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Abstract: In this study, two numerical schemes with second-order accuracy in time for a modified
Ericksen–Leslie model are constructed. The highlight is based on a novel convex splitting method
for dealing with the nonlinear potentials, which is integrated with the second-order backward
differentiation formula (BDF2) and leap frog method for temporal discretization and the finite
element method for spatial discretization. The unconditional energy stability of both schemes is
further demonstrated. Finally, several numerical examples are presented to demonstrate the efficiency
and accuracy of the proposed schemes.
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1. Introduction

Liquid crystal is typically viewed as a state of matter that is distinct from the solid,
liquid, and gaseous states. This is due to the fact that liquid crystal is an intermediate
phase between a liquid and a solid. It can flow like a liquid, but it also exhibits a partial
order in the mesoscopic scale of the solid phase, which is normally due to its anisotropic
microstructures. According to the degree of positional or orientational ordering shown
by the molecules, different degrees of ordering can be achieved, which depends on the
temperature and the concentration of the solute in the solvent. The nematic phase is
considered the simplest liquid crystal phase; it is composed of elongated rod-like molecules
with similar sizes. Its centers of mass have no positional order in an isotropic liquid, but
they tend to align along certain locally preferred directions and confer an anisotropic
structure. In recent years, the hydrodynamic systems that describe the motion of nematic
liquid crystals have become more important in technology. Readers are referred to [1] for a
review of dynamic phenomena in liquid crystal materials.

To the best of our knowledge, the famous continuum theory for flows of liquid crystal
was first initiated by Oseen and then developed mainly by Eriksen and Leslie [2–5]. As far
as liquid crystal is concerned, there are a large number of works in the literature dedicated to
diverse features of a system modeling the dynamics of the nematic liquid crystal flows—the
so called Ericksen–Leslie model. The Ericksen–Leslie model describes the fluid dynamics
of nematic liquid crystals, and it is a coupling between the Navier–Stokes system and
the Ginzburg–Landau equations. This system has been investigated widely from various
perspectives [6–10].

The Ericksen–Leslie model is a strongly nonlinear coupled system. Due to its com-
plexity, exact solutions of this system are extremely rare. Numerical methods are an
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important tool for solving these highly nonlinear systems. Consequently, our interest is in
constructing numerical approximations for the Ericksen–Leslie model. Lin and Liu [11]
developed an extremely significant discovery, which is the existence of energy estimates
for the simplified Ericksen–Leslie equations. Liu and Walkington [8] demonstrated im-
plicit Euler time stepping and the finite element approximation in the spatial domain. Lin
and Liu [12] discussed a splitting scheme combined with a fixed-point iterative method,
which largely reduced the computational time. F.M. Guillen-Gonzalez and J.V. Gutierrez-
Santacreu [13] introduced a linear semi-implicit scheme for the Ericksen–Leslie system. V.
Girault and F. Guillen-Gonzalez [14] presented a decoupling algorithm. The above papers
were all first-order accurate in time for the Ericksen–Leslie system. Then, Santiago, B.
et al. [15] proposed a Crank–Nicolson time integration scheme that was unconditionally
stable, preserving the energy law. Bao et al. [16] considered a time discretization scheme of
a simplified system that preserved spherical constraints at each node, had a discrete energy
law, and led to a linear and decoupled elliptic equation solution at each time step. Wang
et al. [17] considered a numerical scheme with a second-order backward differentiation
formula (BDF) by combining the Lagrange multiplier method and the pressure correc-
tion strategy. Cheng et al. [18] proposed and analyzed a first-order exact time difference
scheme for the Ericksen–Leslie system. Recently, Wang et al. [19] constructed a first-order
sphere-constraint-preserving numerical scheme for the variable-density Ericksen–Leslie
equation, and they derived the unconditional energy stability and strict time error estimates.
Miao et al. [20] proposed a numerical scheme of the second-order backward differential
formula (BDF) for the Ericksen–Leslie model of nematic liquid crystal by combining the
convex splitting method and the pressure correction strategy, and this was unconditionally
stable in terms of energy. Zhang et al. [10] constructed a second-order numerical scheme
with the advantages of complete decoupling, linearization, and unconditional stability of
energy in order to numerically approximate the penalized Ericksen–Leslie equations. As far
as we know, the second-order numerical method is more accurate than the first-order one
in time. So, we developed two second-order time-accurate schemes for the Ericksen–Leslie
model in this study. For the backward differentiation formula scheme, this study applied
the pressure-correction [21,22] strategy to decouple the pressure from the velocity in order
to reduce the computational cost. Then, the leap frog scheme is proposed for the coupling
system. It is worth noting that algorithm development is a significant point for the highly
complex coupled and nonlinear characteristics.

It is obvious that one of the difficulties in numerically resolving the nonlinear-phase
field model is expediently dealing with the nonlinear term in the model. We review some
methods for dealing with the potential function, such as the invariant energy quadratization
(IEQ) method, the scalar auxiliary variable (SAV) method, the Lagrange multiplier method,
and the convex splitting method. Yang [23] mentioned the invariant energy quadratization
(IEQ) method, which can be applied to a large number of free energies for phase field
models. Shen et al. [24,25] introduced the scalar auxiliary variable method (SAV) for
gradient flows, and it is an insufficient case that a scalar auxiliary variable only depends on
the time variable. F. Guillen-Gonzalez and G. Tierra [26] presented a linear unconditionally
stable scheme for the Cahn–Hilliard equation based on the Lagrange multiplier method.
There is the convex splitting method [27,28], which treats the convex part of the potential
function implicitly and the concave part explicitly. It was first proposed by Elliott and
Stuart [29] and developed by Eyre [30] to solve phase flow equations and nematic liquid
crystal flows. However, the IEQ method and SAV method involve more complicated
variable coefficients in comparison with the Lagrange multiplier method of linearizing
nonlinear potential. The introduction of the Lagrange multiplier and the convex splitting
method are extremely common methods, and they are usually used to solve the Cahn–
Hilliard equations with double-well potential. For the Ericksen–Leslie model, this study
shows a novel convex splitting method for dealing with the penalty term. There has been
no recent theoretical or numerical analysis.
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The rest of this paper is organized as follows. In Section 2, we briefly discuss the mod-
ified Ericksen–Leslie model and the energy dissipation law of the model. In Section 3, fully
discrete numerical schemes are constructed, and we prove that the second-order backward
differentiation formula and the leap frog scheme satisfy unconditional energy stability. In
Section 4, several numerical experiments are carried out to confirm the numerical accuracy
and defect dynamics of liquid crystals. We give some concluding remarks in the last section.

2. The Model and Its Energy Law

Some notations are given here. We assume that Ω ∈ Rd (dimension d = 2, 3) is an
open and bounded domain with a smooth boundary ∂Ω. For scalar functions u and v and
vector functions u = (u1, u2) and v = (v1, v2), we can define the L2 inner product and
norm as follows:

(u, v) =
∫

Ω
uvdx , ∥u∥2 = (u, u),

(u, v) =
∫

Ω
uvTdx =

n

∑
i=1

∫
Ω

uividx , ∥u∥2 = (u, u).

