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Abstract: We develop an empirical model of the market for mobile services in the USA based on
providers’ response functions. Guided by a duopoly model, we obtain our empirical response
functions from an approximation of quarterly response data on smartphone subscriptions by sigmoid
functions of time. The robustness analysis suggests that our model fits the data well and outperforms
the regression model. Further, we demonstrate that our empirical response functions satisfy the
conditions for semi-cyclic contractions which guarantee the existence, uniqueness and stability of
long-run equilibrium.
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1. Introduction

Using response functions in a duopoly market model, we develop an empirical model
of the market for mobile services in the USA. The wireless telecommunications market
is dominated by two providers, AT&T and Verizon, which serve over 75% of the mar-
ket. Our empirical strategy relies on the approximation of quarterly data on smartphone
subscriptions by continuous functions from the sigmoid family. Guided by our duopoly
model, we reformulate this approximation to obtain providers’ response functions. Our
model is parsimonious and outperforms the alternative approach of directly estimating the
response functions with a polynomial specification. Importantly, our model features unique
equilibrium because the empirical response functions satisfy the conditions for semi-cyclic
contractions obtained in [1]. In fact, numerical simulations in the appendix suggest that the
model converges to equilibrium from a range of initial conditions significantly wider than
their hypotheses.

Market models relying on response functions date as early as [2], which introduces a
model of a market where a few players (known as an oligopoly market) control the price and
supply quantity of the goods being traded. In the original model, a few players sequentially
respond to each others’ quantities in a rational way, i.e., pursuing profit maximization in
their response. The subsequent literature has enriched the response function approach
to model market equilibrium by avoiding the rationality assumption [3,4]. In another
enrichment of the approach by [5], each company attempts to guess what change in
production the other players will make in time t, while still using data up to period t.

In a baseline Cournot duopoly model, two producers (firms) are competing for the
same consumers and striving to meet the demand with overall production of X = x1 + x2,
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where xi, i = 1, 2, is the amount produced by the ith firm. The market price is given by
P(X) = P(x1 + x2), which is the inverse of the demand function. The (inverse) demand
does not change over time and the producers cannot alter it. Their production technologies
are reflected in their cost functions ci(xi). Both firms act rationally, i.e., each firm chooses
quantity xi to maximize its profit, with profit (payoff) functions:

Πi(x1, x2) = xiP(x1 + x2)− ci(xi), i = 1, 2. (1)

Notably, each firm i = 1, 2 takes its competitor’s decision as given, formally solving
max{Πi(xi, xi) : xi, assuming that xj, j ̸= i is fixed}. Provided that functions P and ci,
i = 1, 2, are differentiable, firms’ optimal solutions satisfy the system of equations:∣∣∣∣∣

∂Π1(x1,x2)
∂x1

= P(x1 + x2) + x1P′(x1 + x2)− c′1(x1) = 0
∂Π2(x1,x2)

∂x2
= P(x1 + x2) + x1P′(x1 + x2)− c′2(x2) = 0.

(2)

There are various ways to approach (2). The direct approach of obtaining x1 = b1(x2)
and x2 = b2(x1), called response functions [6], may encounter technical limitations. Specif-
ically, exact response functions bi(xj) and their fixed points bi(yj) = yi, i ̸= j, i, j = 1, 2,
may be difficult or impossible to obtain. Further, if the model is not a stable one, exact
or approximate solutions may not be even close to the market equilibrium. Separately to
these concerns, one needs to obtain sufficient conditions for a solution (y1, y2) of (2) to be a

solution of (1) which are either the second-order conditions, i.e., ∂2Πi(x1,x2)

∂x2
i

(y1, y2) < 0 for

i = 1, 2, or payoff functions Πi being concave ones [7–9]. Finally, this approach assumes
that the payoff functions Πi are differentiable, while in certain settings these may not even
be continuous and require different optimization techniques.

In a departure from the direct approach focused on obtaining solutions x1 = b1(x2)
and x2 = b2(x1) to (2), ref. [10] considers the alternative response functions:

xi =
c′i(xi)− P(x1 + x2)

P′(x1 + x2)
= Fi(x1, x2), i = 1, 2.

The authors analyze these functions in the context of modeling firms’ responses
over time.

We follow this departure from the direct approach of solving maximization (1). Our
main premise is that each firm responds to their and that of their competitor’s past period
market results (decisions), i.e., for each ordered pair (x1, x2), where x1 is the quantity sold
by the first firm and x2 is the quantity sold by the second firm, they change their output
accordingly. There are two functions F1(x1, x2) and F2(x1, x2), which are their responses
to the ordered pair of the quantities sold (x1, x2). Importantly, turning to firms’ response
functions substitutes the maximization problem of (1) with a coupled fixed point problem.
This, in turn, renders all assumptions of concavity, differentiability or even continuity
unnecessary [1,10]. In particular, ref. [1] shows that in the settings of [11] it is possible to
widen their conditions for ensuring the existence and uniqueness of the market equilibrium
beyond the settings of payoff function maximization.

An extensive study on the oligopoly markets can be found in [7–9,12]. Some recent
results on oligopoly markets are in [13–17] and those of duopoly markets especially are
in [18–20]. The approach for the investigation of equilibrium in duopoly markets by
response functions was introduced in [10] and further investigated in [1].

In this paper, we use response functions in a duopoly market to build an empirical
model of the USA wireless telecommunications market. We horse race two alternative
approaches of obtaining the response functions: a direct approach of fitting polynomial
specification with the proposed more conceptually coherent approach combining a time
series approximation of the market quantities with a theory of market response in a
duopolistic market. This paper concludes with evidence on the statistical superiority
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of the proposed approach and on the range of starting values guaranteeing convergence to
unique long-run equilibrium.

2. Materials and Methods
2.1. Coupled Fixed Points of Semi-Cyclic Maps

Let A be a nonempty subset of a metric space (X, ρ). The map T : A → A is said to
have a fixed point x ∈ A if ρ(ξ, Tξ) = 0 [21].

Following [21], there is an enormous number of generalizations. We will use the idea
of a coupled fixed point introduced in [22].

Definition 1 ([22,23]). Let A be a nonempty subset of a metric space (X, ρ), F : A × A → A.
An ordered pair (x, y) ∈ A × A is said to be a coupled fixed point of F in A if x = F(x, y) and
y = F(y, x).

