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Abstract: In this paper, we investigate the solvability of a boundary value problem for a heat and
mass transfer model with the spatially averaged Rayleigh function. The considered model describes
the 3D steady-state non-isothermal flow of a generalized Newtonian fluid (with shear-dependent
viscosity) in a bounded domain with Lipschitz boundary. The main novelty of our work is that we do
not neglect the viscous dissipation effect in contrast to the classical Boussinesq approximation, and
hence, deal with a system of strongly nonlinear partial differential equations. Using the properties of
the averaging operation and d-monotone operators as well as the Leray–Schauder alternative for
completely continuous mappings, we prove the existence of weak solutions without any smallness
assumptions for model data. Moreover, it is shown that the set of all weak solutions is compact, and
each solution from this set satisfies some energy equalities.

Keywords: Navier–Stokes equations; Boussinesq approximation; Rayleigh dissipation function;
heat-conductive non-Newtonian fluid; shear-dependent viscosity; multiphase flow; porous media;
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1. Introduction and Problem Statement

The classical Boussinesq approximation system [1,2] was proposed as a simplified
model for heat and mass transfer in a linear viscous fluid and is widely used in studying
non-isothermal flows (see, for example, [3–10] and the references cited therein). This system
of partial differential equations (PDEs) includes the motion equations, the incompressibility
condition, and the energy balance equation. Typically, the nonlinear term characterizing
the conversion of kinetic energy into thermal energy due to the viscous friction effect is
ignored in the energy balance equation. This term is commonly referred to as the Rayleigh
dissipation function or simply the dissipation function.

Clearly, the replacement of the dissipation function by zero is reasonable only under
some conditions, namely in situations when its values are small compared to other terms
in the energy balance equation, allowing it to be neglected. The main motivation for this
simplification lies in the fact that ignoring the effect of viscous dissipation greatly facilitates
mathematical analysis and finding of solutions to heat and mass transfer models that
are based on the Boussinesq system. However, from a physical point of view as well as
for certain practical applications, it is interesting to consider the “full equations”, that
is, the equations that include all the nonlinear terms [11–16]. Studying the Boussinesq
system with energy dissipation is important as it offers insights into complex dynamics of
fluid motion and energy transfer, contributing to advancements in environmental science,
engineering, and climate modelling. On the other hand, the mathematical difficulties
carried by these PDEs are interesting by themselves.

The primary challenges in constructing solutions are related to deriving a priori
estimates for a temperature distribution and establishing the convergence of Galerkin’s
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approximate solutions. While the compactness method based on standard a priori estimates
for a velocity field successfully handles the limit passage in all terms of the motion equation,
these estimates are insufficient for the limit passage in the strongly nonlinear energy
balance equation. To overcome these difficulties, in the present work, we will use the
following approach: replacing the Rayleigh dissipation function with its spatially averaged
(regularized) version [17].

We consider the following model for the 3D steady-state non-isothermal flow of a
generalized Newtonian fluid (with variable viscosity) through a porous media:

(u · ∇)u = div
[
µ(|D(u)|)D(u)

]
−∇π − αu + f (x, θ) in Ω,

div u = 0 in Ω,

(u · ∇)θ = k∆θ + Φρ(u) + g(x, θ) in Ω,

u = 0 on ∂Ω,

k
∂θ

∂ν
+ βθ = 0 on ∂Ω.

(1)

Here,

• Ω is the flow domain, Ω ⊂ R3;
• ∂Ω denotes the boundary of Ω;
• u is the flow velocity;
• π is the pressure;
• D(u) denotes the rate-of-deformation tensor with the components

Dij(u) :=
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, i, j ∈ {1, 2, 3};

• µ(|D(u)|) > 0 is the effective viscosity, dependent on the Euclidean norm of the rate-of-
deformation tensor;

• θ is the temperature;
• f (x, θ) is the body force acting on the fluid;
• k stands for the thermal conductivity coefficient, k > 0;
• α is the Darcy (permeability of porous medium) coefficient, α > 0;

• Φρ(u) :=
1
cp

µ(|Dρ(u)|)|Dρ(u)|2 represents the Rayleigh dissipation function with the

spatially averaged rate-of-deformation tensor Dρ(u) (see [18]) that is defined as follows:

Dρ(u)(x) :=
∫
R3

ρ(x − y)D(ũ)(y) dy, (2)

where

ũ(x) :=

{
u(x) if x ∈ Ω,

0 if x ∈ R3 \ Ω,

and ρ : R3 → R is a smooth function with compact support such that∫
R3

ρ(y)dy = 1

and ρ(x) = ρ(y) for x and y with the same Euclidean norm;
• cp signifies the specific heat capacity of the fluid, cp > 0;
• β stands for the heat exchange coefficient at the walls of the vessel Ω, β > 0;
• g(x, θ) is the heat source intensity;
• ν denotes the unit outward normal vector to the surface ∂Ω.

