
Citation: Sheng, J.; Yang, Z.; Wang, B.;

Chen, Y. Attribute Graph Embedding

Based on Multi-Order Adjacency

Views and Attention Mechanisms.

Mathematics 2024, 12, 697. https://

doi.org/10.3390/math12050697

Academic Editors: José F. Vicent,

Leandro Tortosa and Manuel Curado

Received: 10 January 2024

Revised: 15 February 2024

Accepted: 22 February 2024

Published: 27 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Attribute Graph Embedding Based on Multi-Order Adjacency
Views and Attention Mechanisms
Jinfang Sheng, Zili Yang, Bin Wang * and Yu Chen

School of Computer Science and Engineering, Central South University, Changsha 410083, China;
jfsheng@csu.edu.cn (J.S.); 214711103@csu.edu.cn (Z.Y.); 214712134@csu.edu.cn (Y.C.)
* Correspondence: wb_csut@csu.edu.cn

Abstract: Graph embedding plays an important role in the analysis and study of typical non-
Euclidean data, such as graphs. Graph embedding aims to transform complex graph structures
into vector representations for further machine learning or data mining tasks. It helps capture
relationships and similarities between nodes, providing better representations for various tasks on
graphs. Different orders of neighbors have different impacts on the generation of node embedding
vectors. Therefore, this paper proposes a multi-order adjacency view encoder to fuse the feature
information of neighbors at different orders. We generate different node views for different orders
of neighbor information, consider different orders of neighbor information through different views,
and then use attention mechanisms to integrate node embeddings from different views. Finally, we
evaluate the effectiveness of our model through downstream tasks on the graph. Experimental results
demonstrate that our model achieves improvements in attributed graph clustering and link prediction
tasks compared to existing methods, indicating that the generated embedding representations have
higher expressiveness.

Keywords: graph embedding; graph representation learning; graph neural networks; graph autoencoder

MSC: 68R10

1. Introduction

In attribute graphs, nodes possess both topological characteristics and individual
node features. Attribute graphs find wide application in various fields, such as social
analysis [1–3], recommendation systems [4], and biology [5]. Analyzing attribute graphs
holds significant importance in comprehending the network’s overall topology, dynamic
characteristics, modules, functions, and evolution. Graph embedding, also known as graph
representation learning, is a technique that maps nodes in a graph to low-dimensional
vectors. This mapping greatly facilitates the analysis of attribute graphs. The challenge in
attribute graph embedding lies in effectively integrating and representing the topology and
feature information of nodes in the learned low-dimensional vectors.

Recently, graph neural networks have demonstrated exceptional performance in
analyzing graph-structured data and are widely used to learn the representations of graphs,
particularly GCN (graph convolutional network)-based [2] methods. The key operation in
GCN updates a node’s features by aggregating its neighbors’ features, using the adjacency
and feature matrices. This enables information spread across the graph. By layering these
operations, GCNs learn the graph’s complex patterns, capturing its hierarchical structure.
The accuracy of graph embedding has been greatly enhanced by these methods. Presently,
the majority of graph embedding techniques that utilize graph neural networks make use
of graph auto-encoders [6]. This paper focuses on learning superior low-dimensional vector
representations of attribute graphs using a graph auto-encoder. The graph auto-encoder
structure utilizes a graph convolutional network (GCN) as the encoder, employs a vector

Mathematics 2024, 12, 697. https://doi.org/10.3390/math12050697 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050697
https://doi.org/10.3390/math12050697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8815-7533
https://orcid.org/0000-0002-4447-7674
https://doi.org/10.3390/math12050697
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050697?type=check_update&version=1


Mathematics 2024, 12, 697 2 of 15

inner product as the decoder, and employs the cross-entropy loss function between the
reconstructed graph and the original graph.

Upon analyzing existing methods, it was observed that most of the mentioned ap-
proaches overlook the varying impact of different orders of neighbors on the generation
of node embedding vectors. For central nodes in the graph, low-order neighbors exert a
significant influence. During the vector generation process, the low-order neighbors of the
central node are also closer to the center of the graph, while the high-order neighbors of
the central node are located at the periphery. Incorporating information from low-order
neighbors enhances the expressiveness of the embedding vector, while fusing high-order
peripheral nodes may introduce noise and impact the results.

For peripheral nodes in the graph, high-order neighbors have a greater impact. In the
process of generating embedding vectors, peripheral nodes have smaller degrees and can
only incorporate limited neighbor information, which makes it challenging for them to
learn effective embedding vectors. Therefore, in the embedding process, peripheral nodes
need to integrate high-order neighbor information to learn more accurate embedding vec-
tors. Based on this idea, we propose a new encoder called the DGA (Different-Order-View
Graph Auto-Encoder), which aims to fuse the feature information of neighbors at different
orders. In this paper, we generate different node views for 0th-, 1st-, 2nd-, and 3rd-order
neighbor information, considering different orders of neighbor information through differ-
ent views. We then use graph neural networks to learn node embedding representations
in different views. Additionally, this paper primarily utilizes attention mechanisms to
integrate node embeddings from different views, as attention mechanisms can effectively
differentiate the impact of different views in the generation of low-dimensional vectors.
Finally, experiments undertaken demonstrate significant improvements in graph-related
tasks. Our main contributions are as follows:

• The encoder model utilizes multi-order neighbor views to construct adjacency matrices.
The DGA uses an attention aggregator to effectively assist nodes in the graph in
aggregating information from different views;

• A multi-layer perceptron (MLP) decoder and inner product decoder are used simulta-
neously to decode the adjacency matrix A and feature matrix X. The model is jointly
optimized using the reconstruction loss of the adjacency matrix, the self-supervised
clustering loss, and the feature matrix reconstruction loss;

• We apply the learned vectors to graph clustering and link prediction tasks using
different datasets. Experimental results obtained demonstrate that our model achieves
excellent performance on the respective tasks.

