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Abstract: Any triangle in an isotropic plane has a circumcircle u and incircle i. It turns out that there
are infinitely many triangles with the same circumcircle u and incircle i. This one-parameter family
of triangles is called a poristic system of triangles. We study the trace of the centroid, the Feuerbach
point, the symmedian point, the Gergonne point, the Steiner point and the Brocard points for such
a system of triangles. We also study the traces of some further points associated with the triangles
of the poristic family, and we prove that the vertices of the contact triangle, tangential triangle and
anticomplementary triangle move on circles while the initial triangle traverses the poristic family.
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1. Introduction

A porism is a theorem about a closure property of a geometric figure or construction,
as explained in [1] (pp. 412–417). A well-known example comes from the elementary
triangle geometry. Any triangle in the Euclidean plane has a circumcircle u and incircle
i. It turns out that there are infinitely many triangles with the same circumcircle u and
incircle i. In other words, if we pick a point P1 on u and draw a tangent t1 from P1 to i,
then t1 intersects u in points P2 and P1. Now, we draw a tangent t2 ̸= t1 from P2 to i that
intersects u in P3 and P2. Finally, we draw a tangent t3 ̸= t2 from P3 to i that intersects
u in P4 and P3. It turns out that P4 = P1. The one-parameter family of triangles with a
common incircle and a common circumcircle is usually called a porisitic system of triangles.
In the Euclidean plane, the poristic family of triangles interscribed in between the incircle
and the circumcircle is called Chapple’s porism. The fact that such families exist even in
some non-Euclidean planes is due to the projective nature of the problem. Hence, it is not
necessary to prove the existence of a closed triangular path between two isotropic circles
(Euclidean parabolas with parallel axes). Nevertheless, in Section 3.1, in order to obtain a
parametrization of the poristic family, we offer the proof that the described property is also
valid in an isotropic plane.

In [2], the author showed that many triangle centers move on circles while the triangle
traces the poristic family. Some centers move on conics, and some centers move on curves of
a higher degree. In this paper, in Section 3.2, we study the loci of some triangle centers in the
isotropic plane. A further investigation of the loci of triangle centers in the Euclidean plane
is given in [3], where the authors studied a poristic family defined by two confocal ellipses.

In Section 3.3, we study the traces of the vertices of the contact triangle, tangential
triangle and anticomplementary triangle associated with the triangle of the poristic family
in the isotropic plane.

2. Methods

An isotropic plane is a projective plane with a distinct line f and a distinct point F ∈ f .
Lines incident with the absolute point F are called isotropic lines, and points incident with
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the absolute line f are called isotropic points. Two lines are said to be parallel if their
intersection point is an isotropic point, while two points are said to be parallel if they are
joined by an isotropic line.

The basic facts about the isotropic plane can be found in [4]. Here, we highlight the
ones that are important for our study.

The standard affine model of the isotropic plane, where the coordinates of points are

given by x =
x1

x0
and y =

x2

x0
, is obtained by setting f : x0 = 0 and F = (0, 0, 1). In this

model, the isotropic lines have equations of the form x = c with c ∈ R. The isotropic
distance d(P, Q) of a pair of two non-parallel points P = (xP, yP) and Q = (xQ, yQ)
is defined by d(P, Q) = xQ − xP, while two non-parallel lines p and q, given by the
equations y = kpx + lp and y = kqx + lq, respectively, form the isotropic angle defined by
∠(p, q) = kq − kp. The midpoint of points P and Q is defined in a natural way as the point

with coordinates
(

1
2 (xP + xQ), 1

2 (yP + yQ)
)

, while the bisector of lines p and q is the line

with the equation y = 1
2 (kp + kq)x + 1

2 (lp + lq).
According to their position with respect to the absolute figure, conics are ellipses,

hyperbolas, special hyperbolas, parabolas and circles, as explained in [4]. The most
interesting conics for us are circles, conics that touch f at F.Therefore, a circle has an
equation of the form y = ax2 + bx + c with a, b, c ∈ R.

A curve in the isotropic plane is said to be circular if it passes through the absolute
point F. If the curve intersects f only at F, then it is entirely circular, as explained in [5].
Thus, circles are entirely circular conics.

