
Citation: Chen, J.; Gao, Y.;

Kasihmuddin, M.S.M.; Zheng, C.;

Romli, N.A.; Mansor, M.A.; Zamri,

N.E.; When, C. MTS-PRO2SAT:

Hybrid Mutation Tabu Search

Algorithm in Optimizing Probabilistic

2 Satisfiability in Discrete Hopfield

Neural Network. Mathematics 2024, 12,

721. https://doi.org/10.3390/

math12050721

Academic Editors: Marko Ðurasević

and Domagoj Jakobović

Received: 12 January 2024

Revised: 17 February 2024

Accepted: 25 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

MTS-PRO2SAT: Hybrid Mutation Tabu Search Algorithm in
Optimizing Probabilistic 2 Satisfiability in Discrete Hopfield
Neural Network
Ju Chen 1,2 , Yuan Gao 2,3 , Mohd Shareduwan Mohd Kasihmuddin 2,* , Chengfeng Zheng 2 ,
Nurul Atiqah Romli 2 , Mohd. Asyraf Mansor 4 , Nur Ezlin Zamri 4 and Chuanbiao When 3,*

1 School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine,
Chengdu 610000, China; chenju@cdutcm.edu.cn

2 School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
gaoyuan@student.usm.my (Y.G.); chengfengzheng@student.usm.my (C.Z.);
nurulatiqah_@student.usm.my (N.A.R.)

3 School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine,
Chengdu 610000, China

4 School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia;
asyrafman@usm.my (M.A.M.); ezlinzamri@student.usm.my (N.E.Z.)

* Correspondence: shareduwan@usm.my (M.S.M.K.); wcb@cdutcm.edu.cn (C.W.);
Tel.: +60-4653-4769 (M.S.M.K.); +86-028-6180-0166 (C.W.)

Abstract: The primary objective of introducing metaheuristic algorithms into traditional systematic
logic is to minimize the cost function. However, there is a lack of research on the impact of introducing
metaheuristic algorithms on the cost function under different proportions of positive literals. In
order to fill in this gap and improve the efficiency of the metaheuristic algorithm in systematic
logic, we proposed a metaheuristic algorithm based on mutation tabu search and embedded it in
probabilistic satisfiability logic in discrete Hopfield neural networks. Based on the traditional tabu
search algorithm, the mutation operators of the genetic algorithm were combined to improve its
global search ability during the learning phase and ensure that the cost function of the systematic
logic converged to zero at different proportions of positive literals. Additionally, further optimization
was carried out in the retrieval phase to enhance the diversity of solutions. Compared with nine other
metaheuristic algorithms and exhaustive search algorithms, the proposed algorithm was superior to
other algorithms in terms of time complexity and global convergence, and showed higher efficiency
in the search solutions at the binary search space, consolidated the efficiency of systematic logic in
the learning phase, and significantly improved the diversity of the global solution in the retrieval
phase of systematic logic.

Keywords: artificial neural networks; mutation tabu search; satisfiability logic; metaheuristics

MSC: 68T07; 68T27; 68T20

1. Introduction

In recent years, the rapid development of artificial intelligence has made artificial
neural networks a focal point of interest within the academic community [1,2]. Artificial
neural networks (ANNs) are an application of learning intelligence from biological brains
and have gradually become the frontier in the field of artificial intelligence. In the early
1980s, J.J. Hopfield proposed the Hopfield neural network and made a first attempt to
introduce the concept of “energy function” to analyze the stability of dynamic neural
networks, and obtained the conditions for determining the stability of the system, which
played a crucial role in the research and development of neural networks. Hopfield
networks allow machines to store “memories”. The network is similar to the way the

Mathematics 2024, 12, 721. https://doi.org/10.3390/math12050721 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050721
https://doi.org/10.3390/math12050721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5243-2644
https://orcid.org/0000-0001-8246-9192
https://orcid.org/0000-0001-9125-1101
https://orcid.org/0000-0002-1450-0212
https://orcid.org/0000-0001-9747-0954
https://orcid.org/0000-0002-3516-5898
https://orcid.org/0000-0003-2919-1747
https://doi.org/10.3390/math12050721
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050721?type=check_update&version=1

Mathematics 2024, 12, 721 2 of 40

human brain processes information, and it is able to “recall” its complete information
through incomplete information. Hopfield neural networks have been applied to many
other disciplines, such as image processing [3,4], combinatorial optimization [5], and
Boolean function optimization [6]. Discrete Hopfield neural networks (DHNNs) are a type
of fully connected neural network, which means that each neuron is connected to every
other neuron in the network, and the strength of the neuron connections is represented
by synaptic weights. These synaptic weights are part of the content-addressable memory
(CAM) in DHNNs. As the number of neurons increases, the DHNN suffers from more
capacity issues with CAM. Therefore, an optimal symbolic instruction is required to ensure
the appropriate connectivity of neurons without compromising the networks’ behavior.

Satisfiability (SAT) was designed as a symbolic instruction for the neuronal connec-
tions of DHNNs. The logic rules were firstly introduced to DHNNs by Wan Abdullah [7]. In
this paper, an artificial neural network (ANN) was formulated by leveraging the correlation
between logical variables and the minimized final energy function. Through a comparative
analysis between the cost function derived from logical rules and the final energy function,
one can determine the synaptic weights that facilitate the modulation of the final neuron
state’s direction. The emergence of this study laid the key foundation for the further rapid
development of systematic and nonsystematic logics of DHNNs. Typical Systematic Logical
rules are available in 2 Satisfiability (2SAT), which requires each clause to contain only a
fixed quantity of literals. Chen et al. [8] proposed Probabilistic 2 Satisfiability (PRO2SAT),
in which probabilities were introduced to control the proportion of positive literals and
the generation position, aiming to improve the satisfiability of systematic logical clauses.
At present, PRO2SAT has successfully embedded the probability-based systematic logic
into DHNNs. However, the learning efficacy of the PRO2SAT model remains unsatisfac-
tory when addressing a large number of neurons. Additionally, research findings from
reference [7,8] indicate that, as the number of neurons increases, the retrieval capability
of systemic logic during the learning phase gradually approaches zero. Hence, there is a
necessity to explore new methods for enhancing the learning efficiency of systemic logic.

Fueled by the effectiveness of the learning phase in showing direct contribution to that
of the retrieval phase, the optimization of the learning phase plays a crucial part in DHNNs.
To solve this problem, metaheuristics are embedded into systematic and non-systematic
logic rules to minimize the valence function and obtain the optimal salient weights, thus
enhancing the ability to obtain the uppermost final state of neurons. Metaheuristic algo-
rithm refers to a method for the optimal or satisfactory solutions to complex optimization
problems based on an intelligent computation mechanism [9,10], and it is also sometimes
referred to as intelligent optimization algorithm, which is admired by more researchers for
its accessibility to implement and provide feasible solutions to problems at a reasonable
cost (computation time and space). Metaheuristic algorithms typically do not depend on
the specific structure of the problem but adapt to the characteristics of various problems
through a flexible iterative search process. Currently, more metaheuristic algorithms have
been applied to systematic and non-systematic logics of DHNNs. As proposed by [11], the
GA algorithm was imbedded in the logic phase and learning phase of DHNNs. During the
logic phase, the GA algorithm assists in constructing the logical rules of r2SAT according to
the desired ratio of negative literals. In the learning phase, the GA algorithm aids r2SAT in
finding satisfied assignments of the proposed logic. According to [12], the EA algorithm
was also embedded in the random maximum 2 satisfiability logic for minimizing the cost
function. As defined in [13], the artificial bee colony algorithm (ABC) was used in the logic
stage of r2SAT to control the distribution of negative literals in the logical structure and
find the correct logical structure based on the initialization proportion of negative literals.
The ant colony algorithm (ACO) was introduced in [14] for minimizing the cost function
corresponding to the logic rules in DHNNs and finding the optimal path to the zero cost
function. The gray wolf algorithm (GWO) was used in [15] in a rotor Hopfield neural
network (RDHNN). Using the rotor Hopfield neural network and grey wolf optimization
algorithm to identify solid oxide fuel cell models, the results show that this hybrid model

Mathematics 2024, 12, 721 3 of 40

has advantages in terms of accuracy and computational efficiency. Overall, these studies
demonstrated the auxiliary optimization function of metaheuristic algorithms in DHNNs,
and they played a primary role in the logic phase and learning phase of DHNNs. Although
there is a plethora of metaheuristic algorithms available, their application in both systematic
and non-systematic logic is relatively limited. In order to obtain suitable metaheuristic
algorithms in terms of solution quality and solution efficiency, more extensive explorations
are needed to apply the metaheuristic algorithms to DHNNs. Therefore, a comprehensive
survey of metaheuristic algorithms applied in DHNNs is necessary to identify the most
suitable algorithms.

Tabu search (TS) is a metaheuristic algorithm starting from a single solution [16], which
has been successfully applied to solve many combinatorial optimization problems [17]. TS
conducts similar search activities as a human performs which are based on a global stepwise
optimization algorithm for local domain search, and creates a stored list (tabu table) to
record the search process. The data accessed in the tabu list are not accessed again in the
next few iterations. In this way, repetitive search is avoided by the TS algorithm, which
directs its search toward the local optimal solution. The selection of parameters and the
design of neighborhood operation plays crucial roles in the TS algorithm [18]. An aspiration
criterion will be used in TS during its use to release some excellent tabu solutions and avoid
the loss of optimal solutions. The TS algorithm has the advantages of fast convergence and
exemption from local minimal values. Since the TS algorithm was proposed, substantial
optimization has been conducted for it by the researchers. Meeran et al. [19] proposed a
hybrid TS algorithm which combines the TS algorithm with the evolutionary algorithm
and the ant colony optimization (ACO) algorithm to solve the travelling salesman problem
(TSP), providing the method and idea of the TS algorithm for the searching solution in
binary search space. Žulj et al. [20] proposed a hybrid algorithm based on adaptive large
neighborhood search or tabu search (ALNS/TS) to solve the order batching problem (OBP).
Initially, multiple destruction and repair operators are employed for the solution search.
As iterations proceed, the probabilities of selecting these operators are adaptively adjusted
based on their performance in the search process to optimize the search. After a certain
number of iterations, the TS algorithm is executed to explore the neighborhood of the
current solution to find a better solution. In ALNS/MTS, the diversification capability of
ALN was combined with the intensification capability of TS. Compared with state-of-the-art
algorithms, ALNS/TS showed the most obvious advantages over larger instances. Lin
et al. [21] proposed the hybrid binary particle swarm algorithm (HBPSO/TS) based on
TS for solving the set-union knapsack problem (SUKP). A tabu-based mutation process
was designed as part of this algorithm to guide the search into the new promising regions,
and the MTS algorithm was employed to enhance the capabilities of local exploitation.
In addition, a gain update strategy was used to reduce the solution time. Experiments
have shown that HBPSO/TS performs much better than other algorithms in terms of
solution quality. These two studies provided useful ideas for improving the quality and
efficiency of the MTS algorithm in solving problems. Although these hybrid metaheuristic
algorithms show potential in improving search efficiency and tackling complex problems,
they typically involve combinations of multiple operators or operations, thereby resulting
in higher algorithmic complexity and more pronounced challenges in parameter tuning.

In this paper, we introduced MTS to the latest systematic logic PRO2SAT [8] to ex-
tensively explore the application of metaheuristic arithmetic in systematic logic. The
contributions of this paper are as follows:

(a) To propose a modified metaheuristic algorithm, namely the hybrid mutation tabu
search algorithm, which integrates a mutation operator and segment operation as
neighborhood operations. Through these newly constructed neighborhood operations,
the tabu search algorithm has been successfully incorporated into the systematic logic
for minimizing the cost function.

Mathematics 2024, 12, 721 4 of 40

(b) To optimize the retrieval phase by introducing a mutation operator. The mutation
operator randomly flips the literals in unsatisfied clauses, aiming to disrupt the bias
in the final state of neurons and enhance the diversity of the global minimum.

(c) To propose the average similarity metric to evaluate the variability and diversity of
solutions in the retrieval phase by calculating the similarity between non-repeated
solutions and benchmark solutions.

(d) This study examined the effectiveness of the mutation tabu search algorithm through
the analysis of different performance measures. The performance of the proposed
approach was thoroughly evaluated against that of the leading logical rule in both the
learning and retrieval phase.

The organization of this paper is as follows. Section 2 highlights the motivation of
this study. Section 3 presents the general formula of PRO2SAT. Section 4 describes the
logical structure of PRO2SAT in DHNNs, referred to as PRO2SAT. Section 5 provides the
objective function of the metaheuristic algorithm in the learning phase. Section 6 details
the metaheuristic algorithms used in the proposed model for the optimization process in
the learning phase. Section 7 introduces the experimental setup and parameter settings as
well as the performance evaluation indicators used in this paper. Section 8 discusses and
analyzes the experimental results of the proposed model and the comparison model. It
should be noted that the organization of this experiment is based on the listed contributions.
This paper is not intended to replace the existing logical structure of neuron representation
in DHNNs, but it will provide critical explorations on the different metaheuristics in the
proposed logical phase with the improved DHNN model, which may contribute to the
quality of the final neuron states retrieved.

2. Motivation
2.1. Inefficient Learning Phase of DHNNs

For DHNNs, effective learning phases can lead the network to optimal synaptic
weight management. A satisfactory explanation of SAT logical rules ensures a zero-cost
function for DHNNs, which, when compared with the Lyapunov energy function, yields
the optimal synaptic weight. As the scale of neurons in the learning phase expands, most
existing systematic and non-systematic logical rules employ metaheuristic algorithms as
optimization training algorithms, iteratively finding consistent interpretation. The existing
work of Zamri et al. [11] initially employs a genetic algorithm (GA) as the logic phase and
learning phase algorithm for RAN2SAT in the DHNN model, known as DHNN-r2SAT.
This model is compared with traditional exhaustive search (ES) and demonstrates superior
retrieval performance. Unfortunately, the genetic algorithm mutation operator proposed
in this paper easily falls into local optima when the number of neurons is large, meaning
that the fitness of the neuron state before mutation may be better than after mutation. The
study by Someetheram et al. [12] introduces a novel non-satisfiability logical rule for the
first time and successfully embeds the election algorithm within it. This approach enhances
the capability of minimizing the cost function through the election algorithm to seek
consistent interpretations. The research findings demonstrate the significant superiority
of the election algorithm in the training process of the discrete Hopfield neural network
compared to genetic algorithms and exhaustive searches. Currently, existing optimization
training algorithms typically rely on probability to explore the consistency solutions in
the learning phase of both system and non-system logics, which indeed plays a role in
improving learning efficiency. However, this probabilistic dependency can easily lead
to being influenced by randomness and trapped in local optima, thus requiring more
iterations and computational time. Therefore, from an innovative perspective, introducing
a non-probabilistic approach to explore new solution methods is of significant importance.
With this concept in mind, we propose a tabu search algorithm integrated with a mutation
operator, which utilizes non-probabilistic operations such as a tabu list and aspiration rules
to guide the search process, aiming to enhance the efficiency and robustness of learning
for PRO2SAT.

Mathematics 2024, 12, 721 5 of 40

2.2. Limited Solution Diversity in Retrieval Phase of DHNN

The optimal retrieval capability of the DHNN ensures that the final neuron states al-
ways converge to the global minimum energy. Currently, most systematic or non-systematic
logics follow the retrieval phase training mechanism proposed by Abdullah [7], known as
the Wan Abdullah (WA) method. For example, the PRO2SAT by Chen et al. [8], the 2SAT
by Zamri et al. [11], and the RANkSAT by Someetheram et al. [12] all adopt this approach.
These models update neuron states using the hyperbolic tangent activation function (HTAF)
after local field computation. The combination of local field and HTAF results in good
stability during the retrieval phase. However, unfortunately, the presence of positive literals
in second or third-order clauses leads to bias in the final neuron states obtained during
the retrieval phase, meaning that the solutions generated during the retrieval phase will
be excessively similar. This bias becomes more pronounced when there are more positive
literal clauses. To address this issue, this paper introduces a mutation strategy to improve
the diversity of neurons after local field computation, thereby enhancing solution diversity.

