U= and
u corresponds to some non-trivial equivalence, then, for a large enough T, consider the
strong SAO γT :=

∫
U−U= δ(u)d((1 − c⋆T)wv + c⋆Tw(u)) for L the Lipschitz coefficient of

u. Here, c⋆T = cT
Ldiam(∆) = O(cT). Notice that since (i) minK D(u, κ, ·,P) is concave, (ii) by
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construction minK D(u, κ, δ,P) = 0 and (iii) D
(

u, κ,
∫
U−U= δ(u)dw(u),P

)
> 0 due to joint

enhancement, we have that

−mT inf
K

D(u, κ, γT ,P) ≤ −mTc⋆T inf
K

D
(

u, κ,
∫
U−U=

δ(u)dw(u),P
)
< 0,

and thereby

P[mT infK D(u, κ, γT ,PT − P) ≥ −mT infK D(u, κ, γT ,P)]
≥ P

[
mT infK D(u, κ, γT ,PT − P) ≥ −mTc⋆T infK D

(
u, κ,

∫
U−U= δ(u)dw(u),P

)]
,

and, due to Assumption 1, the CMT and the Portmanteau Theorem, the lim inf of the latter
probability is greater than or equal to P[minK G(u, κ, δ) ≥ −∞] = 1. Hence, we have that
lim infT→∞ P

[
γT ∈ ∆WAO

(U ,K,PT)

]
= 1 and γT → δ. The previous then imply that, in all cases,

δ lies in the lim inf of ∆WAO
(U ,K,PT)

w.h.p. Now, due to the definitions of δ, γT and the Lipschitz
continuity of G(δ,P), we obtain

0 ≤ G(δ,P)− G(γT ,P)
≤ maxK Lc⋆T

∥∥∥δ −
∫
U−U= δ(u)dw(u)

∥∥∥ ≤ c⋆T Ldiam(∆) = cT ,
(7)

where the first inequality follows from (7). This implies that γT ∈ ∆(cT)
(U ,K)

(v,P). Obviously

δ∗(P) ⊆ ∆(cT)(P). Any other element of ∆(cT)(P) that lies in the empirical weak SAO
set with asymptotically positive probability will necessarily converge to some element of
δ∗(P). The previous establish Theorem 1. (i), since there cannot exist accumulation points
of sequences of elements of ∆(cT)(P) that lie outside δ∗(P).

The following result complements Theorem 1 by showing that the empirical optimal
solutions also approximate the original as T → ∞.

Theorem 2. (Empirical Solution Properties). Under the premises of Theorem 1, the following
results are obtained: (i)

sup
δ∈∆WAO

(U ,K,PT)

G(δ,PT)⇝ sup
δ∈∆0

(U ,K,P)

G(δ,P), (8)

where ∆0
(U ,K,P) := δ∗(P) if ∆WAO

(U ,K,P) − ∆=
P ̸= ∅ and joint enhancement (7) occurs, and ∆0

(U ,K,P) :=

∆=
P if ∆WAO

(U ,K,P) − ∆=
P = ∅; (ii) if ∆WAO

(U ,K,P) − ∆=
P ̸= ∅ and JE occurs, then every limit of any

subsequence of elements of δ∗(PT) lies in δ∗(P); (iii) if ∆WAO
(U ,K,P) − ∆=

P = ∅, then δ∗(PT)
PK
⇝ ∆=

P .

Proof of Theorem 2. Assumption 1, the compactness of X , along with the FCLT of [24]
(Corollary 4.1), the concavity of G(δ,FT) and Skorokhod representations applicable due
to Theorem 3.7.25 of [26] imply the w.h.p. epi-convergence of the latter to G(δ,F ) due to
corollary 2.E of [25]. Then, the results in (i), (ii) and (iii) follow from Theorem 1, employing
Skorokhod representations applicable due to Theorem 3.7.25 of [26], using Proposition 3.2,
in Chapter 5 of [27] and then reverting to the original probability space. Specifically for (iii),
and since, EPT

[
u(xT(κ + δ))

]
−EPT

[
u(xTκ)

]
≤ 0 w.h.p., for any δ ∈ ∆, u ∈ U , κ ∈ K, that

due to Assumption 2, G(δ,PT) is constant on ∆=
P w.h.p., it follows that any δ /∈ ∆=

P will
not lie in ∆WAO

(U ,K,PT)
and thereby in δ∗(PT) w.h.p., any δ ∈ ∆=

P lies in ∆WAO
(U ,K,PT)

a.s. for all T,
and due to the constancy of G, it also lies in δ∗(PT) w.h.p.

The above consistency properties imply that the probability of each of two possible
types of decision errors tends to zero: (I) the selected portfolio is an empirical SAO but not
a population SAO; (II) the selected portfolio is optimal under the empirical measure but
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suboptimal under the population distribution because the population optimum is not an
empirical SAO.

For a type I error, the following reasoning applies: if δ /∈ ∆WAO
(U ,K,P), then there exists

at least one strict inequality D(u, κ, δ,P) < 0, for some (u, κ) ∈ U × K. Since strict in-
equalities are asymptotically unaffected by sampling error in our stationary and ergodic
framework, the probability that such a δ is falsely included in the empirical SAO set is
asymptotically negligible.

As far as a type II error is concerned, there is a non-vanishing probability of false exclu-
sion of non-strict SAOs δ ∈

(
∆WAO
(U ,K,P) − ∆SAO

(U ,K,P)

)
, which feature contacts D(u, κ, δ,P) = 0

for some (u, κ) ∈ U ×K. However, the neighborhood of these non-robust solutions includes
strict SAOs δT ∈ ∆SAO

(U ,K,P) that feature asymptotically strict (scaled) empirical inequalities
√

TD(u, κ, δT ,PT) > 0 for all (u, κ) ∈ U × K, and that are therefore included in ∆WAO
(U ,K,PT)

with high probability.
When U (0)

ϵ and K(0) are used in place of U and K, the results above still hold as long
as ϵ → 0 and T → ∞, and therefore U (0)

ϵ converges to U (0) in the Painleve–Kuratowski
topology. This is true even in the case where the latter convergence is in probability,
e.g., whenever consistent estimators for a potentially latent upper bound of the support are
used in the discretization.

3.2. Empirical Likelihood Ratio Test for Being an SAO

In their empirical analysis, ref. [13] construct arbitrage portfolios that are SAOs in a
given sample and test whether these are population SAOs out of the sample. They thus
evaluate a single, optimized overlay with portfolio weights that are fixed and known out
of sample, thereby avoiding distortions of the test size stemming from overfitting the data.

In this context, the obvious choice of the null hypothesis seems to be H0 : δ ∈ ∆WAO
(U ,K,P).