2. Related Work
2.1. Graph Embedding

Graph embedding, also known as graph representation learning, focuses on the
challenge of mapping nodes from the original graph into a lower-dimensional space.
An additional complexity arises from the fact that nodes possess their own unique features,
necessitating the integration of both topological and feature information. Traditional
approaches have drawn inspiration from techniques such as Laplacian eigenmaps [7] and
matrix factorization [8]. When dealing with graphs lacking explicit node features, existing
research primarily revolves around methods that leverage the graph’s topology as the main
source of information. DeepWalk [9] was one of the pioneering methods that sampled node
sequences through random walks and utilized the Skip-Gram model to generate the final
vector representations. Similar techniques, such as node2vec [5], LINE [10], SDNE [11],
and Auto-Encoders (AE) [12], were subsequently developed. However, these methods
have a significant drawback: they solely capture the graph’s topological structure and
do not consider the node features. To incorporate node features, an additional separate
module needs to be defined, which introduces extra aggregation steps [13], such as GAT
(graph attention network) [14], to dynamically assign importance to neighbors’ features
in graph data using attention mechanisms, enhancing feature aggregation and learning.



Mathematics 2024, 12, 697 3 of 15

Alternatively, a more effective approach is to seamlessly integrate the node features and
topological information during the training process. This challenge is addressed by graph
neural networks (GNNs). GNNs, exemplified by models like GCN [2] or GAT [14], define
convolutions on non-Euclidean data, such as graphs. By doing so, GNNs can seamlessly
and directly integrate the topological information and node features when generating
low-dimensional vector representations.

Furthermore, in attribute graph embedding, Hao Wang et al. [15] developed the
sparse attributed network embedding (SANE) framework to simultaneously learn the
network structure and sparse attribute information, introducing an attention mechanism to
adaptively weigh the strength of interactions based on node attribute similarity. In address-
ing the variation in informativeness between link structures and attributes across nodes,
S. Bandyopadhyay et al. [16] proposed an unsupervised node embedding technique that
intelligently prioritizes structure or attributes for each node separately, enhancing both
structural and attribute embedding. The decoupled network embedding (DCNE) model
by Hao Wang et al. [17] (2021) aims at learning node representations by decoupling the
learning of the network structure and attributes, addressing sparse attribute issues and
achieving robust embeddings. Hongyang Gao and Shuiwang Ji [18] (2019) proposed Graph
U-Nets, integrating attention mechanisms with graph pooling and unpooling operations,
to better capture graph topology information and improve the performance on node and
graph classification tasks.

To incorporate multiple types of information and optimize downstream tasks, our
proposed method builds upon these previous works. Our method utilizes multi-order
neighbor views to construct adjacency matrices and attention mechanisms and employs
optimization in a joint manner for the loss function

2.2. Graph Auto-Encoder

Graph auto-encoders (GAEs) apply a graph neural network into an autoencoder
framework, enabling them to perform unsupervised learning tasks. GAEs aim to learn a
lower-dimensional representation of the graph, allowing them to reconstruct the original
graph structure or feature representations via a decoder. Variational GAE (VGAE) [6] is
a variational version of GAE to learn the distribution of data. The typical model uses a
stacked denoising auto-encoder [19] to reconstruct the positive pointwise mutual infor-
mation matrix to capture the correlation of node pairs. These methods can be classified
into three distinct categories, each focusing on enhancing a specific aspect of the graph
autoencoder. The first category comprises methods such as DAEGC [20], GEC-CSD [21],
and MRFasGCN [22], which aim to improve the performance of the encoder. The sec-
ond category includes techniques like TGA/TVGA [23], which utilize a triadic decoder
to enhance the decoding process. Lastly, there are approaches that go beyond the loss
function, incorporating additional enhancements, such as a clustering loss optimizer [24]
or a modularity optimizer [25], to further refine the overall performance.

In the improvement of encoders, while GCN, DAEGC, and GEC-CSD apply GAT to the
encoder, GUCD [26] utilizes MRFasGCN as its encoder, which is specifically designed based
on the concept of a Markov random field. MRFasGCN introduces a novel convolution layer
that focuses on community detection tasks. In our research, we found that the existing
encoder fails to fully consider the influence of different order views during the process of
learning low-dimensional vectors. Therefore, we have taken this impact into consideration
when designing the encoder for our model.

3. Method

In this section, we primarily introduce the different view of order encoder (DGA),
which is a graph auto-encoder based on multi-order neighbor views. In the encoder,
the model aggregates graph convolution results from different order views to generate
low-dimensional embedding vectors. In the decoder, the model simultaneously decodes



Mathematics 2024, 12, 697 4 of 15

the adjacency matrix A and feature matrix X while constructing a joint loss function for
both to optimize the model. The overall structure of the model is shown in Figure 1.

Figure 1. Overall structure of the DGA. The green module represents the encoder, which is the
different view of order encoder (DVO encoder) that handles multi-order neighbor views. The orange
module represents the inner product decoder, and the blue part corresponds to the MLP feature de-
coder. The model is optimized using a joint loss that includes the reconstruction loss for the adjacency
matrix A, the reconstruction loss for the feature matrix X, and the self-supervised clustering loss.

3.1. Encoder

This section introduces the encoder called the different view of order encoder
(DVO encoder), which utilizes multi-order neighbor views. The encoder learns low-
dimensional embedding vectors using graph convolutional networks (GCN) under
0th-, 1st-, 2nd-, and 3rd-order neighbor views. Subsequently, the vectors from different
views are aggregated using an aggregator to obtain the final embedding representation.
The structure of the encoder is shown in Figure 2.