3. Probabilistic 2 Satisfiability (PRO2SAT)

PRO2SAT belongs to systematic logic, which consists of variables, literals, probabilities,
AND operators (conjunction, also denoted by), OR operators and non-operators. Compared
with the traditional systematic logic 2SAT, PRO2SAT has a fixed number of positive literals,
where the probability that is used to control the uniform distribution of positive literals
in the clauses is introduced. Equation (1) shows the general formula of PRO2SAT, where
Ci is a clause, n is the number of second-order clauses, and the composition of clauses is
represented by Equation (2).

PPRO2SAT = ∧n
i=1Ci (1)

Ci = ∨2i
l=2i−1 pl xl (2)

where xl is a set of literals. The literal is either positive literal xl or negative literal ¬xl . The
conjunction formula of the two literals is the clause. The literals are bipolar, i.e., they can take
value {−1, 1}, which represents {FALSE, TRUE}, respectively. pl represents the probability,
which determines the positive and negative literals. For example, when p3 = 0.8, the
probability of x3 ∈ {x3} is 0.8, whereas x3 ∈ {¬x3} has a probability of 0.2. The calculation
pl is shown in Equations (3)–(5):

pi =

{
ξ, i f (ηi−1 ≥ η) or (imod2 = 0 and xi−1)

max(η, 1 − η), otherwise
(3)

ηi =
1
i

i

∑
j=1

Nj (4)

Nj =

{
1, xj
0, ¬xj

(5)

where l, i, and j are integers greater than zero. Variable Nj in Equation (5) is used to mark
the positive literals, and variable ηi in Equation (4) is used to record the number of positive
literals in the first i variables. Variable η in Equation (3) is the preset proportion of positive
literals in PRO2SAT, and the value range is [0.1, 0.9]. It is worth mentioning that the step
size of variable n is set to 0.1, ensuring that the number of positive literals is not duplicated.
When the step size is less than 0.1 (∆η ≤ 0.1), the number of positive literals (Nη) will have
a significant number of replicates, which will cause redundancy in the model’s classification.
When the step size is more than 0.1 (∆η ≥ 0.1), fewer values will be assigned to the number
of positive literals to reduce the number of classifications of the model. ξ is used to avoid
too much negative literals and two positive literals in one clause, i.e., avoiding xi ∨ xi+1. In
addition, when pl is assigned as max(η, 1 − η), it means that the number of positive literals
does not reach the preset value, and it is necessary to continue generating the positive
literals. When the neuron is 8, the example of PPRO2SAT is shown in Table 1.

Mathematics 2024, 12, 721 6 of 40

Table 1. Examples of PRO2SAT.

N, η Nη PPRO2SAT

8, 0.1 1 (¬x1 ∨ x2) ∧ (¬x3 ∨ ¬x4) ∧ (¬x5 ∨ ¬x6) ∧ (¬x7 ∨ ¬x8)
8, 0.3 2 (x1 ∨ ¬x2) ∧ (¬x3 ∨ ¬x4) ∧ (¬x5 ∨ x6) ∧ (¬x7 ∨ ¬x8)
8, 0.5 4 (x1 ∨ ¬x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ x6) ∧ (x7 ∨ ¬x8)
8, 0.7 6 (x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (¬x5 ∨ x6) ∧ (x7 ∨ x8)
8, 0.9 7 (x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (x5 ∨ x6) ∧ (x7 ∨ x8)

4. PPRO2SAT in Discrete Hopfield Neural Network (DHNN)

A discrete Hopfield neural network (DHNN) is a single-layer symmetric full feedback
network where each neuron has the same function and is interconnected with each other.
The DHNN employs an asynchronous approach for adjusting network states, and it utilizes
a symmetric matrix for the synaptic weight matrix. In this section, PPRO2SAT will be
embedded in the DHNN, and the newly generated neural network is called PRO2SAT. The
asynchronous update method for the neurons of PRO2SAT is shown in Equation (6):

Si =

 1, i f ∑
j

WijSj ≥ θ

−1, otherwise
(6)

where Si and Sj are two interconnected neurons, denoting the states of the i-th and j-th
neurons, respectively. Wij signifies the synaptic weight between neuron i and neuron j,
with “θ” serving as the predetermined threshold value. Taking the value of 0 can effectively
ensure the energy monotonic reduction in the network and allow the network to reach
a stable state [11]. It is worth mentioning that the synaptic weight of PRO2SAT has no
self-loop where Wii = Wjj = 0, Wij = Wji. The synaptic weight will be stored as control-
addressable memory (CAM). When the neuron is in the active state, it can be assigned as 1;
otherwise, the neuron is in the inhibited state and can be assigned as −1. The cost function
represents the “inconsistency” in the logic rule. Therefore, the inconsistency in the logic
needs to be reduced by minimizing the cost function (CPRO2SAT = 0). In PRO2SAT, every
neuron is connected to one another through the following cost function:

CPRO2SAT =
1
4

n

∑
i=1

2

∏
j=1

Lij (7)

where n represents the number of second-order clauses and Lij is the inconsistency of
PPRO2SAT . It is calculated as shown in Equation (8).

Lij =

{
1 + Sj, xj
1 − Sj, ¬xj

(8)

where Sj represents the state of the j-th neuron whose value is bipolar with Sj ∈ {−1, 1}.
It is worth noting that CPRO2SAT = 0 means that all clauses Ci in the logic rule PPRO2SAT
are satisfied. Ci = 1, CPRO2SAT = y, which means that y clauses in the logic rule are not
satisfied. The cost function is crucial in the learning phase, and its minimization can assist
PRO2SAT to find the optimal synaptic weights and generate a good energy profile in the
retrieval phase. The minimized probability of CPRO2SAT for PRO2SAT is (0.75)n, and it is
small as the number of neurons and clause n becomes larger. PRO2SAT calculates the final
state of the neuron by means of a local field, as shown in Equation (9):

hi =
NN

∑
j=1,i ̸=j

W(2)
ij Sj + W(1)

i (9)

Mathematics 2024, 12, 721 7 of 40

In the retrieval phase, PRO2SAT uses the hyperbolic activation function (HTAF) to
assist the local field to calculate the neuron final state, because the HTAF can help reduce
the neuron oscillation tendency and assist PRO2SAT to converge to the global minimum
energy. The final state of the neuron is shown in Equation (10) and the HTAF is shown in
Equation (11):

Si(t) =
{

1, i f tanh[hi] > 0
−1, i f tanh[hi] < 0

(10)

tanh[hi] =
ehi − e−hi

ehi + e−hi
(11)

The final energy of PRO2SAT can be calculated using Equation (12), which is called
Lyapunov energy function. It is worth mentioning that, according to the WA method,
the cost function (CPRO2SAT) is compared with the Lyapunov energy function (EPRO2SAT)
to compute the optimal synaptic weights W(2)

ij and W(1)
i . Section 6 introduces the MTS

metaheuristic algorithm, which will assist PRO2SAT in the learning phase to find the
consistent interpretation when the neurons are large.

EPRO2SAT = −1
2

NN

∑
i=1,i ̸=j

NN

∑
j=1,i ̸=j

W(2)
ij SiSj −

NN

∑
i=1

W(1)
i Sj (12)

where NN represents the number of neurons. According to Equation (12), we can derive
the calculation of the minimum energy, as shown in Equation (13). In the learning phase,
the Lyapunov energy function obtains the minimum value when CPRO2SAT = 0, where n
represents the number of second-order clauses. According to Jamaluddin et al. [22], the
energy of the DHNN always converges to near the global minimum energy in the search
phase. Therefore, we need to focus on PRO2SAT to find the global minimum energy as
much as possible.

Emin
PRO2SAT = −n

4
(13)

The expression for the global minimum energy error of PRO2SAT is provided as
Equation (14): ∣∣∣EPRO2SAT − Emin

PRO2SAT

∣∣∣ ≤ Tol (14)

Global minimum energy error is used to determine whether the correct final neuron
state is obtained, where Tol is the tolerance value determined by the researcher, and the
values is assigned as 0.001 [8].

5. Objective Function of PRO2SAT in Learning Phase

The main objective of the learning phase of PRO2SAT is to find a set of optimal
synaptic weights. With the increase in the number of neurons, however, especially when it
is greater than or equal to 60 neurons, it is difficult for PRO2SAT to find optimal synaptic
weights anymore. Therefore, the metaheuristic algorithm is implemented into PRO2SAT to
find the consistent interpretation. From this, the optimal synaptic weights can be obtained
by comparing the cost function and the energy function. The objective function of the
metaheuristic algorithm in PRO2SAT is shown in Equation (15):

Max[fPPRO2SAT (Si)] (15)

where Si is the solution string; for example, when the number of neurons is 6, its value can
be expressed as Si = (−1, 1, 1, 1,−1, 1). fPPRO2SAT (Si) represents the fitness function. Si is
used as input to PPRO2SAT obtain the fitness, and its specific calculation process is shown in
Equation (16):

fPPRO2SAT (Si) =
n

∑
i=1

fPPRO2SAT (Ci) (16)

Mathematics 2024, 12, 721 8 of 40

where n is the number of second-order clauses, Ci represents the i-th second-order clauses,
and fPPRO2SAT (Si) represents the fitness value of the i-th clause of PRO2SAT, which is
calculated as shown in Equation (17):

fPPRO2SAT (Ci) =

{
1, i f satis f ied
−1, i f unsatis f ied

(17)

In PPRO2SAT , a Ci clause is considered to obtain the consistent interpretation when it is
satisfied at an input value of Si. Take 1 for the fitness value of MTS. Otherwise, the clause
is not consistent and the fitness is −1. The purpose embedding PRO2SAT in the learning
phase of the metaheuristic algorithm is to find the maximum fitness n, where n represents
the number of second-order clauses.

6. Proposed Metaheuristics

Inspired by different natural phenomena, mathematical models are built in meta-
heuristic algorithms. Based on this, metaheuristic algorithms can be classified into three
categories: evolutionary algorithms, physical mechanism algorithms, and swarm intelli-
gence algorithms [23], where the primary role of evolutionary algorithms is to simulate
the computation model of the biological evolution process by natural selection and genetic
mechanism of Darwin’s theory of biological evolution. Such algorithms are mainly meant
to eliminate the individuals with poor fitness values and retain those with good genes
through the continuous evolution of individuals. The evolutionary algorithms used in this
paper involved GA, DE, and EDA. Physical mechanism algorithms are algorithms based
on physical phenomena and physical laws, which optimize the answers to the problems
mainly by simulating physical phenomena, such as temperature, energy, and force. The
physical mechanism algorithm used in this paper encompassed the SA algorithm. Swarm
intelligence algorithms are algorithms that simulate group behavior, which optimize the
answers to the problems mainly by simulating group behavior. The swarm intelligence
algorithms used in this paper included EA, GWO, ant algorithm, PSO, and ABC.

6.1. Proposed Mutation Tabu Search Algorithm (MTS)

The TS algorithm is an intelligent metaheuristic algorithm proposed by Glover, a
famous American scholar, in the 1990s. The algorithm is a typical stochastic search al-
gorithm [24], which mimics the human thought process and extends the scope of local
domain search. In the search process, the TS algorithm first searches for some local optimal
solutions, and records these objects by the tabu table, avoiding these local optimal solu-
tions that have been searched for in the following iteration process, obtaining a variety of
regions and improving the efficiency of the search. It is worth noting that a flouting rule is
introduced into the MTS algorithm to release some excellent tabu solutions and avoid the
loss of optimal solutions. The MTS algorithm has the advantages of fast convergence and
the capability of avoiding local minima. In view of this, in this paper, the MTS algorithm is
embedded into the systematic logic (PRO2SAT) for the first time, where mutation operators
are embedded into MTS to assist in the faster convergence of the systematic logic PRO2SAT
in the learning phase and to guarantee the optimal solution in the retrieval phase.

6.1.1. Initialization

Initialization of the initial solutions: the MTS algorithm starts from one initial solution.
The convergence of this algorithm is closely related to the quality of the initial solution.
A high-quality initial solution facilitates the rapid convergence of the algorithm during
execution, while a lower-quality initial solution slows down the search speed. In order to
better utilize the performance of the MTS algorithm, it is necessary to select one superior
initial solution. In the PRO2SAT model, c solution strings are randomly generated in
the learning phase, and each solution string is denoted by Si, Si = {s1, s2, s3, · · · , sNN},
si ∈ (−1, 1), NN = 100, where fitness fPPRO2SAT (Si), i ∈ (1, 2, 3, · · · , 100) is calculated for

Mathematics 2024, 12, 721 9 of 40

each solution. Therefore, we selected the solution with the maximum fitness value as the
initial solution, as shown in Equation (18):

SInitial = Si, i f Max(fPPRO2SAT (Si)) (18)

Initialization of the local optimal solution and the global optimal solution: Xbest and
Gbest are defined to represent the local optimal solution and the global optimal solution,
respectively. Xbest stores the solution with the maximum fitness among the neighborhood
solutions under a certain cycle of the MTS algorithm, and Gbest stores the solution with
the maximum fitness among all iterations of the MTS algorithm. The initial values of the
local optimal solution and the global optimal solution are the initial solutions, as shown in
Equation (19).

Xbest = Gbest = SInitial (19)

By initializing the local and global optimal solutions with the initial solution, it ensures
that the algorithm starts its search from a reasonable starting point and gradually optimizes
to find better solutions.

6.1.2. Generation Strategy to Neighborhood Solution

A new solution can be obtained by performing certain operations on the initial so-
lution, and these operations are called neighborhood operations. The option is critical in
neighborhood operation, and the neighborhood operations vary from the results. Inspired
by GA, we used mutation operations to generate neighborhood solutions. Firstly, the initial
solution was divided into w segments equally by neurons, x segments were randomly
selected among them, and y neurons were randomly selected in the selected segment for
mutation operations, i.e., flipping the values of the selected neurons. For example, if the
value of the selected neuron is −1, the mutation becomes 1. On the contrary, if the value of
the selected neuron is 1, the mutation becomes −1. Figure 1 shows the generation process
of the neighborhood solution when w takes the value of 5, x takes the value of 2, and y
takes the value of 1. In this step, N replicates generate N neighborhood solutions, denoted
by NS1, NS2, NS3, · · · , NSN .

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 43

of the neighborhood solution when w takes the value of 5, x takes the value of 2, and y
takes the value of 1. In this step, N replicates generate N neighborhood solutions, denoted
by  NNS NS NS NS1 2 3, , , , .

Figure 1. Generation process of neighborhood solution.

6.1.3. Generation Strategy to Candidate Solution
Candidate solution NS* : the neighborhood solution with the maximum fitness is

selected as the candidate solution, as defined in Equation (20).

= i P iPRO SATNS NS if Max f NS* 2, (()) (20)

Tabu table (TBT): it refers to the storage structure used to store the tabu operations,
where two main indicators are available: tabu operations (TBS) and tabu length (L). In this
paper, the mutation segment number of the neighborhood solution was used as the tabu
operation to avoid the repeated search of the obtained solution, expand the search area of
the algorithm, and escape the local optimum. The tabu length is usually set to a positive
integer; too short a tabu length tends to fall into the local optimal solution prematurely,
and too long a tabu length leads to prolonged computation. As a result, all the neighbor-
hood solutions are tabued, and it is impossible to continue computing. Therefore, accord-
ing to [25], we set the tabu length to 3.

= NS nsTBS SN SN1* (, ,) (21)

= ≠i NS NS ij jTBT TBT if TBT all TBT, (22)

where i takes an integer and ∈i L[1,] , ns takes an integer, and ∈ns NN[1,] .
Update of the local optimal solution and the global optimal solution: it determines

whether the mutation segment number of the candidate solution has been stored in TBT
when implementing the neighborhood operation. If not, it is written to TBT. The local
optimal solution is updated and the candidate solution values are assigned to the local
optimal solution. Note that, if the new local optimal solution outperforms the global opti-
mal solution, it is necessary to update the global solution, and assign the new local optimal
solution value to the global optimal solution. If the mutation segment number of the can-
didate solution has been recorded in TBT, in order to expand the search domain of the

Figure 1. Generation process of neighborhood solution.

Mathematics 2024, 12, 721 10 of 40

6.1.3. Generation Strategy to Candidate Solution

Candidate solution NS∗: the neighborhood solution with the maximum fitness is
selected as the candidate solution, as defined in Equation (20).