A deep result on the connection between fixed points and coupled fixed points is
obtained in [24]. It is proven there that we can consider instead of the map F : A × A → A
the map T : A × A → A × A, defined by T(x, y) = (F(x, y), F(y, x)). Then, the ordered
pair (x, y) is a coupled fixed point for F if and only if it is a fixed point for T.

The idea to investigate for the existence and uniqueness of fixed points cyclic maps,
i.e., T : A → B and T : B → A, instead of self maps was initiated in [25]. This was further
generalized in the context of maps of two variables in [26].

Definition 2 ([26]). Let A and B be nonempty subsets of a metric space (X, ρ). The ordered pair of
maps (F, G), F : A × A → B and G : B × B → A is called a cyclic ordered pair of maps.

Definition 3 ([26]). Let A and B be nonempty subsets of a metric space (X, ρ) and (F, G) be a
cyclic ordered pair of maps. An ordered pair (x, y) ∈ A × A is said to be a coupled fixed point of F
in A if x = F(x, y) and y = F(y, x).

Definition 4 ([26], Definition 3.4 and Theorem 4.1). Let A and B be nonempty subsets of a
metric space (X, ρ) and (F, G) be a cyclic ordered pair of maps. We say that the cyclic ordered pair
of maps (F, G) is a cyclic contraction if there exists α ∈ (0, 1/2) such that

ρ(F(x, y), G(u, v)) ≤ α(ρ(x, u) + ρ(y, v))

holds for every x, y ∈ A and u, v ∈ B.

Theorem 1 ([26], Theorem 4.1). Let A and B be nonempty subsets of a metric space (X, ρ)
and (F, G) be a cyclic contraction. Then, F and G have a unique common coupled fixed point
(x0, y0) ∈ A × A ∪ B × B, i.e., x0 = F(x0, y0) = G(x0, y0) and y0 = F(y0, x0) = G(y0, x0).

Moreover, it is proven in [27] that x0 = y0.
In order to apply the technique of coupled fixed points and a generalization of coupled

fixed points, the above-mentioned notion was presented in [10]. When we investigate
duopoly with players’ response functions F and G, we see that each player, using the
information about their production and the rival’s production, chooses a change in their
production, i.e., F : A × B → A, G : A × B → B. Thus, we reach maps that are not the
cyclic type of maps from Definition 2. The authors of [10] called these new type of maps
cyclic again. A more natural name is introduced in [28], where the authors called them an
ordered pair of semi-cyclic maps.

Definition 5 ([10,28]). Let A, B be nonempty subsets of a metric space (X, ρ) and F : A× B → A,
G : A × B → B. An ordered pair (F, G) is called an ordered pair of semi-cyclic maps.
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Definition 6 ([10,28]). Let A, B be nonempty subsets of a metric space (X, ρ) and (F, G) be an
ordered pair of semi-cyclic maps. An ordered pair (ξ, η) ∈ A × B is called a coupled fixed point of
(F, G) if ξ = F(ξ, η) and η = G(ξ, η).

Whenever A = B and G(x, y) = F(y, x), we obtain the notion of coupled fixed points
from Definition 1.

There is a sequence of results that guarantees the existence and uniqueness of coupled
fixed points for semi-cyclic kinds of maps and thus the existence and uniqueness of market
equilibrium in duopoly markets [1,10,28].

We will use a result from [1].

Theorem 2 (Assumption 1, [1]). Let us consider a duopoly market, satisfying the following:

1. The two players are producing homogeneous goods that are perfect substitutes.
2. The first player can produce quantities from the set A, and the second one can produce

quantities from the set B, where A and B are closed, nonempty subsets of a complete metric
space (X, ρ).

3. Let there be a closed subset D ⊆ A × B and maps F : D → A, G : D → B such that

(F(x, y), G(x, y)) ⊆ D

for every (x, y) ∈ D are the response functions for players one and two, respectively.
4. Let α < 1, such that the inequality:

ρ(F(x, y), F(u, v)) + ρ(G(x, y), G(u, v)) ≤ α(ρ(x, u) + ρ(y, v)) (3)

holds for all (x, y), (u, v) ∈ A × B.

Then, there is a unique market equilibrium pair (ξ, η) in D, i.e., ξ = F(ξ, η) and η = G(ξ, η).
If in addition the symmetry condition G(x, y) = F(y, x) holds, then the market equilibrium

pair (ξ, η) satisfies ξ = η.

For any initial start of the market (x0, y0), we will consider the sequence of iterated pro-
ductions of the two players (xn, yn), defined by (xn, yn) = (F(xn−1, yn−1), G(xn−1, yn−1)).
It leads to a more complicated iterated formula,

x1 = F(x0, y0), y1 = G(x0, y0),

x2 = F(F(x0, y0), G(x0, y0)), y2 = G(F(x0, y0), G(x0, y0)),

x3 = F(F(F(x0, y0), G(x0, y0)), G(F(x0, y0), G(x0, y0))),

y3 = G(F(F(x0, y0), y1), G(F(x0, y0), G(x0, y0))),

etc. We will sometimes use the notation xn = Fn(x0, y0) = Fn−1(xn−1, yn−1), yn = Gn−1

(xn−1, yn−1).
A similar result to that in Theorem 2 is obtained in [10], where condition (3) is replaced

by the inequality

ρ(F(x, y), F(u, v)) + ρ( f (z, w), f (t, s)) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s) (4)

for all (x, y), (u, v), (z, w), (t, s) ∈ A × B (Assumption 1, [10]).
It is proven in [1] that both conditions are equivalent.

2.2. Approximation with Sigmoid Functions

Our approach to work with sigmoid functions is motivated by a fundamental result
for approximating continuous functions due to [29]. The author demonstrates that for
every continuous function in a closed interval, there exists a finite linear combination of
sigmoids that approximates the function with a predetermined accuracy. (Actually, this
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follows from Stone’s Theorem, which states that every Stone algebra is dense in the space
of continuous functions over a compact set. Note that linear combinations of the sigmoids
together with constants are trivially such a Stone algebra.) In the following years, the theory
of approximating real data with the sigmoids has seen rapid development, e.g., see [30–34].

