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Abstract: In the present, we study the problem of strong ergodicity in nonhomogeneous Markov systems.
In the first basic theorem, we relax the fundamental assumption present in all studies of asymptotic
behavior. That is, the assumption that the inherent inhomogeneous Markov chain converges to a
homogeneous Markov chain with a regular transition probability matrix. In addition, we study the
practically important problem of the rate of convergence to strong ergodicity for a nonhomogeneous
Markov system (NHMS). In a second basic theorem, we provide conditions under which the rate
of convergence to strong ergodicity is geometric. With these conditions, we in fact relax the basic
assumption present in all previous studies, that is, that the inherent inhomogeneous Markov chain
converges to a homogeneous Markov chain with a regular transition probability matrix geometrically
fast. Finally, we provide an illustrative application from the area of manpower planning.
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1. Introductory Notes

Consider a stochastic system that has a population of members categorized in different
states. Three types of movements are possible in the system. Firstly, movements of members
are probable among the states of the system; secondly, members are leaving the system
from the various states; and thirdly, new members are entering the system to replace leavers
and to expand the population. When the various movements of the system are modeled
by a nonhomogeneous Markov chain, we call such a system a nonhomogeneous Markov
system (NHMS).

An NHMS is actually a generalization of the classical Markov chain where we have one
particle moving among the states without the possibility of leaving the system and probably
being replaced by another with possibly different characteristics. Of great importance is
the vector of absolute probabilities which consists of the probabilities of the particle to be
in any state of the Markov chain. On the other hand, in an NHMS, we have a population of
particles categorized according to their characteristics in the various states. Particles are
leaving the population from all the states, and new particles are entering the population
to replace them and to expand the population. Of great importance is the vector of the
expected relative population structure. Hence, the problems to be solved are a lot harder,
and new strategies and tools are used other than the simple Markov chain. The roots of
the motive for the development of the theory of NHMS, which was first introduced in
Vassiliou [1], could be summarized in the use of Markov models in manpower systems. This
started with the work of Young and Almond [2], Young [3,4], and Bartholomew [5,6], and it
was extended in the works of Young and Vassiliou [7], Vassiliou [8,9], and McClean [10,11].
In the book by Vassiliou [12], one can find the evolution of the theory of NHMS and
the large diversity of its developments in various directions, that is, NHMS in discrete
and continuous time, stochastic control in NHMS, Laws of Large Numbers for NHMS,
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Perturbations theory, NHMS in a stochastic environment, Markov systems, and others.
In Section 5.4 of [12], there is a synopsis of real and potential applications of NHMS
which illustrates the breadth of applications and some of the reasons why the entire
theory is central to these processes. Work on manpower planning using results from
NHMS and new areas has continued throughout the years up to nowadays, for example,
Garg, et al. [13–15], Ugwugo and McClean [16], Vassiliadis [17,18], Georgiou, et al. [19],
Guerry [20,21], Pollard [22], Esquivel, et al. [23–25].

In Section 2 of the present study, we define and describe the NHMS in discrete time and
space in a compact but hopefully readable way for the reader who comes in contact for the
first time with these processes. We also state the expected relative population structure in
the various states as a function of the parameters of the population that could be estimated
from the available data. In Section 3, we start with some basic definitions of concepts and
mathematical tools, as well as useful known results that will be used in what follows. The novel
part of this section is Theorem 1, where we study strong ergodicity for NHMS by relaxing the
basic assumption present in all studies of strong ergodicity for NHMS. That is, we will not
assume that the inherent inhomogeneous Markov chain converges as time goes to infinity to a
homogeneous Markov chain with a regular (it consists of one communicating class of states,
which is aperiodic) transition probability matrix or, equivalently, that the inhomogeneous
Markov chain is strongly ergodic. In Section 3, we start with some basic definitions of concepts
and mathematical tools, as well as useful known results that will be used in what follows.
The novel part of this section is Theorem 4, where we prove under what conditions the rate
of convergence of strong ergodicity in a NHMS is geometrically fast. This is an important
question in NHMS due to its large practical value. In Theorem 4, we relax the basic assumption
present in all studies of the rate of convergence to its asymptotic behavior for a NHMS. That
is, we will not assume that the inherent inhomogeneous Markov chain converge as time
goes to infinity to a homogeneous Markov chain with a regular transition probability matrix
geometrically fast. Finally, in Section 5, we provide an illustrative application from the area of
manpower planning.