We provide a brief introduction to the modified Ericksen–Leslie model [31]. We define
Q = (0, T) × Ω; u : Ω → R2 is the unknown velocity field, and d : Ω → R2 is the
preferential orientation vector of molecules. The total energy E reads as follows:

E = Ekin + Eela, (1)

where Ekin is the kinetic energy and Eela is the elastic energy, and they are, respectively,
given in the following:

Ekin =
1
2

∫
Ω
| u |2 dx, Eela =

∫
Ω

λ

2
| ∇d |2 +λF(d)dx. (2)

Here, F(d) = 1
4ϵ2 (| d |2 −1)2 is the Ginzburg–Landau potential [32], and ϵ is a model

parameter measuring the size of the defect core.
The modified Ericksen–Leslie model reads as follows:

∂td + u · ∇d = γh, in Q,

h = ∆d − f (d) in Q,

∂tu + u · ∇u = η∆u −∇p − λh∇d, in Q,

∇ · u = 0, in Q.

(3)

Here, h = − δE
δd is the molecular field, p is the pressure, f (d) = F′(d) = 1

ϵ2 (d3 − d), η is
dimensionless and is for the viscosity, γ is the relaxation time parameter, and λ is the elastic
parameter. We consider the following boundary conditions:

u |∂Ω= 0, n · ∇d = 0, (4)

where n is the unit outward normal of the domain Ω. The initial conditions are

d(x, 0) = d0 , u(x, 0) = u0 , ϕ(x, 0) = ϕ0 , x ∈ Ω. (5)

Remark 1. This study uses the convex splitting strategy to develop new schemes for the modified
Ericksen–Leslie model. The traditional convex splitting strategy refers to treating the convex part of
the potential function implicitly and the concave part explicitly, that is, g(d) = g1(d) + g2(d) =
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1
ϵ2 d3 − 1

ϵ2 d. However, the potential function F(d) in this study can be split into the following
convex function and concave function, respectively:

F1(d) =
1
ϵ2 (d

2 +
1
4
), F2(d) =

1
ϵ2 (

1
4

d4 − 3
2

d2).

Correspondingly,

f1(d) =
2
ϵ2 d, f2(d) =

1
ϵ2 (d

3 − 3d).

3. Numerical Schemes
3.1. The Backward Differentiation Formula Scheme

Let Sh be a set of triangulations of Ω with Ω = ∪k∈Sh
k, where h → 0 is assumed

to be uniformly regular. Here, h = sup
k∈Sh

diam(k). We denote the finite element spaces

Xh ∈ X, Yh ∈ Y. Then, the discrete divergence-free space Vh is given by Vh = {vh ∈ Xh :
(∇ · vh, rh) = 0, ∀rh ∈ Rh}. The pressure stability relies on the inf-sup condition. There

exists β > 0 with no restriction of the mesh grid size h such that inf
rh∈Rh

sup
vh∈Vh

(rh,∇ · vh)

∥rh∥0∥vh∥1
≥ β.

The strategy of pressure correction is the time-marching method, which is composed of
two steps. In the first step, the pressure is treated explicitly or ignored. In the second
step, the pressure is projected by the former velocity onto the space Vh. A pressure-
correction scheme is used to decouple the computation of the pressure from that of the
velocity. Let N be a positive integer, let the time interval [0, T] be uniformly dissected with
0 = t0 < t1 < · · · < tN = T, and let the time nodes satisfy ti = iτ(i = 0, 1, · · · , N); τ is the
time step. For n ≥ 1, the numerical scheme reads as follows:
Scheme I Step 1. Given (dn−1

h , dn
h , un−1

h , un
h , pn

h) ∈ Vh ×Vh ×Vh ×Vh ×Yh, find (dn+1
h , ũn+1

h )
∈ (Vh × Vh) as the solution of

Dτdn+1
h + ũn+1

h · ∇d̂n+1
h = γhn+1

h , (6)

hn+1
h − ∆dn+1

h + f1(dn+1
h ) + f2(dn+1

h , d̂n+1
h ) = 0, (7)

Dτũn+1
h + ûn+1

h · ∇ũn+1
h = −∇pn

h + η∆ũn+1
h − λhn+1

h ∇d̂n+1
h , (8)

ũn+1
h |∂Ω= 0,

∂dn+1
h

∂n
|∂Ω= 0. (9)

Step 2. Given (ũn+1
h , pn

h) ∈ Vh × Yh, find (un+1
h , pn+1

h ) ∈ (Vh × Yh) as the solution of

3
un+1

h − ũn+1
h

2τ
+∇(pn+1

h − pn
h) = 0, (10)

∇ · un+1
h = 0, (11)

where Dτdn+1
h =

3dn+1
h − 4dn

h + dn−1
h

2τ
, Dτũn+1

h =
3ũn+1

h − 4un
h + un−1

h
2τ

,

Dτun+1
h =

3un+1
h − 4un

h + un−1
h

2τ
, d̂n+1

h = 2dn
h − dn−1

h , ûn+1
h = 2un

h − un−1
h ,

f1(dn+1
h ) =

2
ϵ2 dn+1

h , f2(dn+1
h , d̂n+1

h ) =
1
ϵ2 ((d̂

n+1
h )2dn+1

h − 3d̂n+1
h ).

For n = 1, given u0
h, p0

h, d0
h, find u1

h, d1
h, p1

h as the solution of

d1
h − d0

h
τ

+ u1
h · ∇d0

h = γh1
h,

h1
h = ∆d1

h − ( f1(d1
h) + f2(d1

h, d0
h)),

u1
h − u0

h
τ

+ u0
h · ∇u1

h = −∇p1
h + η∆u1

h − λh1
h∇d0

h, (12)
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u1
h |∂Ω= 0,

∂d1
h

∂n
|∂Ω= 0,

∇ · u1
h = 0.

Now, we prove that Scheme I is unconditionally stable in terms of energy.

Theorem 1 (Energy Stability). Scheme I satisfies the discrete energy dissipation law as follows:

1
τ
(Ξn+1 − Ξn) ≤ −2η∥∇ũn+1

h ∥2 − 2λγ∥hn+1
h ∥2 ≤ 0, (13)

where

Ξn+1 =En+1 +
1
2
∥2un+1

h − un
h∥

2 +
λ

2
∥2∇dn+1

h −∇dn
h∥

2

+
λ

ϵ2 ∥2dn+1
h − dn

h∥
2 +

λ

2ϵ2 ∥d̂n+1
h (2dn+1

h − dn
h)∥

2

+
9λ

2ϵ2 (1 − ∥dn+1
h ∥2) +

2τ2

3
∥∇pn+1

h ∥2,

En+1 =
1
2
∥un+1

h ∥2 +
λ

2
∥∇dn+1

h ∥2 +
λ

4ϵ2 (∥dn+1
h ∥2 − 1)2.