Figure 2. Multi-order neighbor views encoder structure diagram.

3.1.1. Building Multi-Neighbor Views

Before learning the embedding vectors in the encoder, we first construct the 0th-, 1st-,
2nd-, and 3rd-order neighbor views.

The 0th-order view considers only the information X of the nodes themselves, ignoring
the information from the attribute adjacency matrix A. The adjacency matrix A0 under the



Mathematics 2024, 12, 697 5 of 15

0th-order view is constructed based on the correlation between the features xi of each node
and the features xi of the other nodes, as shown in Formula (1):

A0 ∈ Rn×n, αij =

{
1, if cos(xi, xj) >= θ

0, else
(1)

where cos represents the cosine similarity and θ is the similarity threshold, which is a
hyperparameter of the model. By truncating the similarity values based on the threshold,
the values in the matrix are set to either 0 or 1, constructing the adjacency matrix under the
0th-order neighbor view. This facilitates subsequent symmetric normalization and enables
input to the graph convolutional network (GCN) for training. as shown in Formula (2):

cos(a, b) =
a • b

∥a∥ × ∥b∥ =
∑n

i=1(ai × bi)√
∑n

i=1(ai)
2 ×

√
∑n

i=1(bi)
2

(2)

The 1st-, 2nd-, and 3rd-order neighbor views correspond to the 1st-order adjacency matrix,
the 2nd-order adjacency matrix, and the 3rd-order adjacency matrix of the graph, respec-
tively. In the k-th-order neighbor view, the neighbor matrix is represented as shown in
Formula (3):

Ak ∈ Rn×n, aij =

{
1, if νj ∈ Nk

i
0, else

(3)

where Nk
i represents the k-th-order neighbor set of node i.

3.1.2. Learning Embedding Vectors in a Multi-Neighbor Views

After constructing multiple neighbor views, the encoder of DGA utilizes a two-layer
graph convolutional network (GCN) to learn the embedding representations for different
views. In the two GCN layers, the first layer applies the ReLU activation function, while
the second layer does not use any activation function. The learned vectors, representing
different views, are denoted as Zk , and their calculation is as shown in Formula (4):

Zk
1 = f1

(
Ak, X

)
= ReLU

(
D̃

1
2
k ÃkD̃

1
2
k

)
XW(0)

Zk = f2

(
Ak, Zk

1

)
= D̃

1
2
k ÃkD̃

1
2
k Zk

1W(1)
(4)

In this case, the two-layer GCN network shares the parameters W(0) and W(1) across different
views. Ãκ̇ = Aκ̇ + In,In is an identity matrix with the same dimension as Ak. D̃k is a diagonal
matrix obtained by calculating the diagonal elements .Ãk, as shown in Formula (5):

d̃k
ij = ∑

j
ãk

ij (5)

3.1.3. Fusion of Embedding Vectors in a Multi-Neighbor Views

The encoder utilizes an aggregator to fuse the embedding vectors from multiple
neighbor views and learns the final embedding representation Z, as shown in Formula (6):

Z = AGGREGATOR
(

Z0, Z1, . . . , Zk
)

(6)

AGGREGATOR is the aggregator, which primarily combines the learned embedding
vectors from different views and generates the final embedding vector.

3.1.4. Attention Aggregator

DGA utilizes an attention aggregator to combine information from different views.
The attention aggregator uses different weights to merge the embedding vectors from



Mathematics 2024, 12, 697 6 of 15

different views. Firstly, the attention aggregator compresses the embedding vectors of
each node in each view to one dimension through linear transformations. Then, it adds
non-linearity through an activation function and learns the weights for different views
using the softmax function, as shown in Formula (7):

νk
i =

exp
(

σ
(

wk
i zk

i + b
))

∑k
j=0 exp

(
σ
(

wk
j zk

j + b
)) (7)

νk
i represents the weight learned for node i with respect to view k. A larger νk

i indicates
a stronger influence of view k on the generation of the embedding vector for node i. σ
represents the activation function tanh. For the embedding vectors from different views,
the final embedding vector Z is learned by weighted summation using the learned weights,
as shown in Formula (8):

zi =
k

∑
i=0

νk
i zk

i (8)

3.2. Decoder
3.2.1. Attention Aggregator

This paper introduces a simplified approach to the decoder, which consists of two
main components: reconstructing the graph and reconstructing the features. To enhance
the efficiency of the model, we adopt a straightforward inner product decoder for graph
reconstruction, as illustrated in Formula (9):

Âij = sigmod(zT
i , zj) (9)

Âij represents the reconstruction adjacency matrix.

3.2.2. Feature Decoder

DGA utilizes a multi-layer perceptron (MLP) to decode the feature matrix X. The model
performs decoding through two fully connected layers, as shown in Formula (10):

X̂ = Wd
1

[
σ
(

Wd
2 Z+

)
+ bd

1

]
+ bd

2 (10)

where X̂ is the decoded feature matrix, and Wd
1 , Wd

2 , bd
1 and bd

2 are the learnable parameters
and biases of the MLP decoder. The decoding results of different feature decoders can
have varying impacts on the computation of the final loss function. This paper evaluates
the effects of different decoding approaches on the embedding vectors and downstream
graph tasks.

Another decoding approach involves using a GCN decoder. The GCN decoder lever-
ages the reconstructed adjacency matrix Â obtained from the inner product decoder and
utilizes Â and the embedding vectors Z as inputs to decode X using the GCN decoder.
The GCN decoder also consists of two layers, as shown in Formula (11):

X̂ = D̃− 1
2 ÃdD̃− 1

2

(
σ(D̃− 1

2 ÃdD̃− 1
2 )ZWd

1

)
Wd

2 (11)

where D̃ and Ãd are computed in the same way as in the encoder. Wd
1 and Wd

2 are the
weight matrices of the two GCN layers, and σ represents the ReLU activation function.