This specification is further supported by the theoretical prediction that a portfolio that
is optimized subject to empirical SAO restrictions converges to a true population SAO,
if SAOs exist. Therefore, we discuss the testing of the null H0 before discussing the testing
of the alternative H1 : δ /∈ ∆SAO

(U ,K,P) in the second part of this section.
The use of H0 is also consistent with the usual practice for statistical tests of pairwise

dominance. Standard tests such as those of [28] focus on null dominance, due to limiting
degeneracies under the alternative of non-dominance. The current null provides a gener-
alization of the standard specification to multiple pairwise dominance relations between
combined portfolios and the underlying hosts.

Standard tests for pairwise dominance are usually based on Kolmogorov–Smirnov or
Cramer–von Mises statistics for measuring violations of the empirical moment inequalities.
These statistics are analytically convenient due to their computational tractability for lattice
distributions and their straightforward compatibility with tools of asymptotic analysis
such as Glivenko–Cantelli and Donsker theorems for uniform convergence, as well as
generalized delta methods. Rejection regions are usually approximated by re-sampling
methods that allow for asymptotically exact and consistent inference under stationarity
and mixing.

Unfortunately, the Kolmogorov–Smirnov and Cramer–von Mises statistics are rela-
tively inefficient for financial data sets with short time series of non-overlapping, low-
frequency returns and broad cross-sections. Re-sampling can also be computationally
costly if large optimization problems need to be solved for thousands of pseudo-samples
or sub-samples.

To enhance statistical efficiency in finite samples and reduce computer burden, an al-
ternative approach is adopted here based on BEL. A similar approach is used in the tests for
non-dominance, efficiency and optimality by [18–20]. The proposed approach generalizes
these earlier studies by allowing for multiple host portfolios, testing both the null and the
alternative, and generalizing the data dependence structure.



Mathematics 2024, 12, 608 9 of 19

A prominent role in our analysis is played by the ‘contact set’, or set of the binding in-
equalities, CS0 :=

{
(u, κ) ∈ U (0) × K(0) : D(u, κ, δ,P) = 0

}
. Its cardinality is represented

by N0(δ,P); this number is crucial for the approximation of the rejection region of the
testing procedure. The analysis below describes sufficient conditions for finiteness of CS0
for every member of ∆WAO

(U ,K,P) as well as a modification of the procedure that accounts for
the possibility of an infinite contact set.

To account for temporal dependence, the sample is subdivided into T∗ := ⌊T−B/L⌋+1 po-
tentially overlapping blocks of B consecutive observations, Bs := {x(s−1)L+1, · · · , x(s−1)L+B},
s = 1, · · · , T∗, with L ≤ B. L is considered to be independent of T, and B is assumed to diverge
with a rate slower than

√
T. The optimal choice of the block size B is case-dependent and

usually involves of a trade-off between the data dynamics and the number of asymptotically
independent blocks.

In the following, GT denotes the set of probability distributions on the set of blocks,
and GT ∈ GT denotes the empirical measure, i.e., GT(B) := (T∗)−1 ∑T∗

s=1 I[Bs = B] for any
block B. The test statistic measures the smallest possible adjustments to the probability
mass function of GT that ensure that the evaluated overlay is a weak SAO; the optimality
property is w.r.t. the divergence from the adjusted distribution to the empirical measure of
the blocks. The BELR test statistic can be computed based on a solution to the following
minimum relative entropy (MRE) problem:

min
G∈GT

KL(GT∥G) (9)

s.t. δ ∈∆WAO
(U ,K,G).

In this expression, KL denotes the Kullback–Leibler divergence: ∑T∗
s=1 GT(Bs) ln(GT(Bs)/

G(Bs)). This measure gives a well-known information-theoretic representation of the dis-
similarity between two measures sharing a common support (see [29]). For ϵ > 0, the finite
system (5) is used so that the MRE problem (9) is approximated by an optimization problem
that involves a finite system of moment inequalities:

Since any G ∈ GT is discrete, only the probability mass levels at the blocks G(Bs),
s = 1, · · · , T∗, need to be determined, and the minimum relative entropy problem reduces
to a convex optimization problem, given the formulation in system (4):

min
G∈GT

KL(GT∥G) (10)

s.t. D(u, κ, δ,G) ≥ 0 ∀(u, κ) ∈ U (0)
ϵ × K(0),

where D(u, κ, δ, g) := ∑T∗
s=1 G(s)

(
1
B ∑B

j=1 u(xT
(s−1)L+j(κ + δ))− u(xT

(s−1)L+jκ)
)

.

Inference on H0 can be based on the BELR test statistic ELRT = 2 T
T∗B · KL(GT∥G(δ)),

where G(δ) is a solution of the variational problem (9). The exact limit null distribution
of ELR is a chi-bar-squared distribution under the aforementioned assumptions about the
data and the blocks. This null distribution is not directly implementable in rejection region
analysis because its mixing weights depend on the latent P. An asymptotically conservative
test can, however, be obtained via majorizing chi-squared distributions and methods of
moment selection.

Specifically, the limiting null distribution is dominated by χ2
N0(δ,P), the degrees of

freedom of which equal the number of binding inequalities (the cardinality of the contact
set) whenever finite. The number of contacts can be consistently estimated by the num-
ber of empirical moment conditions that are approximately binding, or N0(δ,GT , cT) :=
card

{
(u, κ) ∈ U (0)

ϵ × K(0) : |D(u, κ, δ,GT)| ≤ cT

}
, where the slack cT > 0 is a potentially

degenerate random variable that weakly converges to zero at an appropriate rate.
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Consequently, an asymptotically conservative rejection region can be formed using the
stochastic distribution χ2

N0(δ,GT ,cT)
, so that the test size, or the probability of false rejection

of an SAO, is asymptotically less than or equal to the nominal significance level.
The following result derives the limit theory of the testing procedure defined by (10)

and the rejection of H0 if ELRT ≥ q
(

1 − α, χ2
N0(δ,PT ,cT)

)
, where q

(
1 − α, χ2

N0(δ,PT ,cT)

)
repre-

sents the 1 − α quantile of the stochastic distribution χ2
N0(δ,PT ,cT)

for α ∈ (0, 1). The result
shows asymptotic conservatism and consistency.

Theorem 3. Suppose that Assumption 1 holds, and (a) CS is finite, (b) there exists some ε > 0
such that,

λmin(V) > ε,

where λmin(V) represents the minimum eigenvalue of

V := E
[(

u
(

xT
0 (κ + δ)

)
− u

(
xT

0 κ
))(

u⋆
(

xT
0 (κ

⋆ + δ)
)
− u⋆

(
xT

0 κ⋆
))T

]
(u,κ),(u⋆ ,κ⋆)∈CS0

,

(c) the tolerance parameter satisfies cT → 0, while
√

TcT → +∞ almost surely, (d) the block
size satisfies B → +∞ and B = O(Tρ) for 0 < ρ < 1

2 and L is independent of T, and (e)

ϵ → 0 with T, so that U (0)
ϵ converges to to a non-stochastic dense subset of U (0) in probability,

and card
(
U (0)

ϵ

)
= op(

T
B ).