(14)

Proof. For (8), we take the inner product with ũn+1
h in L2 to obtain

(Dτũn+1
h , ũn+1

h ) + (ûn+1
h · ∇ũn+1

h , ũn+1
h )− (pn

h ,∇ · ũn+1
h )

+ η(∇ũn+1
h ,∇ũn+1

h ) = −λ(hn+1
h ∇d̂n+1

h , ũn+1
h ).

(15)

Then, we put (6) into the right part of (15) to get

λ(hn+1
h , ũn+1

h · ∇d̂n+1
h ) = λ(hn+1

h , γ(hn+1
h − Dτdn+1

h ))

= λγ∥hn+1
h ∥2 − λ(hn+1

h , Dτdn+1
h ).

(16)

Besides, we put (16) into (15) to get

(Dτũn+1
h , ũn+1

h ) + η∥∇ũn+1
h ∥2 + λγ∥hn+1

h ∥2 = λ(hn+1
h , Dτdn+1

h ). (17)

For (7), we take the inner product with λDτdn+1
h in L2 to get

λ(hn+1
h , Dτdn+1

h ) + λ(∇dn+1
h ,∇Dτdn+1

h ) + λ( f1(dn+1
h , Dτdn+1

h )

+ λ( f2(dn+1
h , d̂n+1

h ), Dτdn+1
h ) = 0.

(18)

Due to

( f1(dn+1
h ), Dτdn+1

h ) =
1

2τϵ2 (∥dn+1
h ∥2 − ∥dn

h∥
2 + ∥2dn+1

h − dn
h∥

2

− ∥2dn
h − dn−1

h ∥2 + ∥dn+1
h − 2dn

h + dn−1
h ∥2),

(19)

we derive

( f2(dn+1
h , d̂n+1

h ), Dτdn+1
h ) =

1
ϵ2 ((d̂

n+1
h )2dn+1

h − 3d̂n+1
h ), Dτdn+1

h )

=
1

2τϵ2 (
∫

Ω

1
2
(d̂n+1

h )2[(dn+1
h )2 − (dn

h)
2 + (2dn+1

h − dn
h)

2 − (2dn
h − dn−1

h )2

+ (dn+1
h − 2dn

h + dn−1
h )2]dx + 3(−1

2
(∥dn+1

h ∥2 + ∥2dn+1
h − dn

h∥
2

− 2∥dn+1
h − dn

h∥
2) +

1
2
(∥dn

h∥
2 − ∥2dn

h − dn−1
h ∥2 − 2∥dn

h − dn−1
h ∥2))
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+
3
2
∥dn+1

h − 2dn
h + dn−1

h ∥2)

=
1

4τϵ2 (∥d̂n+1
h dn+1

h ∥2 − ∥d̂n+1
h dn

h∥
2 + ∥d̂n+1

h (2dn+1
h − dn

h)∥
2

− ∥d̂n+1
h (2dn

h − dn−1
h )∥2 + ∥(d̂n+1

h (dn+1
h − 2dn

h + dn−1
h )∥2)

+
3

2τϵ2 (−
1
2
(∥dn+1

h ∥2 + 4∥dn+1
h ∥2 + ∥dn

h∥
2 − 4dn+1

h dn
h − 2∥dn+1

h ∥2

− 2∥dn
h∥

2 + 4dn+1
h dn

h) +
1
2
(∥dn

h∥
2 + 4∥dn

h∥
2 + ∥dn−1

h ∥2 − 4dn
h dn−1

h

− 2∥dn
h∥

2 − 2∥dn−1
h ∥2 + 4dn

h dn−1
h )) +

9
4τϵ2 ∥dn+1

h − 2dn
h + dn−1

h ∥2

=
1

4τϵ2 (∥d̂n+1
h dn+1

h ∥2 − ∥d̂n+1
h dn

h∥
2 + ∥d̂n+1

h (2dn+1
h − dn

h)∥
2

− ∥d̂n+1
h (2dn

h − dn−1
h )∥2 + ∥d̂n+1

h (dn+1
h − 2dn

h + dn−1
h )∥2)

+
9

4τϵ2 (−∥dn+1
h ∥2 + ∥dn

h∥
2) +

3
4τϵ2 (∥dn

h∥
2 − ∥dn−1

h ∥2)

+
9

4τϵ2 ∥dn+1
h − 2dn

h + dn−1
h ∥2

=
1

4τϵ2 (∥d̂n+1
h dn+1

h ∥2 − ∥d̂n+1
h dn

h∥
2 + ∥d̂n+1

h (2dn+1
h − dn

h)∥
2

− ∥d̂n+1
h (2dn

h − dn−1
h )∥2 + ∥d̂n+1

h (dn+1
h − 2dn

h + dn−1
h )∥2)

+
9

4τϵ2 ((1 − ∥dn+1
h ∥2)− (1 − ∥dn

h∥
2)) +

3
4τϵ2 (∥dn

h∥
2 − ∥dn−1

h ∥2)

+
9

4τϵ2 ∥dn+1
h − 2dn

h + dn−1
h ∥2. (20)

Here, the director vector d is bounded. It is well known that the director vector d satisfies
the following maximum principle [11,13,33]:

“If | d0 |≤ 1 in Ω, then | d(t) |≤ 1 in Ω for each t ∈ [0, T].”
The derivation can be found in the Appendix A.

By putting (19) and (20) into (18) and (18) into (17), we have

(Dτũn+1
h , ũn+1

h ) + η∥∇ũn+1
h ∥2 + λγ∥hn+1

h ∥2 + λ(∇dn+1
h ,∇Dτdn+1

h )

+
λ

2τϵ2 (∥dn+1
h ∥2 − ∥dn

h∥
2 + ∥2dn+1

h − dn
h∥

2 − ∥2dn
h − dn−1

h ∥2

+ ∥dn+1
h − 2dn

h + dn−1
h ∥2) +

λ

4τϵ2 (∥d̂n+1
h dn+1

h ∥2 − ∥d̂n+1
h dn

h∥
2

+ ∥d̂n+1
h (2dn+1

h − dn
h)∥

2 − ∥d̂n+1
h (2dn

h − dn−1
h )∥2

+ ∥d̂n+1
h (dn+1

h − 2dn
h + dn−1

h )∥2) +
9λ

4τϵ2 ((1 − ∥dn+1
h ∥2)− (1 − ∥dn

h∥
2))

+
3λ

4τϵ2 (∥dn
h∥

2 − ∥dn−1
h ∥2) +

9λ

4τϵ2 ∥dn+1
h − 2dn

h + dn−1
h ∥2 = 0.