It was shown in [6] that any allowable triangle ABC (triangle whose sides are non-
isotropic lines) in the isotropic plane can be set in the so-called standard position by
choosing an appropriate affine coordinate system and having the circumcircle u with
the equation

u . . . y = x2, (1)

and vertices
A = (a, a2), B = (b, b2), C = (c, c2), (2)

with a + b + c = 0.
Let σ1, σ2 and σ3 be elementary symmetric functions in three variables a, b and c; in

other words, let

σ1 = a + b + c = 0, σ2 = ab + bc + ca, σ3 = abc. (3)

The centroid, the symmedian point, the Gergonne point, the Feuerbach point and
the Steiner point of the triangle ABC are labeled X2, X6, X7, X11 and X99, respectively,
according to Kimberling’s encyclopedia [7].

The coordinates of the centroid X2 of the triangle ABC are

X2 =

(
a + b + c

3
,

a2 + b2 + c2

3

)
=

(
0,−2

3
σ2

)
. (4)

It was shown in [8] that the incircle i

i . . . y =
1
4

x2 − σ2 (5)

and the Euler circle
e . . . y = −2x2 − σ2 (6)

touch each other externally at the Feuerbach point

X11 = (0,−σ2). (7)
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The symmedians are the reflections of medians in the bisectors. According to [9], they
intersect at the symmedian point X6 of the triangle ABC having the coordinates

X6 =

(
3σ3

2σ2
,−σ2

3

)
. (8)

The Gergonne point X7 of the triangle ABC is the intersection point of three lines
AAi, BBi and CCi, where Ai, Bi and Ci are the contact points of the triangle and its incircle
i. In [10], the coordinates of the Gergonne point X7 of the standard triangle ABC were
determined as follows:

X7 =

(
−3σ3

σ2
,−4σ2

3

)
. (9)

The Steiner point X99 of the triangle ABC is defined as the fourth (in addition to A, B
and C) common point X99 of the circumscribed circle u and circumscribed Steiner ellipse of
that triangle, as explained in [11]. In the case of the standard triangle ABC, this point has
the coordinate vector

X99 =

(
−3σ3

σ2
,

9σ2
3

σ2
2

)
. (10)

For every triangle in the isotropic plane, there is the first and the second Brocard point,
and they are unique. The first Brocard point is defined as the point such that its connections
with the vertices A, B and C form equal angles with the sides AC, BA and CB, respectively.
Analogously, the second Brocard point is defined as the point such that its connection lines
with the vertices A, B and C form equal angles with the sides AB, BC and CA, respectively.
According to [12], the Brocard points B1 and B2 of the standard triangle are given by

B1 =

(
σ3 − p1

σ2
,

3p2
1

σ2
2

− 2
9

σ2

)
, B2 =

(
σ3 − p2

σ2
,

3p2
2

σ2
2

− 2
9

σ2

)
, (11)

where
p1 =

1
3

(
bc2 + ca2 + ab2

)
, p2 =

1
3

(
b2c + c2a + a2b

)
. (12)

In Section 3.2, we will show that in the isotropic plane, all triangles in a poristic system
share the centroid and the Feuerbach point. The symmedian point and the Gergonne point
of all triangles move on straight lines. The Steiner point traces a circle, while Brocard points
trace a quartic curve.

3. Results
3.1. Poncelet’s Porism

In order to obtain an explicit parametrization of the poristic family, we assume that we
are given a triangle ABC with the vertices in Equation (2), a circumcircle u with Equation (1)
and an incircle i with Equation (5). Let P1 = (t, t2) be a point on the circle u. The polar line
p of P1 with respect to i is

p . . . − 4σ2 − 2t2 + tx − 2y = 0.

The intersections C2 and C3 of p and i are the points of contact of the tangents from P1
to the incircle i:

C2 =

(
t + W,

tW − t2 − 4σ2

2

)
, C3 =

(
t − W,

−tW − t2 − 4σ2

2

)
,
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where W =
√
−4σ2 − 3t2. Lines P1C3 and P1C2 intersect the circumcircle u at points P2 and

P3, respectively:

P2 =

(
W − t

2
,
−tW − t2 − 2σ2

2

)
, P3 =

(
−W − t

2
,

tW − t2 − 2σ2

2

)
.

The connection line P2P3 has the equation

y = −tx − t2 − σ2

and touches i at the point
C1 =

(
−2t, t2 − σ2

)
.