NS∗ = NSi, i f Max(fPPRO2SAT (NSi)) (20)

Tabu table (TBT): it refers to the storage structure used to store the tabu operations,
where two main indicators are available: tabu operations (TBS) and tabu length (L). In this
paper, the mutation segment number of the neighborhood solution was used as the tabu
operation to avoid the repeated search of the obtained solution, expand the search area of
the algorithm, and escape the local optimum. The tabu length is usually set to a positive
integer; too short a tabu length tends to fall into the local optimal solution prematurely, and
too long a tabu length leads to prolonged computation. As a result, all the neighborhood
solutions are tabued, and it is impossible to continue computing. Therefore, according
to [25], we set the tabu length to 3.

TBSNS∗ = (SN1, · · · , SNns) (21)

TBTi = TBTNSj , i f TBTNSj ̸= all TBTi (22)

where i takes an integer and i ∈ [1, L], ns takes an integer, and ns ∈ [1, NN].
Update of the local optimal solution and the global optimal solution: it determines

whether the mutation segment number of the candidate solution has been stored in TBT
when implementing the neighborhood operation. If not, it is written to TBT. The local
optimal solution is updated and the candidate solution values are assigned to the local
optimal solution. Note that, if the new local optimal solution outperforms the global
optimal solution, it is necessary to update the global solution, and assign the new local
optimal solution value to the global optimal solution. If the mutation segment number of
the candidate solution has been recorded in TBT, in order to expand the search domain of
the MTS algorithm, the current candidate solution should be discarded and the solution
with the maximum fitness among the remaining solutions in the neighborhood solution
should be selected as the new candidate solution NS∗

t+1. The above process is repeated
until the local optimal solution and the global optimal solution are generated.

Xt+1
best = NSt

∗, i f TBTNSt∗
̸= all TBTi (23)

Flouting rule: If the mutation segments number of the candidate solution is available
in TBT, but the fitness is greater than the current global optimal solution, the tabu operations
can be neglected. The mutation segment number of the candidate solution is written to TBT,
and the local optimal solution and the global optimal solution are updated accordingly, as
defined in Equations (24) and (25).

Xt+1
best = NSt

∗, i f TBTNSt∗
= TBTi and fPPRO2SAT (NSt

∗) > fPPRO2SAT (G
t
best) (24)

Gt+1
best =

{
Xt+1

best , i f TBTNSt∗
= TBTi and fPPRO2SAT (G

t
best) < fPPRO2SAT (Xt+1

best)

Xt
best, otherwise

(25)

The flouting rule is typically executed after a certain number of iterations, aiming to
revoke previously tabu neighborhood operations. It allows for the algorithm to tolerate
neighborhood operations previously deemed prohibitive, provided that the fitness is
sufficiently satisfactory, thus preventing undue constraints during the search process. This
facilitates the algorithm’s escape from local optimal solutions. The generation process of
candidate solution is shown in Figure 2.

Mathematics 2024, 12, 721 11 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 43

MTS algorithm, the current candidate solution should be discarded and the solution with
the maximum fitness among the remaining solutions in the neighborhood solution should
be selected as the new candidate solution +tNS *

1 . The above process is repeated until the
local optimal solution and the global optimal solution are generated.

+ = ≠t t
best t iNS

X NS if TBT all TBT1
*

*
, (23)

Flouting rule: If the mutation segments number of the candidate solution is available
in TBT, but the fitness is greater than the current global optimal solution, the tabu opera-
tions can be neglected. The mutation segment number of the candidate solution is written
to TBT, and the local optimal solution and the global optimal solution are updated accord-
ingly, as defined in Equations (24) and (25).

+ = = >,t t t t
best t i P P bestPRO SAT PRO SATNS

X NS if TBT TBT and f NS f G1
* *2 2

*
() () (24)

+ +
+  = <= 


，t t t

t best t i P best P bestPRO SAT PRO SATNSbest t
best

X if TBT TBT and f G f XG X otherwise
1 1

1 2 2
*

() ()
, (25)

The flouting rule is typically executed after a certain number of iterations, aiming to
revoke previously tabu neighborhood operations. It allows for the algorithm to tolerate
neighborhood operations previously deemed prohibitive, provided that the fitness is suf-
ficiently satisfactory, thus preventing undue constraints during the search process. This
facilitates the algorithm�s escape from local optimal solutions. The generation process of
candidate solution is shown in Figure 2.

Figure 2. Generation strategy to candidate solution.

6.1.4. Fitness Assessment
The fitness value of bestG is calculated according to Equation (16). If the solution fails

to reach the maximum fitness and the algorithm fails to reach the maximum number of
iterations, return to 5.1.1 and continue to the next round.

6.1.5. Mutation
At the beginning of the test phase, 100 solution strings will be generated randomly in

PRO2SAT in order to increase the diversity of the solutions in the retrieval phase. The MTS
metaheuristic algorithm will flip the satisfied clauses of the global minimum solution by

Figure 2. Generation strategy to candidate solution.

6.1.4. Fitness Assessment

The fitness value of Gbest is calculated according to Equation (16). If the solution fails
to reach the maximum fitness and the algorithm fails to reach the maximum number of
iterations, return to 5.1.1 and continue to the next round.

6.1.5. Mutation

At the beginning of the test phase, 100 solution strings will be generated randomly in
PRO2SAT in order to increase the diversity of the solutions in the retrieval phase. The MTS
metaheuristic algorithm will flip the satisfied clauses of the global minimum solution by
virtue of the mutation operators after calculating the local field in the retrieval phase as
shown in Equations (26) and (27):

s2i−1 = −1 · s2i−1, i f Ci satis f ied and rand(0, 1) = 0 (26)

s2i = −1 · s2i, i f Ci satis f ied and rand(0, 1) = 1 (27)

6.2. Baseline Model

The model proposed in this paper will be compared with other established existing
algorithms. The baseline models in this paper include genetic algorithm (GA), election
algorithm (EA), ant colony optimization (ACO), estimation of distribution algorithm (EDA),
differential evolution algorithm (DE), grey wolf optimization algorithm (GWO), particle
swarm optimization (PSO), simulated annealing algorithm (SA), and artificial bee colony
algorithm (ABC). The following content summarizes their working principles.

(a) GA [11]: This study integrated the strengths of the genetic algorithm and Hopfield
neural network to efficiently find solutions to the logic satisfiability problem. The
genetic algorithm is a global search algorithm which usually uses a binary encoding
technique for optimization problems [26]. At the time of solving, the initial solution
to the actual problem is coded to form a gene string, i.e., a chromosome, which is
selected, crossed, and mutated to form a new chromosome. The resulting chromosome
will be retained if it is closer to the maximum fitness than the previous one.

(b) EA [12]: The EA algorithm is inspired by the election of a national president. The
algorithm was proposed by Emami, H [27], which combined the features of evolu-
tionary algorithms and SIA. In this algorithm [13], positive advertisement, negative
advertisement, and coalition were used to implement intelligent search in a synergy

Mathematics 2024, 12, 721 12 of 40

mechanism. All solutions will be considered as voters from whom candidates will
be selected, and each candidate determines his own voters based on his social re-
lationship to the voters, thus forming a political party. As the leader of this party,
the candidate will positively influence his own supporters (voters) through positive
advertisement and positively influence the supporters (voters) for the leaders of other
parties through negative advertisement in order to expand the search space and in-
crease their probability of being elected. The most popular candidate will ultimately
receive the most votes.

(c) ACO [14]: Kho introduced the ACO algorithm in HDNNs (Kho, 2021). In this work,
the ant colony algorithm is used to minimize the cost function of the corresponding
logic rule in DHNNs. In the ACO algorithm, the pheromone density is used to find the
optimal path, thus achieving a zero-cost function without consuming more learning
iterations. In this study, the potential application of the ACO algorithm was fully
demonstrated in optimization problems, including propositional logic.

(d) EDA [28]: This algorithm is a probability-based population evolution algorithm.
By generating a new population through random sampling, the evolution of the
population is achieved through iterations. The main function of MTS is to estimate
and predict the distribution of the data. This algorithm is able to predict future
data trends by inferring the distribution of the data through statistical analysis. The
standard EDA has two important operations, namely the selection operations and
the modeling of the probability distribution. The selection operation is the same as
the selection strategy in GA. The probability distribution model can be a univariate
marginal distribution algorithm (UMDA), which is calculated.

(e) DE [29]: A novel binary differential evolution algorithm based on Taper-shaped
transfer functions (T-NBDE) is proposed to address the knapsack problem in [29].
The DE and GA algorithms are both evolutionary algorithms, which are adaptive
global search algorithms first proposed by Price and Storn in the 1990s to solve the
real number solution optimization problems. The DE algorithm has the main features
of a simple structure, easy implementation, robustness and fast convergence, etc.
In addition, the DE algorithm also has memory function, which can dynamically
track the search situation, and the control parameters mainly include population
size, variation operator, crossover operator, and selection operator. Unlike the GA
algorithm, the variation operators of DE randomly select three individuals as parents
for mutation operation to form new individuals.

(f) GWO [23]: The GWO algorithm has been successfully applied to RDHNNs in the
work by Ba et al. [16]. Therefore, we used GWO in the learning phase of PRO2SAT for
comparative analysis. It is a heuristic optimization algorithm based on the behavior
of grey wolf packs in nature, which simulates the social hierarchy of grey wolves and
divides the individuals within the pack into four classes: head wolf (Xα), subordinate
wolf (Xβ), common wolf (Xδ), and bottom wolf (Xω). In the GWO algorithm, each
grey wolf represents a potential solution, and each wolf has an adaptation value.
The higher the adaptation value, the better the indicated solution. Starting from
any position in the solution space, the individual with the best fitness is set as the
leader wolf α, the one with the second fitness is set as the subordinate wolf β, the
one with the third fitness is set as the ordinary wolf δ, and the rest are the bottom
wolves ω. The leader wolf is responsible for guiding the behavior of the pack, the
subordinate wolf assists the leader wolf in making decisions, the ordinary wolf obeys
the leader wolf and the subordinate wolf, and dominates the bottom wolf to catch
and hunt the target. The bottom wolf needs to obey the guidance of other wolves and
follows other wolves to complete hunting, and mainly takes charge of the balance of
intra-pack relationships.

(g) (PSO [30]: The PSO algorithm, proposed by Eberhart and Kenndy in 1995, is a type of
SIA algorithm, which is widely used in the field of combinatorial optimization, and
it can be applied to PRO2SAT. Inspired by the foraging behavior of a flock of birds,

Mathematics 2024, 12, 721 13 of 40

this algorithm includes evolutionary theory. The idea of the PSO algorithm is that
each individual searches for a better solution based on the optimal solution that has
been found and compares the optimal solution currently found by the population to
update its speed. The algorithm searches for the global optimal solution by constantly
updating the position and velocity of the population, which is a process of movement
from simple individuals to complex global solutions.

(h) SA [31]: The SA algorithm is a probability-based search algorithm proposed by
Kirkpatrick, Gelatt, and Vecchi in 1983 to describe the physical annealing process of
an object. It can be used to solve complex optimization problems. The basic idea is
the process of finding the global optimal solution of the objective function randomly
in the space of all local solutions starting from an initial solution (annealing point) in
an isothermal process combined with the probabilistic sudden jump property, i.e., the
ability to probabilistically jump out of each local solution and finally obtain the global
optimal solution. The advantage of the SA algorithm is that it can find the global
optimal solution and have a relatively large search space to find a better solution.

(i) ABC [13]: This study introduces the combination of the artificial bee colony algorithm
with the Hopfield network to minimize or maximize the cost function of any combi-
natorial problem. With this literature approach, we processed the secondary values
using the ABC algorithm. Each bee was assigned an initial nectar source, and the
employed bee dances through the solution space to compute the new nectar source.
This explores the solution space of consistent solutions during the learning phase
of the Hopfield neural network and identifies potential solutions. The combination
of the ABC algorithm and the Hopfield neural network demonstrates the superior
performance of the artificial bee colony in solving the 2 Satisfiability problem.

7. Experimental Setup

In this experiment, we verified the validity of the MTS model proposed in this paper
in the learning phase and the retrieval phase, and considered the metaheuristic algorithm
to achieve a single objective function, i.e., the proposed model achieved the maximum
fitness.The flowchart of MTS model is shown in Figure 3. To ensure the reproducibility and
fairness of the experiment, our experimental setup is as follows.

7.1. Simulation Design

All simulations were conducted using the same set of features to prevent bias during
the experiments, encompassing three specific characteristics. Experimental environment
and programming language: We opted for PyCharm as our development tool, and all ex-
perimental models were coded using Python. The operating environment of the experiment
was mac OS Monterey (12.1) with an apple M1 pro CPU, an apple M1 pro graphics card,
and 16 GB of RAM. Note that the experimental models operated on the same devices to
ensure fairness in the comparison of performance metrics. Setup for the number of neurons:
The number of neurons is taken in the range of 10 ≤ NN ≤ 120. PRO2SAT consists of
the second-order logical clauses only, and this fixed structure is beneficial to the stability
and fairness of the experimental results. It is worth mentioning that PRO2SAT specifies
the proportion of the number of positive literals in the logic structure. Similarly, to ensure
the fairness of the experiment, we divided PRO2SAT into nine types (The proportion of
positive literals is taken in the range of [0.1, 0.9] and the step size is taken as 0.1). Each
PRO2SAT was applied to 10 metaheuristics and exhaustive search algorithms proposed in
this paper for comparison experiments. Maximum iteration limit: We set the maximum
iteration limit to 100 for all metaheuristics.

7.2. Parameters Assignment

Table 2 lists the parameters used in the learning phase of MTS. It was found by a
certain study [32] that an increased size of populations contributes to the chance of the
algorithm to obtain the optimal solution. Therefore, in order to make the evaluation of each

Mathematics 2024, 12, 721 14 of 40

algorithm more objective and convincing, we set the populations of all algorithms except
ABC to 100.

Table 2. List of parameters for PRO2SAT-TS model.

Parameter Parameter Value

Number of neurons (NN) 10 ≤ NN ≤ 120
Neuron combination (a) 100

Number of trials (b) 100
Number of learnings (c) 100

Tolerance value (Tol) 0.001
Activation function HTAF

Synaptic weight method Wan Abdullah method
Initialization of neuron states Random

CPU computing time 24 h
Ratio of positive literal (η) {0.1, 0.2, · · · , 0.9}

Control probability (pl) {ξ,max(η, 1 − η)}
Length of tabu table (L) 3
Number of segments (w) 8

Number of neighborhood operation segments 2
Number of mutated neurons 2

Neighborhood solution 14
Selection rate 1
Mutation rate 1

Maximum number of iterations 100

7.3. Performance Evaluation Metrics

In order to comprehensively evaluate the performance of PRO2SAT with the assistance
of different metaheuristic algorithms, nine metrics were selected to analyze PRO2SAT. Since
the metaheuristic algorithms acted in the learning phase of PRO2SAT and were used to
assist in finding consistent explanations, the metrics were mainly meant to evaluate the
number, quality, and efficiency of the solutions obtained by the proposed metaheuristic
algorithm versus the baseline metaheuristic algorithm. The performance of all PRO2SAT
models was evaluated based on different computational phases, each with the following
two objectives:

Firstly, during the learning phase, we evaluate the efficiency and quality of the meta-
heuristic algorithm to minimize the cost function from macro (logic rules) and micro
(clauses) perspectives. Secondly, an effective learning phase will help PRO2SAT to obtain
better final neuron states and have better convergence in the retrieval phase. Therefore, we
mainly evaluated the ability of the metaheuristic algorithm to facilitate PRO2SAT to obtain
globally optimal solutions with small energy differences in the retrieval phase.

7.3.1. Learning Phase Metrics

(a) Mean absolute error of clause adaptation (MAElearn)

This metric is used to measure the ability of the metaheuristic algorithm to search for
clause interpretations during the learning phase, i.e., the ability to find clause fitness, and
to analyze PRO2SAT from a microscopic perspective. Good metaheuristic algorithms can
rapidly improve the fitness of PRO2SAT clauses until they reach the maximum fitness (all
clauses are satisfied).