2. The NHMS in Discrete Time and Space

Let a population consist of any kind of entities and let us denote by T(t) for t = 1, 2, . . .,
the total number of memberships at time t, that is, at the end of the interval (t − 1, t], which
are being held by its members. At every point of time that a member leaves the population,
the membership is being transferred to a new member. For example, members could be
patients in a hospital and memberships the beds they occupy. It is assumed that the total
number of memberships are known or the sequence {T(t)}∞

t=0 is a realization of a known
stochastic process depending on the application. The memberships are distributed in a
finite number of states and let S = {1, 2, . . ., k} be the state space. Important aspect of
an NHMS (see Vassiliou [12], Section 5.2) is the population structure, that is, the vector of
random variables

N(t) = [N1(t), N2(t), . . ., Nk(t)],

where Ni(t) is the number of memberships in state i at time t. Also, very important is the
relative population structure, which is the vector of random variables q(t) = N(t)/T(t). We
denote by P(t) the transition probability matrix of the internal transitions of the members
of the population during the interval (t − 1, t], that is, the t-th interval. Also, we have
probable leavers from the states in S in every time interval t and let us denote by

pk+1(t) = [p1,k+1(t), p2,k+1(t), . . ., pk,k+1(t)],

where the state k + 1 represents the external environment. Finally, we have new entrants of
memberships to the population in order to replace leavers and to expand the population.
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Let us collect the probabilities of allocation of the memberships to the various states in the
t-th interval in the following stochastic vector

p0(t) = [p01(t), p02(t), . . ., p0k(t)],

where the state 0 represents the new entrants with their memberships waiting to be allocated
in the various states. Note that in what follows we assume that ∆T(t) = T(t)− T(t − 1) ≥ 0.

The transition probability matrix of the memberships Q(t) in the t-th interval can be
shown (Vassiliou [12], p. 193), and it is given by

Q(t) = P(t) + pk+1(t)p0(t). (1)

We call the inhomogeneous Markov chain defined uniquely by the sequence of transition
probability matrices {Q(t)}∞

t=0 the embedded or inherent nonhomogeneous Markov chain of
NHMS. A population or any physical phenomenon that could be modeled in the above
described way is defined to be a nonhomogeneous Markov system.

Now, as previously, we define the relative population structure for a population which
started at time s and is at time t to be q(s, t) = N(s, t)/T(t), where N(s, t) is the population
structure for the population. It could be proved that (Georgiou and Vassiliou [26] and
Vassiliou [12], p. 195)

E[q(s, t)] = E[q(s, t − 1)]α(t − 1)Q(t) + b(t − 1)p0(t), (2)

where s is the initial time and, therefore, q(s) is the initial relative population structure
which is known and

α(t − 1) =
T(t − 1)

T(t)
and b(t − 1) =

T(t)− T(t − 1)
T(t)

, (3)

and where q(s, t) is the relative population structure at time t for the system that started
with initial relative population structure q(s), which apparently is a random variable, and
we denote by E[q(s, t)] its expected value.

From (2), recursively, we obtain

E[q(s, t)] = q(s)
T(s)
T(t)

Q(s, t) +
1

T(t)

t

∑
τ=1

∆T(s + t)p0(s + t)Q(s + τ, t), (4)

where
Q(s, t) = Q(s + 1)Q(s + 2). . .Q(t).

3. Strong Ergodicity in NHMS with Chronological Order

The asymptotic behavior of NHMS and of nonhomogeneous Markov chains, as well as
of homogeneous Markov chains, has been one of the central problems for many years, as can
be seen in Refs. [12,27–31]. The asymptotic behavior of NHMS started with Vassiliou [1,32],
and an updated evolution of these theorems and their variants could be found in Vassil-
iou [12]. In the present section, we provide and prove a basic theorem for strong ergodicity
in NHMS when the transition probabilities matrices of the inherent Markov chain {Q(t)}∞

t=0
are given in chronological order; that is, it is assumed that the time order of the elements
of the sequence {Q(t)}∞

t=0 is given and will not be changed. In Theorem 1 we relax the
basic assumption present in all studies of asymptotic behavior for NHMS. That is, we
will not assume that the inherent inhomogeneous Markov chain converge as time goes to
infinity to a homogeneous Markov chain with a regular (it consists of one communicating
class of states which is aperiodic) transition probability matrix or, equivalently, that the
inhomogeneous Markov chain is strongly ergodic. We start with some basic definitions
and results, which will be useful in what follows.
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For what follows, we assume a complete probability space (Ω,F ,P) and consider an
NHMS in discrete time and space. Therefore, we will not repeat this in every Definition,
Lemma, Proposition, or Theorem.

Definition 1. We say that the NHMS is strongly ergodic if and only if there exists a stochastic
vector ψ such that

lim
ν→∞

∥E[q(t, t + ν)]− ψ∥ = 0. for t = 0, 1, 2, . . ., (5)

where ∥.∥ from now on is any vector norm, except if it is otherwise stated.

Definition 2. If Q is any finite stochastic matrix with state space S = {1, 2, . . ., k}, then the
Dobrushin ergodicity coefficient that is known is given by

τ1(Q) =
1
2

max
i,r

k

∑
j=1

∣∣∣qij − qkj

∣∣∣. (6)

We now define another class of ergodicity coefficients which will be generated by different norms.

Definition 3 (Seneta [27]). Let the set

Dn =
{

x : x ∈ Rn, x ≥ 0, x1⊤ = 1
}

,

and by d(. . .) any metric on this set. Then, the quantity

τ(P) = sup
x,y∈Dn

d(xP, yP)
d(x, y)

with x ̸= y, (7)

for any stochastic matrix, P is called a coefficient of ergodicity.