Thus, for any choice of the initial vertix P1, the triangle P1P2P3 closes (see Figure 1).
The triangles ABC and P1P2P3 share the centroid that has the coordinates

X2 =
1
3

(
t +

W − t
2

+
−W − t

2
, t2 +

−tW − t2 − 2σ2

2
+

tW − t2 − 2σ2

2

)
=

(
0,−2

3
σ2

)
. (13)

ui

x

y

A

B

C

P1

P2

P3

C2

C3

C1

Figure 1. A porisitic system of triangles in the isotropic plane.

It follows from Equation (13) that all triangles in the poristic system are in the standard
position, and therefore, Equations (3)–(12) for ABC can be applied to P1P2P3. The points
and values related to P1P2P3 will be marked with a ⋆.

We should notice that all sides of the triangle P1P2P3 will be real lines only if we chose
the vertex P1 as an outer of i, which is precisely the case when t2 ≤ − 4

3 σ2, and hence
W ∈ R.

3.2. Loci of Centers in the Poristic System of Triangles

Let P1P2P3 be a triangle from the poristic system with vertices

P1 =
(

t, t2
)

, P2 =

(
W − t

2
,
−tW − t2 − 2σ2

2

)
, P3 =

(
−W − t

2
,

tW − t2 − 2σ2

2

)
, (14)
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where t ∈ R.
The elementary symmetric functions related to P1P2P3 are

σ⋆
1 = 0 = σ1,

σ⋆
2 = t · W − t

2
+

W − t
2

· −W − t
2

+
−W − t

2
· t =

−W2 − 3t2

4

=
−(−4σ2 − 3t2)− 3t2

4
= σ2, (15)

σ⋆
3 = t · W − t

2
· −W − t

2
= − t

4

(
−4σ2 − 4t2

)
= t
(

σ2 + t2
)

.

Theorem 1. The centroid and the Feuerbach point of triangle P1P2P3 are fixed while the triangle
traces its poristic family.

Proof. We have already shown that X⋆
2 =

(
0,− 2

3 σ⋆
2
)

=
(
0,− 2

3 σ2
)

= X2. Similarly,
X⋆

11 = (0,−σ⋆
2 ) = (0,−σ2) = X11.

Theorem 2. The Gergonne point of triangle P1P2P3 moves on a line while the triangle traverses
the poristic family.

Proof. The Gergonne point X⋆
7 of triangle P1P2P3 has the coordinates X⋆

7 =
(
−3σ⋆3

σ⋆2
,−4σ⋆2

3

)
=(

−3t(σ2+t2)
σ2

,−4σ2
3

)
. Thus, the Gergonne points of all triangles from the poristic family lie

on the line g with the equation

y = −4σ2

3
,

the connection line of the intersections
(
±
√
− 4

3 σ2,− 4
3 σ2

)
of the incircle i and circumcircle

u.

Theorem 3. The symmedian point of triangle P1P2P3 moves on a line if the triangle traverses the
poristic family.

Proof. The symmedian point X⋆
6 of triangle P1P2P3 has the coordinates X⋆

6 =
(
− 3σ⋆

3
2σ⋆

2
,−σ⋆

2
3

)
=(

3t(σ2+t2)
2σ2

,−σ2
3

)
. Thus, the symmedian point of all triangles from the poristic family moves

on the line k with the equation

y = −σ2

3
,

the connection line of the intersections
(
±
√
− σ2

3 ,− σ2
3

)
of the circumcircle u and common

Euler circle e given by Equation (6).

Remark 1. The locus of the Gergonne point and the locus of the symmedian point are parallel lines
(see Figure 2).

Theorem 4. The Steiner point of triangle P1P2P3 moves on a circle when the triangle traverses the
poristic family.

Proof. The statement follows trivially from the fact that the Steiner point of a triangle is
the intersection point of the circumcircle and the Steiner ellipse of the triangle. The Steiner

point X⋆
99 =

(
− 3σ⋆

3
σ⋆

2
, 9σ⋆2

3
σ⋆2

2

)
=

(
− 3t(σ2+t2)

σ2
,

9t2(σ2+t2)
2

σ2
2

)
of triangle P1P2P3 obviously lies on

the circle with the equation y = x2 (i.e., the circumcircle u).
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ui
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Figure 2. The loci of the symmedian point, the Gergonne point and the Brocard points for a
porisitic system of triangles in the isotropic plane. The centroid X2 and the Feuerbach point X11 are
fixed points.