MAElearn =
1
a

a

∑
j=1

n

∑
i=1

| fmax − fi|
n

(28)

where fmax is the maximum fitness of a logic rule, and the value is equal to the number of
second-order logic clauses. fi is the actual fitness, and the value is equal to the number of
second-order logical satisfiable clauses. a is the number of combinations, i.e., the number
of times needed to generate PPRO2SAT . n is the number of trials when fmax = fi.

Mathematics 2024, 12, 721 15 of 40

(b) Mean absolute error of the adaptation of logic rules (LRTR)

This metric is used to measure the ability of the metaheuristic algorithm to search for
a consistent interpretation of the logical rules in the learning phase. It analyzes PRO2SAT
from a macro perspective, focused on the ability of the metaheuristic algorithm to obtain
a solution.

LRTR =
1
a

a

∑
i=1

Dsatis f action−learn (29)

where Dsatis f action−learn represents whether the consistency explanation is found in 100 trials,
and the value is 1 if found; otherwise, it is 0.

(c) Mean similarity of consistency interpretations (GLIavg)

Sbs
i =

{
1, i f ¬x
−1, i f xi

(30)

It can be seen that the benchmark state is only related to the positive and negative
literals. The benchmark state is “1” for positive literals and “−1” for negative literals. For
example, if the logic rule PPRO2SAT is (¬x1 ∨ x2)∧ (¬x3 ∨¬x4)∧ (¬x5 ∨¬x6)∧ (¬x7 ∨¬x8),
the benchmark state is (−1,1,−1,−1,−1,−1). In this paper, we analyzed the diversity
of solutions by comparing the consistency interpretation obtained by benchmark states
and the metaheuristic algorithms, and the specific method for comparison is shown in
Equation (44).

In order to analyze the quality of the solutions obtained by the metaheuristic algorithm
in the learning phase, the similarity metrics were used to observe the diversity of solutions.
It is worth mentioning that a certain logical rule PPRO2SAT has more than one consistent
interpretation in the learning phase, but they have multiple benchmark states obtained by
Equation (31):

CSbs
i ,Si

=
{
(Sbs

i , Si); i = 1, 2, 3, · · ·m
}

(31)

where m represents the number of neurons and Si represents the state value of the neu-
ron when the metaheuristic algorithm obtains a consistent interpretation. The standard
canonical variables in the comparison process can be determined by the following method:

l indicates the overall occurrence count of (Sbs
i = 1, Si = 1) in CSbs

i ,Si
;

m indicates the overall occurrence count of (Sbs
i = 1, Si = −1) in CSbs

i ,Si
;

n indicates the overall occurrence count of (Sbs
i = −1, Si = 1) in CSbs

i ,Si
;

o indicates the overall occurrence count of (Sbs
i = −1, Si = −1) in CSbs

i ,Si
.

According to the calculation of the standard specification variables above, the similar-
ity metric GLI is calculated as shown in Equation (19), where the larger GLI represents a
more diverse solution and the opposite represents a solution closer to the standard solution.
From the point of view of the quality of the solution required, we hope to find the solution
with a higher quality, i.e., the solution obtained is closer to the standard solution. This can
be expressed by the average similarity metric in Equation (33).

GLI =
lo

l + 0.5(m + n) + o
(32)

GLIavg =
λ

∑
i=1

GLIi (33)

where λ is the number of solutions.

(d) Computational Time (CT)

Mathematics 2024, 12, 721 16 of 40

This metric is used to determine the effectiveness of the proposed model. It implies
the capability and stability of the model. It is calculated as shown in Equation (34):

CT =
1
a

a

∑
i=1

MTi (34)

where MTi is the average time for 100 trails performed by the metaheuristic algorithm for a
given number of neurons. The time is expressed in seconds.

(e) Average iterations (AI)

This metric is used to demonstrate the speed of convergence of the algorithm and will
be analyzed together with the metric CT to determine the efficiency of the metaheuristic
algorithm. It is calculated as shown in Equation (35). It has been shown that the better the
metaheuristic algorithm, the fewer iterations it will have.

AI =
1
a

a

∑
i=1

LPi (35)

where LPi represents the number of iterations when the metaheuristic algorithm finds a
one-time explanation under each combination. It is worth noting that we set the maximum
number of iterations for the metaheuristic algorithm, and LPi is counted as the maximum
number of iterations when the maximum metaheuristic algorithm reaches the maximum
number of iterations and still does not obtain a consistent explanation.

7.3.2. Retrieval Phase Metrics

(f) Global minimum proportion (ZM)

The global minimum solution is obtained by converging to the optimal final neuron
state in a good retrieval phase. In this paper, we use this metric to demonstrate the ability
of the neural network to obtain the global minimum solution. The general form of global
minimum proportion is shown in Equation (36):

ZM =
1
ab

ab

∑
i=1

GP (36)

where GP stands for the count of neuron states in the model achieving the global minimum
energy, while a denotes the number of combinations, and b signifies the total number
of trials.

(g) The average similarity of solutions (TVsimilar)

In addition to considering the number of global minimum solutions obtained by the
model in the retrieval phase, the average similarity metric of solutions was first proposed
to calculate the similarity between the non-repeated solutions and the benchmark solutions
in the retrieval phase. The larger the value of this metric indicates that the solution is more
identical to the standard solution, and the worse the variability ability to the solutions
and diversities is. On the contrary, the larger the difference between the solution and the
standard solution, the better the variation ability and diversity of the solution.

TVsimilar =

λ

∑
i=0

(li + oi)

λNN
(37)

where λ is the number of non-repeating solutions in the retrieval phase, and l and o have
the same meanings as (c).

(h) Mean Absolute Error of Logic Rule Energy (MAEtest)

Mathematics 2024, 12, 721 17 of 40

This metric is used to evaluate the energy error generated by the neuron, which will
obtain the final energy after the final state of the nerve is obtained via the local field. The
smaller energy error represents the better quality of the final state of the neuron. It is
calculated according to Equation (38):

MAEtest =
ab

∑
i=1

∣∣Emin
PRO2SAT − EPRO2SAT

∣∣
ab

(38)

where Emin
PRO2SAT is the minimum energy and EPRO2SAT is the final energy.

(i) Friedman Statistical Analysis (Fd)

Friedman statistical analysis is a non-parametric test that determines whether there is
a significant difference in the effectiveness of the metaheuristics by counting and rating the
results of the metrics in the learning and retrieval phases of each metaheuristic algorithm.
The Friedman test is represented in Equation (39) in its general form.

Fd =
12N

K(K + 1)

(
∑

j
R2

j −
K(K + 1)2

4

)
(39)Mathematics 2024, 12, x FOR PEER REVIEW 18 of 43

Figure 3. Flowchart of MTS.

7.4. Simulation Dataset
In this paper, we conducted the experiments by using simulated data in which the

initial values of the neurons are bipolar and randomly generated. The simulated dataset
is typically used to simulate and evaluate the performance of a newly proposed logic pro-
gramming models with 100 randomly generated initial data in both the learning phase
and the retrieval phase. This simulated dataset was employed following the works of
Zamri et al. [11] and Someetheram et al. [12], allowing the learning phase metaheuristic
algorithm to have an unbiased start, so that the final state of neurons in the retrieval phase
can be determined by the optimal synaptic weights. The metaheuristic algorithm acts
upon the learning phase of PRO2SAT, where each iteration is aimed to minimize the cost
function. Since different proportions of positive literals were proposed in the PRO2SAT
model, the randomized simulated experiment data make each simulation of the model
independent and do not cause the experiment to converge early or fail to converge due to
too many positive or negative literals.

Start

Learning Phase of PRO2SAT

Convert PRO2SAT Logic Rule to Boolean
Algebra

Define inconsistency of the 2SAT Logic
and Derive the Cost Function (8)

Check clauses satisfaction

 Compare withPRO SATC 2 PRO SATE 2

Store synaptic weight in content
addressable memory (CAM)

Testing Phase of PRO2SAT

Sathasivam Relaxation Phase

Obtain synaptic weight by Wan Abdullah
Mechod

Calculate (14)

Calculate the Local Field (10) and Update
Neuron States (12)

Calculate final energy (13)

PRO SAT PRO SATE E Tolmin
2 2− ≤

Global
Minimum

Energy

Local
Minimum

Energy

End

Yes No

Mutation Tabu Search algorithm evaluation

PRO SATEmin
2

 Use mutation operator to update Neuron States (27) (28)

PRO SATC 2 0=

Calculate SInitial (18)

Initialize Xbest and Gbest DCj (19)

Generate neighborhood solutions
(NS1, NS2,NS3,...,NSN)

Generate NS*(20)

2 2*() ()
PRO SAT PRO SAT

t t
P P bestf NS f G>

*
t iNS

TBT all TBT≠

No

No

The operation segment is written to the
 tabu table(22)

Yes

Yes

Update local optimal solution(23)/(24)

2 2

1() ()
PRO SAT PRO SAT

t t
P best P bestf G f X +<

2

1()
100

PRO SAT

t
P bestf G n

or mi

+ ==

==

Update global optimal solution(25)

Yes

Yes

No

No

Figure 3. Flowchart of MTS.

Mathematics 2024, 12, 721 18 of 40

7.4. Simulation Dataset

In this paper, we conducted the experiments by using simulated data in which the
initial values of the neurons are bipolar and randomly generated. The simulated dataset
is typically used to simulate and evaluate the performance of a newly proposed logic
programming models with 100 randomly generated initial data in both the learning phase
and the retrieval phase. This simulated dataset was employed following the works of
Zamri et al. [11] and Someetheram et al. [12], allowing the learning phase metaheuristic
algorithm to have an unbiased start, so that the final state of neurons in the retrieval phase
can be determined by the optimal synaptic weights. The metaheuristic algorithm acts upon
the learning phase of PRO2SAT, where each iteration is aimed to minimize the cost function.
Since different proportions of positive literals were proposed in the PRO2SAT model, the
randomized simulated experiment data make each simulation of the model independent
and do not cause the experiment to converge early or fail to converge due to too many
positive or negative literals.

8. Result and Discussions

In this section, we will discuss the performance of the metaheuristic algorithm in
the learning phase of PRO2SAT and the impact on the retrieval phase. MTS algorithms
were first embedded into the systematic logic PRO2SAT, and nine typical meta-inspired
algorithms embedded into PRO2SAT were compared and analyzed as baseline models.
Our experiments were conducted to understand the effectiveness of the proposed MTS
metaheuristic algorithm by limiting the number of neurons (10 ≤ NN ≤ 120). In this
section, the abbreviations of the metaheuristic algorithms were used directly to represent
the experimental models, e.g., MTS for PRO2SAT-MTS and GA for PRO2SAT-GA. In order
to assess the algorithms’ average performance and stability, we conducted five runs of each
set of experiments, and the final result was determined as the average. It is important to
note that the data used in these experiments were derived from a simulated dataset with a
space size of 2NN .

8.1. Learning Phase

The metaheuristic algorithm was embedded into the learning phase of PRO2SAT
and was used to improve the ability of PRO2SAT to find consistent interpretation. We
used MAElearn performance metrics to analyze the variation in the fitness of PRO2SAT
embedded in the metaheuristic algorithm for different proportions of positive literals in
clauses, with the smaller MAElearn representing the higher satisfied interpretation.

We used a line graph to show all the experimental models of MAElearn, as shown in
Figure 4. Since MAElearn was used to describe the change in fitness, it was also referred to as
fitness error. From the figure, we can see that, among them, the ES model has the maximum
fitness error, which is due to the fact that an exhaustive search method is used in this model
to generate the 100 sets of initial neuron states. No metaheuristic algorithm was used to
explore the solution space, but it would be used as the most dominant comparison model.
It is worth mentioning that, at NN ≤ 30, all experimental models have no fundamental
difference in the fitness error for different proportions of positive literal values; this is
due to the stipulation in our code that the 10 metaheuristic algorithms of the experiment
are implemented only if a consistent interpretation cannot be found in the set of 100 sets
of initial neuronal states. Therefore, the metaheuristic algorithm was substantially not
implemented in the experimental model at NN ≤ 30.

Mathematics 2024, 12, 721 19 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 43

(a) learnMAE evaluation when η = 0.1 . (b) learnMAE evaluation when η = 0.2 .

(c) learnMAE evaluation when η = 0.3 . (d) learnMAE evaluation when η = 0.4 .

(e) learnMAE evaluation when η = 0.5 . (f) learnMAE evaluation when η = 0.6 .

Figure 4. Cont.

Mathematics 2024, 12, 721 20 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 43

(g) learnMAE evaluation when η = 0.7 . (h) learnMAE evaluation when η = 0.8 .

(i) learnMAE evaluation when η = 0.9 .

Figure 4. learnMAE evaluation for all experimental models.

Five models spanning PSO, ACO, SA, GWO, and DE show a linear increase in fitness
error as the number of neurons increases. This indicates that the clauses of these algo-
rithms are affected by the number of neurons. What is more interesting is that, in the ABC
model, the fitness error is larger when η ≤ 0.4 , but smaller and stable when η ≥ 0.5 . This
is because the ABC algorithm bees dance to find the new honey source operator

φ= ∨ ⊗ ∧ij ij ij ij kjv x x x[()], where the ∨ operator represents OR. It can be seen that, if the

old honey source ijx is positive, the new honey source ijv must be positive. The neuron
state will change toward +1 as the iterations progress, which directly leads to poor satisfi-
ability of the clause when η≥ ≥0.4 0.1 and good satisfiability of the clause when

η≥ ≥0.9 0.5 . In the four models involving EDA, EA, GA, and MTS, their fitness errors are
presented as a horizontal line, indicating that the algorithm is better stabilized and does
not iteratively swing with the increase in the number of neurons, and still has good clause
satisfiability. Among these four models, the MTS model proposed in this paper has the
best performance, attributed to the fact that the MTS metaheuristic algorithm begins the
operation by selecting the optimal solution from 100 initial solutions. In contrast, other
metaheuristic algorithms in this paper involve multiple solutions in each iteration, exten-

Figure 4. MAElearn evaluation for all experimental models.

Five models spanning PSO, ACO, SA, GWO, and DE show a linear increase in fitness
error as the number of neurons increases. This indicates that the clauses of these algorithms
are affected by the number of neurons. What is more interesting is that, in the ABC
model, the fitness error is larger when η ≤ 0.4, but smaller and stable when η ≥ 0.5.
This is because the ABC algorithm bees dance to find the new honey source operator
vij = xij ∨ [ϕij ⊗ (xij ∧ xkj)], where the ∨ operator represents OR. It can be seen that, if the
old honey source xij is positive, the new honey source vij must be positive. The neuron state
will change toward +1 as the iterations progress, which directly leads to poor satisfiability
of the clause when 0.4 ≥ η ≥ 0.1 and good satisfiability of the clause when 0.9 ≥ η ≥ 0.5.
In the four models involving EDA, EA, GA, and MTS, their fitness errors are presented as a
horizontal line, indicating that the algorithm is better stabilized and does not iteratively
swing with the increase in the number of neurons, and still has good clause satisfiability.
Among these four models, the MTS model proposed in this paper has the best performance,
attributed to the fact that the MTS metaheuristic algorithm begins the operation by selecting
the optimal solution from 100 initial solutions. In contrast, other metaheuristic algorithms
in this paper involve multiple solutions in each iteration, extensively exploring potential
high-quality solutions across the solution space. This characteristic endows the MTS
metaheuristic algorithm with higher retrieval efficiency. Additionally, leveraging the
characteristics of metaheuristic algorithms [31], conducting local search based on high-

Mathematics 2024, 12, 721 21 of 40

quality solutions enables the rapid discovery of consistent interpretations. Considering
the structural characteristics of second-order logical clauses, reducing the MAElearn value
to find consistent interpretations necessitates increasing the number of satisfiable clauses.
To increase the number of satisfiable clauses, flipping any literal in unsatisfiable clauses
suffices. Based on this property, the mutation operator in the MTS algorithm is set to
have a mutation probability of 1 for flipping clause literals. Simultaneously, segment
operations are employed to ensure that the mutation operator operates on different clauses,
directing the exploration of the local solution space. Consequently, the MTS algorithm
exhibits superior stability and performance in terms of the MAElearn indicator compared to
other algorithms.