3.3. Loss Function

The optimization objective of DGA is to reconstruct the adjacency matrix A and the
feature matrix X. DGA jointly optimizes the model using these two objectives simulta-



Mathematics 2024, 12, 697 7 of 15

neously. Additionally, in the node clustering task, DGA incorporates a self-supervised
clustering loss to further optimize the model.

3.3.1. The Loss Function for Reconstructing the Adjacency Matrix A

The loss function for reconstructing the adjacency matrix A in DGA is the cross-entropy
between the reconstructed graph structure Â and the original adjacency matrix A, as shown
in Formula (12):

LA = −
n

∑
i,j=1

[
aijIn

(
âij

)
+
(
1 − aij

)
In
(
1 − âij

)]
(12)

3.3.2. The Loss Function for Reconstructing the Attribute Matrix X

DGA utilizes the mean squared error (MSE) between the reconstructed feature matrix
X and the original feature matrix X̂ as the loss function, as shown in Formula (13):

LX =
1
n
∥∥X − X̂

∥∥2 (13)

3.3.3. The Self-Supervised Clustering Loss Function

DGA introduces a self-supervised clustering module in the process of the node cluster-
ing task. The self-supervised module utilizes high-confidence samples for supervision and
helps improve low-confidence samples, resulting in denser sample distributions within
each cluster. The self-supervised module takes the embedding vectors learned by the en-
coder as input to the self-supervised clustering objective, aiming to minimize the clustering
objective, as shown in Formula (14):

Lc = KL(P ∥ Q) = ∑
i

∑
j

pij log
pij

qij
(14)

where KL(·) represents the Kullback–Leibler divergence between the P-distribution and the
Q-distribution. Q utilizes the Student’s t distribution to measure the distance distribution of
each node to the cluster centers, which can be considered as a “soft clustering distribution”;
P represents the auxiliary distribution.

3.3.4. Joint Optimization

The optimization of the DGA model involves jointly optimizing the aforementioned
loss functions. The overall loss function of the model is as shown in Formula (15):

L = λ1LA + λ2LX + λ3LC (15)

where λ1 represents the weight of the reconstruction loss for the adjacency matrix, denoted
as LA. λ2 represents the weight of the reconstruction loss for the feature matrix, denoted as
LX . λ3 represents the weight of the self-supervised clustering loss, denoted as LC.

4. Experiments

In this section, we evaluate the accuracy of our model in different graph tasks through
experiments. We introduce the datasets used, the methods to be compared, the settings of the
experimental parameters, and the evaluation metrics employed to assess the model’s accuracy.

In this paper, two graph downstream tasks are addressed: graph clustering and
link prediction.

Graph clustering aims to partition the nodes in a graph into non-overlapping cate-
gories, denoted as C = {C1, C2, · · · , Ck}, based on their topological and feature information.
Each category Ck is a subgraph of G, and they have no overlapping nodes. Moreover, it is
important to note that Cka ∩ Ckb

= ∅(∀a, b).



Mathematics 2024, 12, 697 8 of 15

The link prediction task focuses on assessing the potential of establishing new con-
nections between two nodes in a network that are currently not connected, based on the
existing topological structure and feature information of the nodes.

These tasks involve leveraging the graph’s topological and feature information to
perform clustering or predict the likelihood of creating new connections, providing insights
into the graph structure and potential relationships.

4.1. Datasets

We use widely used network datasets that include both the topological and fea-
ture structures of the nodes. Our study leverages three pivotal datasets: Cora, Citeseer,
and Pubmed [27]. Cora features 5429 scientific publications categorized into seven classes,
linked by citations, each represented as a binary word vector from a unique term dictio-
nary. Citeseer includes 3327 articles across six categories, highlighting class imbalance
and sparse linkages. Pubmed offers 19,717 biomedical papers, emphasizing dense citation
networks and detailed term representations. These datasets provide a comprehensive
basis for evaluating the efficacy of graph representation learning algorithms across diverse
academic domains.

We conducted experiments on these three datasets for both graph clustering and link
prediction tasks. The detailed information about these datasets is provided in Table 1.

Table 1. Summary of datasets.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19,717 44,338 500 3

Note: The Cora, Citeseer, and Pubmed datasets utilized in this table are sourced from the Laboratory for Artificial
Intelligence and Network Analysis (LINQS) at the University of California, Santa Cruz. These datasets can be
accessed via the following link: https://linqs-data.soe.ucsc.edu/public (accessed on 20 February 2024).

4.2. Baseline Methods

In the comparison of methods for node clustering and link prediction experiments,
the methods can be categorized into the following classes:

(1) Classical Methods:

• DeepWalk [9]: This is an unsupervised graph embedding algorithm based on ran-
dom walks, used to map nodes to vector representations in a low-dimensional space.

• Spectral Clustering (SC) [28]: This performs clustering by utilizing the eigenvec-
tors of the similarity matrix to group nodes.

(2) Classical Graph Autoencoder Methods:

• GAE: This uses graph convolutional networks (GCNs) as the encoder and is a
classical graph autoencoder used for unsupervised tasks.

• VGAE [6]: This is a variational version of GAE.
• ARGA [29]: This uses an adversarial learning framework to generate node

embeddings by adversarial regularization. It incorporates both graph structure
and node features into the embeddings. ARVGA is the variational version
of ARGA.

(3) Recent Methods:

• ARGAX: [1] This extends ARGA by using GCN as the decoder to simultaneously
reconstruct the graph structure and node features.