(21)

According to (10), for any variable v with ∇ · v and v · n |∂Ω= 0, we easily obtain
(ũn+1

h , v) = (un+1
h , v). Then, for the first term, we apply the fact that

(a − b, a) =
1
2
(∥a∥2 − ∥b∥2 + ∥a − b∥2)
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to have

(Dτũn+1
h , ũn+1

h ) =(3
ũn+1

h − un+1
h

2τ
, ũn+1

h ) + (Dτun+1
h , un+1

h )

=(3
ũn+1

h − un+1
h

2τ
, ũn+1

h − un+1
h ) + (Dτun+1

h , un+1
h )

=
3

4τ
(∥ũn+1

h ∥2 − ∥un+1
h ∥2) + (Dτun+1

h , un+1
h ).

(22)

To approach the pressure term, we reformulate (10) as

3
2τ

un+1
h +∇pn+1

h =
3

2τ
ũn+1

h +∇pn
h . (23)

By taking the square of both sides of the above equation, we obtain

9
4τ2 ∥un+1

h ∥2 + ∥∇pn+1
h ∥2 =

9
4τ2 ∥ũn+1

h ∥2 + ∥∇pn
h∥

2 +
3
τ
(ũn+1

h ,∇pn
h). (24)

It is readily verified that

3
4τ

(∥un+1
h ∥2 − ∥ũn+1

h ∥2) +
τ

3
(∥∇pn+1

h ∥2 − ∥∇pn
h∥

2) = (ũn+1
h ,∇pn

h). (25)

Noticing the identity

(3a − 4b + c, a) =
1
2
(∥a∥2 − ∥b∥2 + ∥2a − b∥2 − ∥2b − c∥2 + ∥a − 2b + c∥2),

we derive the equality

(Dτun+1
h , un+1

h ) =
1

4τ
(∥un+1

h ∥2 − ∥un
h∥

2 + ∥2un+1
h − un

h∥
2

− ∥2un
h − un−1

h ∥2 + ∥un+1
h − 2un

h + un−1
h ∥2).

(26)

Similarly, we can get

(∇Dτdn+1
h ,∇dn+1

h ) =
1

4τ
(∥∇dn+1

h ∥2 − ∥∇dn
h∥

2 + ∥2∇dn+1
h −∇dn

h∥
2

− ∥2∇dn
h −∇dn−1

h ∥2 + ∥∇dn+1
h − 2∇dn

h +∇dn−1
h ∥2).

(27)

Hence, combining (21), (22), and (25)–(27), we arrive at

η∥∇ũn+1
h ∥2 +

1
4τ

(∥un+1
h ∥2 − ∥un

h∥
2 + ∥2un+1

h − un
h∥

2 − ∥2un
h − un−1

h ∥2

+ ∥un+1
h − 2un

h + un−1
h ∥2) +

λ

4τ
(∥∇dn+1

h ∥2 − ∥∇dn
h∥

2 + ∥2∇dn+1
h −∇dn

h∥
2

− ∥2∇dn
h −∇dn−1

h ∥2 + ∥∇dn+1
h − 2∇dn

h +∇dn−1
h ∥2) + λγ∥hn+1

h ∥2

+
λ

2τϵ2 (∥dn+1
h ∥2 − ∥dn

h∥
2 + ∥2dn+1

h − dn
h∥

2 − ∥2dn
h − dn−1

h ∥2

+ ∥dn+1
h − 2dn

h + dn−1
h ∥2) +

λ

4τϵ2 (∥d̃n+1
h dn+1

h ∥2 − ∥d̂n+1
h dn

h∥
2

+ ∥d̂n+1
h (2dn+1

h − dn
h)∥

2 − ∥d̂n+1
h (2dn

h − dn−1
h )∥2

+ ∥d̂n+1
h (dn+1

h − 2dn
h + dn−1

h )∥2) +
9λ

4τϵ2 ((1 − ∥dn+1
h ∥2)− (1 − ∥dn

h∥
2))

+
3λ

4τϵ2 (∥dn
h∥

2 − ∥dn−1
h ∥2) +

9λ

4τϵ2 ∥dn+1
h − 2dn

h + dn−1
h ∥2

+
τ

3
(∥∇pn+1

h ∥2 − ∥∇pn
h∥

2) = 0.

(28)
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Then, multiplying (28) by 2τ, we can derive

En+1 − En +
1
2
(∥2un+1

h − un
h∥

2 − ∥2un
h − un−1

h ∥2 + ∥un+1
h − 2un

h + un−1
h ∥2)

+
λ

2
(∥2∇dn+1

h −∇dn
h∥

2 − ∥2∇dn
h −∇dn−1

h ∥2 + ∥∇dn+1
h − 2∇dn

h +∇dn−1
h ∥2)

+
λ

ϵ2 (∥2dn+1
h − dn

h∥
2 − ∥2dn

h − dn−1
h ∥2 + ∥dn+1

h − 2dn
h + dn−1

h ∥2)

+ 2τη∥∇ũn+1
h ∥2 +

λ

2ϵ2 (∥d̂n+1
h (2dn+1

h − dn
h)∥

2 − ∥d̂n+1
h (2dn

h − dn−1
h )∥2

+ ∥d̂n+1
h (dn+1

h − 2dn
h + dn−1

h )∥2) +
9λ

2ϵ2 ((1 − ∥dn+1
h ∥2)− (1 − ∥dn

h∥
2))

+ 2τλγ∥hn+1
h ∥2 +

3λ

2ϵ2 (∥dn
h∥

2 − ∥dn−1
h ∥2) +

9λ

2ϵ2 ∥dn+1
h − 2dn

h + dn−1
h ∥2

+
2τ2

3
(∥∇pn+1

h ∥2 − ∥∇pn
h∥

2) = 0.

(29)

Due to the definition of Ξn+1, we have

Ξn+1 + 2τη∥∇ũn+1
h ∥2 + 2τλγ∥hn+1

h ∥2 ≤ Ξn. (30)

The proof is complete.

3.2. The Leap Frog Scheme

We now consider the fully discrete version of the leap frog scheme for solving the
model, where we use a new convex splitting method. Let Sh be a quasi-uniform triangula-
tion of the domain Ω of mesh size h. We define the spaces as follows:

Xh = H1
0(Ω), Yh = H1(Ω), M = H1(Ω) ∩ L1

0(Ω).

Scheme II The initial conditions are d0
h, u0

h and p0
h = 0. Given dn

h , un
h , pn

h for n ≥ 0, we can
find (dn+1

h , un+1
h , pn+1

h ) ∈ Xh × Xh × Yh by

D′
τdn+1

h + ūn+1
h · ∇dn

h = γh̄n+1
h , (31)

h̄n+1
h = ∆d̄n+1

h − ( f1(d̄n+1
h ) + f2(d̄n+1

h , dn
h)), (32)

D′
τun+1

h + un
h · ∇ūn+1

h = −∇ p̄n+1
h + η∆ūn+1

h − λh̄n+1
h ∇dn

h , (33)

∇ · ūn+1
h = 0, (34)

where D′
τdn+1

h =
dn+1

h − dn−1
h

2τ
, D′

τun+1
h =

un+1
h − un−1

h
2τ

, d̄n+1
h =

dn+1
h + dn−1

h
2

, ūn+1
h =

un+1
h + un−1

h
2

, h̄n+1
h =

hn+1
h + hn−1

h
2

, p̄n+1
h =

pn+1
h + pn−1

h
2

, f1(d̄n+1
h ) =

2
ϵ2 d̄n+1

h , f2(d̄n+1
h , dn

h)

=
1
ϵ2 ((d

n
h)

2d̄n+1
h − 3dn

h).
Now, we prove that Scheme II is unconditionally stable in terms of energy.