Then, the following results are obtained: (i)

ELRT ⇝


inf

v∈RN0(δ,P)
+

(C− v)TV−1
C (C− v), H0 ∧ N0(δ,P) ̸= 0

0, H0 ∧ N0(δ,P) = 0
+∞, H1

, (11)

where C is a zero-mean Gaussian vector with covariance matrix

VC := V + 2
∞

∑
t=1

E
[(

u
(

xT
0 (κ + δ)

)
− u

(
xT

0 κ
))(

u⋆
(

xT
t (κ

⋆ + δ)
)
− u⋆

(
xT

t κ⋆
))T

]
(u,κ),(u⋆ ,κ⋆)∈CS

;

(ii) under H0 ∧ N0(δ,P) ̸= 0,

lim sup
T→∞

P
(

ELRT ≥ q
(

1 − α, χ2
N0(δ,PT ,cT)

))
≤ α, (12)

while under H0 ∧ N0(δ,P) = 0,

lim
T→∞

P
(

ELRT ≥ q
(

1 − α, χ2
N0(δ,PT ,cT)

))
= 0; (13)

(iii) under H1,
lim

T→∞
P
(

ELRT ≥ q
(

1 − α, χ2
N0(δ,PT ,cT)

))
= 1. (14)

Proof of Theorem 3. Equation (11) follows as in the proof of Theorem 4.2.1 of [30]. Consider
the case H0 ∧ N0(δ,P) ̸= 0. Uniformly w.r.t. the (i, j) /∈ CS0, it is found that, due to the defini-
tion of the tolerance parameter and the Birkhoff’s ULLN, EGT

[
u
(
xT

0 (κ + δ)
)
− u

(
xT

0 κ
)]

> cT,
eventually, almost surely. Using Skorokhod representations, since

√
TcT diverges to infinity

almost surely, uniformly over the set CS0, then
∣∣∣√TEGT

[
u
(

xT
0 (κ + δ)

)
− u

(
xT

0 κ
)]∣∣∣ ≤ √

TcT ,
eventually, almost surely. The previous along with (e) imply that N0(δ,PT , cT)⇝ N0(δ,P),
jointly with ELRT , and thereby we obtain that
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ELRT ⇝ inf
v∈RN(δ,P)

+
(C− v)TV−1

C (C− v)

= inf
v∈RN(δ,F )

+

[
CTV−1

C C
− infv∈Co (C− v)TV−1

C (C− v)

]
≤ CTV−1

C C,

due to Proposition 3.4.1 of [31], where Co represents the polar cone of RN0(δ,P)
+ . Then, the

Portmanteau Theorem establishes (12). For the case H0 ∧ N0(δ,P) = 0, (11) implies that
ELRT is eventually zero w.h.p., hence (13) follows. Furthermore, under the alternative,
the proof of Theorem 4.2.1 of [30] implies that ELRT ≥ Op(

T
B ). Thereby, the growth condi-

tion on the approximation of U along with (c), and via the use of Skorokhod representations,
imply that the modified statistic diverges to infinity, while the quantile q

(
1 − α, χ2

N0(δ,PT ,cT)

)
is almost surely bounded, hence (14) follows.

The test is consistent under the alternative hypothesis due to the divergence to infinity
of the test statistic and the boundedness from above of the quantiles used as critical values.
However, the test is asymptotically conservative, due to the majorizing properties of the
critical values and the restricted limiting behavior of the slacks.

For any δ ∈ ∆WAO
(U ,K,P) that does not belong to the generic set of SAOs with finite contacts

discussed above, the contact set finiteness condition (a) holds whenever D(·, κj, δ,P) is ana-
lytic in the Russell–Seo threshold parameter for every extreme point κj. Analyticity would
be in turn obtained if P has an analytic density, due to our bounded support framework.

Under the weaker assumption of a continuously differentiable density, another path
for obtaining (a) is to ensure that the Hessian of D(un,ϕ, κi, δ,P) w.r.t. ϕ has a finite number
of zeros. For example, when U = U2 and U (0) is the set of Russell–Seo elementary utilities,
using [32], we obtain that the Hessian equals P(

{
ϕ = (κi + δ)Tx

}
)− P(

{
ϕ = κT

i x
}
). Using

then the diffeo-geometric analysis in Paragraph 5 of [33], we obtain that the Hessian is
not zero whenever δTx is of the same sign for almost every value of x on the boundary of{

ϕ = κT
i x

}
locally uniformly in the null hypothesis.

The strictly positive minimum eigenvalue condition (b) is necessary for sequential
convergence of the test statistic under the null hypothesis. Given (a) and if trivial contacts
with zero empirical variance are excluded from the analysis, this condition holds whenever
the random vector

(
u
(

xT
0 (κ, δ)

)
− u

(
xT

0 κ
))

CS0
has a full rank covariance matrix; this can,

for example, be tested via the characteristic roots-based tests of [34] using the empirical
covariance matrix of the non-trivial empirical contacts.

The restriction of the asymptotic behavior of the tolerance parameter (c) is usual in
the econometric literature; see [35] and references therein. The restriction on the block size
divergence rate (d) is also standard (see, for example, Theorem 3 of [36]).

The current first-order limit theory is silent about the optimal choice of the block size B
beyond specifying general rates of convergence. Finer details could be obtained by higher-
order asymptotics, and it is expected that optimality depends crucially on the temporal-
dependence structure of the underlying returns’ process (see, for example, Section 2 of [37]).
The optimal B can be approximated by some empirical variance minimization method (see,
for example, [38]).

For the important case of n-th degree SD, or U 0 = U 0
n , condition (e) is satisfied

when, e.g., the empirical support is partitioned into ⌊(T/B)α⌋ sub-intervals, for some α < 1,
and the Russell–Seo thresholds are placed at the boundaries of those sub-intervals.

Whenever the CS is infinite and (a) fails, a simple modification of the test statistic via
the estimated number of contacts N0(δ,PT , cT) would lead to a standard normal limiting
null bound distribution. Specifically, performing the test based on the rejection rule

(ELRT−N0(δ,PT ,cT))/
√

2N0(δ,PT ,cT) >
(

q(1−α,χ2
N0(δ,PT ,cT )

)−N0(δ,PT ,cT)
)
/
√

2N0(δ,PT ,cT)

can be proven to satisfy (ii) and (iii) of the previous result, if V has a spectrum bounded
away from zero, (c), (d) and (e) hold. This is obvious whenever CS0 is finite from Theorem 3.
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Whenever CS0 is infinite, then the spectrum condition and the fact that U (0)
ϵ is finite for

any T, imply that, under the null hypothesis, the modified statistic will be bounded above
by a standard normal distribution. The lhs of the rejection rule can be shown to converge
in distribution to the 1 − α quantiles of the standard normal. Furthermore, under the
alternative, the proof of Theorem 4.2.1 of [30] implies that ELRT ≥ Op(

T
B ). Thereby, the

growth condition on the approximation of U along with (c), and via the use of Skorokhod
representations, imply that the modified statistic diverges to infinity. Hence, under the
particular restriction on the growth rate of U (0)

ϵ , we obtain a robust modification of the
original test that avoids (a).