Theorem 5. The Brocard points of triangle P1P2P3 move on a quartic curve when the triangle
traverses the poristic family.

Proof. Let B⋆
1 be the first Brocard point of triangle P1P2P3. Then, we have

B⋆
1 =

(
σ⋆

3 − p⋆1
σ⋆

2
,

3p⋆2
1

σ⋆2
2

− 2
9

σ⋆
2

)
=

(
t
(
σ2 + t2)− p⋆1

σ2
,

3p⋆2
1

σ2
2

− 2
9

σ2

)
,

where

p⋆1 =
1
3

(
W − t

2
· (−W − t)2

4
+

−W − t
2

· t2 + t
(W − t)2

4

)
=

1
24

(
W(W2 − 9t2) + 3t(W2 − t2)

)
= −1

6

(
W(σ2 + 3t2) + 3t(σ2 + t2)

)
and

p⋆2
1 =

1
36

(
−4σ3

2 − 18σ2
2 t2 − 36σ2t4 − 18t6 + 6Wt(σ2

2 + 4σ2t2 + 3t4)
)

.

The coordinates of B⋆
1 are therefore given by

x =
9t(σ2 + t2) + W(σ2 + 3t2)

6σ2
,

y =
−3σ2

2 t2 − 6σ2t4 − 3t6 + Wt(σ2
2 + 4σ2t2 + 3t4)

2σ2
2

− 5σ2

9
.
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After inserting W =
√
−4σ2 − 3t2 and eliminating the parameter t from the above

equations, we obtain the equation of a quartic curve h:

9x4 − 9x2y + 9y2 + 6σ2y + σ2
2 = 0, (16)

In other words, we have

9x2(x2 − y) + (3y + σ2)
2 = 0. (17)

The same quartic curve h is obtained as the locus of the second Brocard points:

B⋆
2 =

(
9t(σ2 + t2)− W(σ2 + 3t2)

6σ2
,
−3σ2

2 t2 − 6σ2t4 − 3t6 − Wt(σ2
2 + 4σ2t2 + 3t4)

2σ2
2

− 5σ2

9

)
.

It follows from Equations (1) and (17) that the locus h of Brocard points touches the

circumcircle u at two points: the intersections
(
±
√
− σ2

3 ,− σ2
3

)
of the circumcircle u and

the Euler circle e.
Homogenizing

(
x = x1

x0
, y = x2

x0

)
Equation (16) of h and setting x0 = 0 yields the

intersection with the absolute line f as 9x4
1 = 0. Thus, the absolute point F is the intersection

point with an intersection multiplicity of four , and therefore, h is an entirely circular quartic.

3.3. Traces of Some Points

In [2], the author also studied the traces of some further points associated with triangles
of the poristic family in the Eucildean plane. He showed that the trace of the midpoint
of any side of a triangle traversing a poristic family is a Limaçon of Pascal and that the
vertices of the tangential triangle of a triangle move on an ellipse. We will show that in the
isotropic plane, both curves are isotropic circles.

We have already seen that while triangle P1P2P3 traverses the poristic family, the
midpoints of its sides trace the common Euler circle e, and the centroid is fixed. Now, we
focus on the contact triangles and tangential triangles of the triangles from the poristic
family (see Figure 3).

Theorem 6. The vertices of the contact triangle of triangle P1P2P3 move on a circle while P1P2P3
traverses the poristic family. The trace of the midpoint of any side of the contact triangle is a circle,
and the centroid of the contact triangle is fixed.

Proof. The vertices C1, C2 and C3 of the contact triangle of P1P2P3 are in Section 3.1 and are
determined as follows:

C1 =
(
−2t, t2 − σ2

)
, C2 =

(
t + W,

tW − t2 − 4σ2

2

)
, C3 =

(
t − W,

−tW − t2 − 4σ2

2

)
,

The midpoints of its sides are

MC12 =
(

W−t
2 , tW+t2−6σ2

4

)
, MC13 =

(
−W−t

2 , −tW+t2−6σ2
4

)
,

MC23 =
(

t,− t2

2 − 2σ2

)
.