Remark 1. All matrix norms on Rn provide an appropriate metric on Dn via d(x, y) = ∥x − y∥.
Then for any stochastic matrix P we get

τ∥.∥(P) = sup
x,y∈Dn

∥(x − y)P∥
∥x − y∥ with x ̸= y. (8)

We call τ∥.∥(P) the coefficient of ergodicity induced by the norm ∥.∥. It is proved that (8) can
be written equivalently (Vassiliou [12], p. 118) as follows:

τ∥.∥(P) = sup
∥z∥=1
z1⊤=1

∥zP∥ over all z ∈ Rn. (9)

When the L1 norm is used, that is, for an n × n matrix A with elements from C, we obtain that

∥A∥1 =
n

∑
i,j=1

∣∣aij
∣∣, (10)

then
τ1(P) = sup

∥z∥1=1
z1⊤=1

∥zP∥1 over all z ∈ Rn. (11)

We now give the definitions of strong and weak ergodicity for a nonhomogeneous
Markov chain:
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Definition 4. Consider an inhomogeneous Markov chain {Xt}∞
t=0 in discrete time and space. We

say that {Xt}∞
t=0 with a sequence of transition probability matrices {Q(t)}∞

t=0 is strongly ergodic
if there exists a stable stochastic matrix Q such that for every t

lim
ν→∞

∥Q(t, t + ν)− Q∥ = 0. (12)

If the limit is zero uniformly in t we say that {Xt}∞
t=0 or equivalently {Q(t)}∞

t=0 is uniformly
strongly ergodic.

Definition 5. Consider an inhomogeneous Markov chain {Xt}∞
t=0 in discrete time and space. We

say that {Xt}∞
t=0 with sequence of transition probability matrices {Q(t)}∞

t=0 is weakly ergodic if
for all states i, j, r, t

qir(t, t + ν)− qjr(t, t + ν) → 0 as ν → ∞. (13)

Note that in (13), limν→∞ qij(t, t + ν) is not actually necessary to exist.

Remark 2. Note that equivalently a non-homogeneous Markov chain is weakly ergodic if
τ1(Q(t, t + ν)) < 1 for every t.

We now state the following Lemma the proof of which exists in Vassiliou ([12], p. 119).

Lemma 1. The coefficient of ergodicity generated by any metric as in (7) or induced by any vector
norm on Rn has the following properties:

(1) τ(P1P2) ≤ τ(P1)τ(P2) for any P1, P2 stochastic matrices.
(2) For any stochastic matrix P, τ(P) = 0 if and only if rank(P) = 1.

The following Lemma proof, which can be found in Paz [33], is useful in what follows:

Lemma 2. If P is a stochastic matrix and if R is any real matrix such that R1⊤ = 0 and in addition
∥R∥ < ∞, then

∥RP∥ ≤ ∥R∥τ1(P).

We now state and prove one of the basic theorems of the present paper.

Theorem 1. Let there be the complete probability space (Ω,F ,P) and consider an NHMS in
discrete time and space. We assume that

lim
t→∞

T(t) = T with ∆T(t) ≥ 0. (14)

Let {Y(t)}∞
t=0 be the inherent nonhomogeneous Markov chain of the movement of memberships.

If {Y(t)}∞
t=0 is weakly ergodic with {Q(t)}∞

t=0, the sequence of transition probabilities, and in
addition, there exists a stochastic vector

ψ(t) = [ψ1(t), ψ2(t), . . ., ψk(t)], (15)

which is the left eigenvector of Q(t) for t = 0, 1, 2, . . ., that is

ψ(t) = ψ(t)Q(t) for t = 0, 1, 2, . . ., (16)

and
∞

∑
t=0

∥ψ(t + 1)− ψ(t)∥ < ∞, (17)

then the NHMS is strongly ergodic.
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Proof. From (17) we obtain that there exists a stochastic vector ψ such that

lim
t→∞

∥ψ(t)− ψ∥ = 0. (18)

From (16) and (18), we obtain that there exists a stochastic matrix Q such that

lim
t→∞

∥Q(t)− Q∥ = 0 with Q1⊤ = 1⊤. (19)

Denote by Ψ(t) to be the stable matrix with row the stochastic vector ψ(t) and Ψ the stable
matrix with row ψ. Then, we have

∥Ψ(t + 1)− Ψ(t)∥ = ∥ψ(t + 1)− ψ(t)∥ and ∥Ψ(t)− Ψ∥ = ∥ψ(t)− ψ∥. (20)

We now show that
lim

ν→∞
∥Q(t, t + ν)− Ψ∥ = 0. (21)

We have that

Q(t, t + ν)− Ψ = Q(t, t + r)Q(t + r, t + ν)− Ψ(t + r)Q(t + r, t + ν)+

Ψ(t + r)Q(t + r, t + ν)− Ψ(t + ν − 1) + Ψ(t + ν − 1)− Ψ. (22)

Taking norms on (22) we obtain that

∥Q(t, t + ν)− Ψ∥ ≤ ∥Q(t, t + r)Q(t + r, t + ν)− Ψ(t + r)Q(t + r, t + ν)∥

+∥Ψ(t + r)Q(t + r, t + ν)− Ψ(t + ν − 1)∥+ ∥Ψ(t + ν − 1)− Ψ∥. (23)