Tables 3 and 4 show the results of the experimental model with different proportions
of positive literals (η) and number of neurons for LRTR. The values of the number of
neurons were taken in consistency with the values of MAElearn, and the optimal value of
LRTR was 1. In the table, Max, Min, and Mean represent the maximum, minimum, and
intermediate values of LRTR in the model, respectively. The larger these three values, the
stronger the ability of the experimental model to find consistent explanations. It is worth
noting that MAElearn measures the ability of the experimental model to find consistent
explanations in terms of clauses, and LRTR measures the ability of the experimental model
to find consistent explanations in terms of logic (PPRO2SAT), which is more important than
MAElearn, because it maps the ability of the model to obtain the optimal salient weights.
Std refers to the standard deviation, which reflects the degree of dispersion of the LRTR
dataset. A larger Std represents a larger difference between most of the L values and their
means; a smaller Std means that these LRTR values are closer to the mean, and the better
the stability of the model. Avg Rank represents the average ranking of the Friedman test of
the model with the same proportion of positive literals and number of neurons highlighted.

Table 3. The average LRTR value of all proposed algorithms in the learning phase for
η = {0.1, 0.2, 0.3, 0.4, 0.5}. The bold values indicate the superior result among the mentioned metrics.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.1

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 0.000 0.690 0.000 0.850 0.000 1.000 0.000 0.220 1.000

Mean 0.263 1.000 0.262 0.937 0.620 0.954 0.609 1.000 0.536 0.850 1.000
Std 0.389 0.000 0.406 0.093 0.434 0.055 0.443 0.000 0.455 0.261 0.000

Avg Rank 9.375 3.667 9.625 5.333 6.458 4.958 6.917 3.667 7.458 4.875 3.667

0.2

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 0.000 0.780 0.000 0.800 0.000 1.000 0.000 0.040 1.000

Mean 0.256 1.000 0.294 0.943 0.613 0.953 0.603 1.000 0.524 0.790 1.000
Std 0.386 0.000 0.423 0.069 0.438 0.062 0.445 0.000 0.465 0.341 0.000

Avg Rank 9.583 3.625 9.500 5.042 6.667 5.000 6.708 3.625 7.417 5.208 3.625

0.3

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 0.000 0.780 0.100 0.870 0.000 1.000 0.000 0.050 1.000

Mean 0.253 1.000 0.360 0.953 0.615 0.971 0.608 1.000 0.523 0.774 1.000
Std 0.383 0.000 0.448 0.069 0.432 0.044 0.443 0.000 0.457 0.349 0.000

Avg Rank 9.792 3.625 9.000 5.208 6.250 5.042 7.000 3.625 7.635 5.208 3.625

0.4

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 0.000 0.74 0.000 0.81 0.000 1.000 0.000 0.040 1.000

Mean 0.263 1.000 0.483 0.939 0.620 0.956 0.599 1.000 0.520 0.754 1.000
Std 0.394 0.000 0.459 0.078 0.435 0.065 0.445 0.000 0.462 0.370 0.000

Avg Rank 9.792 3.583 8.333 5.417 6.833 5.083 7.000 3.583 7.583 5.208 3.583

0.5

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 0.820 0.830 0.000 0.880 0.000 1.000 0.000 0.030 1.000

Mean 0.266 1.000 0.960 0.957 0.612 0.963 0.614 1.000 0.525 0.750 1.000
Std 0.395 0.000 0.064 0.064 0.438 0.045 0.439 0.000 0.463 0.375 0.000

Avg Rank 9.917 3.833 5.167 5.167 7.5 5.583 7.042 3.833 8.208 5.917 3.833

Mathematics 2024, 12, 721 22 of 40

Table 4. The average LRTR value of all proposed algorithms in the learning phase for
η = {0.6, 0.7, 0.8, 0.9}. The bold values indicate the superior result among the mentioned metrics.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.6

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 1.000 0.770 0.010 0.820 0.000 1.000 0.000 0.050 1.000

Mean 0.300 1.000 1.000 0.935 0.265 0.920 0.225 1.000 0.150 0.420 1.000
Std 0.391 0.000 0.000 0.084 0.436 0.057 0.445 0.000 0.458 0.367 0.000

Avg Rank 10.417 4.042 4.042 5.625 6.917 5.542 7.250 4.042 8.167 5.917 4.042

0.7

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 1.000 0.740 0.000 0.83 0.000 1.000 0.000 0.070 1.000

Mean 0.510 1.000 1.000 0.950 0.140 0.965 0.150 1.000 0.255 0.475 1.000
Std 0.393 0.000 0.000 0.080 0.434 0.061 0.439 0.000 0.463 0.355 0.000

Avg Rank 10.375 4.083 4.083 5.375 7.000 5.708 7.167 4.083 8.208 5.833 4.083

0.8

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 1.000 0.740 0.000 0.800 0.000 1.000 0.000 0.160 1.000

Mean 0.150 1.000 1.000 0.930 0.100 0.930 0.350 1.000 0.575 0.705 1.000
Std 0.395 0.000 0.000 0.090 0.443 0.071 0.447 0.000 0.457 0.298 0.000

Avg Rank 9.917 4.000 4.000 5.625 6.833 5.625 7.625 4.000 8.667 5.708 4.000

0.9

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.000 1.000 1.000 0.740 0.000 0.700 0.000 1.000 0.000 0.000 1.000

Mean 0.170 1.000 1.000 0.895 0.300 0.945 0.200 1.000 0.225 0.400 1.000
Std 0.388 0.000 0.000 0.086 0.430 0.082 0.445 0.000 0.462 0.341 0.000

Avg Rank 9.875 4.167 4.167 5.500 7.333 5.792 7.208 4.167 8.167 5.458 4.167

(a) Experimental model for η = {0.1, 0.2, 0.3, 0.4, 0.5}
The optimal data in Table 3 are identified in bold. As described in the table, we know

that the three models MTS, GA, and EA have the same performance and are the best
among all models. The values of Max, Min, and Mean are 1, which means that LRTR is
optimal for all values of neuron number, and the value of Std is 0, meaning that the models
are absolutely stable in finding consistent explanations. Meanwhile, the values of Avg
Rank for these three models are 3.667, 3.625, 3.583, and 3.833, respectively, which are the
minimum among the experimental models under the corresponding values of positive
literal occupancy. The results validate the advantages of the MTS, GA, and EA models in
finding consistent interpretations.

(b) Experimental model for η = {0.6, 0.7, 0.8, 0.9}
The optimal data in Table 4 are identified in bold. As described in the table, MTS, GA,

ABC, and EA perform well and are the most satisfactory among all models. The optimal
value of LRTR is achieved for all values of the number of neurons. All of the values Max,
Min, and Mean have a value of 1. The Std value of 0 means that the model is absolutely
stable in finding consistent explanations. Similarly, the values of Avg Rank for these four
models are 4.042, 4.083, 4.000, and 4.167, respectively, which are the minimum among the ex-
perimental models under the corresponding values of positive literals. The results validate
the advantages of the MTS, GA, and EA models in finding consistent interpretations.

Combined with the results of (a) and (b), it can be observed that the ABC model
performs poorly at η = {0.1, 0.2, 0.3, 0.4, 0.5} and well at η = {0.6, 0.7, 0.8, 0.9}. The reason
for this phenomenon is still the OR operator used in the generation of new nectar sources,
and we have explained in the MAElearn analysis section. In addition, the MTS, GA, and
EA models optimize LRTR values for all positive literal proportion. The key to achieving
the optimal value of LRTR lies in the ability of metaheuristic algorithms to escape the
local optimum solution. The MTS, GA, and EA algorithms all possess good capabilities
for escaping the local optimum solution. The MTS metaheuristic algorithm achieves this
goal by utilizing the mutation operator, while the GA metaheuristic algorithm employs
crossover and mutation operators to avoid premature convergence to local solutions. It

Mathematics 2024, 12, 721 23 of 40

is worth noting that, due to the mutation probability of 0.01 in the GA metaheuristic
algorithm, the crossover operator plays a major role. In contrast, the EA metaheuristic
algorithm uses an advertising strategy to confine the search scope of solutions around the
optimal solution and alternates between positive and negative advertisements to avoid
premature convergence to the local optimum solution. Therefore, compared to other
metaheuristic algorithms, these three metaheuristic algorithms all have useful strategies
to avoid the local optimum solution, allowing them to explore unknown areas as much
as possible. Even with a large number of neurons, they still possess good capabilities for
finding consistent interpretations. However, acquiring this capability typically requires
more iterations. Regarding the number of iterations, we will discuss this further in the AI
indicator section.

Figure 5 depicts the GLIavg values obtained for the different experimental models.
GLI measures the similarity of the solutions with respect to the benchmark state. For this
case, the higher the GLIavg value is, the more favorable it is to study the similarity index,
indicating that the smaller the difference between the solution found by the metaheuristic
algorithm and the standard solution, the better the ability of the model to obtain high-
quality solutions. In our analysis, it is easier to obtain solutions for all experimental models
when NN ≤ 60. On the contrary, when NN ≥ 60, the six models ES, ABC, SA, DE,
PSO, and GWO are unstable in their solving ability. These models will have null values
of GLIavg when the models are trapped in the local optimal solution. In addition, the
average similarity index values of the solutions of the five models including MTS, GA,
EDA, ACO, and EA do not have null values and increase linearly with the number of
neurons, indicating that these models can search for solutions in the learning phase and
the solution diversity is greater with the increase in the number of neurons. The diversity
of solutions is greater as the number of neurons increases. Among them, the EDA model
has the lowest solution quality, which is due to the EDA algorithm showing the selection
rate of 0.1, with the statistical fitness of the largest 10 solutions to obtain the probability
of the neuron state taking values. This method to obtain the neuron state is guided by
these 10 maximum fitness solutions, indicating that the arithmetic exploration ability is
weaker. It can also be seen that the MTS and EA models are the best performers among all
the models. To observe the results of these two models more clearly, we used the matrix
diagram to show their specific results, as shown in Tables 5 and 6.

Table 5. Matrix diagram of GLIavg for MTS and EA models. The bold value indicates the superior
result among the mentioned metrics.

η Algorithm 10 20 30 40 50 60 70 80 90 100 110 120

0.1
MTS 0.457 0.946 1.426 1.949 2.462 3.150 3.626 4.212 4.785 5.161 5.776 6.242
EA 0.466 0.919 1.422 1.873 2.498 3.076 3.588 4.259 4.641 5.278 5.855 6.505

0.2
MTS 0.800 1.652 2.586 3.610 4.564 5.324 6.510 7.409 8.278 9.232 9.991 11.074
EA 0.814 1.629 2.514 3.465 4.257 5.418 6.439 7.497 8.339 9.481 10.072 11.181

0.3
MTS 1.072 2.146 3.464 4.713 5.894 7.462 8.457 9.725 11.091 12.319 13.426 14.755
EA 1.062 2.175 3.352 4.556 5.648 7.089 8.397 9.698 10.752 12.402 13.340 14.484

0.4
MTS 1.198 2.447 3.876 5.284 6.736 8.285 9.791 11.122 12.610 13.891 15.477 16.744
EA 1.197 2.512 3.834 5.201 6.688 8.112 9.697 10.942 12.663 13.986 15.338 16.892

0.5
MTS 1.252 2.590 4.020 5.611 7.098 8.682 10.061 11.571 13.080 14.564 15.870 17.312
EA 1.241 2.561 3.902 5.211 6.944 8.421 9.791 11.501 12.936 14.555 16.169 17.662

0.6
MTS 1.198 2.506 3.857 5.316 6.754 8.175 9.725 11.160 12.761 13.992 15.323 16.634
EA 1.184 2.443 3.841 5.249 6.667 8.058 9.690 11.122 12.723 13.981 15.630 16.839

0.7
MTS 1.062 2.191 3.400 4.520 6.032 7.248 8.420 9.775 11.084 12.265 13.502 14.629
EA 1.056 2.163 3.328 4.463 5.692 7.057 8.533 9.633 11.107 12.203 13.448 14.723

0.8
MTS 0.816 1.691 2.586 3.518 4.432 5.670 6.519 7.476 8.221 9.145 10.194 11.138
EA 0.808 1.686 2.471 3.496 4.451 5.379 6.319 7.407 8.237 9.250 10.140 11.228

0.9
MTS 0.458 0.918 1.390 2.068 2.721 3.325 3.759 4.228 4.708 5.339 5.661 6.138
EA 0.455 0.957 1.423 1.862 2.401 2.926 3.649 4.218 4.554 5.244 5.814 6.249

Mathematics 2024, 12, 721 24 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 25 of 43

(a) avgGLI evaluation when η = 0.1 (b) avgGLI evaluation when η = 0.2

(c) avgGLI evaluation when η = 0.3 (d) avgGLI evaluation when η = 0.4

(e) avgGLI evaluation when η = 0.5 (f) avgGLI evaluation when η = 0.6

Figure 5. Cont.

Mathematics 2024, 12, 721 25 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 26 of 43

(g) avgGLI evaluation when η = 0.7 (h) avgGLI evaluation when η = 0.8

(i) avgGLI evaluation when η = 0.9 (j) Box diagram of avgGLI

Figure 5. avgGLI evaluation for all experimental models.

We plotted the box plots summarizing the avgGLI data for each model

{ }η = ， ， ，0.1,0.2,0.3,0.4,0.5,0.6 0.7 0.8 0.9 , as shown in (j) in Figure 5, from which we can see
that the box of the MTS model is longer, indicating that the data are more concentrated,
and the median of the MTS model is the highest compared to all experimental models,
indicating that the model solution has the best quality. In additionally, the ES model and
ABC model avgGLI values are biased and the data are more discrete, indicating that the
model-solving ability is not stable.

Table 5. Matrix diagram of avgGLI for MTS and EA models. The bold value indicates the superior
result among the mentioned metrics.

η Algorithm 10 20 30 40 50 60 70 80 90 100 110 120

0.1
MTS 0.457 0.946 1.426 1.949 2.462 3.150 3.626 4.212 4.785 5.161 5.776 6.242
EA 0.466 0.919 1.422 1.873 2.498 3.076 3.588 4.259 4.641 5.278 5.855 6.505

0.2
MTS 0.800 1.652 2.586 3.610 4.564 5.324 6.510 7.409 8.278 9.232 9.991 11.074
EA 0.814 1.629 2.514 3.465 4.257 5.418 6.439 7.497 8.339 9.481 10.072 11.181

0.3 MTS 1.072 2.146 3.464 4.713 5.894 7.462 8.457 9.725 11.091 12.319 13.426 14.755

Figure 5. GLIavg evaluation for all experimental models.

Table 6. Matrix representing the frequency of the maximum GLIavg. The bold value indicates the
superior result among the mentioned metrics.

Model 10 20 30 40 50 60 70 80 90 100 110 120 Probability

MTS 7 6 8 9 7 8 8 7 5 4 4 1 69%
EA 2 3 1 0 2 1 1 2 4 5 5 8 31%

We plotted the box plots summarizing the GLIavg data for each model
η = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, as shown in (j) in Figure 5, from which we can
see that the box of the MTS model is longer, indicating that the data are more concentrated,
and the median of the MTS model is the highest compared to all experimental models,
indicating that the model solution has the best quality. In additionally, the ES model and
ABC model GLIavg values are biased and the data are more discrete, indicating that the
model-solving ability is not stable.

Table 5 depicts the GLIavg values obtained for the MTS and EA models with different
positive literal proportions. The best values are expressed in bold following the comparison
between MTS and EA. It can be seen that the MTS metaheuristic algorithm has more

Mathematics 2024, 12, 721 26 of 40

obvious advantages when NN ≤ 110, and the EA algorithm performs even better when
the neuron value is equal to 120. Note that Table 6 counts the number of times that the
model obtains the maximum GLIavg value, and the chance that MTS obtains the optimal
GLIavg value is 69%. Thus, it can be seen that the quality of solutions obtained by the MTS
metaheuristic algorithm is overall higher than that of the EA metaheuristic algorithm. This
is because, in the EA algorithm, each voter may be influenced by the assimilation of the
party leader they support (positive advertisement) or by the assimilation of other party
leaders (negative advertisement), leading to frequent superposition operations. In the
worst-case scenario, a voter may be subject to assimilation operations from all party leaders,
resulting in unstable changes in party membership direction and consequently causing
larger differences between generated solutions and standard solutions. In contrast, the MTS
algorithm’s process of finding the optimal solution is more direct and explicit. Firstly, by
using segment operations and the mutation operator to flip the states of four neurons, new
solutions are directly generated, avoiding repetitive superposition operations and ensuring
the stability of solution generation. Secondly, the use of a tabu table as short-term “memory”
avoids using operation segments stored in the tabu table in the next iterations, thereby
avoiding repetitive searches in the short term and providing exploration directions for solu-
tion generation, thus yielding high-quality solutions. In summary, the MTS metaheuristic
algorithm demonstrates superior solution quality among all experimental models.