A sigmoid function (also known as an S-curve) is an increasing function of two
horizontal asymptotes y = a and y = b (Figure 1).

Figure 1. A sigmoid function.

Then, approximations of real-world data are sought through a linear combination of a
set of sigmoidal curves. Importantly, there is a trade off between the accuracy of the fit and
parsimony. To pick a representation, it is common to gauge models’ performance by testing
a hypothesis of matching real data with the approximations, e.g., see [30–34].

Sigmoid functions have gained popularity with applications ranging from artificial
neural networks (as activation functions) to simple classification algorithms. In our model,
we use sigmoid functions to better capture the following important characteristics of
our settings:

• Nonlinearity in an intuitive way with respect to a small number of parameters.
• Switching agents’ behavior, e.g., between different suppliers, products, etc.
• As a robust technical tool capable of modeling changes in a modular way by scaling

these changes down to a predefined range (a to b), thus allowing us to incorporate
strategies that are built on incremental changes of output.

In general, one of the main advantages for relying on approximations with sigmoid
functions is that these can be applied to both continuous and binary variables (in the latter
case, approximation with sigmoids involves the introduction of a threshold).

Related to the trade off above, there are infinitely many continuous curves passing
through the data points. Thus, a starting point is the choice of curves of a certain class,
i.e., meeting predetermined conditions. For example, consider the class of the logistic curve
f (x) = 1

1+e−x , which is a solution to the logistic differential equation

dS
dx

= c(S − a)(b − S), (5)

for c = b = 1 and a = 0. Once a class of curves is decided on, the approximation proceeds
with some kind of minimization of the deviation between the real and the approximated
data by some criterion (e.g., the method of least squares). (Such approximations can be
made using modern computer algebra systems. For example, in Wolfram Mathematica,
this can be calculated with the “Fit command”).

The main classes of sigmoids are presented in Figure 2. They have similar behavior
but differ on the intervals that double the population. These functions are normed so that
the derivative at zero equals 1.

The choice of a particular type of sigmoid is determined by the assumption about
the type of impact, e.g., the rate of change, may depend on both the current state and
the constraints on the sigmoid (a ≤ S(x) ≤ b). The simplest type of such dependence is
described by the logistic equation (5). Its solution is the logistic curve



Mathematics 2024, 12, 724 6 of 21

S(x) = a +
b − a

1 + e−c(x−x0)
, (6)

where x0 is the “inflection point” of the curve. A generalization of the logistic equation
giving a more general form of sigmoid is

dS
dx

= cg(S − a)h(b − S),

where g and h are non-decreasing functions. A particular example is the equation

dS
dx

= c(S − a)α(b − S)β, α, β > 0.

Sigmoids describe evolutionary processes very well because those are characterized
by three stages: slow growth, until reaching a critical region of rapid growth, followed by
slow growth. Further, the population size is bounded from above. Indeed, the S-curves
describe such processes well. Following [35], knowing how long it takes for the population
to double suffices for constructing the sigmoid that describes the evolutionary process
continuously. This approach is remarkable for the fact that from information about a small
interval of time, we can reconstruct the evolutionary behavior over the entire interval.

The model we are looking at is the number of mobile users in the USA. It is well
known that this market starts from zero users and its growth is limited (it is possible for one
person to use more than one service, not too many in number). This means that sigmoids
will describe this process well. We consider linear combinations of sigmoids to obtain a
better approximation.

Figure 2. A few basic sigmoid functions: x
1+|x| ,

2
π arctan

(
π
2 x

)
, x√

1+x2 and erf
(√

π
2 x

)
.

2.3. Testing Model’s Fit

Naturally, there are differences between our continuous model and the discrete real-
world data. We interpret these differences as insignificant random deviations. To gauge our
model’s performance and the insignificance of these deviations, it is common to perform
statistical testing. We use Pearson χ2 and the Kolmogorov–Smirnov test. These two tests are
most commonly applied in testing non-parametric hypotheses (testing whether a sample
has a predetermined distribution or whether two samples have the same distribution).

The Pearson χ2 test is an asymptotic one based on the Central Limit Theorem. The test
statistic has a distribution that is not actually known but converges asymptotically (very
fast, provided that the hypothesis is true) to a Pearson χ2 distribution. The Kolmogorov–
Smirnov test is more reliable, but more complicated to apply. It is based on a Kolmogorov
result for the supremum of the difference between the assumed distribution and the
empirical sampling distribution under the “null hypothesis”.
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By these tests, we check whether the differences between the empirical and approx-
imated data are insignificant random deviations (acceptance of the null hypothesis) or
significant (rejection of the null hypothesis). Wolfram Mathematica calculates the probabil-
ity of randomness of deviations (p-value). We seek significance with p-value < 0.05 (the
5% limit).

3. Empirical Response Functions

We have data for the number of smartphone subscribers to two companies over a ten-
year period, {(xn, yn)}40

n=0. Formally, (xn, yn) ∈ X × Y, where X and Y are the sets of possi-
ble numbers of consumers for each firm. We are searching for an ordered pair of semi-cyclic
maps (F, G) : X ×Y → X ×Y that satisfies the equality (F(xn, yn), G(xn, yn)) = (xn+1, yn+1),
i.e., the response function of each company.

3.1. Data and Empirical Strategy

We use publicly available information on the distribution of mobile operators in the
USA for the period 2009–2021, distributed by quarters in percentage of market share from
https://www.statista.com (accessed on 20 March 2022).

In Figure 3a, we plot the data in a graphic view.

(a) (b)
Figure 3. Percentage shares in the mobile market in the USA. (a) Graphic data for the seven mobile
operators in the USA (2009–2020). (b) Graphic data for the two biggest operators, AT&T in blue and
Verizon in red (2009–2020).

Our analysis proceeds with the two biggest mobile service providers, AT&T (in blue
color) and Verizon (in red color). Specifically, we abstract from all smaller providers,
assuming that the two big operators AT&T and Verizon respond only to each other and
not to the rest of the market. While we acknowledge that a third operator has a growing
share, it is only in the last four quarters, and handling a market with three participants with
the proposed methods remains an open question. The lack of long-term data for the third
operator and the complexity of modeling motivates us to analyze the market as a duopoly.