We now have

N1(t, ν) = ∥Q(t, t + r)Q(t + r, t + ν)− Ψ(t + r)Q(t + r, t + ν)∥ ≤

∥[Q(t, t + r)− Ψ(t + r)]Q(t + r, t + ν)∥ ≤ (Due to Lemma 2) ≤

∥Q(t, t + r)− Ψ(t + r)∥τ1(Q(t + r, t + ν)) ≤ 2τ1(Q(t + r, t + ν)), (24)

where τ1(Q(t + r, t + ν)) is less than one due to weak ergodicity of {Y(t)}∞
t=0 the inherent

nonhomogeneous Markov chain. Also for fixed r, we can always choose ν such that

N1(t, ν) ≤ ε

3
, with ε > 0 a small number. (25)

We now have that

Ψ(t + r)Q(t + r, t + ν) = (due to Equation (16)) =

[Ψ(t + r)− Ψ(t + r + 1)]Q(t + r + 1, t + ν)+

+Ψ(t + r + 1)Q(t + r + 1, t + ν). (26)

Now, similarly, we obtain

Ψ(t + r + 1)Q(t + r + 1, t + ν) =

[Ψ(t + r + 1)− Ψ(t + r + 2)]Q(t + r + 2, t + ν)

+Ψ(t + r + 2)Q(t + r + 2, t + ν), (27)



Mathematics 2024, 12, 660 7 of 16

and using this equation recursively, we obtain

Ψ(t + r)Q(t + r, t + ν) =
t+ν−1

∑
j=t+r+1

[Ψ(j − 1)− Ψ(j)]Q(j, t + ν)

+Ψ(t + ν − 1)Q(t + ν − 1, t + ν). (28)

From condition (16), we obtain that

Ψ(t + ν − 1) = Ψ(t + ν − 1)Q(t + ν − 1), (29)

and
ψ(t + ν − 1) = ψΨ(t + ν − 1). (30)

Therefore, from (28)–(30), as well as, Lemma 2, we have that

N2(t, ν) = ∥Ψ(t + r)Q(t + r, t + ν)− ΨΨ(t + ν − 1)∥ ≤∥∥∥∥∥ t+ν−1

∑
j=t+r+1

[Ψ(j − 1)− Ψ(j)]τ1(Q(j, t + ν))

∥∥∥∥∥ ≤

t+ν−1

∑
j=t+r+1

∥ψ(j − 1)− ψ(j)∥τ1(Q(j, t + ν)) ≤

≤ (τ1(Q(t + r, t + ν)) < 1 due to weak ergodicity of {Y(t)}∞
t=0;

see also Remark 2).

≤
t+ν−1

∑
j=t+r+1

∥ψ(j − 1)− ψ(j)∥ < ∞, (31)

due to condition (17). Since N2(t, ν) < ∞ for every r and ν and it is a sum of positive
numbers, we have that its tail goes to zero. Hence, we could, for every ε > 0, fix t + r
such that N2(t, ν) < ε/3 for ν − 1 ≥ r and we can always take a ν large enough so that
N1(t, ν) < ε/3 and

N3(t, ν) = ∥Ψ(t + ν − 1)− Ψ∥ ≤ ε

3
, (32)

therefore, we obtain that
lim

ν→∞
∥Q(t, t + ν)− Ψ∥ = 0. (33)

Now, from (4), we have that

∥E[q(t, t + ν)]− ψ∥ =∥∥∥∥∥q(t)
T(t)

T(t + ν)
Q(t, t + ν) +

1
T(t + ν)

t+ν

∑
τ=t

∆T(τ)Q(τ, t + ν)− ψ

∥∥∥∥∥ ≤

1
T(t + ν)

∥∥∥∥∥q(t)T(t)Q(t, t + ν) +
t+ν

∑
τ=t

∆T(τ)Q(τ, t + ν)− T(t + ν)ψ

∥∥∥∥∥ ≤

∥q(t)T(t)Q(t, t + ν)− T(t)ψ∥+∥∥∥∥∥t+ν

∑
τ=t

∆T(τ)p0(τ)Q(τ, t + ν)− [T(t + ν)− T(t)]ψ

∥∥∥∥∥. (34)

Now, we have
A(t, t + ν) = ∥q(t)T(t)Q(t, t + ν)− T(t)ψ∥ ≤
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T(t)∥q(t)∥∥Q(t, t + ν)− ψ∥. (35)

By fixing ε > 0, we can always find ν0 such that

A(t, t + ν) ≤ ε

2
for ν ≥ ν0. (36)

B(t, t + ν) =

∥∥∥∥∥t+ν

∑
τ=t

∆T(τ)p0(τ)Q(τ, t + ν)− [T(t + ν)− T(t)]ψ

∥∥∥∥∥ =

= (since p0(τ)Ψ = p0Ψ = ψ) =∥∥∥∥∥t+ν

∑
τ=t

∆T(τ)p0(τ)Q(τ, t + ν)−
t+ν

∑
τ=t

∆T(τ)p0Ψ

∥∥∥∥∥ =

∥∥∥∥∥t+ν

∑
τ=t

∆T(τ)[p0(τ)Q(τ, t + ν)− p0Ψ]