In this paper, we used two metrics, CT and AI, to measure the efficiency of all ex-
perimental models in the retrieval phase. An efficient and stable model can be run in
a short time, i.e., the value of both metrics is small. CT is the average time to execute
the metaheuristic algorithm in 100 logical combination (PPRO2SAT). The values of these
two metrics are demonstrated for the 10 experimental models. It is worth mentioning that
the absence of data for the ES model in Figure 6 is due to the fact that the ES algorithm
does not run a metaheuristic algorithm.

From Figure 6, it can be known that all experimental models have a gradual increase
in the CT value with the increase in the number of neurons. Among them, the DE model
takes the most time among all experimental models for one iteration and changes unstably
as the number of neurons increases, because the optimal solution in the learning phase is
not a definite combination of neurons. The DE algorithm randomly selects three fathers
to generate the new generation solution, and the quality of the new generation solution
depends on the quality of the parent fitness. Random fathers leads the DE algorithm to
easily stay in the local optimal solution and be unable to effectively find the global optimal
solution [33]. Furthermore, the DE algorithm requires a longer computation time per
iteration [34]. This is because it is the only model among all others that performs mutation
and crossover calculations for each neuron of every generation of solutions. Therefore, the
DE algorithm necessitates more iterations and computation time for solving. Secondly,
we can see from the figure that the CT values of the models GA and MTS are the smallest
and basically overlap. As the number of neurons increases, their CT values basically
remain as a straight line with a very small increase, indicating that these two algorithms
have good computational scalability. Similarly, as the number of neurons increases, the
computation time of the algorithms can remain basically constant without much impact on
the computation time. After zooming on the result locally, we can clearly observe that the
CT value of MTS is the smallest among the metaheuristics, and the algorithm time has a
much lower complexity.

Mathematics 2024, 12, 721 27 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 28 of 43

(a) CT evaluation when η = 0.1 (b) CT evaluation when η = 0.2

(c) CT evaluation when η = 0.3 (d) CT evaluation when η = 0.4

(e) CT evaluation when η = 0.5 (f) CT evaluation when η = 0.6

Figure 6. Cont.

Mathematics 2024, 12, 721 28 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 29 of 43

(g) CT evaluation when η = 0.7 (h) CT evaluation when η = 0.8

(i) CT evaluation when η = 0.9

Figure 6. CT evaluation for all PRO2SAT embedded in metaheuristic algorithms.

From Figure 6, it can be known that all experimental models have a gradual increase
in the CT value with the increase in the number of neurons. Among them, the DE model
takes the most time among all experimental models for one iteration and changes unstably
as the number of neurons increases, because the optimal solution in the learning phase is
not a definite combination of neurons. The DE algorithm randomly selects three fathers
to generate the new generation solution, and the quality of the new generation solution
depends on the quality of the parent fitness. Random fathers leads the DE algorithm to
easily stay in the local optimal solution and be unable to effectively find the global optimal
solution [33]. Furthermore, the DE algorithm requires a longer computation time per iter-
ation [34]. This is because it is the only model among all others that performs mutation
and crossover calculations for each neuron of every generation of solutions. Therefore, the
DE algorithm necessitates more iterations and computation time for solving. Secondly, we
can see from the figure that the CT values of the models GA and MTS are the smallest
and basically overlap. As the number of neurons increases, their CT values basically
remain as a straight line with a very small increase, indicating that these two algorithms
have good computational scalability. Similarly, as the number of neurons increases, the
computation time of the algorithms can remain basically constant without much impact
on the computation time. After zooming on the result locally, we can clearly observe that

Figure 6. CT evaluation for all PRO2SAT embedded in metaheuristic algorithms.

We will further compare the time complexity of GA and MTS algorithms to more
intuitively assess their performance. The calculation mainly considers the time complexity
of the major steps in one iteration of the algorithm under the worst-case scenario, where c
represents the number for learning, n represents the number of offspring chromosomes,
and m represents the number of excellent parent chromosomes in each iteration process.
In this experiment, the values are set to 50 [11]. NN represents the number of neurons,
and w represents the number of domain solutions, with a value of 14 as introduced in
Table 2. The time complexity of the GA and MTS algorithms is represented as GATC
and MTSTC, respectively. For a more intuitive comparison of algorithm time complexity,
we set n and w to the same value. By comparing GATC and MTSTC, it can be observed
that MTSTC has a smaller time complexity. The advantage of the MTS algorithm mainly
manifests in the aspect of the fitness evaluation. This advantage stems from the feedback
correction mechanism implemented in the MTS algorithm during computation, specifically
the guided search for the highest-quality solution using a tabu list. In contrast, the GA
algorithm generates multiple offspring chromosomes in each iteration, leading to increased
computational complexity in evaluating the fitness of the next generation, thus consuming
more time. Additionally, the mutation operation in the GA algorithm requires traversing
every gene in all chromosomes, directly resulting in a more significant time gap compared

Mathematics 2024, 12, 721 29 of 40

to the MTS algorithm. Therefore, the MTS algorithm exhibits higher search efficiency and
performance, especially in terms of fitness evaluation.

At the same time, we can also see that the CT value visibly varies as the ABC model
changes with the proportion value of the positive literal. The CT value is larger when
η ≤ 0.4. However, as the positive literal share increases η ≥ 0.5, it becomes smaller,
but it still larger than the GA and MTS models. This is because, when the proportion of
the positive literals proportion is small, the ABC metaheuristic algorithm requires many
iterations and even reaches the maximum iteration limit. When the proportion of positive
literals is large, the ABC algorithm usually converges in one to two iterations. From this, we
know that the MTS model in this paper is more efficient and stable, and the value remains
stable as the number of neurons increases.

In this experiment, Figure 7a–i show the convergence trend to all experimental models,
and the number of iterations required for convergence of the experimental models mostly
tends to increase as the number of neurons increases. It is worth noting that, when NN ≤ 30,
CPRO2SAT = 0 can be satisfied among the 100 initial solutions of PRO2SAT. At this point, no
metaheuristic algorithm is executed and the AI value of the experimental model is mostly
0. From the figure, we can divide the experimental models into two categories. The first
category “parameter-sensitive models”, which are influenced by the number of neurons,
including SA, DE, PSO, GWO. These four models are influenced by the proportion of
positive literals. The second category of “stable models”, where the number of iterations is
less influenced by the number of neurons and the proportion of positive literals, including
EDA, ACO, EA, GA, and MTS. The part of the parameter-sensitive model that is influenced
by the number of neurons falls into a local solution after a certain number of iterations
and is unable to jump out of the local solution. The convergence of the ABC model also
significantly fluctuates depending on the proportion of positive literals. This convergence
bias of the ABC metaheuristic algorithm is not suitable for PRO2SAT, because PRO2SAT
includes nine positive literal proportion settings, and the desired metaheuristic algorithm
is meant to satisfy all occupancy proportions of the positive literals of PRO2SAT.

Stable metaheuristic algorithms are required, in which the most outstanding perfor-
mance is the MTS algorithm proposed in this paper, which has the fastest convergence
speed and is equally stable. When NN = 120, 9.8 ≤ AI ≤ 11.26, the consistency interpreta-
tion can be found by calculating an average of 10.48 iterations of the MTS algorithm for
a neuron value of 120. This is because the MTS algorithm constructs a search feedback
strategy, which is specifically manifested as short-term “memory” and long-term “mem-
ory”. Firstly, based on the tabu table to achieve short-term “memory”, the tabu table is
used to record the recently accessed segment numbers, enabling adaptive adjustment of the
search direction when selecting segments, actively choosing segments that have not been
operated on recently to facilitate a faster solution search. Secondly, based on Gbest to achieve
long-term “memory”, Gbest stores the solutions with the highest fitness in each iteration;
combined with the flouting rule, when the local solution is greater than the global solution
(Xbest > Gbest), the excellent domain operations banned by the tabu are pardoned, allowing
repeated access to segment numbers that were recently accessed, thereby ensuring diverse
and effective exploration and avoiding missing better solutions. Short-term “memory”
functions within each iteration, while long-term “memory” functions between iterations,
enabling the MTS algorithm to possess intelligent search capabilities throughout the entire
process. In contrast, other comparative models only calculate fitness between each iteration
to determine if a solution has been found, lacking effective search guidance. Thus, the
MTS metaheuristic algorithm achieves a more balanced exploration and exploitation of the
solution space, exhibiting efficient and stable characteristics.

Mathematics 2024, 12, 721 30 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 31 of 43

(a) AI evaluation when η = 0.1 (b) AI evaluation when η = 0.2

(c) AI evaluation when η = 0.3 (d) AI evaluation when η = 0.4

(e) AI evaluation when η = 0.5 (f) AI evaluation when η = 0.6

Figure 7. Cont.

Mathematics 2024, 12, 721 31 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 32 of 43

(g) AI evaluation when η = 0.7 (h) AI evaluation when η = 0.8

(i) AI evaluation when η = 0.9

Figure 7. AI evaluation for all PRO2SAT embedded in metaheuristic algorithms.

Stable metaheuristic algorithms are required, in which the most outstanding perfor-
mance is the MTS algorithm proposed in this paper, which has the fastest convergence
speed and is equally stable. When =NN 120, ≤ ≤AI9.8 11.26 , the consistency interpre-
tation can be found by calculating an average of 10.48 iterations of the MTS algorithm for
a neuron value of 120. This is because the MTS algorithm constructs a search feedback
strategy, which is specifically manifested as short-term “memory” and long-term
“memory”. Firstly, based on the tabu table to achieve short-term “memory”, the tabu table
is used to record the recently accessed segment numbers, enabling adaptive adjustment
of the search direction when selecting segments, actively choosing segments that have not
been operated on recently to facilitate a faster solution search. Secondly, based on bestG
to achieve long-term “memory”, bestG stores the solutions with the highest fitness in each
iteration; combined with the flouting rule, when the local solution is greater than the
global solution (bestX > bestG), the excellent domain operations banned by the tabu are
pardoned, allowing repeated access to segment numbers that were recently accessed,
thereby ensuring diverse and effective exploration and avoiding missing better solutions.
Short-term “memory” functions within each iteration, while long-term “memory” func-
tions between iterations, enabling the MTS algorithm to possess intelligent search capa-
bilities throughout the entire process. In contrast, other comparative models only calculate

Figure 7. AI evaluation for all PRO2SAT embedded in metaheuristic algorithms.

In summary, for the performance analysis of all experimental models in the learning
phase, the MTS model proposed in this paper has three advantages in the learning phase.
Firstly, it has the strongest ability to find consistent explanations. Secondly, the solutions
found have high quality and the highest diversity. Finally, it has the highest efficiency in
finding consistent explanations, that is, the iteration time and the number of iterations is
minimized. Therefore, the MTS model is the best among all experimental models when
examined comprehensively.

8.2. Retrieval Phase

ZM is the core metric of the experimental model in the retrieval phase. Tables 7 and 8
show the results of the ZM metric for 11 experimental models with different proportions of
positive literal (η) and number of neurons. The ideal value for ZM is 1. A higher value for
this metric indicates a greater presence of global minimum solutions within the solution
set and a reduced number of local minimum solutions. Note that the data following the ‘/’
symbol in the table represent the number of neurons at the time the value was obtained. It
is worth noting that the experimental models in this paper start the metaheuristic algorithm
only when they cannot find consistent explanations within the default learning (a). All
models will not start the metaheuristic algorithm for PRO2SAT at NN = {10, 20}.

Mathematics 2024, 12, 721 32 of 40

Table 7. The time complexity of the GA and MTS algorithms.

Index GA Time Complexity MTS Time Complexity

1 Selection operation O(clogc) Initializing the initial solutions O(clogc)
2 Crossover operation O(m2 + nlogn) Generation strategy to neighborhood solution O(w × NN/2 + wlogw + w)
3 Mutation operation O(n × NN) Generation strategy to candidate solution O(2)
4 Fitness evaluation O(n × NN) Fitness evaluation O(NN/2)

collect GATC = O(clogc + w × NN/2 + wlogw +m2 +w × NN) MTSTC = O(clogc + w × NN/2 + wlogw + w+2 + NN/2)

Table 8. The average ZM value of all proposed algorithms during the retrieval phase at
η = {0.1, 0.2, 0.3, 0.4, 0.5}. The bold value indicates the superior result among the mentioned metrics.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.1

Max 1.000
/20 1.000 1.000

/20
1.000
/70

1.000
/60

1.000
/60

1.000
/60 1.000 1.000

/50
1.000
/70 1.000

Min 0.000
/70 1.000 0.000

/80
0.690
/120

0.000
/120

0.780
/120

0.000
/120 1.000 0.000

/110
0.180
/120 1.000

Mean 0.262 1.000 0.262 0.937 0.620 0.954 0.609 1.000 0.536 0.850 1.000
Std 0.405 0.000 0.424 0.097 0.445 0.075 0.467 0.000 0.479 0.282 0.000

Avg Rank 9.540 3.670 9.620 5.330 6.370 4.830 6.540 3.670 7.580 5.170 3.670

0.2

Max 1.000
/20 1.000 1.000

/20
1.000
/60

1.000
/60

1.000
/60

1.000
/60 1.000 1.000

/50
1.000
/70 1.000

Min 0.000
/80 1.000 0.000

/80
0.780
/120

0.000
/120

0.800
/120

0.000
/110 1.000 0.000

/120
0.040
/120 1.000

Mean 0.256 1.000 0.294 0.943 0.613 0.953 0.603 1.000 0.524 0.790 1.000
Std 0.403 0.000 0.442 0.087 0.458 0.065 0.465 0.000 0.485 0.356 0.000

Avg Rank 9.580 3.620 9.500 5.000 6.710 5.000 6.750 3.620 7.460 5.120 3.620

0.3

Max 1.000
/20 1.000 1.000

/30
1.000
/60

1.000
/60

1.000
/50

1.000
/50 1.000 1.000

/50
1.000
/70 1.000

Min 0.000
/90 1.000 0.000

/100
0.780
/120

0.010
/120

0.870
/120

0.000
/110 1.000 0.000

/110
0.050
/120 1.000

Mean 0.255 1.000 0.360 0.953 0.615 0.971 0.608 1.000 0.523 0.774 1.000
Std 0.401 0.000 0.468 0.719 0.451 0.046 0.462 0.000 0.477 0.365 0.000

Avg Rank 9.750 3.620 9.040 5.210 6.250 5.040 7.000 3.620 7.620 5.210 3.620

0.4

Max 1.000
/20 1.000 1.000

/40
1.000
/50

1.000
/50

1.000
/60

1.000
/50 1.000 1.000

/50
1.000
/70 1.000

Min 0.000
/80 1.000 0.000

/120
0.740
/120

0.000
/110

0.810
/120

0.000
/110 1.000 0.000

/110
0.040
/120 1.000

Mean 0.264 1.000 0.483 0.939 0.538 0.956 0.517 1.000 0.520 0.754 1.000
Std 0.412 0.000 0.479 0.082 0.471 0.068 0.477 0.000 0.483 0.386 0.000

Avg Rank 9.710 3.580 8.170 5.330 7.080 5.080 7.250 3.580 7.420 5.210 3.580

0.5

Max 1.000
/20 1.000 1.000

/70
1.000
/70

1.000
/50

1.000
/50

1.000
/60 1.000 1.000

/50
1.000
/70 1.000

Min 0.000
/70 1.000 0.820

/120
0.830
/120

0.000
/110

0.890
/120

0.000
/120 1.000 0.000

/100
0.030
/120 1.000

Mean 0.267 1.000 0.960 0.957 0.612 0.963 0.614 1.000 0.525 0.750 1.000
Std 0.413 0.000 0.665 0.669 0.458 0.047 0.459 0.000 0.483 0.392 0.000

Avg Rank 9.920 3.830 5.170 5.170 7.500 5.580 7.040 3.830 8.210 5.920 3.830

The optimal data in Table 8 are marked in bold. We analyzed and classified the
experimental models into three different classes. The first rank models include GA, EA,
and MTS, which reaches the optimal value of ZM under all neuron takes, i.e., the value
of ZM is always 1. In the table, their Max, Min, and Mean values are all 1, which means
that these three models can always obtain the global minimum solution. In addition, their
standard deviation values are all 0, indicating that these three models have absolute stability
and are not affected by the change in the number of neurons in the experiments. Further
observing the average rank values of the first rank models, it can be found that their Ava

Mathematics 2024, 12, 721 33 of 40

Rank values are equal and the minimum among the results under the condition of the same
proportion of positive literals. All the results show the superiority of these three models
in ZM metrics. The second-level models include ACO, EDA, and GWO. The second-level
models have a slightly inferior performance compared to first-level models, which is mainly
reflected in their inability to obtain the optimal value of ZM as the number of neurons
increases. The third-level models include ES, ABC, PSO, DE, and SA, which have poorer
performance, and the ZM value will gradually take 0 as the number of neurons increases.
Notably, it is important to highlight that the results presented in this paper differ from
the conclusions reported in the literature [8]. In the literature [8], researchers have found
that the ZM value of the PRO2SAT model increases as the proportion of positive literals
increases. This is because traditional activation functions tend to lead the final neuron
states toward suboptimal states, which may likely converge to local minimum energy, But
such a phenomenon is not observed in our experiment. This difference can be attributed to
the new activation function used in this paper. When the value of Equation (11) is taken as
0, the final state of the neuron in Equation (12) remains the same as the initial state. The
new activation function leads to the correct update of the final neuron states in clauses
containing negated literals, thereby converging to the global minimum energy, resulting in
higher ZM values.