Theorem 2 (Energy Stability). Let {un+1
h , pn+1

h , dn+1
h } be the solutions of Scheme II. For all

τ > 0 and 1 ≤ n ≤ N, Scheme II satisfies unconditional energy stability with respect to the
discrete energy

Γn+1 − Γn

τ
≤ −2η∥∇ūn+1

h ∥2 − 2λγ∥h̄n+1
h ∥2 ≤ 0, (35)
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where

Γn+1 =
1
2
(∥un+1

h ∥2 + ∥un
h∥

2) +
λ

2τ
(∥∇dn+1

h ∥2 + ∥∇dn
h∥

2)

+
λ

ϵ2 (∥dn+1
h ∥2 + ∥dn

h∥
2) +

λ

2ϵ2 ∥dn+1
h dn

h − 3∥2.

Proof. For (33), we apply the fact that

(a − b, a + b) = ∥a∥2 − ∥b∥2,

and we take the inner product with ūn+1
h in L2 to get

1
4τ

(∥un+1
h ∥2 − ∥un−1

h ∥2) + ((un
h · ∇)ūn+1

h , ūn+1
h )− (pn+1

h ,∇ · ūn+1
h )

+ η∥∇ūn+1
h ∥2 = −λ(h̄n+1

h ∇dn
h , ūn+1

h ) = −λ(h̄n+1
h ,∇dn

h ūn+1
h ).

(36)

Then, by putting (31) into the right part of (36), we obtain

λ(h̄n+1
h ,∇dn

h ūn+1
h ) = λ(h̄n+1

h , γ(h̄n+1
h − D′

τdn+1
h ))

= λγ∥h̄n+1
h ∥2 − λ(h̄n+1

h , D′
τdn+1

h ).
(37)

Similarly, we put (37) into (36) to get

1
4τ

(∥un+1
h ∥2 − ∥un−1

h ∥2) + η∥∇ūn+1
h ∥2 + λγ∥h̄n+1

h ∥2 = λ(h̄n+1
h , Dτdn+1

h ). (38)

By taking the inner product of (32) with λD′
τdn+1

h in the L2 space, we find

λ(h̄n+1
h , D′

τdn+1
h ) + λ(∇d̄n+1

h ,∇D′
τdn+1

h ) + λ( f1(d̄n+1
h ), D′

τdn+1
h )

+ λ( f2(d̄n+1
h , dn

h), D′
τdn+1

h ) = 0.
(39)

Due to

(∇d̄n+1
h ,∇D′

τdn+1
h ) =

1
4τ

(∥∇dn+1
h ∥2 − ∥∇dn−1

h ∥2), (40)

( f1(d̄n+1
h ), D′

τdn+1
h ) =

1
2τϵ2 (∥dn+1

h ∥2 − ∥dn−1
h ∥2), (41)

we have

( f2(d̄n+1
h , dn

h), D′
τdn+1

h ) =
1
ϵ2 ((d

n
h)

2d̄n+1
h − 3dn

h , D′
τdn+1

h )

=
1

2τϵ2 (
∫

Ω

1
2
(dn

h)
2((dn+1

h )2 − (dn−1
h )2)dx − 3

∫
Ω

dn
h(d

n+1
h − dn−1

h )dx)

=
1

2τϵ2

∫
Ω

1
2
((dn+1

h dn
h)

2 − (dn
h dn−1

h )2 − 6dn+1
h dn

h + 6dn
h dn−1

h )dx

=
1

4τϵ2

∫
Ω
((dn+1

h dn
h − 3)2 − (dn

h dn−1
h − 3)2)dx

=
1

4τϵ2 (∥dn+1
h dn

h − 3∥2 − ∥dn
h dn−1

h − 3∥2).

(42)
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In addition, we put (40)–(42) into (39) and (39) into (38) to have

1
4τ

(∥un+1
h ∥2 − ∥un−1

h ∥2) +
λ

4τ
(∥∇dn+1

h ∥2 − ∥∇dn−1
h ∥2)

+ η∥∇ūn+1
h ∥2 + λγ∥h̄n+1

h ∥2 +
λ

2τϵ2 (∥dn+1
h ∥2 − ∥dn−1

h ∥2)

+
λ

4τϵ2 (∥dn+1
h dn

h − 3∥2 − ∥dn
h dn−1

h − 3∥2) = 0.

(43)

Then, multiplying both sides by 2τ in (43), we can deduce

Γn+1 + 2τη∥∇ūn+1
h ∥2 + 2τλγ∥h̄n+1

h ∥2 ≤ Γn. (44)

The proof is complete.

4. Numerical Experiments

In this section, we present several numerical experiments to verify the accuracy,
stability, and efficiency of the proposed schemes. All programs were implemented with
the free finite element software FreeFem++ 3.28 [34]. Firstly, we investigate the numerical
accuracy and conduct a convergence test of the proposed schemes with respect to time
and space. Then, we conduct some numerical simulations of liquid crystal flows in two-
dimensional space while focusing on the flow-induced defect dynamics, which represent
rod-like nematic liquid crystals. Finally, we numerically check the conditional stability,
which depends on the trend of diminishing energy, by showing the evolution of the kinetic
and elastic energies.

4.1. Accuracy and Convergence Test

We first verify the convergence rates of the two different schemes by conducting two-
dimensional simulations, and the computational domain is set to [−1, 1] × [−1, 1]. By
setting some suitable functions, we assume that the initial conditions of the system are
as follows:

u = 0, p = 0, d = (sin(2π(cosx − siny)), cos(2π(cosx − siny))).

The convergence rates with respect to the time step τ are calculated with the formula
log(Ei/Ei+1)
log(τi/τi+1)

, where Ei and Ei+1 are the relative errors corresponding to the time steps τi and
τi+1, respectively.