∥∥∥∥∥ ≤

t+ν

∑
τ=t

∆T(τ)∥p0(τ)Q(τ, t + ν)− p0Ψ∥ ≤

t+ν

∑
τ=t

∆T(τ)∥p0(τ)[Q(τ, t + ν)− Ψ] + p0(τ)Ψ − p0Ψ∥

≤
t+ν

∑
τ=t

∆T(τ)∥Q(τ, t + ν)− Ψ∥ (37)

Now, for ν > ν0 from (37), we have that

B(t, t + ν) ≤
t+ν−ν0

∑
τ=t

∆T(τ)∥Q(τ, t + ν)− Ψ∥+
t+ν

∑
τ=t+ν−ν0

∆T(τ)∥Q(τ, t + ν)− Ψ∥

≤
t+ν−ν0

∑
τ=t

∆T(τ)
ε

2
+ 2|T(t + ν)− T(t + ν − ν0 + 1)|, (38)

where the second part of (38) for ν >> ν0 is less than ε/2 due to condition (14). The first
part is also for, ν >> ν0, less than ε/2 since ∆T(t) →t→∞ 0 due to condition (14). From (34)
and (36), and a ν > ν0 large enough (ν >> ν0), we easily see that

∥E[q(t, t + ν)]− ψ∥ ≤ ε for every ν >> ν0,

hence, the NHMS is strongly ergodic.

4. Rate of Convergence in NHMS with Chronological Order

An important question in nonhomogeneous Markov chains and NHMS, due to its
very large practical value, is the rate of convergence to their asymptotic structure. In fact,
it is important to find the necessary conditions under which the rate of convergence is
geometric because then the value of the asymptotic result is greater. The roots of the study of
finding conditions under which the rate of convergence is geometric for nonhomogeneous
Markov chains are in Huang, et al. [34,35] and Seneta [31]. The study of the geometric
rate of convergence in NHMS started in Vassiliou and Tsaklidis [36] and Georgiou and
Vassiliou [26], and an updated evolution of these theorems and their variants could be
found in Vassiliou [12]. The importance of answering this problem for practical purposes
is apparent in Bartholomew [37] for the homogeneous Markov system, which is a very
special case of an NHMS. In the present section, we provide and prove a basic theorem for
the rate of convergence to strong ergodicity in NHMS when the transition probabilities
matrices of the inherent Markov chain {Q(t)}∞

t=0 are given in chronological order. In
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Theorem 4, we relax the basic assumption present in all studies of the rate of convergence
to its asymptotic behavior for an NHMS. That is, we will not assume that the inherent
inhomogeneous Markov chain converges as time goes to infinity to a homogeneous Markov
chain with a regular transition probability matrix geometrically fast. We start with some
basic definitions and results which will be useful in what follows.

Definition 6. We say that a sequence of matrices {An}∞
n=0 converges with geometrical rate to a

matrix A if there exists constants c > 0 and 0 < b < 1 such that

∥An − A∥ ≤ cbn for n = 1, 2, . . .. (39)

Lemma 3 (Vassiliou and Tsaklidis [36]). The following statements are equivalent:

(i) The sequence {∆T(t)}∞
t=0 converges to zero geometrically fast.

(ii) The sequence {T(t)}∞
t=0 converges to T geometrically fast.

Definition 7. (i) A stochastic matrix P is called Markov if at least one column of P is entirely
positive. Let M be the set of all Markov matrices. (ii) We say that the stochastic matrix P ∈ G2
if (a) P ∈ G1 the set of all regular matrices; (b) QP ∈ G1 for any Q ∈ G1. (iii) We say that the
stochastic matrix P ∈ G3 the set of all scrambling matrices if τ∥.∥1

(P) < 1.

Remark 3. The distinction of the set G2 from all stochastic regular matrices is due to the fact
that the product of two regular matrices is not always regular. In addition, the product of two
nonregular stochastic matrices could be regular. A practical way to check if a stochastic matrix of
small dimension is scrambling is the following: given any two rows i, j, there is at least one column
k such that pik > 0 and pjk > 0.

Definition 8. The incidence matrix of a stochastic matrix P is a matrix where in the positions of
positive elements we put the number 1. Therefore, two stochastic matrices P and Q of the same
dimension have the same incidence matrix if they have the positive elements in the same positions.
Then, we write P ∼ Q.

We now state some known Lemmas and Theorems, the proofs of which can be found
in Vassiliou ([12], p. 143).

Theorem 2. For all stochastic matrices, we have M ⊂ G3 ⊂ G2 ⊂ G1.

Lemma 4. If P(t, t + ν) ∈ G1 with t ≥ 0, n ≥ 1, then P(t, t + ν) ∈ M for t + ν ≥ µ the number
of distinct incidence matrices corresponding to G1 with the same dimension as P(t, t + ν).

Theorem 3. Let there be a complete probability space (Ω,F ,P), and consider a nonhomogeneous
Markov chain {Xt}∞

t=0 in discrete time and space with a sequence of transition probabilities matrices
{P(t)}∞

t=0. If P(t) ∈ G2 for every t = 1, 2, . . . and

min
i,j

(
pij(t), 0

)+ ≥ γ > 0, (40)

uniformly for all t ≥ 1, then weak ergodicity obtains at a uniform geometric rate.