We plot in Figure 3 the percentage shares only for the two biggest mobile providers.
We try to model the response functions of the two big providers (AT&T and Verizon)
in the form of semi-cyclic maps F : X × Y → X and G : X × Y → Y, where X and Y
are the sets of consumers for AT&T and Verizon, respectively, rather than the percentage
shares in the market. (Formallyspeaking, there is a structural change in the market taking
place sometime in the 36th quarter, where something happens and the other big player
(Sprint) disappears and its customers are reallocated. Again, handling this structural break
is challenging both from the point of insufficient data and from a technical viewpoint.
Furthermore, according to data from www.statista.com (accessed on 15 February 2024)
for the third quarter of 2023, AT&T has 46% and Verizon has 28%, totaling 74%, from a
market of around 310 million mobile subscribers. With this concentration, we believe that
the duopoly model provides a reasonably good description of the market and a probable

https://www.statista.com
www.statista.com
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equilibrium that would last if no changes had occurred, such as new regulations or the
entry or exit of operators from the market.)

3.2. Approximation of the Evolution of Smartphone Subscriptions over Time

We need to address a few challenges before we proceed with the construction of
empirical response functions.

The real data at our disposal are discrete. We have information at a finite number
of moments in time, but we will try to construct continuous response functions. It is
well known that an infinite number of functions pass through a finite number of points
even when the form of these functions is known to some extent—for example, continuous,
differentiable, etc. We will assume that the response functions will be differentiable and that
their partial derivatives will be bounded so that no too-big changes of their market shares
can appear. In addition, the data are not always accurate enough in practice, i.e., values are
known to have some error.

We are searching an approximation of the discrete data of the total number of users
of mobile services in the USA by a function S. Note the assumption that S is bounded
(0 ≤ a ≤ S(x) ≤ b), where b is the upper bound in millions for the possible number of
mobile users in the USA, naturally limited. Therefore, a sigmoid kind of function will best fit
the data [29,36]. The sigmoid functions are monotone and nonlinear, with an S-type graph
and with derivatives that have a bell-formed graph and a pair of horizontal asymptotes.

The choice of the specific type of sigmoid [29,36] is determined by the assumption of
the type of impact. For the rate of change, we assume that it depends on both the current
state and the constraints on the sigmoid 0 ≤ a ≤ S(x) ≤ b ≤ 334.5. The simplest type of
such dependence is described by the logistic differential Equation (5), representing a special
case of the Bernoulli differential equation, where S is the unknown sigmoid function, which
best fits the data, a and b are its lower and upper horizontal asymptotes and c is a coefficient
of the proportionality factor, characterizing the force of impact (usually it is about 1). In our
model, we set c = 1.

The meaning of the form of this equation [29] is that for small values of the variable
y, the rate of change is approximately proportional to the accumulated value y, and for
values close to the maximum value of y, the rate of change will be close to 0.

The solution of this equation is the so-called logistic curve (6) [37], where x0 is the
starting point of the available data.

We obtain an approximation curve for the total number of mobile consumers in the
USA in the form

S(y) =
300

0.94603451639337 + 3.82872969606594e−0.3654826455459846y ,

where y is number of years from the starting point y0 = 2009 (Figure 4).
The maximum number of smartphones in the USA in the near future will not exceed

300
0.9460 = 317.125 million smartphones, which is a realistic estimate given the actual number
of smartphones at the time of the study: the number in 2021 is set to be 296.8 million and in
the nearby future the number in 2022 is set to be 302 million.

We see that the function S fits the data very well (Figure 4). We see that the start of the
process is about 15 years away from the zero one (2009), which is somewhere in the year
1993/94. It is actually close to the real beginning of mobile services. Therefore, the sigmoid
function S presents a fair model of the number of mobile users, and we can assume that the
total number will not exceed 320 million in the near future.

With the use of the function S, we calculate an approximation of the total number of
mobile service users in quarters, rather than years.
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Figure 4. Total number of mobile users (2009–2020) and their approximation by the sigmoid func-
tion S(y).

3.3. Construction of the Response Function

We prefer to use three different notations for the ordered pairs of response functions to
distinguish the three models that we derive from the available empirical data. We denote
by (F, G) the model constructed using least squares, by (F1, G1) that obtained with sigmoid
functions and by (F2, G2) the linear approximation of (F1, G1).

We will use intuition from our duopoly model to reformulate the time series approx-
imation of the total number of consumers and obtain an approximation of the response
functions. Specifically, we use the method of least squares for functions of two variables
to approximate the response functions of the two biggest mobile operators in the market
F : U × V → U and G : U × V → V, where U and V are the sets of the possible numbers of
consumers. We will minimize ∑39

k=1(F(uk, vk)− uk+1)
2 and ∑39

k=1(G(uk, vk)− vk+1)
2, where

ui is the total number of consumers of AT&T and vi is that of Verizon for the quartile
i. We will search the functions F and G to be a linear combination of the functions 1,
u, v, uv, u2, v2, u2v, uv2, u3 and v3. Let us set f0(u, v) ≡ 1, f1(u, v) ≡ u, f2(u, v) ≡ v,
f3(u, v) ≡ u2, f4(u, v) ≡ uv, f5(u, v) ≡ v2, f6(u, v) ≡ u3, f7(u, v) ≡ u2v, f8(u, v) ≡ uv2

and f9(u, v) ≡ v9. Let us denote F(u, v) = ∑9
i=0 ai fi(u, v) and G(u, v) = ∑9

i=0 bi fi(u, v). We
look for {(ai, bi)}9

i=0 that minimize the problems∣∣∣∣∣∣∣∣∣∣∣
min

{
39

∑
k=1

F(uk, vk)− uk+1

}

min

{
39

∑
k=1

G(uk, vk)− vk+1

}
.