• ARVGAX [1]: This is the variational version of ARGAX.
• DBGAN [30]: This utilizes a distribution-induced bidirectional generative adver-

sarial network, where the prior distribution is estimated through structure-aware
means instead of assuming a normal distribution.

https://linqs-data.soe.ucsc.edu/public


Mathematics 2024, 12, 697 9 of 15

• SSGC [31]: This improves graph convolutional networks (GCNs) with an enhanced
Markov diffusion kernel that balances the influences of low-pass and high-pass
filters to fuse information from low-order and high-order neighboring nodes.

• R-GAE [32]: This avoids clustering noise through sampling operations and
improves the GAE model by transforming the reconstruction graph step into a
graph structure relevant to the reconstruction and clustering tasks.

• R-VGAE [32]: This applies the same idea to improve the VGAE model.
• DGAE [33]: This extends GAE by using GCN as the feature decoder.
• GNAE [34]: This resolves the issue of zero embeddings for isolated nodes in the

graph by using L2 normalization.
• VGNAE: [34] This is the variational version of GNAE.

In the link prediction experiments, based on the different decoders used in DGA,
three methods are considered:

• DGA: This uses an MLP feature decoder.
• DGA_EX (DGA Exclude X-decoder): This does not use a feature decoder.
• DGA_GX (DGA GCN X-decoder): This uses a GCN feature decoder.

4.3. Evaluation Metrics

Evaluation Methods: For the link prediction task, we adopt the evaluation methods
described in the GAE and VGAE papers. We use two evaluation metrics, namely, the area
under the curve (AUC) and the average precision (AP) to measure the performance of the
link prediction task.

AUC is a metric that quantifies the overall performance of a binary classification model
by considering the trade-off between the true positive rate and the false positive rate across
various threshold settings, as shown in Formula (16):

AUC =
∑k I(Px, Py)

N × M
, I(Px, Py) =


1, Px > Py

0.5, Px = Py

0, Px < Py

(16)

The average precision calculation is as shown in Formula (17):

AP =
∑k Precision

N × M
, Precision =

TP
TP + FP

(17)

For the clustering task, we utilize the following evaluation metrics to assess the
performance of the models:

Accuracy (ACC): This measures the accuracy of the clustering results by comparing
the predicted labels with the ground truth labels, as shown in Formula (18):

ACC =

n
∑

j=1
δ
(

gi(j), o′(j)
)

n
, δ
(
x, y
)
=

{
1, if x=y
0, else

(18)

Normalized Mutual Information (NMI): This quantifies the similarity between the
predicted clustering and the ground truth clustering, taking into account the information
entropy, as shown in Formula (19):

NM(U, V) = 2
MI(U, V)

H(U) + H(V)
(19)

Adjusted Rand Index (ARI) [35]: This measures the similarity between two cluster-
ings, considering all pairs of samples and taking into account the agreement between the
predicted clustering and the ground truth clustering while considering the possibility of
chance agreement, as shown in Formula (20):



Mathematics 2024, 12, 697 10 of 15

ARI =
RI − E[RI]

max(RI)− E[RI]
(20)

4.4. Parameter Settings

For the comparative methods, we select the best-performing configurations for each
respective task as the basis for comparison. For our method, in attribute graph clustering,
across all datasets, the hidden layer dimension in the encoder structure is set to 256, and the
embedding layer dimension is set to 32. In link prediction, to ensure comparability with
other methods, we adopt the same dimensional configuration as GAE, with a hidden layer
dimension of 32 and an embedding layer dimension of 16.

For the loss functions, to optimize the three losses on the same scale, we set them to
1, 100, and 10, respectively. In the clustering task, we apply [36] to the learned embedding
vectors for clustering. The entire model is optimized using the Adam optimizer [37].

4.5. Experimental Results

We mainly evaluate the performance of the model in two graph tasks: node clustering
and link prediction, corresponding to Experiment 1 and Experiment 2, respectively. In
addition, in Experiment 3, we evaluate the performance of attribute graph clustering with
different embedding dimensions, aiming to assess the effect of the embedding dimen-
sions on attribute graph clustering. Finally, we give a visualization of the self-supervised
clustering process

4.5.1. Node Clustering Results

The experimental results for node clustering are shown in Table 2. The performance of
clustering is evaluated using three metrics: ACC, NMI, and ARI. The underlined values
indicate the best-performing method within each category, while the bold values represent
the best-performing method among all methods.

In the node clustering experiments, on the Cora dataset, compared to the best-
performing comparative method, DGA achieved improvements of 2.54% in ACC, 1.74% in
NMI, and 8.70% in ARI. On the Citeseer dataset, DGA achieved improvements of 1.45% in
ACC, 3.04% in NMI, and 2.70% in ARI.

Table 2. Node clustering results on the Cora, Citeseer and Pubmed datasets.

Methods
Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

SC 0.367 0.127 0.031 0.239 0.056 0.010 0.403 0.042 0.002
DeepWalk 0.529 0.384 0.291 0.390 0.131 0.137 0.684 0.279 0.299

GAE 0.611 0.482 0.302 0.456 0.221 0.191 0.632 0.249 0.246
VGAE 0.592 0.408 0.347 0.467 0.261 0.206 0.619 0.216 0.201
ARGA 0.640 0.449 0.352 0.573 0.350 0.341 0.681 0.276 0.291

ARVGA 0.638 0.450 0.374 0.544 0.261 0.245 0.513 0.117 0.078

ARGA-AX 0.597 0.455 0.366 0.547 0.263 0.243 0.637 0.245 0.226
ARVGA-AX 0.711 0.526 0.495 0.581 0.338 0.301 0.640 0.239 0.226

DBGAN 0.748 0.576 0.540 0.670 0.407 0.414 0.694 0.324 0.327
SSGC 0.696 0.547 0.474 0.688 0.428 0.445 0.710 0.332 0.346

R-GAE 0.658 0.516 0.441 0.501 0.246 0.200 0.696 0.314 0.316
R-VGAE 0.713 0.498 0.480 0.449 0.199 0.125 0.692 0.303 0.309

DGA 0.767 0.586 0.587 0.698 0.441 0.457 0.672 0.263 0.267

4.5.2. Link Prediction Results

The experimental results for link prediction are shown in Table 3.