We now define the geometrically strongly ergodic NHMS, which is a central concept
in the present section.

Definition 9. Let there be a complete probability space (Ω,F ,P), and consider an NHMS in
discrete time and space. We say that the NHMS is strongly ergodic if there exists a stochastic vector
ψ and constants c > 0 and 0 < b < 1 such that

∥E[q(t, t + ν)− ψ]∥ ≤ cbν for c > 0 and 0 < b < 1.
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We now state and prove the basic theorem of this section.

Theorem 4. Let there be a complete probability space (Ω,F ,P), and consider an NHMS in discrete
time and space. We assume that the total number of memberships is increasing (∆T(t) ≥ 0), and it
converges geometrically fast to T. That is,

lim
t→∞

T(t) = T geometrically fast with ∆T(t) ≥ 0. (41)

Let {Y(t)}∞
t=0 be the inherent nonhomogeneous Markov chain of the movement of memberships.

If {Y(t)}∞
t=0 is weakly ergodic with {Q(t)}∞

t=0 the sequence of transition probabilities to be
such that

(i) Q(t) ∈ G2 for every t = 1, 2, . . ., (42)

(ii) min
i,j

(
qij(t), 0

)+ ≥ γ > 0, (43)

and if in addition there exists a stochastic vector

ψ(t) = [ψ1(t), ψ2(t), . . ., ψk(t)], (44)

which is the left eigenvector for t = 1, 2, . . . of Q(t), that is,

ψ(t) = ψ(t)Q(t) for every t, (45)

and in addition

lim
ν→∞

∥ψ(t + ν)− ψ(t + ν − 1)∥ = 0 geometrically fast, (46)

then the NHMS is geometrically strongly ergodic.

Proof. In order to prove that the NHMS is geometrically strongly ergodic, we must show
that the expected relative structure satisfies Definition 9.

From (46), we have that there exists a vector ψ and constants c1 > 0 and 0 < b1 < 1
such that

∥ψ(t + ν)− ψ∥ ≤ c1bt+ν
1 . (47)

We define Ψ(t) and Ψ as the stable matrices with rows ψ(t) and ψ, respectively.
We now show that the inherent nonhomogeneous Markov chain {Y(t)}∞

t=0 is geomet-
rically strongly ergodic. That is, we need to show that there exists constants c2 > 0 and
0 < b2 < 1 such that

∥Q(t, t + ν)− Ψ∥ ≤ c2bν
2 for every t. (48)

Let us denote by µ the number of distinct incidence matrices corresponding to G1 with the
same dimension as P(t, t + ν). Then, for ν > µ, we have that

∥Q(t, t + ν)− Ψ∥ ≤ ∥Q(t, t + µ)Q(t + µ, t + ν)− Ψ(t + µ)Q(t + µ, t + ν)∥

+∥Ψ(t + µ)Q(t + µ, t + ν)− Ψ(t + ν − 1)∥+ ∥Ψ(t + ν − 1)− Ψ∥. (49)

Now, we have that

D1(t, ν, µ) = ∥Q(t, t + µ)Q(t + µ, t + ν)− Ψ(t + µ)Q(t + µ, t + ν)∥

≤ ∥[Q(t, t + µ)− Ψ(t + µ)]Q(t + µ, t + ν)∥

≤ ∥Q(t, t + µ)− Ψ(t + µ)∥τ1(Q(t + µ, t + ν))

≤ 2τ1(Q(t + µ, t + ν)). (50)
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For arbitrary but fixed t and ν with mµ ≤ ν with m, the largest such integer from (50), we
have that

D1(t, ν, µ) ≤ 2τ1(Q(t + µ, t + 2µ))τ1(Q(t + µ, t + 2µ)). . .

τ1(Q(t + (m − 1)µ, t + mµ))τ1(Q(t + mµ, t + ν)). (51)

Since Q(t) ∈ G2 and by Lemma 4 we have that τ1(Q(t + (i − 1)µ, t + iµ)) ∈ M and

τ1(Q(t + (i − 1)µ, t + iµ)) ≤ 1 − γµ with 0 < γ < 1 for i = 2, 3, . . ., m. (52)

From the weak ergodicity of the inherent nonhomogeneous Markov chain {Y(t)}∞
t=0, we

have that
τ1(Q(t + mµ, t + ν)) ≤ 1. (53)

From (51)–(53), we arrive at
D1(t, ν, µ) ≤ (1 − γµ)m, (54)

which as ν → ∞ goes to zero at a uniform geometric rate.
Following the steps of arriving at relation (31), we straightforwardly obtain that

D2(t, ν, µ) = ∥Ψ(t + µ)Q(t + µ, t + ν)− Ψ(t + ν − 1)∥

≤ ∥Ψ(t + µ)Q(t + µ, t + ν)− ΨΨ(t + ν − 1)∥

≤
t+ν−1

∑
j=t+µ+1

∥ψ(j − 1)− ψ(j)∥τ1(Q(j, t + ν)). (55)

We now have the largest integer for m, such that mµ ≤ ν

τ1(Q(t + µ, t + ν)) = τ1(Q(t + µ, t + 2µ)Q(t + 2µ, t + 3µ). . .