The point MC23 obviously traces the circle

mC . . . y = − x2

2
− 2σ2 (18)

and it can be easily checked that MC12 and MC13 lie on the same circle.
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The centroid of triangle C1C2C3 is X2C =
(
0,− 5

3 σ2
)
.

ui

x

y

e

P1

P2

P3

X2

X2 C

C2

C2

C1

mC

T1

T3

T2

X2 T

Τ

mT

Figure 3. When triangle P1P2P3 traverses the poristic family, the midpoints of its sides traverse a
circle e (black). The midpoints of the sides of its contact triangle C1C2C3 traverse a circle mC, and the
centroid X2C is fixed (purple). The vertices of the tangential triangle T1T2T3 traverse a circle τ, the
midpoints of T1T2T3 traverse a circle mT , and the centroid X2T is fixed (red).

Theorem 7. The vertices of the tangential triangle of triangle P1P2P3 move on a circle while P1P2P3
traverses the poristic family. The trace of the midpoint of any side of the tangential triangle is a
circle, and the centroid of the tangential triangle is fixed.

Proof. The polar line of the point (x, y) with respect to the circle y = x2 has the equation
y + y = 2xx. Therefore, the tangents to u at vertices P1, P2 and P3 are given by the
respective equations

t1 . . . y = 2tx − t2,

t2 . . . y = (W − t)x − (W − t)2

4
,

t3 . . . y = (−W − t)x − (W + t)2

4
.

The vertices T1 = t2 ∩ t3, T2 = t1 ∩ t3 and T3 = t1 ∩ t2 of the tangential triangle are

T1 =

(
− t

2
,

t2 − W2

4

)
, T2 =

(
t − W

4
,
−tW − t2

2

)
, T3 =

(
t + W

4
,

tW − t2

2

)
.
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The point T1 traces the circle

τ . . . y = 4x2 + σ2

since W2 = −4σ2 − 3t2. T2 and T3 lie on the same circle. The midpoints of the sides of
T1T2T3 given by the coordinates

MT23 =

(
t
4

,− t2

2

)
, MT12 =

(
−t − W

8
,− (t + W)2

8

)
, MT13 =

(
−t + W

8
,− (t − W)2

8

)
.

trace the circle
mT . . . y = −8x2.

The centroid of triangle T1T2T3 is the point X2T =
(
0, σ2

3
)
.

Remark 2. The centroid X2 of triangle P1P2P3, centroid X2C of the contact triangle C1C2C3 and
centroid X2T of the tangential triangle T1T2T3 are parallel points.

Remark 3. The circle τ is polar to circle i with respect to circle u. Therefore, there is also a poristic
family with u as the incircle and τ as the circumcircle.

Theorem 8. The vertices of the anticomplementary triangle of triangle P1P2P3 move on a circle
while P1P2P3 traverses the poristic family. The centroid of the anticomplementary triangle is fixed.

Proof. The anticomplementary triangle A1 A2 A3 is the triangle which has triangle P1P2P3
as its medial triangle (i.e., it is formed by the lines through the vertices of P1P2P3 parallel to
its sides). It is in perspective with P1P2P3 at centroid X2, as explained in [6]. The vertices of
the anticomplementary triangle are

A1 =
(
−2t,−2t2 − 2σ2

)
, A2 =

(
t − W, tW + t2

)
, A3 =

(
t + W,−tW + t2

)
,

and they lie on the circle mC given by Equation (18). The triangle P1P2P3 and its anticom-
plementary triangle A1 A2 A3 share the centroid X2.

4. Discussion

Any triangle in the isotropic plane has a circumcircle u and incircle i. We showed
that there are infinitely many triangles with the same circumcircle u and incircle i. We also
proved that all triangles in a poristic system share a centroid and Feuerbach point. The
symmedian point and the Gergonne point trace straight lines, the Steiner point traces a
circle, and the Brocard points trace a quartic curve.

To make this study simpler, we put the initial triangle ABC in the so-called standard
position by choosing its vertices to be (a, a2), (b, b2) and (c, c2), with σ1 = a + b + c = 0.
Assuming that σ1 ̸= 0, we would obtain the same results, but the calculations would be
much more complicated, and the formulas and equations would be much longer.
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