Mathematics 2024, 12, 697 11 of 15

Table 3. Link prediction results on the Cora, Citeseer, and Pubmed datasets.

Methods
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SC 0.846 0.885 0.805 0.850 0.842 0.878
DeepWalk 0.831 0.850 0.805 0.836 0.844 0.841

GAE 0.910 0.920 0.895 0.899 0.964 0.965
VGAE 0.914 0.926 0.908 0.920 0.944 0.947
ARGA 0.924 0.932 0.919 0.930 0.968 0.971

ARVGA 0.924 0.926 0.924 0.930 0.965 0.968

ARGA-AX 0.913 0.913 0.919 0.934 0.966 0.967
ARVGA-AX 0.902 0.892 0.898 0.904 0.967 0.971

DBGAN 0.945 0.951 0.945 0.958 0.968 0.973
DGAE 0.949 0.955 0.949 0.958 0.974 0.972

VGNAE 0.954 0.958 0.970 0.971 0.976 0.976
GNAE 0.956 0.957 0.965 0.970 0.975 0.975

DGA 0.919 0.913 0.980 0.981 0.959 0.952
DGA_GX 0.953 0.952 0.970 0.971 0.963 0.957
DGA_EX 0.961 0.962 0.961 0.962 0.965 0.959

Note: DeepWalk was conducted using the original code from DeepWalk (https://github.com/phanein/deepwalk
(accessed on 20 February 2024)). Spectral clustering results were adopted from “Graph convolutional autoencoders
with co-learning of graph structure and node attributes” [38].

The underlined values indicate the best-performing method within each category,
while the bold values represent the best-performing method among all methods.

In the link prediction experiments, on the Cora dataset, compared to the best-performing
comparative method, DGA_EX achieved improvements of 0.523% in AUC and 0.417% in
AP. On the Citeseer dataset, DGA achieved improvements of 1.03% in both AUC and AP.

4.5.3. Experiment on Influence of Embedding Size

In this experiment, we explored the impact of the embedding vector dimensions
through attribute graph clustering. We conducted attribute graph clustering experiments
with embedding dimensions of 4, 16, 32, 64, and 256, aiming to evaluate the influence
of the embedding vector dimensions on clustering performance. We performed these
experiments on three datasets and compared the changes in metrics, such as ACC, NMI,
ARI, and Macro-F1 (F1-score). The experimental results are shown in Figure 3.

The trends of the node clustering metrics for the DGA model on the Cora and Citeseer
datasets with varying embedding dimensions are depicted in Figure 3.

(a) (b)
Figure 3. Influence of embedding size. (a) Impact of embedding dimensions on four metrics on the
Cora dataset. (b) Impact of embedding dimensions on four metrics on the Citeseer dataset.

https://github.com/phanein/deepwalk


Mathematics 2024, 12, 697 12 of 15

In the node clustering experiments, we can observe from the trend of the curves that
the evaluation metrics initially increase and then decrease as the embedding dimensions of
the nodes increase. The best performance is achieved at dimension 32, where the metrics
attain their highest values. This trend is consistent across all four evaluation metrics used
to assess the node clustering results on the Cora and Citeseer datasets.

4.5.4. Visualization

Through visualization, the impact of the self-supervised module on the results can be intu-
itively observed, thereby visually representing the effectiveness of the self-supervised module.

The experiment visualizes the raw features, and then visualizes the embedding vector
results Z obtained step-by-step by the DGA model using the self-supervised clustering
module on the Cora dataset. The experiment uses the t-SNE [39] algorithm to visualize the
vectors in a two-dimensional space.

The visual results of the experiment comparing the original features of Cora and
the self-supervised model training epochs at 0, 25, 50, 75, and 100 are shown in Figure 4.
The visualization of the entire self-supervised clustering process is depicted in the figure.
The seven categories in Cora are represented by seven different colors. At Epoch = 0, there
is some color overlap among the seven categories in Cora. As the training epochs progress,
the category boundaries of the seven classes become increasingly clear and eventually
exhibit the most distinct clustering characteristics.

(a) Raw Features (b) Epoch = 0 (c) Epoch = 25

(d) Epoch = 50 (e) Epoch = 75 (f) Epoch = 100

Figure 4. 2D visualization results on Cora.

5. Discussion

The DGA model generates expressive embedding vectors and performs well in the
unsupervised downstream tasks on graphs. In node clustering and link prediction, the DGA
model achieves improvements in three metrics compared to traditional graph autoencoder
methods and recent approaches on the Cora and Citeseer datasets, demonstrating the
superiority of the DGA model in graph representation learning tasks.

In the link prediction experiment, DGA_EX utilizes a multi-neighborhood view en-
coder, and on the Cora dataset, DGA_EX outperforms other methods in terms of the metrics.
In conclusion, the use of the multi-neighborhood view encoder enhances the effectiveness



Mathematics 2024, 12, 697 13 of 15

of the model and allows for the learning of more efficient embedding vectors compared to
the GCN encoder.