(7)

As noted above, there is an infinite number of response functions that will fit the data,
so we need to make a few regularizations. We assume that the response functions have
partial derivatives, which satisfy certain conditions. Intuitively, we assume that the mobile
operators cannot increase or decrease their numbers of consumers too fast. Thus, we search
for a solution of (7) satisfying∣∣∣∣∣∣∣∣

sup
{∣∣∣∣∂F

∂u
(u, v)

∣∣∣∣+ ∣∣∣∣∂G
∂u

(u, v)
∣∣∣∣ : u ∈ [0, 90], v ∈ [0, 143]

}
< 1

sup
{∣∣∣∣∂F

∂v
(u, v)

∣∣∣∣+ ∣∣∣∣∂G
∂v

(u, v)
∣∣∣∣ : u ∈ [0, 90], v ∈ [0, 143]

}
< 1

(8)
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Wolfram Mathematica delivers two response functions F and G for AT&T and Verizon,
respectively:

G(u, v) = 16.3284 + 0.71983021v + 0.04093051u

+
8.05785

106 v2 +
2.5263

104 uv − 6.44817
106 u2

+
4.03746

108 v3 +
1.2852

108 v2u − 5.26538
108 vu2 − 3.21218

108 u3

and
F(u, v) = 4.15613 + 0.179974v + 0.782994u

+
2.46193

106 v2 +
3.41712

104 uv +
7.43075

105 u2

+
1.52606

108 v3 +
1.58968

108 v2u +
2.16049

107 vu2 +
1.47514

106 u3,

where u is the total number of customers of AT&T and v is the total number of customers
of Verizon.

For each ordered pair (u, v), the response functions F and G present the reactions
of each of the mobile operators that leads to a change in the number of their consumers,
i.e., (F(u, v), G(u, v)) will be the number of consumers for each of the players after reacting
to the market results (u, v).

3.4. Alternative Model with Consumer Shares

An alternative approach to modeling these data is in shares as opposed to levels. That
is, we can work with functions representing the market share instead of the number of
consumers. From the market share, we can recover the real number of subscribers using
the total market consumers. As before, we approximate the data from Figure 3a as time
series by sigmoid functions.

Let us denote with S1 and S2 the functions that represent the percentage share of the
mobile providers AT&T and Verizon as a function of time, respectively. Due to the assump-
tion that f and g are percentages, it follows that they are bounded (0 ≤ a ≤ si(x) ≤ b ≤ 1).
This assumption leads us to search for a sigmoid function that will fit best the data, as it was
performed for the approximation of the total number of mobile service users. We look for
an approximation of the form of a linear combination of logistic curves A + B fi(t) + Cgi(t),
t ∈ {tk}

p
k=0, n and m, where fi(t) = 1

1+e−(t−n) and gi(t) = 1
1+e−(t−m) . The functions f and

g are of the same class of sigmoidal functions, but with different parameters. One of the
functions represents the desire of one operator to increase its users, and the other function is
the behavior of its competitor, which leads to a decrease in the users of the first participant.
The two functions taken together give the reaction, but over time, not as a reaction to
market performance.

This kind of logistic curve describes change in the market share of the operator
so that their policy f1 tries to increase its impact and the policy of the other player g1
tries to decrease its impact. The constants A and A + B + C are, respectively, the lower
and upper limits (horizontal asymptote) of the described market share of the considered
mobile operator.

Using a series of numerical experiments in the Wolfram Mathematica System, the coef-
ficients A, B and C were calculated for n = 28 and m = 36, best describing the available
quarter data on the percentage presence of the market of the two mobile operators AT&T
and Verizon.

The resulting functions for the percentage presence of AT& T and Verizon by quarters
over time are the following functions.
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The function for AT&T is

S1(t) = D + E f (t) + Fg(t) = 0.3275 + 0.0634
1

1 + e28−t + 0.0557
1

1 + e36−t

and D + E + F = 0.4467.
The function for Verizon is

S2(t) = A + B fi(t) + Cgi(t) = 0.3411 − 0.0469
1

1 + e28−t + 0.0017
1

1 + e36−t

and A + B + C = 0.2958.
The functions are plotted in Figures 3b and 5a for Verizon and AT&T, respectively,

where in black are the real data and in blue is the estimation, obtained.

(a) AT&T (b) Verizon
Figure 5. A sigmoid approximation of the percentage as a function of the time.

We specifically note that the graphs are automatically scaled and vertically the curves
appear more “stretched” than they would be on a real scale. In fact, the fluctuations of the
real data around the approximating curves (in blue) are quite small, and the measurement
accuracy is exactly 1 unit (1 percent) vertically, and any further rounding will distort the
real data.

3.5. Constructing the Response Functions for the Alternative Model

We construct the response functions of AT&T and Verizon with the help of the sigmoid
function in order to apply the technique from [1]. By repeating the calculation from above,
we obtain the functions that present the numbers of mobile customers of each of the two
biggest operators as sequences dependent of the time.

un = u(tn) = 139.925 − 116.028

1 + e
t

10

vn = v(tn) = 93.999 − 119.648

1 + e
t

10−2

(9)

recursively, depending only on their values in the previous quarter (3-month period), where
un is the total number of consumers for AT& T and vn the total number for Verizon.

We search for functions F1 and G1 such that

un = u(tn) = F1(un−1, vn−1),

vn = v(tn) = G1(un−1, vn−1)
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From (9) and taking into account that tn + 1 = tn+1, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un+1 = 139.925 − 116.028

1 + e
tn+1

10

vn+1 = 93.999 − 119.648

1 + e
tn+1

10 −2

un = 139.925 − 116.028

1 + e
tn
10

vn = 93.999 − 119.648

1 + e
tn
10−2

,

(10)

which holds for any n. Transforming the third and fourth equations, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un+1 = 139.925 − 116.028

1 + e
tn+1

10

vn+1 = 93.999 − 119.648

1 + e
tn+1

10 −2

tn = 20 + 10 ln
(

116.028
139.925 − un

− 1
)

tn = 10 ln
(

119.648
93.999 − vn

− 1
)

.

Substituting the third and fourth equations into the first and second by all possible
combinations, we notice that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un+1 = 1243.16 − 1345139.16
1079.34 + un

un+1 = 3.48983 +
2870.98

115.042 − vn

vn+1 = 1231.65 − 1430360.97
1163.3 + vn

vn+1 = 110.695 +
2207.56

7.70506 − un
.

Therefore, we arrive at the response functions

F1(u, v) = 1230.77 +
28.7098

115.042 − v
− 1331687.77

1079.34 + u

and
G1(u, v) = 1220.44 − 1416057.36

1163.3 + v
+

22.0756
7.70506 − u

as a consequence of (10).
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Let F2 and G2 be the Taylor series of F1 and G1 to power 1 around the point
(u, v) = (89, 140). Then, we obtain linear response functions for AT&T and Verizon

F2(u, v) = 8.53491 + 0.0641947v + 0.895879u

G2(u, v) = 9.61236 + 0.895879v + 0.00125026u,

respectively.