Q(t + (m − 1)µ, t + mµ)Q(t + mµ, t + νµ))

= (by Lemma 1)

≤ τ1(Q(t + µ, t + 2µ))τ1(Q(t + 2µ, t + 3µ)). . .

τ1(t + (m − 1)µ, t + mµ)τ1(t + mµ, t + ν) ≤

≤ (using (52))

≤ (1 − γµ)(1 − γµ). . .(1 − γµ) = (1 − γµ)m. (56)

From (56), we have that

τ1(Q(t + µ, t + ν)) →ν→∞ 0 uniformly geometrically fast. (57)

From (55), we have that

D2(t, ν, µ) ≤ ∥ψ(t + µ − 1)− ψ(t + µ)∥(1 − γµ)m+

∥ψ(t + µ)− ψ(t + µ + 1)∥(1 − γµ)m−1 + ∥ψ(t + µ)− ψ(t + µ + 1)∥(1 − γµ)m−1

+. . . + ∥ψ(t + µ(m − 1)− 1)− ψ(t + µ(m − 1))∥(1 − γµ)

+∥ψ(t + µm − 1)− ψ(t + µm)∥. (58)

Now, we have that
(1 − γµ)m →m→∞ 0 geometrically fast ,

since (1 − γµ) < 1. Also, from condition (46), we have that

∥ψ(t + µm − 1)− ψ(t + µm)∥ →m→∞ 0 geometrically fast,
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Therefore,
D2(t, ν, µ) →ν→∞ 0 geometrically fast. (59)

Now, from (49), (54) and (59), and condition (46), we easily have that

∥Q(t, t + ν)− Ψ∥ →ν→∞ 0 geometrically fast; (60)

hence, there exist constants c > 0 and 0 < b < 1 such that

∥Q(t, t + ν)− Ψ∥ ≤ cbν for every t, and c > 0, 0 < b < 1. (61)

What remains, according to Definition 9, is to show that the expected relative population
structure E[q(t, t + ν)] converges for every t to the vector ψ as ν goes to infinity geometri-
cally fast.

From (35), we have that

A(t, t + ν) = ∥q(t)T(t)Q(t, t + ν)− T(t)ψ∥ ≤

T(t)∥q(t)∥∥Q(t, t + ν)− ψ∥. (62)

From (61), we have that

A(t, t + ν) ≤ T(t)∥q(t)∥∥Q(t, t + ν)− ψ∥ ≤ c1bν, (63)

with c1 > 0 and 0 < b < 1.
From Lemma 3, we have that since T(t) converges geometrically fast to T, then ∆T(t)

converges geometrically fast to zero. Hence,

∆T(t) ≤ c2bt
2 with c2 > 0 and 0 < b2 < 1. (64)

Now, from (37), we have that

B(t, t + ν) ≤
t+ν

∑
τ=t

∆T(τ)∥Q(τ, t + ν)− Ψ∥. (65)

With no loss of generality, we may assume that b > b2, and then, from (63) and (64),
we have that

B(t, t + ν) ≤ c1c2

t+ν

∑
τ=t

(
b2

b

)τ

bt+ν = c3bt+ν
t+ν

∑
τ=t

(
b2

b

)τ

≤ c3bt+ν

(
1 − b2

b

)ν(
1 − b2

b

)−1
≤ c4bν

3 . (66)

From (63) and (66), we easily arrive at the proof of the theorem.

5. An Illustrative Application

We will illustrate the results in the previous section with an example from a population
of manpower. To possibly better visualize, the reader may have in mind a University system
with three grades. That is, grade one is those with the level of Professors, grade two belongs
to the Associate Professors, and finally, in grade three, there are the Assistant Professors.
The University has a plan for funding T(t) for t = 0, 1, 2, . . . memberships for the next few
years. When a member of staff is leaving, their membership remains with the University,
that is, the funding of their position is not lost but remains, and the University could go
on to appoint someone at any grade. The external environment to which the leavers go
and their membership is retained by the University and it is the population of members of
academic staff from Universities almost all over the world, as practices have shown. Hence,
it is from this external environment that the new members will obtain the memberships
available from the organization of the University.
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A fundamental question for the practitioner is the estimation of the transition prob-
abilities from the historical records. The way to estimate the transition probabilities of
the memberships is a small extension of the way it is performed in manpower planning,
which is well documented in Bartholomew [38]. Another quite similar problem is that of
the competing risk model in the medical literature, as it was presented by Kalbfleisch and
Prentice ([39], Chapter 8), Lee [40], and Cox and Oakes [41]. Also, similar problems exist in
the study of reliability models and various actuarial studies as discussed in Elandt–Johnson
and Johnson ([42], Chapter 7).

Now define by
Nij(t): the number of memberships moving from grade i to grade j in the t-th interval.
Ni(t − 1): the number of memberships in state i at the beginning of the t-th interval.
Assume that the number of years available in the historical data of the University is n.