Noise Implications and Accuracy Concerns of Multi-Order Neighbor Views

The use of multi-order neighbor views has the potential to introduce noise into the
embedding process, which may result in decreased accuracy on certain datasets. Specifi-
cally, by incorporating multi-order neighbor views, the scope of the considered neighbors
is expanded to include more distant nodes as part of the current node’s context. While this
approach can capture broader structural information of the graph, it may also introduce
information from nodes that have weak or irrelevant relationships with the current node.
In such cases, the embedding vectors could be disrupted by unrelated information, thereby
diminishing the model’s ability to capture key structural features and affecting the perfor-
mance on downstream tasks. To address this issue, we can consider the following strategies:

• Weight Adjustment: Introduce different weights for neighbors of different orders
to reduce the influence of more distant neighbors. This ensures that information
from immediate neighbors is prioritized while still retaining some level of distant
structural information.

• Attention Mechanisms: Utilize technologies such as graph attention networks (GATs)
to dynamically assign different attention weights to different neighbors of a node.
Through this method, the model can adaptively focus on more relevant neighbors,
thereby minimizing the impact of noisy data.

• Neighbor Selection: Employ a strategy for constructing multi-order neighbor views
that only selects nodes highly relevant or contributory to the current node. This can
be achieved through preliminary feature selection or task-based backpropagation.

• Regularization Techniques: Incorporate regularization terms, such as graph regular-
ization, to penalize the contributions of neighbors excessively distant from the central
node, thus avoiding over-reliance on remote information.

6. Conclusions

In this paper, a graph auto-encoder called DGA based on multi-order neighbor views
is proposed and applied to graph representation learning. In the DGA model, a multi-order
neighbor views encoder is used. The adjacency matrix A and feature matrix X are decoded
simultaneously using a multi-layer perceptron (MLP) decoder and an inner product decoder.
The model is jointly optimized using the reconstruction loss of the adjacency matrix, the
self-supervised clustering loss, and the feature matrix reconstruction loss. This allows the
model to learn low-dimensional embedding vectors for nodes in an unsupervised manner,
which can be used for downstream graph tasks.

The experimental results obtained on the datasets demonstrate that the learned embed-
ding vectors have stronger expressiveness, and DGA outperforms the comparison methods,
highlighting the superiority of the DGA model in graph representation learning tasks.

Advantages of Multi-Order Neighbor Views in Diverse Graph Applications

Certain applications or topological conditions indeed exist where multi-order neighbor
views might be more advantageous than other views.

• Heterogeneous Networks: In networks with diverse types of nodes and edges, multi-
order neighbor views can better capture the complex interactions and relationships
between different entity types, providing a richer representation of the network.

• Graphs with Long-range Dependencies: For applications where long-range depen-
dencies between nodes are crucial, such as in citation networks or knowledge graphs,
multi-order neighbor views can effectively capture these distant relationships, which
might be missed by focusing solely on immediate neighbors.

• Community Detection and Clustering: In scenarios where identifying communities or
clusters within the graph is essential, multi-order neighbor views can provide insights



Mathematics 2024, 12, 697 14 of 15

into the broader community structure, helping to identify not just local but also global
community memberships.

• Graphs with Sparse Connections: For graphs with sparse connections, multi-order
neighbor views can help in identifying relevant connections that are not immediately
apparent, aiding in tasks like link prediction by providing a wider context.

• Dynamic Networks: In dynamic networks where the topology changes over time,
multi-order neighbor views can provide a more stable representation by capturing rela-
tionships that persist over multiple scales, offering resilience against temporal variations.

Author Contributions: Conceptualization, J.S. and B.W.; methodology, Z.Y.; validation, Z.Y. and
Y.C.; formal analysis, Z.Y. and J.S.; writing—original draft preparation, Y.C.; writing—review and
editing, J.S., Z.Y., and B.W.; visualization, Z.Y.; supervision, J.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the Key Research and Development Program of Hunan
Province (Grant No. 2023SK2038).

Data Availability Statement: These datasets can be accessed via the following link: https://linqs-data.
soe.ucsc.edu/public and https://linqs-data.soe.ucsc.edu/public/lbc, accessed on 20 February 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pan, S.; Hu, R.; Fung, S.f.; Long, G.; Jiang, J.; Zhang, C. Learning graph embedding with adversarial training methods. IEEE

Trans. Cybern. 2019, 50, 2475–2487. [CrossRef] [PubMed]
2. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
3. Yu, F.; Liu, Q.; Wu, S.; Wang, L.; Tan, T. Attention-based convolutional approach for misinformation identification from massive

and noisy microblog posts. Comput. Secur. 2019, 83, 106–121. [CrossRef]
4. Hastings, M.B. Community detection as an inference problem. Phys. Rev. E 2006, 74, 035102. [CrossRef] [PubMed]
5. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.
6. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
7. Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104.

[CrossRef] [PubMed]
8. Cao, S.; Lu, W.; Xu, Q. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015;
pp. 891–900.

9. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.

10. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.

11. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.

12. Chen, C.; Lu, H.; Wei, H.; Geng, X. Deep subspace image clustering network with self-expression and self-supervision. Appl.
Intell. 2023, 53, 4859–4873. [CrossRef]

13. Wang, J.; Huang, P.; Zhao, H.; Zhang, Z.; Zhao, B.; Lee, D.L. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London,
UK, 19–23 August 2018; pp. 839–848.

14. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
15. Wang, H.; Chen, E.; Liu, Q.; Xu, T.; Du, D.; Su, W.; Zhang, X. A united approach to learning sparse attributed network embedding.

In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 557–566.
16. Bandyopadhyay, S.; Biswas, A.; Kara, H.; Murty, M. A multilayered informative random walk for attributed social network

embedding. In ECAI 2020; IOS Press: Clifton, VA, USA, 2020; pp. 1738–1745.
17. Wang, H.; Lian, D.; Tong, H.; Liu, Q.; Huang, Z.; Chen, E. Decoupled representation learning for attributed networks. IEEE Trans.