4.1.1. The Order of Temporal Convergence

We first verified the temporal convergence order. We fixed the grid size to h = 1
50 ,

so the grid size was small enough and the spatial discretization errors were negligible
compared to the time discretization error. In Tables 1–4, we verify the temporal convergence
order of Scheme I for different parameter values. In the experiment, we used different
time step sizes (τ = 0.0625, 0.03125, 0.015625) for the H1-errors of u, d and the L2-errors
of p. In Table 1, by fixing the values of the other parameters and taking the values of γ
as 0.21 and 0.19 respectively, it was found that the order of convergence was 2. Similarly,
we took the values of λ as 0.19 and 0.21, respectively, in Table 2. We took the values
of η as 0.19 and 0.21, respectively, in Table 4. We took the values of ϵ as 0.06 and 0.07,
respectively, in Table 4. In conclusion, the temporal convergence order of Scheme I was
close to 2 in comparison with the different variables γ, λ, η, ϵ in Tables 1–4. In Tables 5–8,
we verify the temporal convergence order of Scheme II for different parameter values.
In the experiment, we used different time step sizes (τ = 0.03125, 0.015625, 0.0078125)
for the H1-errors of u, d and the L2-errors of p. Similarly, different parameter values
(γ = 0.015, 0.02, λ = 0.25, 0.28, η = 0.45, 0.55, ϵ = 0.05, 0.06) were taken in Tables 5–8,
respectively. For Scheme II, we reached the same conclusion with a similar analysis—the
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temporal convergence order was close to 2. The numerical results were consistent with the
accuracy of the proposed schemes, indicating their correctness.

Table 1. The temporal convergence order of Scheme I with different values of γ.

γ τ d-Error Order u-Error Order p-Error Order

0.21 0.0625 0.34299 0.11631 0.32683
0.03125 0.09425 1.8636 0.02967 1.9707 0.08991 1.8620
0.015625 0.02271 2.0529 0.00753 1.9750 0.02212 2.0226

0.19 0.0625 0.33641 0.10992 0.31852
0.03125 0.09317 1.8523 0.02794 1.9757 0.08935 1.8338
0.015625 0.02426 1.9411 0.00711 1.9747 0.02307 1.9532

Table 2. The temporal convergence order of Scheme I with different values of λ.

λ τ d-Error Order u-Error Order p-Error Order

0.19 0.0625 0.33956 0.10741 0.30724
0.03125 0.09417 1.8503 0.02728 1.9772 0.08539 1.8472
0.015625 0.02446 1.9447 0.00693 1.9770 0.02151 1.9890

0.21 0.0625 0.34036 0.11892 0.33942
0.03125 0.09181 1.8902 0.03023 1.9757 0.09414 1.8502
0.015625 0.02358 1.9608 0.00771 1.9720 0.02373 1.9876

Table 3. The temporal convergence order of Scheme I with different values of η.

η τ d-Error Order u-Error Order p-Error Order

0.19 0.0625 0.34019 0.11625 0.31611
0.03125 0.08624 1.9799 0.02956 1.9756 0.08799 1.8449
0.015625 0.02162 1.9956 0.00751 1.9768 0.02239 1.9746

0.21 0.0625 0.33973 0.11023 0.33044
0.03125 0.09419 1.8507 0.02809 1.9723 0.09156 1.8516
0.015625 0.02446 1.9451 0.00713 1.9765 0.02287 2.0014

Table 4. The temporal convergence order of Scheme I with different values of ϵ.

ϵ τ d-Error Order u-Error Order p-Error Order

0.06 0.0625 0.40213 0.15011 0.41299
0.03125 0.10961 1.8753 0.03807 1.9791 0.11633 1.8278
0.015625 0.02819 1.9588 0.00971 1.9713 0.02835 2.0365

0.07 0.0625 0.33995 0.11316 0.32333
0.03125 0.09428 1.8503 0.02880 1.9740 0.08756 1.8846
0.015625 0.02448 1.9454 0.00734 1.9711 0.02206 1.9883

Table 5. The temporal convergence order of Scheme II with different values of γ.

γ τ d-Error Order u-Error Order p-Error Order

0.015 0.03125 0.19661 0.42594 0.51343
0.015625 0.05368 1.8729 0.10340 2.0424 0.13021 1.9793
0.0078125 0.01320 2.0237 0.02884 1.8421 0.03388 1.9422

0.02 0.03125 0.28796 0.25789 0.44004
0.015625 0.08050 1.8388 0.06252 2.0443 0.12265 1.8431
0.0078125 0.01959 2.0383 0.01586 1.9784 0.03462 1.8247
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Table 6. The temporal convergence order of Scheme II with different values of λ.

λ τ d-Error Order u-Error Order p-Error Order

0.25 0.03125 0.11689 0.35949 0.40146
0.015625 0.02852 2.0352 0.08765 2.0362 0.10130 1.9866
0.0078125 0.00767 1.8947 0.02301 1.9288 0.02613 1.9546

0.28 0.03125 0.13932 0.54288 0.57504
0.015625 0.03389 2.0392 0.12727 2.0927 0.14874 1.9508
0.0078125 0.00957 1.8239 0.03530 1.8502 0.03792 1.9718

Table 7. The temporal convergence order of Scheme II with different values of η.

η τ d-Error Order u-Error Order p-Error Order

0.45 0.03125 0.17905 0.82395 0.79063
0.015625 0.04531 1.9824 0.20411 2.0132 0.21686 1.8662
0.0078125 0.01205 1.9098 0.05520 1.8866 0.05943 1.8675

0.55 0.03125 0.14819 0.61768 0.69639
0.015625 0.03640 2.0253 0.15156 2.0270 0.18340 1.9249
0.0078125 0.00994 1.8722 0.04168 1.8621 0.04780 1.9398

Table 8. The temporal convergence order of Scheme II with different values of ϵ.

ϵ τ d-Error Order u-Error Order p-Error Order

0.05 0.03125 0.16191 0.71126 0.74159
0.015625 0.04029 2.0067 0.16924 2.0713 0.18711 1.9867
0.0078125 0.01138 1.8232 0.04607 1.8771 0.04761 1.9745

0.06 0.03125 0.11519 0.32705 0.37503
0.015625 0.02803 2.0388 0.07847 2.0592 0.09197 2.0278
0.0078125 0.00716 1.9681 0.02139 1.8747 0.02355 1.9651

In addition, using Scheme I, Scheme II, and the scheme in [20] to solve the modified
Ericksen–Leslie system, we compared the total CPU usage times with different time steps.
As shown in Table 9, Scheme II took less CPU usage time than Scheme I, which indicated
that Scheme II was more computationally efficient and had a lower computational cost.

Table 9. The total CPU usage times of different schemes.

τ Scheme I Scheme II Original Method

0.03125 10.253 8.599 36.832
0.015625 20.979 17.55 71.479
0.0078125 41.003 35.749 148.039

In order to better compare the novel convex splitting method proposed in this study
with the original convex splitting method, we compared the errors of the scheme in [20]
with Scheme II of this study. As shown in Figure 1, the error tended to decrease as the time
step decreases.
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Figure 1. Errors of u, d in H1.