4. Model Fit

We proceed to statistically examine the model’s fit and to demonstrate that our model,
based on the sigmoid approximation, delivers superior results in comparison to the direct
estimation of response functions with low-degree polynomials by the least squares method.

4.1. The Least Squares Model

We employ an intuitive process using the obtained ordered pairs of response functions
(F, G), (F1, G1) and (F2, G2). Specifically, we calculate (un+1, vn+1) from

(F(un+1, vn+1), G(un+1, vn+1))

and
(un+1, vn+1) = (Fn+1(u0, v0), Gn+1(u0, v0))

(Figure 6a,b).

(a) (b)
Figure 6. An approximation from using the ordered pair of response functions (F, G). (a) AT&T:
blue—the real data, red—an approximation using un+1 = F(un, vn), green—an approximation
using un+1 = Fn+1(u0, v0). (b) Verizon: blue—the real data, red—an approximation using
un+1 = F(un, vn), green—an approximation using un+1 = Gn+1(u0, v0).

According to the Pearson χ2 test, sequences {F(un, vn)}40
n=0 and {G(un, vn)}40

n=0 fit to
the real data with p-values 99.1713% and 67.5288%, respectively.

According to the Kolmogorov–Smirnov test, {F(un, vn)}40
n=0 and {G(un, vn)}40

n=0 fit to
the real data with p-values 92.5652% and 27.9043%, respectively.

According to the Pearson χ2 test, sequences {Fn(u15, v15)}25
n=0 and {Gn(u15, v15)}25

n=0
fit to the real data with p-values 23.781% and 42.303%, respectively.

According to the Kolmogorov–Smirnov test, {Fn(u15, v15)}25
n=0 and {Gn(u15, v15)}25

n=0
fit to the real data with p-values 32.9008% and 0.0000026531%, respectively. We can reject
the hypothesis that {(Fn(u1, v1), Gn(u1, v1))}40

n=0 fits the real-world data with the noted
p-value, i.e., a high p-value implies good fit.

4.2. The Sigmoid Model

Using the response functions (F1, G1) from the levels model, we plot the number of
consumers for AT&T and Verizon, respectively (Figure 7a,b).
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(a) (b)
Figure 7. An approximation from using the ordered pair of response functions (F1, G1). (a) AT&T:
blue—the real data, red—an approximation using un+1 = F1(un, vn), green—an approximation
using un+1 = Fn+1

1 (u0, v0). (b) Verizon: blue—the real data, red—an approximation using un+1 =

F1(un, vn), green—an approximation using un+1 = Gn+1
1 (u0, v0).

Using the response functions (F2, G2) from the alternative model with market shares,
we plot the number of consumers for AT&T and Verizon, respectively.

According to the Pearson χ2 test, sequences {F1(un, vn)}40
n=0 and {G1(un, vn)}40

n=0 fit
to the real data with p-values 99.9189% and 36.3436%, respectively.

According to the Kolmogorov–Smirnov test, {F1(un, vn)}40
n=0 and {G1(un, vn)}40

n=0 fit
to the real data with p-values 99.9943% and 59.4521%, respectively.

According to the Pearson χ2 test, sequences {Fn
1 (u0, v0)}40

n=0 and {Gn
1 (u0, v0)}40

n=0 fit
to the real data with p-values 41.8444% and 46.9134%, respectively.

According to the Kolmogorov–Smirnov test, {Fn(u0, v0)}40
n=0 and {Gn(u0, v0)}40

n=0 fit
to the real data with p-values 92.5652% and 99.1376%, respectively.

4.3. The Linear Approximation of the Sigmoid Model

Using the response functions (F2, G2) from the levels model, we plot the number of
consumers for AT&T and Verizon, respectively (Figure 8a,b).

(a) (b)
Figure 8. An approximation from using the ordered pair of response functions (F2, G2). (a) AT&T:
blue—the real data, red—an approximation using un+1 = F2(un, vn), green—an approximation
using un+1 = Fn+1

2 (u0, v0). (b) Verizon: blue—the real data, red—an approximation using un+1 =

F2(un, vn), green—an approximation using un+1 = Gn+1
2 (u0, v0).

According to the Pearson χ2 test, sequences {F2(un, vn)}40
n=0 and {G2(un, vn)}40

n=0 fit
to the real data with p-values 95.6712% and 43.9697%, respectively.

According to the Kolmogorov–Smirnov test, {F2(un, vn)}40
n=0 and {G2(un, vn)}40

n=0 fits
to the real data with p-values 92.5652% and 59.4521%, respectively.

According to the Pearson χ2 test, sequences {Fn(u0, v0)}40
n=0 and {Gn(u0, v0)}40

n=0 fit
to the real data with p-values 2.42453% and 5.70819%, respectively.

According to the Kolmogorov–Smirnov test, {Fn(u0, v0)}40
n=0 and {Gn(u0, v0)}40

n=0 fit
to the real data with p-values 0.153465% and 10.4602%, respectively.
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Note that only for four recursive sequences (Fn(u0, v0), Gn(u0, v0)) our modeling
approach based on S-curves presents an approximation with a significant statistical confi-
dence. Recursive approximations sometimes give bad results. The sigmoid approximation
gives better fitting to the real data.

It is important to note that the Cournot model and the model of response functions
actually are static models, i.e., we assume that there is no change in the external conditions
in the market. So, we can conclude that probably there have been some changes in the
external conditions (regulations or new technologies) and internal conditions (the market
policy of the two players), which have changed the response functions, and thus the least
squares method fits well for the quartiles q26 to q41.

5. Existence, Uniqueness and Stability of Market Equilibrium

We show that our empirical response functions (F, G), (F1, G1) and (F2, G2) satisfy the
hypothesis of Theorem 2 so that there exists a long-run equilibrium which is unique and
stable. The next proposition is a simplification of the contractive-type condition that we
need and is easy to check. Its proof is in the appendix.