In cases where cl(U ) contains utilities that correspond to contacts with zero empirical
variance, the spectrum boundedness away from zero condition can have a restricted
stochastic dominance interpretation. For example, when cl(U ) is the set of Russell-Seo
utilities-see [21], then the fact that the population support infimum a is finite implies that,
for the condition to hold, a set of thresholds to the right of a should be excluded from the
analysis. The analyst can exclude the thresholds in the interval [aT , aT + δ], where aT is the
empirical support infimum and δ is sufficiently small to ensure that the excluded Russell–
Seo utilities are inconsequential, and then test whether the condition holds for the remaining
utilities using the [39] rank tests on the empirical covariance of the empirical contacts.

3.3. Testing the Alternative of Not Being an SAO

The hypothesis H0 generally allows for the construction of tests that are locally more
powerful in fixed samples than the alternative H1 : δ /∈ ∆WAO

(U ,K,P) or H1 : δ /∈ ∆SAO
(U ,K,P)

because data variation is generally more likely to yield false non-dominance classifications
than false dominance classifications; the existence of a single inequality with the ’wrong’
sign suffices for the system of dominance inequalities to be violated. Nevertheless, the
conservative nature of the proposed test for H0 could compromise power at the boundary
between the two hypotheses; a possible local lack of power of the BELR test for the null
could be mitigated using a second test that evaluates the alternative.

For this purpose, the analysis is completed here with the design of an ELR test
for the alternative hypothesis H1 : δ /∈ ∆SAO

(U ,K,P). For finite U (0)
ϵ and K(0), the condi-

tion δ ∈∆SAO
(U ,K,P) amounts to a finite system: D(u, κ, δ,P) > 0, ∀(u, κ) ∈ U (0)

ϵ × K(0).

The condition δ /∈∆SAO
(U ,K,P) requires violations of this system. Violations occur whenever

δ ∈ ∆WAO
(U ,K,P) − ∆SAO

(U ,K,P) or when δ /∈ ∆WAO
(U ,K,P). In the latter case, violations would imply

asymptotic non-tightness for Kolmogorov–Smirnov or Cramer–von Mises type statistics
under the alternative. Violations can, however, be additionally characterized as solutions
to the alternative system ∑u∈U (0)

ϵ
∑κ∈K(0) βu,κD(u, κ, δ,P) ≤ 0; ∑u∈U (0)

ϵ
∑κ∈K(0) βu,κ = 1;

βu,κ ≥ 0 ∀(u, κ) ∈ U (0)
ϵ × K(0). Non-trivial binding inequalities for the alternative system

always exist, and this implies tightness for the testing procedure that is described below.
Using the block structure above, the relevant relative entropy problem follows:

min
G∈GT

KL(GT∥G) (15)

s.t. ∑
u∈U (0)

ϵ

∑
κ∈K(0)

βu,κD(u, κ, δ,G) ≤ 0;

∑
u∈U (0)

ϵ

∑
κ∈K(0)

βu,κ = 1; βu,κ ≥ 0; ∀(u, κ) ∈ U (0)
ϵ × K(0).

This problem is bi-linear in (β,G) and hence bi-convex. It can be solved using an
alternating direction method of moments (ADMM) algorithm that alternates between
optimizing w.r.t. β and optimizing w.r.t. G.

The contact set associated with testing the alternative hypothesis is defined as
CS1 :=

{
β : ∑u∈U (0)

ϵ
∑κ∈K(0) βu,κD(u, κ, δ,P) = 0

}
. As noted above, this is non-empty
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even in cases where U = cl(U ) and no utilities associated with trivial contacts of zero
empirical variance appear in the analysis. For testing the alternative, non-finiteness of the
contact set is more common than for testing the null; the alternative hypothesis imposes
moment inequalities of differing signs and may also contain binding moment inequali-
ties. In this case, there exist infinite convex combinations of the inequalities involved that
produce zeros. Thus, inference is performed by the modification of the BELR statistic via
translation and scaling by the number of empirical contacts and the finite approximation of
the simplex in which parameter β attains its values. The following rejection rule used is

(ELR⋆
T−N1(δ,PT ,cT))/

√
2N1(δ,PT ,cT) >

(
q(1−α,χ2

N1(δ,PT ,cT )
)−N1(δ,PT ,cT)

)
/
√

2N1(δ,PT ,cT),

where ELR⋆
T = 2 T

T∗B · KL(GT∥G⋆(δ)), with G⋆(δ) the solution of (15), and, similarly to

the previous, N1(δ,PT , cT) := card
{

β ∈ ST :
∣∣∣∑u∈U (0)

ϵ
∑κ∈K(0) βu,κD(u, κ, δ,GT)

∣∣∣ ≤ cT

}
is

the number of empirical contacts, and ST a (potentially stochastic) finite discretization
of the (#(U (0)

ϵ × K0)− 1)-simplex that converges in probability to a dense subset of the
(#(U (0) × K0)− 1)-simplex as T → ∞.

The limit theory of this testing procedure is derived in the following result.

Theorem 4. Suppose that Assumption 1 and conditions (c) and (d) of Theorem 3 hold, ϵ → 0
with T, while, U (0)

ϵ converges in the Painleve–Kuratowski topology to a non-stochastic, dense
subset of U (0) in probability, ST converges in probability in the Painleve–Kuratowski topol-
ogy to a dense, non-stochastic subset of the (#(U (0)

∞ × K0) − 1)-simplex and the spectrum of
Var

[
∑u∈U (0)

ϵ
∑κ∈K(0) βu,κ

(
u
(
xT

0 (κ + δ)
)
− u

(
xT

0 κ
))]

β
, where the parameter β lies in the set{

β : ∑u∈U (0)
∞

∑κ∈K(0) βu,κD(uj, κi, δ,P) = 0
}

, is bounded away from zero; here, U (0)
∞ represents

the Painleve–Kuratowski limit in probability of U (0)
ϵ . Then, the following results are obtained:

(i) under H0,

lim sup
T→∞

P
(
(ELR⋆

T−N1(δ,PT ,cT))/
√

2N1(δ,PT ,cT) >
(

q(1−α,χ2
N1(δ,PT ,cT )

)−N1(δ,PT ,cT)
)
/
√

2N1(δ,PT ,cT)

)
≤ α. (16)

(ii) under H1, and if, moreover, card
(
U (0)

ϵ

)
= op(

T
B ),

lim
T→∞

P
(
(ELR⋆

T−N1(δ,PT ,cT))/
√

2N1(δ,PT ,cT) >
(

q(1−α,χ2
N1(δ,PT ,cT )

)−N1(δ,PT ,cT)
)
/
√

2N1(δ,PT ,cT)

)
= 1. (17)

Proof of Theorem 4. Analogous to the proof of Theorem 3, the distance between the num-
ber of contacts in ST and in its PK-limit can be shown to converge to zero in probability.
Using this and arguments analogous to the ones concerning empirical process convergence,
Skorokhod representations and bounds on infima of quadratic forms over cones in the
proof of Theorem 4.2.1 of [30], under the null, it can then be shown that the test statistic
is asymptotically bounded from above by a random variable that weakly converges to a
standard normal. Under the alternative, the relevant part of the proof of Theorem 4.2.1
of [30] implies that ELR⋆

T ≥ Op(
T
B ). Thereby, the growth condition on the approximation of

U along with (c) imply that the test statistic diverges to infinity.