Based on the optimal data identified in bold in Table 9, we performed a comprehensive
analysis according to the same model hierarchical classification method as in Table 7.
Notably, The ABC model is elevated from the third to the first rank, while the ZM metrics
data of the other models present the same performance as in Table 7, with no change in rank
attribution. Despite the ABC model’s stronger performance seen in Table 8, this merely
highlights its superiority in situations wherein there is a high proportion of positive literals.
Nevertheless, with a low proportion of positive literals, the model’s ZM performance
deteriorates, indicating its instability. Overall, only three metaheuristic algorithms, namely
GA, EA, and MTS, with LRTR taking the max value of 1 for different proportion values
of positive literals and number of neurons, were able to provide optimal synaptic weights
for the retrieval phase. Under the guidance of the optimal synaptic weights and the new
activation function, the three models GA, EA, and MTS show excellent performance in
obtaining the global minimum solution. Consequently, we analyzed the quality of the
global minimum solution obtained by the models using the new metrics TVsimilar.

Figure 8 illustrates the TVsimilar metric, which is used to analyze the quality of the
solutions generated during the retrieval phase. Accordingly, we calculated the similarity
between the non-repeated solution and the benchmark solution. If the solution is less
different from the benchmark solution (the larger the TVsimilar value is), the resultant
solution has poorer variability and diversity, and vice versa, the resultant solution has better
variability and diversity. Firstly, the linear trend of TVsimilar values for all experimental
models is due to the logical stable clause structure of the system. Furthermore, the ES, ABC,
PSO, DE, and SA models take the TVsimilar value as null in the case of neurons that are
available. We zoomed in on these plots and observed that the line plots of these models are
suddenly interrupted. This is because the value of ZM affects the TVsimilar value obtained
by the final neuron states, as only the final neuron states reaching the global minimum
solution are used to calculate TVsimilar. Finally, the distribution of the TVsimilar value in
the MTS model is around 0.58, and the distribution of this value of all the remaining
comparison models is around 0.75, meaning that the MTS model outperforms among all
the experimental models in terms of solving variability and solution diversity due to the
fact that the MTS model has embedded a mutation operator when generating the solution
in the test phase. Otherwise, under the influence of the new activation function, the final
neuron states of all models may tend to converge to the benchmark solution. The mutation
operator during the retrieval phase is responsible for searching for clauses that match
the benchmark solution after the local field computation of neuron strings and randomly
flipping neuron states. This operation enhances the diversity of model solutions while
maintaining the same number of global minimum solutions.

Mathematics 2024, 12, 721 34 of 40

Table 9. The average ZM value of all proposed algorithms during the retrieval phase at
η = {0.6, 0.7, 0.8, 0.9}. The bold value indicates the superior result among the mentioned metrics.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.6

Max 1.000
/10 1.000 1.000 1.000

/60
1.000
/60

1.000
/60

1.000
/60 1.000 1.000

/50
1.000
/50 1.000

Min 0.000
/70 1.000 1.000 0.770

/120
0.010
/120

0.820
/120

0.000
/100 1.000 0.000

/110
0.050
/120 1.000

Mean 0.258 1.000 1.000 0.942 0.611 0.955 0.607 1.000 0.529 0.746 1.000
Std 0.409 0.000 0.000 0.874 0.456 0.060 0.465 0.000 0.479 0.383 0.000

Avg Rank 10.420 4.040 4.040 5.620 6.920 5.540 7.080 4.040 8.170 5.920 4.040

0.7

Max 1.000
/10 1.000 1.000 1.000

/70
1.000
/60

1.000
/60

1.000
/60 1.000 1.000

/50
1.000
/70 1.000

Min 0.000
/60 1.000 1.000 0.740

/120
0.020
/120

0.830
/120

0.000
/120 1.000 0.000

/100
0.070
/100 1.000

Mean 0.254 1.000 1.000 0.957 0.619 0.959 0.608 1.000 0.536 0.761 1.000
Std 0.411 0.000 0.000 0.084 0.453 0.064 0.458 0.000 0.483 0.371 0.000

Avg Rank 10.370 4.080 4.080 5.370 7.000 5.710 7.170 4.080 8.210 5.830 4.080

0.8

Max 1.000
/20 1.000 1.000 1.000

/60
1.000
/60

1.000
/60

1.000
/50 1.000 1.000

/40
1.000
/70 1.000

Min 0.000
/70 1.000 1.000 0.740

/120
0.000
/120

0.800
/120

0.000
/120 1.000 0.000

/90
0.160
/120 1.000

Mean 0.259 1.000 1.000 0.937 0.618 0.948 0.603 1.000 0.520 0.818 1.000
Std 0.413 0.000 0.000 0.094 0.463 0.074 0.467 0.000 0.478 0.311 0.000

Avg Rank 9.920 4.000 4.000 5.620 6.830 5.620 7.620 4.000 8.670 5.710 4.000

0.9

Max 1.000
/20 1.000 1.000 1.000

/70
1.000
/50

1.000
/60

1.000
/50 1.000 1.000

/50
1.000
/90 1.000

Min 0.000
/70 1.000 1.000 0.740

/120
0.000
/120

0.700
/120

0.000
/110 1.000 0.000

/100
0.000
/120 1.000

Mean 0.257 1.000 1.000 0.946 0.617 0.952 0.599 1.000 0.530 0.817 1.000
Std 0.405 0.000 0.000 0.090 0.450 0.086 0.463 0.000 0.482 0.356 0.000

Avg Rank 9.870 4.120 4.120 5.460 7.250 5.750 7.580 4.120 8.170 5.420 4.120

Tables 10 and 11 show the energy error MAEtest for 11 experimental models taking
different proportions of positive literal (η) and number of neurons. This comparison is vital
for assessing the model’s convergence during the retrieval phase, with lower metric values
signifying improved model convergence.

Table 10. The average MAEtest value of all proposed algorithms during the retrieval phase at
η = {0.1, 0.2, 0.3, 0.4, 0.5}. The bold values indicate the superior result among the mentioned metrics.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.1

Max 14.604
/120 0.000 16.077

/120
2.668
/120

15.498
/120

3.160
/120

14.857
/120 0.000 14.944

/120
12.505
/120 0.000

Min 0.000
/20 0.000 0.000

/20
0.000
/50

0.000
/60

0.000
/60

0.000
/60 0.000 0.000

/50
0.000
/70 0.000

Mean 7.388 0.000 7.452 0.659 4.925 0.589 4.955 0.000 5.587 2.112 0.000
Std 5.287 0.000 5.854 1.013 6.200 1.021 6.230 0.000 6.148 4.151 0.000

Avg Rank 9.333 3.625 9.500 5.417 6.750 4.917 6.667 3.625 7.417 5.125 3.625

0.2

Max 15.559
/120 0.000 17.358

/120
3.559
/120

14.524
/120

2.077
/120

15.431
/120 0.000 14.747

/120
13.961
/120 0.000

Min 0.000
/20 0.000 0.000

/20
0.000
/60

0.000
/50

0.000
/60

0.000
/60 0.000 0.000

/50
0.000
/70 0.000

Mean 7.409 0.000 7.228 0.762 4.760 0.489 5.106 0.000 5.541 2.775 0.000
Std 5.422 0.000 5.740 1.252 6.049 0.756 6.286 0.000 6.050 4.963 0.000

Avg Rank 9.667 3.625 9.417 5.167 6.750 4.833 6.833 3.625 7.333 5.125 3.625

Mathematics 2024, 12, 721 35 of 40

Table 10. Cont.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.3

Max 15.045
/120 0.000 14.590

/120
3.271
/120

14.255
/120

2.920
/120

14.752
/120 0.000 15.040

/120
14.117
/120 0.000

Min 0.000
/20 0.000 0.000

/30
0.000
/60

0.000
/60

0.000
/50

0.000
/50 0.000 0.000

/50
0.000
/70 0.000

Mean 7.374 0.000 6.935 0.739 4.843 0.604 4.881 0.000 5.633 3.190 0.000
Std 5.346 0.000 5.493 1.197 6.089 1.019 6.082 0.000 6.143 5.226 0.000

Avg Rank 9.917 3.625 8.792 5.167 6.583 4.958 6.792 3.625 7.625 5.292 3.625

0.4

Max 15.272
/120 0.000 17.675

/120
5.091
/120

15.229
/120

3.289
/120

14.988
/120 0.000 14.791

/120
14.167
/120 0.000

Min 0.000
/20 0.000 0.000

/40
0.000
/50

0.000
/60

0.000
/60

0.000
/60 0.000 0.000

/50
0.000
/70 0.000

Mean 7.420 0.000 5.929 0.834 4.863 0.607 5.021 0.000 5.631 3.399 0.000
Std 5.392 0.000 6.541 1.465 6.149 1.000 6.207 0.000 6.185 5.306 0.000

Avg Rank 9.833 3.667 8.167 5.458 6.542 5.250 6.792 3.667 7.625 5.333 3.667

0.5

Max 15.067
/120 0.000 5.601

/120
3.354
/120

14.711
/120

2.880
/120

14.581
/120 0.000 14.902

/120
14.661
/120 0.000

Min 0.000
/20 0.000 0.000

/70
0.000
/70

0.000
/50

0.000
/50

0.000
/60 0.000 0.000

/50
0.000
/70 0.000

Mean 7.396 0.000 0.990 0.666 5.094 0.498 4.993 0.000 5.641 3.392 0.000
Std 5.332 0.000 1.715 1.120 6.140 0.869 6.092 0.000 6.142 5.371 0.000

Avg Rank 9.833 3.833 5.333 5.083 7.542 5.542 6.875 3.833 8.292 6.000 3.833

Mathematics 2024, 12, x FOR PEER REVIEW 36 of 43

test phase. Otherwise, under the influence of the new activation function, the final neuron
states of all models may tend to converge to the benchmark solution. The mutation oper-
ator during the retrieval phase is responsible for searching for clauses that match the
benchmark solution after the local field computation of neuron strings and randomly flip-
ping neuron states. This operation enhances the diversity of model solutions while main-
taining the same number of global minimum solutions.

(a) sim ilarT V evaluation when η = 0.1 (b) sim ilarT V evaluation when η = 0.2

(c) sim ilarT V evaluation when η = 0.3 (d) sim ilarT V evaluation when η = 0.4

Figure 8. Cont.

Mathematics 2024, 12, 721 36 of 40

Mathematics 2024, 12, x FOR PEER REVIEW 37 of 43

(e) sim ilarT V evaluation when η = 0.5 (f) sim ilarT V evaluation when η = 0.6

(g) sim ilarT V evaluation when η = 0.7 (h) sim ilarT V evaluation when η = 0.8

(i) sim ilarT V evaluation when η = 0.9

Figure 8. sim ilarT V evaluation for all experimental models.

Tables 10 and 11 show the energy error testMAE for 11 experimental models taking
different proportions of positive literal (η) and number of neurons. This comparison is

Figure 8. TVsimilar evaluation for all experimental models.

Mathematics 2024, 12, 721 37 of 40

Table 11. The average MAEtest value of all proposed algorithms during the retrieval phase at
η = {0.6, 0.7, 0.8, 0.9}. The bold values indicate the superior result among the mentioned metrics.

η Measure ES GA ABC EDA PSO ACO DE EA SA GWO MTS

0.6

Max 14.723
/120 0.000 0.000 3.678

/120
15.109
/120

1.692
/120

14.908
/120 0.000 14.852

/120
14.030
/120 0.000

Min 0.000
/10 0.000 0.000 0.000

/60
0.000
/60

0.000
/60

0.0000
/60 0.000 0.000

/50
0.000
/70 0.000

Mean 7.383 0.000 0.000 0.696 4.803 0.474 4.853 0.000 5.555 3.399 0.000
Std 5.311 0.000 0.000 1.142 6.063 0.695 6.068 0.000 6.091 5.386 0.000

Avg Rank 10.083 4.042 4.042 5.667 7.250 5.500 7.500 4.042 7.917 5.917 4.042

0.7

Max 14.888
/120 0.000 0.000 2.596

/120
14.221
/120

1.691
/120

14.912
/120 0.000 14.865

/120
14.975
/120 0.000

Min 0.000
/10 0.000 0.000 0.000

/70
0.000
/60

0.000
/60

0.000
/60 0.000 0.000

/50
0.000
/70 0.000

Mean 7.384 0.000 0.000 0.625 4.694 0.457 4.947 0.000 5.677 3.085 0.000
Std 5.357 0.000 0.000 0.944 6.009 0.704 6.190 0.000 6.209 5.346 0.000

Avg Rank 10.083 4.083 4.083 5.458 6.833 5.500 7.583 4.083 7.917 6.292 4.083

0.8

Max 14.930
/120 0.000 0.000 2.892

/120
15.01
/120

2.513
/120

14.982
/120 0.000 14.813

/120
12.733
/120

0.000
/120

Min 0.000
/20 0.000 0.000 0.000

/60
0.000
/60

0.000
/60

0.000
/50 0.000 0.000

/40
0.000
/70

0.000
/10

Mean 7.551 0.000 0.000 0.633 4.949 0.539 4.909 0.000 5.620 2.597 0.000
Std 5.421 0.000 0.000 0.962 6.114 0.932 6.063 0.000 6.093 4.531 0.000

Avg Rank 9.917 4.000 4.000 5.708 7.375 5.458 7.500 4.000 8.250 5.792 4.000

0.9

Max 14.821
/120 0.000 0.000 2.955

/120
14.389
/120

2.222
/120

15.276
/120 0.000 15.069

/120
11.345
/120 0.000

Min 0.000
/20 0.000 0.000 0.000

/70
0.000
/50

0.000
/60

0.000
/50 0.000 0.000

/50
0.000
/90 0.000

Mean 8.841 0.000 0.000 0.997 8.143 0.515 5.186 0.000 9.681 4.500 0.000
Std 5.304 0.000 0.000 0.979 5.835 0.822 6.216 0.000 6.197 3.805 0.000

Avg Rank 9.667 4.125 4.125 5.583 7.125 5.625 7.958 4.125 8.292 5.250 4.125

The optimal data in Tables 10 and 11 are identified in bold. As described in the
table, we can see that the models GA, EA, and MTS perform more prominently than the
other models in terms of energy error, which consistently takes the value of 0 for different
numbers of neurons. From

∣∣EPRO2SAT − Emin
PRO2SAT

∣∣ = CPRO2SAT , the energy error value
is equivalent to the cost function value, and the value of CPRO2SAT is equal to the sum of
unsatisfiable clauses in the range of [0, n]. n represents the number of second-order clauses.
As the clause satisfaction rate of PRO2SAT increases during the retrieval phase, the energy
error value decreases. When the optimal prominence weights are obtained, all types of
clauses will be satisfied. This shows that the model that performs well in the learning phase
will have a smaller energy error in the retrieval phase. With the analysis of the retrieval
phase, we learn that the GA, EA, and MTS models all have better performance, thanks to
the excellent performance of these models in the learning phase. While ABC also performs
well in terms of energy error, it has a biased final state of neurons and is not suitable for all
PRO2SAT models under positive literal occupancy.