Knowl. Data Eng. 2021, 35, 2430–2444. [CrossRef]
18. Gao, H.; Ji, S. Graph u-nets. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA,

9–15 June 2019; pp. 2083–2092.
19. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

https://linqs-data.soe.ucsc.edu/public
https://linqs-data.soe.ucsc.edu/public
https://linqs-data.soe.ucsc.edu/public/lbc
http://doi.org/10.1109/TCYB.2019.2932096
http://www.ncbi.nlm.nih.gov/pubmed/31484146
http://dx.doi.org/10.1016/j.cose.2019.02.003
http://dx.doi.org/10.1103/PhysRevE.74.035102
http://www.ncbi.nlm.nih.gov/pubmed/17025687
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://www.ncbi.nlm.nih.gov/pubmed/17025705
http://dx.doi.org/10.1007/s10489-022-03654-6
http://dx.doi.org/10.1109/TKDE.2021.3114444


Mathematics 2024, 12, 697 15 of 15

20. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed graph clustering: A deep attentional embedding approach.
arXiv 2019, arXiv:1906.06532.

21. Xu, H.; Xia, W.; Gao, Q.; Han, J.; Gao, X. Graph embedding clustering: Graph attention auto-encoder with cluster-specificity
distribution. Neural Netw. 2021, 142, 221–230. [CrossRef] [PubMed]

22. Jin, D.; Liu, Z.; Li, W.; He, D.; Zhang, W. Graph convolutional networks meet markov random fields: Semi-supervised
community detection in attribute networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 152–159.

23. Shi, H.; Fan, H.; Kwok, J.T. Effective decoding in graph auto-encoder using triadic closure. In Proceedings of the AAAI
Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 906–913.

24. Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the International
Conference on Machine Learning. PMLR, New York, NY, USA, 19–24 June 2016; pp. 478–487.

25. Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity based community detection with deep learning. In
Proceedings of the IJCAI, New York, NY, USA, 9–15 July 2016; Volume 16, pp. 2252–2258.

26. He, D.; Song, Y.; Jin, D.; Feng, Z.; Zhang, B.; Yu, Z.; Zhang, W. Community-centric graph convolutional network for unsupervised
community detection. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on
Artificial Intelligence, Yokohama, Japan, 7–15 January 2021; pp. 3515–3521.

27. Waikhom, L.; Patgiri, R. Recurrent convolution based graph neural network for node classification in graph structure data. In
Proceedings of the 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Virtual,
27–28 January 2022; pp. 201–206.

28. Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2001, 14, 849–856.
29. Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially regularized graph autoencoder for graph embedding. arXiv

2018, arXiv:1802.04407.
30. Zheng, S.; Zhu, Z.; Zhang, X.; Liu, Z.; Cheng, J.; Zhao, Y. Distribution-induced bidirectional generative adversarial network for

graph representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 14–19 June 2020; pp. 7224–7233.

31. Zhu, H.; Koniusz, P. Simple spectral graph convolution. In Proceedings of the International Conference on Learning Representa-
tions, Addis Ababa, Ethiopia, 26–30 April 2020.

32. Mrabah, N.; Bouguessa, M.; Touati, M.F.; Ksantini, R. Rethinking graph auto-encoder models for attributed graph clustering.
IEEE Trans. Knowl. Data Eng. 2022, 35, 9037–9053. [CrossRef]

33. Sun, D.; Li, D.; Ding, Z.; Zhang, X.; Tang, J. Dual-decoder graph autoencoder for unsupervised graph representation learning.
Knowl. Based Syst. 2021, 234, 107564. [CrossRef]

34. Ahn, S.J.; Kim, M. Variational graph normalized autoencoders. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, Virtual, 1–5 November 2021; pp. 2827–2831.

35. Gan, G.; Ma, C.; Wu, J. Data Clustering: Theory, Algorithms, and Applications; SIAM: Philadelphia, PA, USA, 2020.
36. Xie, Y.; Xu, Z.; Zhang, J.; Wang, Z.; Ji, S. Self-supervised learning of graph neural networks: A unified review. IEEE Trans. Pattern

Anal. Mach. Intell. 2022, 45, 2412–2429. [CrossRef] [PubMed]
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Wang, J.; Liang, J.; Yao, K.; Liang, J.; Wang, D. Graph convolutional autoencoders with co-learning of graph structure and node

attributes. Pattern Recogn. 2022, 121, 108215. [CrossRef]
39. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neunet.2021.05.008
http://www.ncbi.nlm.nih.gov/pubmed/34029998
http://dx.doi.org/10.1109/TKDE.2022.3220948
http://dx.doi.org/10.1016/j.knosys.2021.107564
http://dx.doi.org/10.1109/TPAMI.2022.3170559
http://www.ncbi.nlm.nih.gov/pubmed/35476575
https://doi.org/10.1016/j.patcog.2021.108215

	Introduction
	Related Work
	Graph Embedding
	Graph Auto-Encoder

	Method
	Encoder
	Building Multi-Neighbor Views
	Learning Embedding Vectors in a Multi-Neighbor Views
	Fusion of Embedding Vectors in a Multi-Neighbor Views
	Attention Aggregator

	Decoder
	Attention Aggregator
	Feature Decoder

	Loss Function
	The Loss Function for Reconstructing the Adjacency Matrix A
	The Loss Function for Reconstructing the Attribute Matrix X
	The Self-Supervised Clustering Loss Function
	Joint Optimization


	Experiments
	Datasets
	Baseline Methods
	Evaluation Metrics
	Parameter Settings
	Experimental Results
	Node Clustering Results
	Link Prediction Results
	Experiment on Influence of Embedding Size
	Visualization


	Discussion
	Conclusions
	References 