4.1.2. The Order of Spatial Convergence

To verify the spatial convergence order, we fixed the time step τ = 0.01 so that the
errors were only dominated by the spatial discretization error. We used different grid
sizes (h = 1

32 , 1
64 , 1

128 ) for the H1-errors of u, d and the L2-errors of p. In Tables 10–13,
we verify the spatial convergence order of Scheme I for different parameter values. In
Table 10, by fixing the values of the other parameters and taking the values of γ as 0.8
and 1, respectively, it was found that the order of convergence was 2. Similarly, we took
the values of λ as 0.5 and 0.7, respectively, in Table 11. We took the values of η as 0.08
and 0.09, respectively, in Table 12. We took the values of ϵ as 0.07 and 0.08, respectively,
in Table 13. In conclusion, the spatial convergence order of Scheme I was close to 2 in
comparison with the different variables γ, λ, η, ϵ in Tables 10–13. In Tables 14–17, we
verify the spatial convergence order of Scheme II for different parameter values. Similarly,
different parameter values of γ = 0.1, 0.2, λ = 1, 0.8, η = 0.1, 0.2, ϵ = 0.07, 0.08 were taken
in Tables 14–17, respectively. For Scheme II, we obtained the same conclusion with a similar
analysis—the spatial convergence order was close to 2. These results are in full agreement
with the theoretical expectation of accuracy for the P2 element of u, d and the P1 element
of p, indicating the correctness of our schemes.

Table 10. The spatial convergence order of Scheme I with different values of γ.

γ h d-Error Order u-Error Order p-Error Order

0.8 1
32 0.03701 0.05387 0.08411
1
64 0.00968 1.9345 0.01520 1.8254 0.02177 1.9497
1

128 0.00271 1.8376 0.00420 1.8522 0.00545 1.9972

1 1
32 0.02756 0.05562 0.08628
1
64 0.00725 1.9267 0.01569 1.8258 0.02188 1.9791
1

128 0.00198 1.8715 0.00436 1.8468 0.00549 1.9928

Table 11. The spatial convergence order of Scheme I with different values of λ.

λ h d-Error Order u-Error Order p-Error Order

0.5 1
32 0.02442 0.06460 0.10979
1
64 0.00656 1.8953 0.01743 1.8895 0.02725 2.0102
1

128 0.00181 1.8555 0.00466 1.9018 0.00660 2.0458

0.7 1
32 0.02567 0.09305 0.15457
1
64 0.00714 1.8460 0.02532 1.8774 0.03819 2.0170
1

128 0.00196 1.8640 0.00685 1.8865 0.00931 2.0367
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Table 12. The spatial convergence order of Scheme I with different values of η.

η h d-Error Order u-Error Order p-Error Order

0.08 1
32 0.02685 0.04027 0.05563
1
64 0.01438 1.9518 0.01561 1.8332 0.01456 1.9338
1

128 0.00397 1.8546 0.00398 1.9706 0.00380 1.9366

0.09 1
32 0.02678 0.03626 0.05746
1
64 0.00693 1.9503 0.01016 1.8356 0.01467 1.9693
1

128 0.00193 1.8439 0.00280 1.8574 0.00366 2.0008

Table 13. The spatial convergence order of Scheme I with different values of ϵ.

ϵ h d-Error Order u-Error Order p-Error Order

0.07 1
32 0.02744 0.05073 0.08868
1
64 0.00723 1.9246 0.01361 1.8979 0.02196 2.0138
1

128 0.00196 1.8817 0.00363 1.9076 0.00530 2.0496

0.08 1
32 0.02341 0.03742 0.06559
1
64 0.00609 1.9404 0.01002 1.9012 0.01639 2.0004
1

128 0.00155 1.9753 0.00265 1.9173 0.00394 2.0575

Table 14. The spatial convergence order of Scheme II with different values of γ.

γ h d-Error Order u-Error Order p-Error Order

0.1 1
32 0.20571 0.01638 0.21204
1
64 0.05759 1.8366 0.00405 2.0163 0.06053 1.8084
1

128 0.01516 1.9253 0.00097 2.0607 0.01617 1.9041

0.2 1
32 0.15486 0.02831 0.18484
1
64 0.04232 1.8715 0.00744 1.9284 0.05269 1.8105
1

128 0.01128 1.9068 0.00184 2.0145 0.01411 1.9004

Table 15. The spatial convergence order of Scheme II with different values of λ.

λ h d-Error Order u-Error Order p-Error Order

1 1
32 0.04682 0.02348 0.18415
1
64 0.01237 1.9198 0.00611 1.9428 0.05253 1.8097
1

128 0.00322 1.9421 0.00151 2.0204 0.01398 1.9094

0.8 1
32 0.07849 0.09336 0.07836
1
64 0.02055 1.9335 0.02379 1.9725 0.02232 1.8116
1

128 0.00527 1.9641 0.00576 2.0464 0.00611 1.8689

Table 16. The spatial convergence order of Scheme II with different values of η.

η h d-Error Order u-Error Order p-Error Order

0.1 1
32 0.13489 0.02945 0.18592
1
64 0.03659 1.8821 0.00749 1.9749 0.04951 1.9086
1

128 0.00956 1.9362 0.00185 2.0193 0.01321 1.9053

0.2 1
32 0.17717 0.03014 0.18198
1
64 0.04683 1.9197 0.00764 1.9795 0.04843 1.9096
1

128 0.01218 1.9422 0.00194 1.9745 0.01276 1.9243
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Table 17. The spatial convergence order of Scheme II with different values of ϵ.

ϵ h d-Error Order u-Error Order p-Error Order

0.07 1
32 0.20571 0.02832 0.18484
1
64 0.05454 1.9152 0.00686 2.0455 0.05269 1.8105
1

128 0.01455 1.9068 0.00162 2.0826 0.01412 1.9004

0.08 1
32 0.17718 0.02833 0.18525
1
64 0.04611 1.9421 0.00698 2.0212 0.04965 1.8996
1

128 0.01219 1.9197 0.00169 2.0458 0.01321 1.9102

Figure 2 illustrates the variation in the error with the grid size for both schemes. It can
be seen in the figure that the error became smaller and smaller as the mesh increased.
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Figure 2. The trend of the errors with the grid size: Scheme I (left); Scheme II (right).

4.2. Annihilation and Stable Defects

The numerical example was associated with the phenomenon of the annihilation of
singularities. We considered many numerical experiences consisting of the motions of the
singularity. We simulated evolutions of the director vector d field over time under certain
conditions. The motion of defect points in liquid crystals can be simulated via the long-time
behavior of the harmonic map flow. Moreover, the disappearance of singularity is affected
by the direction. Finally, the defects would move toward a steady state. We simulated the
dynamic evolution of singularities until the simulation reached the steady state. For the
different initial values of d, we give the annihilation phenomena of the singularities. A
comparison of the annihilation for different initial directors in two schemes is presented.
We considered the computational domain in the unit circle Ω = (x, y) : x2 + y2 < 1, and
the following parameters were chosen: τ = 0.05, h = 1

50 , γ = 0.18, λ = 0.01, η = 0.1, and
ϵ = 0.05.