It is worth noting that, as the diameter of supp(ρ) tends to zero, the averaged tensor
Dρ(u) converges to the original tensor D(u) in the Lq-norm. Therefore, we can achieve
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high quality of approximation. The averaging operation defined by (2) also possesses other
useful properties [19] and is widely used in mathematical hydrodynamics. For instance,
this operation is employed to establish differentiability properties of generalized solutions
to the Navier–Stokes equations [20], as well as to investigate the solvability of boundary
and initial-boundary value problems for models of non-Newtonian fluids with objective
derivatives in rheological equations [18,21,22].

Rheological models with shear-dependent viscosity are applied in studying multiphase
flows of such media as polymer solutions, concentrated suspensions, clayey mixtures, corn
flour in water, oil paints, molten steel, and others (see [23,24]).

Within the scope of the present paper, our main aim is to establish the solvability
of problem (1) in the weak formulation. The proof of the existence theorem proceeds
as follows. We first introduce an auxiliary system of nonlinear equations parametrized
by λ ∈ [0, 1]. A priori bounds for solutions of this system are derived, which do not
depend on λ. Next, we interpret the new problem as a one-parameter operator equation
and study some properties of the corresponding operators. Specifically, we demonstrate
that, under reasonable assumptions regarding the model data, one of the operators is
d-monotone, while the others are completely continuous. By applying the Leray–Schauder
fixed-point principle, we conclude the existence of weak solutions to problem (1) in the
Cartesian product of some subspaces of the Sobolev space H1(Ω). Moreover, we establish
that the set of all weak solutions is compact in these subspaces. Note that this work is a
continuation of [25], where a similar heat and mass transfer model is considered without
taking into account dissipative heating in the energy balance equation.

The mathematical analysis of flow models with shear-dependent viscosity started
with the works by Ladyzhenskaya [26,27] and Litvinov [23]. These authors exclusively
considered isothermal flows (for both the steady-state and unsteady cases) and, by the Ritz,
Galerkin, and Faedo–Galerkin schemes, constructed solutions to the corresponding bound-
ary and initial-boundary value problems. Their results have been extended to a flow model
with nonlocal boundary conditions, where the fluid slips along an impermeable solid
boundary of the flow domain [28], as well as to an optimal flow control problem [29] and
a model for a rigid viscoplastic media of the Bingham kind with threshold slippage [30].
It also should be mentioned at this point that there exists extensive literature devoted to
studying optimization and control problems for equations governing heat and mass transfer
in a fluid with constant viscosity [31–38]. Finally, we mention the works [39–41], in which
the unique solvability of the evolutionary Boussinesq system with constant viscosity and
energy dissipation is proved under suitable smallness assumptions on data. In contrast to
the case of the Navier–Stokes system, for such models (even in the weak formulation of
associated initial-boundary value problems), there are to date no results on the existence of
large-data solutions that are global in time.

The remainder of the present paper is organized as follows. The next section is
completely devoted to necessary preliminaries. In Section 3, we provide a description of
assumptions on model data. Moreover, this section contains the rigorous definition of weak
solutions to problem (1). In Section 4, we formulate and prove the main results of this
work—Theorem 1 on the existence of weak solutions to problem (1) and their properties.

2. Preliminaries

In this section, we collect notions and statements that will be needed for establishing
our main results.

2.1. Notations and Function Spaces

Let

X : Y :=
3

∑
i,j=1

XijYij, |X| :=
√

X : X,

for 3 × 3-matrices X and Y .
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As usual, R := (−∞,+∞), R+ := [0,+∞), and Rn stands for the n-dimensional Eucli-
dean space.

Let E and F be normed linear spaces. By L (E, F), we denote the space of all continuous
linear operators from E into F.

By ⇀ (→, ⇒, resp.) we denote weak (strong, uniform, resp.) convergence. The symbol
↪→ stands for a continuous embedding, while ↪→↪→ denotes a compact embedding.