8.3. Friedman Test

We conducted the Friedman test for all metric values with different η values in the
learning and retrieval phases. It can be seen that the Chi-square value takes the inter-
val [64.303, 77.455] for MAElearn, [71.525, 78.046] for LRTR, [40.920, 63.445] for GLIavg,
[87.320, 100.993] for CT, [71.021, 81.908] for AI, [71.689, 80.273] for ZM, [27.707, 52.180] for
TVsimilar, and [68.753, 78.643] for MAEtest. The degree of freedom of these indicators is 10.
Most importantly, the p-value values for all metrics are less than 0.05 (p < 0.05), as shown
in Table 12, representing that the null hypothesis of similar performance between MTS and

Mathematics 2024, 12, 721 38 of 40

all compared models is rejected, that is, the results of all models are significantly different
across metrics.

Table 12. Performing a Friedman test on MTS using various comparison algorithms.

Model η
Chi-Square
Value, χ2 p-Value Accept(A)/Reject(R),

H0
Model Chi-Square

Value, χ2 p-Value Accept/Reject,
H0

0.1 67.727 1.215 × 10−10 R H0 79.697 5.7561 × 10−13 R H0
0.2 70.182 4.089 × 10−11 R H0 80.273 4.4381 × 10−13 R H0
0.3 69.546 5.426 × 10−11 R H0 77.994 1.2399 × 10−12 R H0
0.4 64.303 5.509 × 10−10 R H0 73.484 9.3768 × 10−12 R H0
0.5 75.046 4.662 × 10−12 R H0 71.689 2.0903 × 10−11 R H0
0.6 77.455 1.581 × 10−12 R H0 78.046 1.2112 × 10−12 R H0
0.7 72.167 1.689 × 10−12 R H0 77.552 1.5129 × 10−12 R H0
0.8 81.742 2.285 × 10−13 R H0 76.690 2.229 × 10−12 R H0
0.9 71.621 2.154 × 10−11 R H0 71.525 2.249 × 10−11 R H0

GLIavg

0.1 41.028 1.116 × 10−5 R H0

CT

98.527 1.074 × 10−16 R H0
0.2 40.920 1.166 × 10−5 R H0 87.320 1.818 × 10−14 R H0
0.3 54.616 3.725 × 10−8 R H0 97.046 2.122 × 10−16 R H0
0.4 53.175 6.909 × 10−8 R H0 96.696 2.493 × 10−16 R H0
0.5 54.191 4.472 × 10−8 R H0 93.146 1.271 × 10−15 R H0
0.6 58.906 5.835 × 10−9 R H0 100.993 3.448 × 10−17 R H0
0.7 55.253 2.833 × 10−8 R H0 90.348 4.569 × 10−15 R H0
0.8 63.445 8.032 × 10−10 R H0 93.743 9.667 × 10−16 R H0
0.9 57.113 1.270 × 10−8 R H0 93.733 9.711 × 10−16 R H0

AI

0.1 76.419 2.517 × 10−12 R H0

ZM

79.650 5.878 × 10−13 R H0
0.2 72.226 1.645 × 10−11 R H0 80.273 4.438 × 10−13 R H0
0.3 76.282 2.677 × 10−12 R H0 77.843 1.327 × 10−12 R H0
0.4 74.333 6.416 × 10−12 R H0 72.248 1.629 × 10−11 R H0
0.5 75.121 4.507 × 10−12 R H0 71.689 2.090 × 10−11 R H0
0.6 81.908 2.120 × 10−13 R H0 78.046 1.211 × 10−12 R H0
0.7 71.021 2.816 × 10−11 R H0 77.552 1.513 × 10−12 R H0
0.8 76.477 2.452 × 10−12 R H0 76.690 2.229 × 10−12 R H0
0.9 74.019 7.383 × 10−12 R H0 73.164 1.082 × 10−11 R H0

TVsimilar

0.1 31.566 4.729 × 10−4 R H0

MAEtest

74.835 5.124 × 10−12 R H0
0.2 28.559 1.467 × 10−3 R H0 78.643 9.257 × 10−13 R H0
0.3 40.200 1.563 × 10−5 R H0 76.486 2.443 × 10−11 R H0
0.4 40.246 1.53 × 10−5 R H0 68.753 7.714 × 10−11 R H0
0.5 27.707 2.011 × 10−3 R H0 69.862 4.714 × 10−11 R H0
0.6 40.627 1.313 × 10−3 R H0 73.134 1.097 × 10−11 R H0
0.7 43.478 4.084 × 10−6 R H0 71.994 1.825 × 10−12 R H0
0.8 40.727 1.261 × 10−5 R H0 73.922 7.790 × 10−12 R H0
0.9 52.180 1.057 × 10−7 R H0 72.254 1.625 × 10−11 R H0

8.4. Conclusions

In this paper, the MTS metaheuristic algorithm was introduced in systematic logic for
the first time. Taking the representative systematic logic programming PRO2SAT as an ex-
ample, we introduced the MTS metaheuristic algorithm and nine advanced metaheuristics
(GA, EA, ACO, ED, DE, GWO, PSO, SA, and ABC). What is more, the ES algorithm was
added to carry out experiments and comparisons from two dimensions in both the learning
and retrieval phases, giving all the experimental model calculations and quantitatively
analyzing the results. Finally, we used the Friedman test to test the significant difference
between the experimental results in these two dimensions.

Based on the experimental results presented in Sections 8.1–8.3, the MTS model
demonstrated superior performance over other models in both the learning and retrieval
phases, particularly surpassing the exhaustive search approach. In the learning phase,
the MTS metaheuristic algorithm exhibits higher retrieval efficiency by starting from a
high-quality solution. The neighborhood solution generation strategy makes the process
of solution generation simple, direct, and adaptive, resulting in high-quality solutions
during the learning phase. Due to the short-term “memory” and long-term “memory” of
the MTS algorithm, it can balance efficiency and stability. The overall algorithm structure

Mathematics 2024, 12, 721 39 of 40

of the MTS metaheuristic algorithm was simple and with low computational complexity,
providing faster search speed compared with other metaheuristic algorithms and finding
the optimal solution faster. These characteristics were reflected in the LRTR, GLIavg, CT,
AI, and TVsimilar metrics, due to the fact that the active role of the MTS algorithm in the
learning phase provided advantages to the retrieval phase of the MTS model.

A successful new metaheuristic algorithm introduced into logic programming, the
MTS algorithm has achieved excellent performance in systematic logic and is also expected
to be introduced into non-systematic logic to enhance the performance of non-systematic
logic. The enhancement of metaheuristic algorithms for DHNN-SAT models is not limited
to finding consistent interpretations, but can also be used to enhance solution diversity,
logic construction regularity, etc. For future work, metaheuristic algorithms can be used
to enhance logic programming from more dimensions. PRO2SAT’s powerful architecture
provides a new perspective on the application of knowledge in real life. For the future
work, the proposed PRO2SAT can be embedded in logic mining to extract the best logic
rules to classify and predict palm oil.

Author Contributions: Conceptualization, Project Administration, Writing—Original Draft, J.C.; Visual-
ization, Y.G.; Resources, M.S.M.K.; Formal Analysis, Investigation, C.Z.; Methodology, Writing—Review
& Editing, N.A.R.; Validation, M.A.M. and N.E.Z.; Funding Acquisition, C.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Xinglin Scholar, Chengdu University of Traditional Chinese
Medicine with Project number (QNXZ2018042).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to express special thanks to all researchers in the AI
Research Development Group for their continued support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [CrossRef] [PubMed]
2. Vigilante, K.; Escaravage, S.; McConnell, M. Big Data and the Intelligence Community-Lessons for Health Care. N. Engl. J. Med.

2019, 380, 1888–1890. [CrossRef] [PubMed]
3. Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002, 35,

2279–2301. [CrossRef]
4. Dang, X.; Tang, X.; Hao Ren, J. Discrete Hopfield neural network based indoor Wi-Fi localization using CSI. EURASIP J. Wirel.

Commun. Netw. 2020, 2020, 76. [CrossRef]
5. Mérida-Casermeiro, E.; Galán-Marín, G.; Muoz-Pérez, J. An Efficient Multivalued Hopfield Network for the Traveling Salesman

Problem. Neural Process. Lett. 2001, 14, 203–216. [CrossRef]
6. Chu, P.P. Applying Hopfield network to find the minimum cost coverage of a Boolean function. In Proceedings of the First

Great Lakes Symposium on VLSI, Kalamazoo, MI, USA, 1–2 March 1991; IEEE Computer Society: Washington, DC, USA, 1991;
pp. 182–183.

7. Abdullah, W.A.T.W. Logic programming on a neural network. Int. J. Intell. Syst. 1992, 7, 513–519. [CrossRef]
8. Chen, J.; Kasihmuddin, M.S.M.; Gao, Y.; Mansor, M.A.; Romli, N.A.; Chen, W.; Zheng, C. PRO2SAT: Systematic Probabilistic

Satisfiability logic in Discrete Hopfield Neural Network. Adv. Eng. Softw. 2023, 175, 103355. [CrossRef]
9. Hussain, K.; Mohd Salleh, M.N.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52,

2191–2233. [CrossRef]
10. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. In Computational

Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands; Academic
Press: Cambridge, MA, USA, 2018; pp. 185–231.

11. Zamri, N.E.; Azhar, S.A.; Mansor, M.A.; Alway, A.; Kasihmuddin MS, M. Weighted Random k Satisfiability for k = 1, 2 (r2SAT) in
Discrete Hopfield Neural Network. Appl. Soft Comput. 2022, 126, 109312. [CrossRef]

https://doi.org/10.1001/jama.2017.18391
https://www.ncbi.nlm.nih.gov/pubmed/29532063
https://doi.org/10.1056/NEJMp1815418
https://www.ncbi.nlm.nih.gov/pubmed/31091370
https://doi.org/10.1016/S0031-3203(01)00178-9
https://doi.org/10.1186/s13638-020-01692-7
https://doi.org/10.1023/A:1012751230791
https://doi.org/10.1002/int.4550070604
https://doi.org/10.1016/j.advengsoft.2022.103355
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1016/j.asoc.2022.109312

Mathematics 2024, 12, 721 40 of 40

12. Someetheram, V.; Marsani, M.F.; Mohd Kasihmuddin, M.S.; Zamri, N.E.; Muhammad Sidik, S.S.; Mohd Jamaludin, S.Z.; Mansor,
M.A. Random Maximum 2 Satisfiability Logic in Discrete Hopfield Neural Network Incorporating Improved Election Algorithm.
Mathematics 2022, 10, 4734. [CrossRef]

13. Muhammad Sidik, S.S.; Zamri, N.E.; Mohd Kasihmuddin, M.S.; Wahab, H.A.; Guo, Y.; Mansor, M.A. Non-Systematic Weighted
Satisfiability in Discrete Hopfield Neural Network Using Binary Artificial Bee Colony Optimization. Mathematics 2022, 10, 1129.
[CrossRef]

14. Kho, L.C.; Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Propositional Satisfiability Logic via Ant Colony Optimization in
Hopfield Neural Network. Malays. J. Math. Sci. 2022, 16, 37–53.

15. Ba, S.; Xia, D.; Gibbons, E.M. Model identification and strategy application for Solid Oxide Fuel Cell using Rotor Hopfield Neural
Network based on a novel optimization method. Int. J. Hydrogen Energy 2020, 45, 27694–27704. [CrossRef]

16. Glover, F. Tabu search: A tutorial. Interfaces 1990, 20, 74–94. [CrossRef]
17. Glover, F.; Laguna, M. Tabu search. In Handbook of Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 1998;

pp. 2093–2229.
18. Gopalakrishnan, M.; Mohan, S.; He, Z. A tabu search heuristic for preventive maintenance scheduling. Comput. Ind. Eng. 2001, 40,

149–160. [CrossRef]
19. Meeran, S.; Morshed, M.S. A hybrid genetic tabu search algorithm for solving job shop scheduling problems: A case study.

J. Intell. Manuf. 2012, 23, 1063–1078. [CrossRef]
20. Žulj, I.; Kramer, S.; Schneider, M. A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem.

Eur. J. Opeproportionnal Res. 2018, 264, 653–664. [CrossRef]
21. Lin, G.; Guan, J.; Li, Z.; Feng, H. A hybrid binary particle swarm optimization with tabu search for the set-union knapsack

problem. Expert Syst. Appl. 2019, 135, 201–211. [CrossRef]
22. Mohd Jamaludin, S.Z.; Mohd Kasihmuddin, M.S.; Md Ismail, A.I.; Mansor, M.A.; Md Basir, M.F. Energy based logic mining

analysis with hopfield neural network for recruitment evaluation. Entropy 2021, 23, 40. [CrossRef]
23. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
24. Gendreau, M.; Iori, M.; Laporte, G.; Martello, S. A Tabu search heuristic for the vehicle routing problem with two-dimensional

loading constraints. Int. J. 2008, 51, 4–18. [CrossRef]
25. Misevicius, A. A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 2005, 30, 95–111. [CrossRef]
26. Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105. [CrossRef]
27. Emami, H.; Derakhshan, F. Election algorithm: A new socio-politically inspired strategy. AI Commun. 2015, 28, 591–603. [CrossRef]
28. Pelikan, M.; Sastry, K.; Goldberg, D.E. Multiobjective estimation of distribution algorithms. In Scalable Optimization via Probabilistic

Modeling; Springer: Berlin/Heidelberg, Germany, 2006; pp. 223–248.
29. He, Y.; Zhang, F.; Mirjalili, S.; Zhang, T. Novel binary differential evolution algorithm based on taper-shaped transfer functions

for binary optimization problems. Swarm Evol. Comput. 2022, 69, 101022. [CrossRef]
30. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
31. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]

[PubMed]
32. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2015.
33. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in

optimization problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]
34. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimiza-

tion. IEEE Trans. Evol. Comput. 2008, 13, 398–417. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math10244734
https://doi.org/10.3390/math10071129
https://doi.org/10.1016/j.ijhydene.2020.07.127
https://doi.org/10.1287/inte.20.4.74
https://doi.org/10.1016/S0360-8352(01)00014-6
https://doi.org/10.1007/s10845-011-0520-x
https://doi.org/10.1016/j.ejor.2017.06.056
https://doi.org/10.1016/j.eswa.2019.06.007
https://doi.org/10.3390/e23010040
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1002/net.20192
https://doi.org/10.1007/s10589-005-4562-x
https://doi.org/10.1137/0202009
https://doi.org/10.3233/AIC-140652
https://doi.org/10.1016/j.swevo.2021.101022
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1126/science.220.4598.671
https://www.ncbi.nlm.nih.gov/pubmed/17813860
https://doi.org/10.1007/s00500-020-05527-x
https://doi.org/10.1109/TEVC.2008.927706

	Introduction
	Motivation
	Inefficient Learning Phase of DHNNs
	Limited Solution Diversity in Retrieval Phase of DHNN

	Probabilistic 2 Satisfiability (PRO2SAT)
	PPRO2SAT in Discrete Hopfield Neural Network (DHNN)
	Objective Function of PRO2SAT in Learning Phase
	Proposed Metaheuristics
	Proposed Mutation Tabu Search Algorithm (MTS)
	Initialization
	Generation Strategy to Neighborhood Solution
	Generation Strategy to Candidate Solution
	Fitness Assessment
	Mutation

	Baseline Model

	Experimental Setup
	Simulation Design
	Parameters Assignment
	Performance Evaluation Metrics
	Learning Phase Metrics
	Retrieval Phase Metrics

	Simulation Dataset

	Result and Discussions
	Learning Phase
	Retrieval Phase
	Friedman Test
	Conclusions

	References