For Scheme I, we chose the initial conditions as follows:

u = 0, p = 0, d = (sin(π(x2 + y2)2), cos(π(x2 + y2)2)).

The evolutions of the director field d and the velocity field u at different times are displayed
in Figures 3 and 4, where T = 3 is the stoping time of the iteration.
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(d) T = 3

Figure 3. Evolution of the director fields of Scheme I: T = 0 (top left), T = 0.5 (top right), T = 1.5
(bottom left), T = 3 (bottom right).
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Figure 4. Cont.



Mathematics 2024, 12, 672 17 of 23

Vec Value
0
0.00580932
0.0116186
0.017428
0.0232373
0.0290466
0.0348559
0.0406653
0.0464746
0.0522839
0.0580932
0.0639026
0.0697119
0.0755212
0.0813305
0.0871399
0.0929492
0.0987585
0.104568
0.110377

(c) T = 1.5

Vec Value
0
0.00355446
0.00710893
0.0106634
0.0142179
0.0177723
0.0213268
0.0248812
0.0284357
0.0319902
0.0355446
0.0390991
0.0426536
0.046208
0.0497625
0.053317
0.0568714
0.0604259
0.0639803
0.0675348

(d) T = 3

Figure 4. Evolution of the velocity fields of Scheme I: T = 0.05 (top left), T = 0.5 (top right), T = 1.5
(bottom left), T = 3 (bottom right).

For Scheme II, the initial conditions were taken as follows:

u = 0, p = 0, d = (sin(2π(cosx − siny)), cos(2π(cosx − siny))).

By changing the initial directors, we present the phenomenon of the annihilation of singu-
larities. We also found a small difference in the molecule orientation near the boundary.
Figures 5 and 6 show the simulation results for the annihilation of singularities.
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(b) T = 0.5

Figure 5. Cont.
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Figure 5. Evolution of the director fields of Scheme II: T = 0 (top left), T = 0.5 (top right), T = 1.5
(bottom left), T = 3 (bottom right).
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Figure 6. Evolution of the velocity fields of Scheme II: T = 0.05 (top left), T = 0.5 (top right), T = 1.5
(bottom left), T = 3 (bottom right).
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‘Vec Value’ in Figures 3–6 is the abbreviation of ‘Vector Value’. The arrows in the figure
represent the directions of the molecules, and different colors represent different numerical
sizes. In Figure 3, we plot the director field d at four different times: at t = 0, where the
singularities are swirled around with the flow; at t = 0.5, where the singularities clearly
keep on moving with the flow; after t = 1.5, where the change trend starts moving in one
direction. Figure 5 is the same. In Figure 4, we plot the velocity field u at four different
times: at t = 0.05, where the singularities are swirled around with the flow; at t = 0.5,
where the singularities keep on moving closer and closer to each other with the flow; at
t = 1.5, with the singularities just prior to annihilation; finally, at t = 3, where the steady
state is reached. Similarly, we find that the steady state begins to be reached roughly after
t = 1.5 in Figure 6.

4.3. The Dissipation of Energy

In this section, we describe the test of the energy decay for the proposed schemes. The
discrete energy functional for Scheme I can be written as

E(un+1
h , dn+1

h ) =
∫

Ω
(

1
2
| un+1

h |2 +
λ

2
| ∇dn+1

h |2 +
λ

4ϵ2 (| dn+1
h |2 −1)2)dx.

In the test, we considered a numerical experience consisting of the motion of two singulari-
ties. In order to simulate the time behavior of different energies interacting in the system,
we defined the kinetic and elastic energies as

Ekin =
1
2
∥u∥2, Eela =

λ

2
∥∇d∥2 +

λ

4ϵ2 ∥d2 − 1∥2.

Scheme I of the Ericksen–Leslie hydrodynamic model was computed in the domain
[−1, 1]× [−1, 1], and the initial conditions were

u = 0, p = 0, d0 = (
d̄√

| d̄ |2 +ϵ2
), d̄ = (x2 + y2 − 0.25, y).

The evolution of the kinetic and elastic energies is depicted in Figures 7–10. Here,
Figures 7 and 8 show the results of the kinetic energy and elastic energy in comparison
with the different time steps. Similarly, it was found that the energies were acceptable for
Ekin and Eela in comparison with the variables γ, λ, η, and ϵ in Figures 9 and 10, respectively.

In Figures 7 and 8, we also plot the condition parameters in terms of the time step τ for
different values of Ekin and Eela. No matter how large or small, the elastic energy changed
only a little. However, the degree of kinetic energy dissipation became more obvious with
the increase in the time step.

It was obvious that the condition parameters of the matrix were not sensitive to γ, λ, η,
and ϵ, as shown in Figure 9. The velocity was dissipated, and the elastic energy showed a
slow decay.

Furthermore, we found that the kinetic energy reached its maximum level at the
annihilation time in Figure 10. The results verified our expectations. Therefore, these
numerical results were achieved as expected.



Mathematics 2024, 12, 672 20 of 23

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

40

el
as

tic
 e

ne
rg

y

t

 =0.01

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

el
as

tic
 e

ne
rg

y

t

 =0.02

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

30

35

el
as

tic
 e

ne
rg

y

t

 =0.05

Figure 7. The different time steps of elastic energy.
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Figure 8. The different time steps of kinetic energy.
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Figure 9. The different parameters of elastic energy.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ki
ne

tic
 e

ne
rg

y

t

  = 0.1
  = 0.15
  = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

ki
ne

tic
 e

ne
rg

y

t

  = 0.07
  = 0.15
  = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ki
ne

tic
 e

ne
rg

y

t

  = 0.05
  = 0.1
  = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

ki
ne

tic
 e

ne
rg

y

t

 =0.03
 =0.05
 =0.07

Figure 10. The different parameters of kinetic energy.
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5. Conclusions

To study numerical approximations for the modified Ericksen–Leslie model, this
study designed two different fully discrete finite element schemes. One was the numerical
scheme of the second-order backward differentiation formula, and the other was the leap
frog scheme. Their key idea was based on a novel convex splitting method, which was a
unique way to skillfully deal with the nonlinear term. We not only rigorously proved the
unconditional energy stability, but we also showed a detailed practical implementation for
both schemes. A large number of numerical results showed that the order of convergence
of the two schemes was of the second order in both time and space. Significantly, the
numerical experiments also showed that the leap frog scheme was more computationally
efficient than the backward differentiation formula.
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Appendix A. Maximum Principle

“If | d0 |≤ 1 in Ω, then | d(t) |≤ 1 in Ω for each t ∈ [0, T].”
This result is based on the following time-differential inequality satisfied by |d|2:

1
2

∂t|d|2 + u · ∇|d|2 − γ∆|d|2 + γ f (d) · d ≤ 0 in Q,

which was obtained by making the scalar product of the first two equations in (3) with d
jointly with the property

f (d) · d ≥ 0 if |d| ≥ 1.
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