Then, the maximum likelihood estimate of the probability qij(t) is the following:

q̂ij(t) =
Nij(t)

Ni(t − 1)
for any t. (67)

It is an apparent advantage that the probabilities q̂ij(t) are separately estimated for every
(i, j). In this way, the number of years of historical records necessary are significantly
reduced. At this point, it is useful to test the hypothesis that the probabilities q̂ij(t) are
indeed functions of time. That is,

H0: q̂ij(t) = q̂ij for every t. (68)

Considering the flow of memberships which move from grade i to grade j as a multinomial
random variable, then (see Andersen and Goodman [43]) hypothesis (68) is tested by
the statistic:

χ2(i, j) =
n

∑
t=1

Ni(t − 1)

(
q̂ij(t)− q̂ij

)
q̂ij

, (69)

where

q̂ij =
∑n

t=0 Nij(t)
∑n

t=1 Ni(t − 1)
, (70)

is the maximum likelihood estimate under the null hypothesis and is chi-square distributed
with n − 1 degrees of freedom.

Now, let that the χ2(i, j) showed that the probabilities q̂ij(t) are functions of time.
Then, there is a need to predict their values as functions of time. For a specific pair (i, j),
let that

x1ij(t), x2ij(t), . . ., xmij(t), (71)

are probable covariates for the specific application. Then, logistic stepwise regression is an
appropriate model for these probabilities. Let us define by

log it(x) = log
(

x
1 − x

)
, (72)

then we obtain

log it
(
q̂ij(t)

)
= a0 + a1x1ij(t) + a2x2ij(t) + . . . + amxmij(t). (73)

Now, it is obvious that stepwise regression will show what are the important covariates to
predict q̂ij(t) (see also Vassiliou [44]).
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Let that following the above-described steps, we ended with the matrix:

Q(t) =

0.2 + 1
4+t3 0.8 − 1

4+t3 0
0.3 0.5 − 1

8+t4 0.2 + 1
8+t4

0 0.2 + 2
10+t8 0.8 − 2

10+t8

 for t = 1,2,. . . . (74)

The total population of memberships was planned according to the following sequence

T(0) = 400, T(1) = 430, T(2) = 450,

T(3) = 475, T(4) = 500 and T(t) = 500 for t = 5, 6, . . ., (75)

that is, the total number of memberships converge geometrically fast with ∆T(t) ≥ 0,
satisfying the condition (41) in Theorem 4.

It is not difficult to check that the sequence (74) satisfies condition (42), that is, Q(t) ∈
G2 for t = 1, 2, . . .. Also, it satisfies condition (43) since

min
i,j

(
qij(t), 0

)+ ≥ γ = 0.2 > 0. (76)

For the sequence of transition probability matrices for the memberships (74), we find
for the condition (45) that the vectors ψ(t) that satisfy it were the following:

For t = 1 ψ(1) = [0.216, 0.432, 0.352], (77)

for t = 2 ψ(2) = [0.166, 0.390, 0.444], (78)

for t = 3 ψ(3) = [0.164, 0.416, 0.420], (79)

for t = 4 ψ(4) = [0.164, 0.424, 0.412], (80)

for t = 5 ψ(5) = [0.163, 0.426, 0.411], (81)

for t = 6 ψ(6) = [0.163, 0.427, 0.410], (82)

for t = 7 ψ(7) = [0.163, 0.427, 0.410]. (83)

We observe that already for t = 6 in (82) and (83) we have convergence of ψ(t) which
satisfies condition (45) of Theorem 4, that is the convergence is geometrically fast. Hence,
we conclude that

ψ = [0.16, 0.43, 0.41].

Calculating using the transition probability matrices given in (74) the matrix product
Q(t, t + ν) we find that for ν ≥ 9 it converges to ψ = [0.16, 0.43, 0.41]. Hence, we conclude
that Q(t, t + ν) as ν → ∞ converges geometrically fast as was expected from Theorem 4
relation (48).

Now, given the convergence of Q(t, t + ν) as ν → ∞ it is straight forward to find
from Equation (2) applying it recursively or equivalently from Theorem 1 that E[q(s, t)]
converges geometrically fast (in fact in 9 time steps) to

ψ = [0.16, 0.43, 0.41].

Hence, the NHMS is geometrically strongly ergodic.

6. Conclusions and Further Research

Two fundamental theorems have been founded that relax previous assumptions and
provide conditions for ergodicity and for the convergence rate of the relative population
structure in an NHMS. More specifically, in Theorem 1 the strong ergodicity of an NHMS
is studied without assuming the convergence of the inherent inhomogeneous Markov
chain to infinity to a homogeneous Markov chain with a regular transition probability
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matrix. In Theorem 4, it is proved under what conditions the rate of convergence of
strong ergodicity in a NHMS is geometrically fast. This is done by departing from the
basic assumption in which the inherent inhomogeneous Markov chain converges after a
large time to a homogeneous Markov chain with a regular transition probability matrix.
The proved theorems are expanding the understanding of the dynamics and behavior of an
NHMS. The paper concludes with an illustrative application from the field of Manpower
Planning, showcasing the vital practical relevance of the discussed concepts. Further
research paths may include the relaxation of relative assumptions in the many variant
models of the NHMS in diverse populations. Of particular interest may be the theorems of
Laws of Large numbers in an NHMS.
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