The resulting test is also asymptotically conservative and consistent. It extends the
ELR test of [18] as it allows for non-singleton K and temporal dependence for the under-
lying stochastic processes. Whenever U ̸= cl(U ), the bounded away from zero spectrum
condition is similar to the restricted stochastic dominance analysis of [18]; U may need
reduction when its boundary contains utilities associated with trivial contacts, to ensure
existence of a well-defined limiting distribution. Whenever the set of Russell and Seo
utilities is used-see [21], this can be performed similarly to the analysis described above for
the modification of the BELR test for the null and for the case of infinite contacts.
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4. Monte Carlo Simulations

A simulation study is performed to obtain an impression of the test properties in
finite samples in a controlled environment. The focus is on the effects of the cross-sectional
dimension (N) and time-series dimensions (T), which are likely to play a key role in the
research design of most empirical studies. We therefore use a basic specification with
U = U2 (all globally risk-averse investors) and a tractable, bounded and serially iid
probability distribution (without the need for the blockwise approach). A follow-up study
could also simulate the effects of the set of preferences, the shape of the distribution and
the data dynamics.

The arbitrage set ∆ consists of one element (δ) with a uniform payoff distribution:
xTδ ∼ U[−0.5 − c, 0.5 − c], c ∈ {0, 0.05}. The set of hosts K consists of all convex mixtures
of N = 1, 2, 4, 8 extreme elements with a joint distribution such that the combined portfolios
are mutually iid: xTκi + xTδ ∼ U[0, 1], i = 1, · · · , N.

For c = 0, the overlay qualifies as an SAO because it is a mean-preserving anti-spread
for all hosts. Non-trivial contact points then occur at the support upper bound x = 1.5; the
number of non-trivial population contacts is thus equal to N. Trivial contacts also occur at
the support’s infimum x = −0.5, but nowhere else.

For c = 0.05, the overlay does not qualify because it reduces the means of the hosts.
The value c = 0.05 is relatively small compared with the mean and dispersion of the hosts,
so the distribution lies not too deep in the alternative hypothesis. Non-trivial contact
points now occur at a unique point in the interior of the support; the number of non-trivial
contacts is again N.

The distribution obeys the assumption framework for applying our ELR test to indi-
vidual observations instead of data blocks (B = L = 1). For applying the test, the support
of the hosts ([−0.5 + c, 1.5 − c]) is discretized using a regular grid with 30 grid points. For
estimating the number of contact points, using Theorem 3 and some experimentation, we
define cT = 10−11/(ln(T) ln(N)). The minimum number is set at one, usingf the insight that
optimized overlays have at least one binding stochastic enhancement constraint. Further-
more, to avoid trivial contacts that would invalidate the minimum eigenvalue condition of
Theorem 3, we truncate the left tail of the host distribution at −0.4 + c.

We draw 1000 random samples of size T = 101, 102, 103, 104, and apply the ELR test for
the null hypothesis that the overlay is qualified, using a nominal significance level of 0.05,
for N = 1, 2, 4, 8. The rejection rate for c = 0 measures the test size (relative frequency of
false rejections over the 1000 samples); the rejection rate for c = 0.05 measures the test
power (relative frequency of correct rejections over the 1000 samples).

Information about the quality of the moment selection procedure is provided in the
form of the average (over the 1000 samples) of the number of estimated non-trivial contacts.
If the estimated number is larger than the population number (N), then the procedure
compromises test power.

Table 1 summarizes the simulation results. The conservative nature of the test is clearly
visible: for all data dimensions (T, N), the test size is under control. The test size increases
with the sample size, and it mostly decreases with N. It flattens in large samples at levels
well below the nominal significance level of 0.05. The test power becomes acceptable to
good for a sample size between T = 300 and T = 500, and it is very good for T ≥ 1000.

The average estimated number of contact points suggests that the test performance can
be further improved by refining the moment selection procedure. For T = 10, the number
of population contacts is overestimated by a factor of almost five, which partly explains the
low test power for this sample size. In contrast, for T = 104, the estimates are approximately
one-half of their population counterparts. The results suggest that the test performance can
be improved by reducing the rate at which the slacks converge to zero with T.
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Table 1. Monte Carlo results.

Monte Carlo Size (c = 0) Monte Carlo Power (c = 0.05)

N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8

T = 10 0.003 0.000 0.001 0.000 0.011 0.001 0.002 0.000
T = 102 0.006 0.000 0.000 0.000 0.200 0.063 0.005 0.000
T = 103 0.029 0.007 0.000 0.000 1.000 0.998 0.994 0.947
T = 104 0.023 0.025 0.004 0.000 1.000 1.000 1.000 1.000

Average Number of Selected Moments

c = 0 c = 0.05

N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8

T = 10 5.8 11.132 23.031 46.374 5.952 11.433 23.679 47.543
T = 102 2.176 4.363 8.655 17.274 2.257 4.523 9.005 18.006
T = 103 1.044 2.011 3.964 7.914 1.055 2.036 4.007 8.016
T = 104 1 1.376 2.461 4.866 1 1.376 2.461 4.866

Entries in the upper panel report the null hypothesis rejection rate over the Monte Carlo replications for c = 0
(Monte Carlo size) and the analogous rejection rate for c = 0.05 (Monte Carlo power), for every pair (T, N)
where T = 101, 102, 103, 104, N = 1, 2, 4, 8. Entries in the lower panel report the average over the Monte
Carlo replications of the estimated number of non-trivial contacts for those tests, where the slacks used are
cT = 10−11/(ln(T) ln(N)).

5. An Empirical Exercise

Ref. [13] empirically test whether each of several overlays formed in the US stock
market is an SAO for all globally risk-averse investors (U = U2) who hold an equity
portfolio from a host set (K). The existence of SAOs would represent empirical evidence
against stock market efficiency that is robust to the specification of the endowments of the
investors; it would also provide a motivation for adopting active investment strategies that
resemble the overlays that are classified as SAOs.

The evaluated overlays are seven equity factor portfolios from the empirical finance
literature (SMB, HML, RMW, CMA, STR, ITM and LTR) and several mixtures of the factor
portfolios, namely the equally weighted portfolio (EWP), a portfolio that is constructed
using optimization subject to empirical mean-variance constraints (MVP), and a portfolio
that is optimized using empirical stochastic enhancement constraints (SDP).