Proposition 1. Let X and Y be two intervals in R. Let the functions f : X × Y → X and
g : X × Y → Y have continuous partial derivatives in X × Y such that

s1 = sup
{∣∣∣∣∂ f (u, v)

∂u

∣∣∣∣+ ∣∣∣∣∂g(u, v)
∂u

∣∣∣∣ : u ∈ X, v ∈ Y
}

< 1

and

s2 = sup
{∣∣∣∣∂ f (u, v)

∂v

∣∣∣∣+ ∣∣∣∣∂g(u, v)
∂v

∣∣∣∣ : u ∈ X, v ∈ Y
}

< 1.

Then, the ordered pair ( f , g) satisfies (3), i.e.,

| f (x, y)− f (u, v)|+ |g(x, y)− g(u, v)| ≤ max{s1, s2}(|x − u|+ |y − v|).

Proof. Let u, x ∈ X and v, y ∈ Y be arbitrary points. Then, we can write for them

| f (x, y)− f (u, v)| = | f (x, y)− f (x, v) + f (x, v)− f (u, v)|

=

∣∣∣∣∫ y

v

∂ f (x, t)
∂t

dt +
∫ x

u

∂ f (t, v)
∂t

dt
∣∣∣∣

≤
∣∣∣∣∫ y

v

∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂ f (t, v)
∂t

∣∣∣∣dt
∣∣∣∣

(11)

Similarly, we obtain that

|g(x, y)− g(u, v)| ≤
∣∣∣∣∫ y

v

∣∣∣∣∂g(x, t)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂g(t, v)
∂t

∣∣∣∣dt
∣∣∣∣

Adding this to (11), we can see that

S1 = | f (x, y)− f (u, v)|+ |g(x, y)− g(u, v)|

≤
∣∣∣∣∫ y

v

∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂ f (t, v)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ y

v

∣∣∣∣∂g(x, t)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂g(t, v)
∂t

∣∣∣∣dt
∣∣∣∣ (12)

Let us consider
∣∣∣∣∫ x

u

∣∣∣∣∂ f (t, v)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂g(t, v)
∂t

∣∣∣∣dt
∣∣∣∣. The functions we integrate are

non-negative and the limits of the integrals are the same. Therefore,∣∣∣∣∫ x

u

∣∣∣∣∂ f (t, v)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂g(t, v)
∂t

∣∣∣∣dt
∣∣∣∣ = ∣∣∣∣∫ x

u

∣∣∣∣∂ f (t, v)
∂t

∣∣∣∣+ ∣∣∣∣∂g(t, v)
∂t

∣∣∣∣dt
∣∣∣∣ (13)
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From the definition of s1, it follows that
∣∣∣∣∂ f (t, v)

∂t

∣∣∣∣+ ∣∣∣∣∂g(t, v)
∂t

∣∣∣∣ ≤ s1 for every t ∈ X

and that s1 ≥ 0. From this and (13), we obtain∣∣∣∣∫ x

u

∣∣∣∣∂ f (t, v)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ x

u

∣∣∣∣∂g(t, v)
∂t

∣∣∣∣dt
∣∣∣∣ ≤ ∣∣∣∣∫ x

u
s1dt

∣∣∣∣ = s1|u − x| (14)

Similarly, we can prove that∣∣∣∣∫ y

v

∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣dt
∣∣∣∣+ ∣∣∣∣∫ y

v

∣∣∣∣∂g(x, t)
∂t

∣∣∣∣dt
∣∣∣∣ ≤ s2|v − y|

Let us substitute this and (14) in (12). Then, we obtain that

| f (x, y)− f (u, v)|+ |g(x, y)− g(u, v)| ≤ s1|u − x|+ s2|v − y| ≤ λ(|u − x|+ |v − y|)

where λ = max{s1, s2}, but from the definitions of s1 and s2, it follows that 0 ≤ s1 < 1 and
0 ≤ s2 < 1. Therefore, 0 ≤ λ < 1, i.e., we obtain that for any u, x ∈ X and v, y ∈ Y we have

| f (x, y)− f (u, v)|+ |g(x, y)− g(u, v)| ≤ λ(|u − x|+ |v − y|)

where 0 ≤ λ < 1.

We will show that the assumptions in Theorem 2 are satisfied by the response functions’
ordered pairs (F, G), (F1, G1) and (F2, G2).

It is easy to check that

max{F(u, v) : u ∈ [0, 90], v ∈ [0, 143]} < 89.99 = F(90, 143),

min{F(u, v) : u ∈ [0, 90], v ∈ [0, 143]} > 16.32 = F(0, 0)

max{G(u, v) : u ∈ [0, 90], v ∈ [0, 143]} < 142.99 = G(90, 143)

and
min{G(u, v) : u ∈ [0, 90], v ∈ [0, 143]} > 3.92 = G(0, 0).

After calculating

α1 = sup
{∣∣∣∣∂F

∂u
(u, v)

∣∣∣∣+ ∣∣∣∣∂G
∂u

(u, v)
∣∣∣∣ : u ∈ A, v ∈ B

}
≤ 0.993,

α2 = sup
{∣∣∣∣∂F

∂v
(u, v)

∣∣∣∣+ ∣∣∣∣∂G
∂v

(u, v)
∣∣∣∣ : u ∈ A, v ∈ G

}
= 0.99

we obtain that the ordered pair (F, G) satisfies Proposition 1. Consequently, there is a
unique market equilibrium pair (ξ, η) in D = A × B, i.e., ξ = F(ξ, η) and η = G(ξ, η).
Moreover, for any market initial conditions (x0, y0) ∈ A × B, the sequence of successive
responses of productions xn = Fn(xn, yn) and yn = Gn(xn, yn) converge to (ξ, η), and they
hold the error estimates from Theorem 2.

By solving u = F(u, v), v = G(u, v), we obtain the solutions u = 89.99964717,
v = 142.9986486, u = 93.91152837, v = 162.4557731 and several solutions with u < 0
and/or v < 0. From the fact that F : [0, 90]× [0, 143] → [0, 90] and G : [0, 90]× [0, 143] →
[0, 143], it follows that the market equilibrium is attained for productions u = 89.99964717,
v = 142.9986486.