Let Ω be a bounded domain in R3 with the Lipschitz-continuous boundary ∂Ω. We
will use the Lebesgue spaces Lp(Ω) with p ≥ 1 and the Sobolev space H1(Ω) := W1,2(Ω).
The corresponding classes of vector-valued functions w : Ω → R3 are denoted by the same
symbols but in bold font, that is, Lp(Ω) := Lp(Ω)3 and H1(Ω) := H1(Ω)3. The definitions
of these spaces and analysis of their properties can be found in [42–44].

When solving problem (1) in the space H1(Ω), it is convenient to use the norm

∥ω∥H1(Ω) :=
(∫

Ω
|∇ω|2dx +

∫
∂Ω

|ω|2dS
) 1

2
,

which is equivalent to the standard H1-norm, computed as follows:

∥ω∥1 :=
(∫

Ω
|ω|2 + |∇ω|2dx

) 1
2
.

We now provide two function spaces developed in the theory of Navier–Stokes equations:

C∞
0,σ(Ω) :=

{
v ∈ C∞(Ω) : supp(v) ⊂ Ω and div v ≡ 0 in the domain Ω

}
,

V(Ω) := the closure of the set C∞
0,σ(Ω) in the space H1(Ω).

We equip V(Ω) with the scalar product defined as follows:

(v, w)V(Ω) :=
∫

Ω
D(v) : D(w) dx,

for arbitrary vector functions v, w ∈ V(Ω). By applying the Korn inequality (see, for exam-
ple, [23], Chapter I, § 2), one can verify that this scalar product is well defined. Moreover,
the Euclidean norm ∥v∥V(Ω) := (v, v)1/2

V(Ω)
is equivalent to the norm naturally induced

from the space H1(Ω).
As the main space in which we will find solutions to problem (1), we consider the

Cartesian product V(Ω)× H1(Ω) equipped with the max-norm:

∥(v, ω)∥V(Ω)×H1(Ω) := max
{
∥v∥V(Ω), ∥ω∥H1(Ω)

}
.

2.2. Some Properties of Spatially Averaged Rate-of-Deformation Tensor

Lemma 1. Suppose Ω is a bounded Lipschitz-continuous domain of R3, the tensor Dρ(u) is
defined by (2), and

Mi(ρ, Ω) := max
x∈R3

∣∣∣∣ ∂ρ

∂xi

∣∣∣∣√meas(Ω), i ∈ {1, 2, 3},

M(ρ, Ω) := max
{

M1(ρ, Ω), M2(ρ, Ω), M3(ρ, Ω)
}

.

Then the operator Dρ : V(Ω) → C∞(Ω) has the following properties.

(i) For any vector function u ∈ V(Ω), the estimate

∥Dρ(u)∥C(Ω) ≤ M(ρ, Ω)∥u∥L2(Ω) (3)

is valid.
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(ii) If {uℓ}∞
ℓ=1 is a sequence such that

uℓ ⇀ u0 in the space V(Ω) as ℓ → ∞, (4)

then
Dρ(uℓ) ⇒ Dρ(u0) on Ω as ℓ → ∞. (5)

Proof. Let u ∈ V(Ω). Applying integration by parts, we obtain

Dρ(u)ij(x) =
1
2

∫
Ω

ρ(x − y)
(

∂ui(y)
∂yj

+
∂uj(y)

∂yi

)
dy

= −1
2

∫
Ω

ui(y)
∂

∂yj
ρ(x − y) dy

− 1
2

∫
Ω

uj(y)
∂

∂yi
ρ(x − y) dy, ∀x ∈ Ω, i, j ∈ {1, 2, 3},

(6)

and, by using the Cauchy–Schwarz inequality, we derive inequality (3).
From the Rellich–Kondrachov theorem (see, for example, [45], Chapter II, § 2.6.1) it

follows that
V(Ω) ↪→↪→ Lp(Ω), ∀p ∈ [1, 6),

which together with (4) yield

uℓ → u0 in the space L2(Ω) as ℓ → ∞. (7)

Moreover, in view of (3), we have

∥Dρ(uℓ − u0)∥C(Ω) ≤ M(ρ, Ω)∥uℓ − u0∥L2(Ω). (8)

Combining (7) and (8), we obtain

lim
ℓ→∞

∥Dρ(uℓ − u0)∥C(Ω) = 0.

This implies (5). Thus, Lemma 1 is proved.

Taking into account relations (3) and (6), we arrive at the following statement.