For brevity, we only report here the analysis of the most challenging case in which
the host set consists of all convex mixtures of 10 standard industry portfolios represented
by the nine-dimensional standard simplex: K = K10 =

{
κ ∈ R10 : κT110 = 1; κ ≥ 010

}
.

The original study also covered the simpler case with a single host (K = K1) equal to the
value-weighted stock market portfolio. This case seems less interesting here because it
amounts to a simple pairwise comparison between the market portfolio and the combina-
tion of the market portfolio and the evaluated overlay.

The out-of-sample analysis is based on monthly percentage total returns for three
non-overlapping subperiods of 15 years, or T = 180 months: 1978–1992, 1993–2007 and
2008–2022. The observations show significant violations of iidness in the form of volatility
clustering. For this reason, the ELR test is implemented in a blockwise manner. The
appropriate blocking structure is not obvious because we don’t have accurate estimates of
the volatility-of-volatility and the mean reversion rate of volatility. The original study is
extended here by implementing the BELR tests using various alternative specifications of
(B, L), with B = 1, 3, 6, 12 and 1 ≤ L ≤ B.

The results in Table 2 show an important reduction in many p-values for large blocks
(B = 12) with limited overlap (L = 12, 9, 6), especially in the second sample period
(1993–2017). It is not clear whether the higher rejection rates reflect the reduced number
of blocks or the data dependence due to the limited length of the available time series.
None of the evaluated overlays, including the one based on optimization with empirical
stochastic enhancement constraints, can therefore be classified as an SAO in every sample
period and for every blocking structure.
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The reported sensitivity of the p-values underlines the importance of selecting a proper
blocking structure and a proper moment estimation method for constructing the rejection re-
gion and p-values in small samples. The results also suggest that the optimization approach
to building SAOs may benefit from tightening the empirical enhancement constraints. Nat-
urally, a higher confidence in the stochastic enhancement constraints generally has to be
balanced against the possible opportunity loss from adopting suboptimal solutions.

Table 2. Blockwise ELR test results.

B L SMB HML RMW CMA STR ITM LTR EWP MVP SDP

1978 1992 1 1 0 0.964 0 0.985 0 0 0 0 0 0.969
3 3 0 0.940 0 0.974 0 0 0 0 0 0.947
6 6 0 0.917 0 0.964 0 0 0 0 0 0.924
6 3 0 0.905 0 0.962 0 0 0 0 0 0.922
12 12 0 0.837 0 0.948 0 0 0 0 0 0.893
12 9 0 0.602 0 0.651 0 0 0 0 0 0.607
12 6 0 0.861 0 0.942 0 0 0 0 0 0.880
12 3 0 0.863 0 0.947 0 0 0 0 0 0.890

1993 2007 1 1 0 0.579 0.690 0.587 0 0.573 0.692 0.869 0.800 0.637
3 3 0 0.224 0.502 0.402 0 0.348 0.568 0.771 0.662 0.254
6 6 0 0.122 0.366 0.260 0 0.114 0.419 0.659 0.535 0.151
6 3 0 0.106 0.356 0.229 0 0.184 0.404 0.663 0.529 0.134
12 12 0 0.031 0.206 0.088 0 0 0.227 0.504 0.384 0.027
12 9 0 0.000 0.060 0 0 0 0.441 0.256 0.067 0.001
12 6 0 0.020 0.157 0.077 0 0 0.189 0.497 0.328 0.029
12 3 0 0.036 0.207 0.100 0 0.024 0.235 0.516 0.362 0.047

2008 2022 1 1 0 0 0.817 0.835 0 0.679 0 0 0.897 0.682
3 3 0 0 0.695 0.705 0 0.463 0 0 0.827 0.512
6 6 0 0 0.565 0.608 0 0.282 0 0 0.767 0.378
6 3 0 0 0.558 0.619 0 0.307 0 0 0.730 0.420
12 12 0 0 0.451 0.539 0 0 0 0 0.681 0.222
12 9 0 0 0.556 0.467 0 0 0 0 0.722 0.383
12 6 0 0 0.631 0.516 0 0 0 0 0.693 0.408
12 3 0 0 0.420 0.505 0 0.118 0 0 0.634 0.258

Entries report the p-values for the BELR tests for the hypotheses of each of the seven equity factor portfolios
(SMB, HML, RMW, CMA, STR, ITM, LTR) and three mixtures of the factor portfolios (EWP, MVP, SDP). Here,
the host set is the standard nine-dimensional simplex of all mixtures of ten standard industry portfolios (K = K10).
The tests are performed across three sub-samples (1978–1992, 1993–2007, 2008–2022) and for different choices of
block parameters (B and L).

6. Discussion

Generalizing the work of [9], we obtained versions of set consistency for empirical
SAOs. The results provide a theoretical basis for empirical tests for the existence of SAOs
and the use of portfolio optimization under empirical SAO restrictions in large samples.

The analysis avoided the use of (arbitrary) tolerance parameters in the empirical
optimization problem to obtain consistency. This feature is beneficial because the proper
specification of those nuisance parameters is application-specific, empirical results are
sometimes not robust to the specification, and the calibration to specific applications
increases the computational burden. To avoid the use of tolerances, our analysis used a set of
approximate solutions that satisfy stricter versions of the empirical dominance inequalities.

We designed a procedure for statistical inference about membership/non-membership
of the SAO set via BELR tests. Two tests were developed: one for the null that a given
overlay is an SAO, and another for the alternative that the portfolio is not an SAO.

Special attention was given to the estimation of the contact sets that define the number
of degrees of freedom for the chi-squared distributions for the two tests. We also introduced
robust versions of the testing procedures that allow for the possibility that the set of binding
dominance inequalities is infinite.

For the BELR tests, we have derived asymptotic conservatism and consistency. Nat-
urally, these asymptotic results do not suffice to establish favorable test properties in
applications with realistic data dimensions, especially if the set of utility functions U is
large. Simulations and applications can shed light on this important topic.
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The results of the simulation study pointed to favorable statistical size and power
properties for testing the null, for realistic data dimensions (N, T). These results are
particularly promising because they are based on the most general specification of the risk
preferences (U = U2); the test is expected to be more powerful for higher-degree SD criteria
(U = Un), n > 2.

It seems interesting to perform a follow-up study that is devoted to additional sim-
ulations. The follow-up could calibrate the shape of the marginal distributions and the
mutual correlation structure to several representative empirical applications. It could also
analyze the effects of the utility function class (U ), the data dynamics and blocking structure,
and the moment estimation method.