Let U = [85, 140] and V = [85, 94]. Then, we can calculate that F1(U, V) ⊆ U and
G1(U, V) ⊆ V. Also, we can calculate that

β1 = sup
{∣∣∣∣∂F1

∂u
(u, v)

∣∣∣∣+ ∣∣∣∣∂G1

∂u
(u, v)

∣∣∣∣ : u ∈ U, v ∈ V
}

= 0.98599
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and

β2 = sup
{∣∣∣∣∂F1

∂v
(u, v)

∣∣∣∣+ ∣∣∣∣∂G1

∂v
(u, v)

∣∣∣∣ : u ∈ U, v ∈ V
}

= 0.96063.

From Proposition 1, it follows that the ordered pair (F1, G1) satisfies Theorem 2 in
[85, 140]× [85, 95] with λ = 0.98599.By solving u = F(u, v), v = G(u, v), we obtain several
solutions, but just one of them, u = 139.99, v = 94.04, lies in [85, 140]× [85, 95].

Let U = [0, 140] and V = [0, 94]. Then, we can calculate that F2(U, V) ⊆ U and
G2(U, V) ⊆ V. Also, we can calculate that

γ1 = sup
{∣∣∣∣∂F2

∂u
(u, v)

∣∣∣∣+ ∣∣∣∣∂G2

∂u
(u, v)

∣∣∣∣ : u ∈ U, v ∈ V
}

= 0.897129

and

γ2 = sup
{∣∣∣∣∂F2

∂v
(u, v)

∣∣∣∣+ ∣∣∣∣∂G2

∂v
(u, v)

∣∣∣∣ : u ∈ U, v ∈ V
}

= 0.960073

From Proposition 1, it follows that the ordered pair (F2, G2) satisfies Theorem 2 in
[0, 140]× [0, 94] with λ = 0.960073. By solving u = F(u, v), v = G(u, v), we obtain the
solutions u = 139.9253568, v = 93.99931884. We see that the linear approximation of the
sigmoid functions satisfies Theorem 2 with intervals with greatest length.

Besides the best statistical fitting of the model to the real data, when sigmoid functions
are used, the response functions

F1(u, v) = 1230.77 +
28.7098

115.042 − v
− 1331687.77

1079.34 + u

and
G1(u, v) = 1220.44 − 1416057.36

1163.3 + v
+

22.0756
7.70506 − u

give us more information on the responses of the two players. For example, let us consider
player one. With the response function F1, it is an increasing and concave function of u, i.e.,
any good results u1 < u2 lead to an increase in market results, but as u becomes bigger and
bigger, the increment becomes less and less.

For player two, from G2 we see that a small value of u ≥ 8, i.e., the number of
consumers of player one, leads to a decrease in the market results for player two.

6. Using the Empirical Response Functions to Simulate Convergence to the Equilibrium

This section illustrates with numerical simulations how our empirical response func-
tions converge to the long-run equilibrium. Specifically, we experiment with initial values
that are significantly different from the actual data and that are outside the range where we
can invoke Theorem 2, i.e., for which we know with certainty that the responses converge
to the long-run equilibrium.

Figure 9a and Figure 9b plot the sequences of successive market outcomes if the initial
start is (20, 70) and (70, 170), respectively, approximated with the sigmoidal response
functions (F1, G1).

Figure 10a and Figure 10b plot the predicted market path if the initial start is (20, 70)
and (70, 170), respectively, approximated with the sigmoidal response functions (F2, G2).

Figure 11a and Figure 11b illustrate the evolution of the market if the initial start
is (20, 70) and (70, 170), respectively, approximated with the sigmoidal response func-
tions (F, G).

Finally, in Figure 12a and Figure 12b, the starting values are (10, 50) and (10, 51),
respectively, and the market evolution is approximated with the sigmoidal response func-
tions (F1, G1).

Our numerical analysis demonstrates that the long-run equilibrium is stable even
when the initial conditions are not in the set where we can rely on the conclusion of
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Theorem 2. We note in passing that the response functions generated with the least squares
method do not demonstrate stability for this wide range of initial conditions.

(a) (b)
Figure 9. A simulation with the ordered pair of response functions (F1, G1) (blue color for customers
of AT&T and red color for Verizone ones) (a) Evolution of the market with the sigmoid model if
the initial start is (20, 70). (b) Evolution of the market with the sigmoid model if the initial start
is (70, 170).

(a) (b)
Figure 10. A simulation with the ordered pair of response functions (F2, G2) (blue color for customers
of AT&T and red color for Verizone ones) (a) Evolution of the market with the linear approximation of
the sigmoid model if the initial start is (20, 70). (b) Evolution of the market with linear approximation
of the sigmoid model if the initial start is (70, 170).

(a) (b)
Figure 11. A simulation with the ordered pair of response functions (F, G) (blue color for customers
of AT&T and red color for Verizone ones) (a) Evolution of the market with the least square model if
the initial start is (20, 70). (b) Evolution of the market with the least square model if the initial start
is (70, 170).
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(a) (b)
Figure 12. A simulation with the ordered pair of response functions (F1, G1).

7. Conclusions

We empirically study the wireless telecommunication market in the USA using an
equilibrium theory based on response functions instead of a payoff maximization problem.
In our settings, the approximation technique using sigmoid functions gives slightly better
results in comparison to the classical least squares method. It is worth noting that the linear
approximation of the sigmoid model approaches the linear part in the function obtained
by the method of least squares. All in all, this is an illustration of the framework to model
market equilibrium via response functions introduced in [1,10],

Numerical simulations from our robustness analysis suggest that the conditions im-
posed in Theorem 2 are only sufficient. Even with an initial state of the economy, for which
we cannot formally guarantee the convergence of the empirical response functions, the mar-
ket converges to long-run equilibrium. This observation is reaffirming in offering confi-
dence that our approach delivers an adequate description of the evolution of the market.

More generally, our approach is applicable to other settings. If we assume that the
participants in the duopoly market behave rationally and we know their cost functions,
then from (2) we can model for the inverse demand function P. Further, we can model the
cost functions of the two participants once we know the demand function.

Our model is simplified on purpose. Indeed, it is possible to look for a functional
relationship between several products offered on the market by the two participants,
or even to match each product k with an ordered pair of quantity and price (xk, pk),
k = 1, 2, . . . n, and examine the presence of equilibrium with the help of response functions
Fi((x1, p1), (x2, p2), . . . , (xn, pn)), i = 1, 2.
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