Due to the conservative approach, the test may perform poorly on elements of the
alternative hypothesis that are close to the boundary between the two hypotheses. This
problem can be partially addressed by combining the test for the null with the test for the
alternative. To conclude that an overlay is an SAO, it seems useful to check whether the
first test is passed (no rejection of being an SAO) and the second test is not passed (rejection
of not being an SAO). If both tests are passed or both tests are not passed, then the data set
neither confirms nor challenges the prior beliefs that the analyst holds about the overlay.

Refinements of the BEL test strategies with better power under local alternatives are
on our research agenda. One such approach could combine (i) analytical approximations of
the right tails of the limiting null distributions based on topological invariants like the Euler
characteristic (see [40]) and (ii) generalized moment selection procedures (see [35]). Attrac-
tively, this approach would preserve the computational efficiency of using conservative
chi-squared rejection regions compared with resampling methods.

Follow-up research could also consider the selection of the appropriate blocking
scheme and moment estimation method, given the sensitivity of the results and conclusions
in the empirical analysis of factor portfolios and the lack of accurate estimates of the
data dynamics.

The focus has been on the empirical counterpart of the unconditional distribution.
Extensions are possible to situations in which P is conditioned on economic or financial
variables or P is estimated using other non-parametric methods or (semi-)parametric models
that are more statistically efficient (at the possible risk of introducing specification error).

The estimation could rely on a (semi-)parametric model or a fully non-parametric
method, depending on the data dimensions and features and on possible prior information.
An example of (semi-)parametric estimation is (quasi) maximum likelihood; an example
of an alternative non-parametric estimation is Nadaraya–Watson. To obtain statistical
consistency in these cases, it is sufficient to assume that the relevant likelihood function is
smooth or to assume standard regularity properties for the unknown densities involved and
the associated kernels. Parametric likelihood ratio tests and smoothed empirical likelihood
tests can replace the BELR test in these cases.

Although our initial motivation was to handle multiple hosts, the analysis applies a
fortiori to the common special case in which K is a singleton and the ELR test becomes a test
for pairwise dominance. Although the test is conservative, it may prove to have advantages
compared to existing tests for pairwise dominance based on statistical resampling methods,
e.g., the subsampling tests in [28]. For example, if the data are iid, the results of [41] (see
Theorem 3.2) and of [42] (see Theorem 7.1.3) seem to imply large deviation advantages of
our ELR test—at least for elements of the alternative that are sufficiently “far” from the null
of being an SAO—compared to the existing tests.

Extending the comparison between our conservative BELR tests and resampling
methods to non-iid settings is of interest given the data dependence in typical investment
applications and the flexibility of the proposed BEL apparatus. In future work, we therefore
hope to establish a large-deviation property for blocks of stationary mixing data with a
rate function (see, for example, [42]) that directly depends on the KL divergence between
distributions on a space of limiting blocks. The form of the rate function (if it exists) could
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be connected to some sort of large-deviation optimality of the conservative BEL approach
for appropriate elements of the alternative hypothesis.

The test for the alternative avoids pathologies of asymptotic non-tightness for the
limiting alternative distribution by focusing on an alternative system of inequalities that
consider convex combinations of the original stochastic dominance inequalities. It extends
the ELR test for pairwise non-domimance of [18], since it allows for non-uniqueness of the
host portfolio and stationarity and mixing for the stochastic process.

The hope is that our consistency results and statistical tests will contribute to the
further proliferation of the SD concept in asset pricing, portfolio management and other
possible application areas.

The use of multiple hosts seems particularly useful for analyzing hedge funds and
financial derivatives because there is generally no natural benchmark or host in these
cases. For example, the Chicago Board of Options Exchange forwards a myriad of Strategy
Benchmark Indices for stock index options.

The analysis also applies to alternative application areas where sets of risky alternatives
are compared based on time-series estimates of the joint distribution functions. One such
application area is the evaluation and combination of forecast models in forecasting; see,
e.g., [30]. Encouragingly, the use of non-monotonic loss functions (outside U2) in forecasting
does not affect the validity of our derivations and arguments.

Another interesting route for further research is to adjust the analysis to cases where
the underlying probability distribution is estimated using cross-sectional data, such as the
comparison of empirical well-being distributions in well-being analyses, in the spirit of [43].

Author Contributions: Conceptualization, S.A. and T.P.; methodology, S.A. and T.P.; software, S.A.
and T.P.; validation, S.A. and T.P.; formal analysis, S.A. and T.P.; investigation, S.A. and T.P.; data
curation, S.A. and T.P.; writing—original draft preparation, S.A. and T.P.; writing—review and editing,
S.A. and T.P.; supervision, S.A. and T.P.; project administration, S.A. and T.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The authors confirm that the data and materials that support the results
or analyses presented in this paper are freely available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Levy, H. Stochastic Dominance: Investment Decision Making under Uncertainty, 3rd ed.; Springer: Cham, Switzerland, 2016.
2. Whang, Y.-J. Econometric Analysis of Stochastic Dominance: Concepts, Methods, Tools, and Applications; Cambridge University Press:

Cambridge, UK, 2018.
3. Perrakis, S. Stochastic Dominance Option Pricing: An Alternative Approach to Option Market Research; Springer: Cham, Switzerland, 2019.
4. Shalit, H.; Yitzhaki, S. Marginal Conditional Stochastic Dominance. Manag. Sci. 1994, 40, 670–684. [CrossRef]
5. Rockafellar, R.T.; Uryasev, S. Optimization of Conditional Value-at-Risk. J. Risk 2000, 2, 21–41. [CrossRef]
6. Dentcheva, D.; Ruszczynski, A. Optimization with Stochastic Dominance Constraints. SIAM J. Optim. 2003, 14, 548–566.

[CrossRef]
7. Kuosmanen, T. Efficient diversification according to stochastic dominance criteria. Manag. Sci. 2004, 50, 1390–1406. [CrossRef]
8. Roman, D.; Darby-Dowman, K.; Mitra, G. Portfolio construction based on stochastic dominance and target return distributions.

Math. Program. 2006, 108, 541–569. [CrossRef]
9. Post, T.; Karabatı, S.; Arvanitis, S. Portfolio optimization based on stochastic dominance and empirical likelihood. J. Econom. 2018,

206, 167–186. [CrossRef]
10. Constantinides, G.M.; Jackwerth, J.C.; Perrakis, S. Mispricing of S&P 500 Index Options. Rev. Financ. Stud. 2009, 22, 1247–1277.
11. Hodder, J.E.; Jackwerth, J.C.; Kolokolova, O. Improved Portfolio Choice Using Second-Order Stochastic Dominance. Rev. Financ.

2015, 19, 1623–1647. [CrossRef]
12. Constantinides, G.M.; Czerwonko, M.; Perrakis, S. Mispriced Index Option Portfolios. Financ. Manag. 2020, 49, 297–330.

[CrossRef]
13. Arvanitis, S.; Post, T. Generalized Stochastic Arbitrage Opportunities. Manag. Sci. 2023, forthcoming. [CrossRef]
14. Bernardo, A.E.; Ledoit, O. Gain, loss, and asset pricing. J. Political Econ. 2000, 108, 144–172. [CrossRef]

http://doi.org/10.1287/mnsc.40.5.670
http://dx.doi.org/10.21314/JOR.2000.038
http://dx.doi.org/10.1137/S1052623402420528
http://dx.doi.org/10.1287/mnsc.1040.0284
http://dx.doi.org/10.1007/s10107-006-0722-8
http://dx.doi.org/10.1016/j.jeconom.2018.01.011
http://dx.doi.org/10.1093/rof/rfu025
http://dx.doi.org/10.1111/fima.12288
http://dx.doi.org/10.1287/mnsc.2023.4892
http://dx.doi.org/10.1086/262114


Mathematics 2024, 12, 608 19 of 19

15. Cochrane, H.J.; Saa-Requejo, J. Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets. J. Political Econ. 2000,
108, 79–119. [CrossRef]

16. Bondarenko, O. Statistical arbitrage and securities prices. Rev. Financ. Stud. 2003, 16, 875–919. [CrossRef]
17. Fedotov, S.; Panayides, S. Stochastic arbitrage return and its implication for option pricing. Phys. A 2005, 345, 207–217. [CrossRef]
18. Davidson, R.; Duclos, J.-Y. Testing for Restricted Stochastic Dominance. Econom. Rev. 2013, 32, 84–125. [CrossRef]
19. Post, T.; Poti, V. Portfolio Analysis Using Stochastic Dominance, Relative Entropy, and Empirical Likelihood. Manag. Sci. 2017, 63,

153–165. [CrossRef]
20. Post, T. Empirical Tests for Stochastic Dominance Optimality. Rev. Financ. 2017, 21, 793–810. [CrossRef]
21. Russell, W.R.; Seo, T.K. Representative sets for stochastic dominance rules. In Studies in the Economics of Uncertainty: In Honor of

Josef Hadar; Springer: Berlin/Haidelberg, Germany, 1989.
22. Adams, R.A.; Fournier, J.J. Sobolev Spaces; Elsevier: Amsterdam, The Netherlands, 2003.
23. Mikosch, T.; Straumann, D. Stable limits of martingale transforms with application to the estimation of GARCH parameters. Ann.

Stat. 2006, 34, 493–522. [CrossRef]
24. Rio, E. Asymptotic Theory of Weakly Dependent Random Processes; Springer: Berlin, Germany, 2017; Volume 80.
25. Salinetti, G.; Wets, R.J. On the relations between two types of convergence for convex functions. J. Mathematical Anal. Appl. 1977,

60, 211–226. [CrossRef]
26. Giné, E.; Nickl, R. Mathematical Foundations of Infinite-Dimensional Statistical Models; Cambridge University Press: Cambridge, UK,

2016; Volume 40.
27. Molchanov, I. Theory of Random Sets; Springer: Berlin/Heidelberg, Germany, 2006.
28. Linton, O.; Maasoumi, E.; Whang, Y.-J. Consistent Testing for Stochastic Dominance under General Sampling Schemes. Rev. Econ.

Stud. 2005, 72, 735–765. [CrossRef]
29. Cover, T.; Thomas, J. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006.
30. Arvanitis, S.; Post, T.; Potì, V.; Karabati, S. Nonparametric tests for optimal predictive ability. Int. J. Forecast. 2021, 37, 881–898.

[CrossRef]
31. Silvapulle, M.J.; Sen, P.K. Constrained Statistical Inference: Inequality, Order and Shape Restrictions; John Wiley & Sons: Hoboken, NJ,

USA, 2005.
32. Savare, G. On the Regularity of the Positive Part of Functions. Nonlinear Anal. Theory Methods Appl. 1996, 27, 1055–1074. [CrossRef]
33. Kim, J.; Pollard, D. Cube root asymptotics. Ann. Stat. 1990, 18, 191–219. [CrossRef]
34. Robin, J.M.; Smith, R.J. Tests of rank. Econom. Theory 2000, 16, 151–175. [CrossRef]
35. Andrews, D.W.K.; Soares, G. Inference for parameters defined by moment inequalities using generalized moment selection.

Econometrica 2010, 78, 119–157.
36. Kitamura, Y. Empirical likelihood methods with weakly dependent processes. Ann. Stat. 1997, 25, 2084–2102. [CrossRef]
37. Nordman, D.J.; Bunzel, H.; Lahiri, S.N. A nonstandard empirical likelihood for time series. Ann. Stat. 2013, 41, 3050–3073.

[CrossRef]
38. El Ghouch, A.; Van Keilegom, I.; McKeague, I.W. Empirical likelihood confidence intervals for dependent duration data. Econom.

Theory 2011, 27, 178–198. [CrossRef]
39. Charkaborty, A.; Panaretos, V.M. Testing for the rank of a covariance operator. Ann. Stat. 2022, 50, 3510–3537. [CrossRef]
40. Adler, R.J. On excursion sets, tube formulas and maxima of random fields. In Annals of Applied Probability; Institute of Mathematical

Statistics: Beachwood, OH, USA, 2000; pp. 1–74.
41. Canay, I.A. EL inference for partially identified models: Large deviations optimality and bootstrap validity. J. Econom. 2010, 156,

408–425. [CrossRef]
42. Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2009; Volume 38.
43. Atkinson, A.B. On the measurement of inequality. J. Econ. Theory 1970, 2, 244–263. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1086/262112
http://dx.doi.org/10.1093/rfs/hhg016
http://dx.doi.org/10.1016/S0378-4371(04)00989-6
http://dx.doi.org/10.1080/07474938.2012.690332
http://dx.doi.org/10.1287/mnsc.2015.2325
http://dx.doi.org/10.1093/rof/rfw010
http://dx.doi.org/10.1214/009053605000000840
http://dx.doi.org/10.1016/0022-247X(77)90060-9
http://dx.doi.org/10.1111/j.1467-937X.2005.00350.x
http://dx.doi.org/10.1016/j.ijforecast.2020.10.002
http://dx.doi.org/10.1016/0362-546X(95)00104-4
http://dx.doi.org/10.1214/aos/1176347498
http://dx.doi.org/10.1017/S0266466600162012
http://dx.doi.org/10.1214/aos/1069362388
http://dx.doi.org/10.1214/13-AOS1174
http://dx.doi.org/10.1017/S0266466610000162
http://dx.doi.org/10.1214/22-AOS2238
http://dx.doi.org/10.1016/j.jeconom.2009.11.009
http://dx.doi.org/10.1016/0022-0531(70)90039-6

	Introduction
	Stochastic Arbitrage Opportunities
	Host Portfolios, Arbitrage Portfolios and Combined Portfolios
	Stochastic Arbitrage Opportunities

	Empirical Counterparts
	Consistency Features
	Empirical Likelihood Ratio Test for Being an SAO
	Testing the Alternative of Not Being an SAO

	Monte Carlo Simulations
	An Empirical Exercise
	Discussion
	References