Lemma 2. Under the conditions of Lemma 1, the operator Dρ : L2(Ω) → C(Ω) is well defined
and continuous.

2.3. Continuous Invertibility of Monotone-Type Operators in Banach Spaces

When studying flow models for fluids with shear-dependent viscosity, it is convenient
to use the notion of so-called d-monotone operators. Let us recall the definition of the
d-monotonicity property.

Let E be a reflexive separable Banach space with the dual space E∗. By ⟨·, ·⟩E∗×E denote
a duality pairing between E∗ and E.

Definition 1. An operator A : E → E∗ is called d-monotone if there exists a strictly increasing
function κ : R+ → R such that

⟨A(u)− A(v), u − v⟩E∗×E ≥ (κ(∥u∥E)−κ(∥v∥E))(∥u∥E − ∥v∥E),

for any v, u ∈ E.
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It is easy to see that this condition is less restrictive than the requirement of the strong
monotonicity:

⟨A(u)− A(v), u − v⟩E∗×E ≥ c∥u − v∥2
E, c = const,

for any u, v ∈ E.

Proposition 1. Let A : E → E∗ be a continuous d-monotone operator with κ(s) ≡ c0s, where c0
is a positive constant. Then:

• the operator A : E → E∗ is invertible;
• the operator A−1 : E∗ → E is continuous.

Proof. First, we show that the operator A is strictly monotone. Clearly, we have

⟨A(u)− A(v), u − v⟩E∗×E ≥ c0(∥u∥E − ∥v∥E)
2, (9)

for any u, v ∈ E. Taking into account this inequality and c0 > 0, it is easy to see that

⟨A(u)− A(v), u − v⟩E∗×E ≥ 0.

Furthermore, if
⟨A(u)− A(v), u − v⟩E∗×E = 0,

then we have

0 = ⟨A(u)− A(v), u − v⟩E∗×E

= 2
〈

A(u)− A
(u + v

2

)
,

u − v
2

〉
E∗×E

+ 2
〈

A
(u + v

2

)
− A(v),

u − v
2

〉
E∗×E

= 2
〈

A(u)− A
(u + v

2

)
, u − u + v

2

〉
E∗×E

+ 2
〈

A
(u + v

2

)
− A(v),

u + v
2

− v
〉

E∗×E

≥ 2c0

(
∥u∥E −

∥∥∥∥u + v
2

∥∥∥∥
E

)2
+ 2c0

(∥∥∥∥u + v
2

∥∥∥∥
E
− ∥v∥E

)2
,

and hence ∥∥∥∥u + v
2

∥∥∥∥
E
= ∥u∥E = ∥v∥E.

In the Hilbert space E, the last relations imply the equality u = v, which can be verified,
for instance, by using the parallelogram law.

Next, we observe that the mapping A is coercive. Specifically, by setting v = 0 in (9),
we obtain

⟨A(u), u⟩E∗×E ≥ ⟨A(0), u⟩E∗×E + c0∥u∥2
E

≥ − ∥A(0)∥E∗∥u∥E + c0∥u∥2
E

= ξ(∥u∥E)∥u∥E,

with
ξ(s) := −∥A(0)∥E∗ + c0s, lim

s→+∞
ξ(s) = +∞.

Now, consider a sequence {un}∞
n=1 ⊂ E such that

un ⇀ u0 in the space E as n → ∞
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and
lim

n→∞
⟨A(un)− A(u0), un − u0⟩E∗×E = 0. (10)

Due to inequality (9), relation (10) implies that

lim
n→∞

∥un∥E = ∥u0∥E. (11)

Since E is a Hilbert space, the weak convergence

un ⇀ u0 in E as n → ∞

together with (11) imply the strong convergence

un → u0 in E as n → ∞.

Thus, we deduce that the operator A satisfies the so-called (S)-property (see [46],
Chapter III, § 1).

Taking into account the properties of the operator A established above, proving
Proposition 1 is sufficient by applying Theorem 2.2 from [46], Chapter III, § 2.

2.4. The Leray–Schauder Alternative for Completely Continuous Mappings

Proposition 2. Let us suppose that E is a real Banach space, B[0, r] :=
{

v ∈ E : ∥v∥E ≤ r
}

,
and K : B[0, r]× [0, 1] → E is a completely continuous mapping such that K(·, 0) : B[0, r] → E
is the zero operator. Then:

(i) either the operator K(·, 1) : B[0, r] → E has a fixed point in the ball B[0, r], or
(ii) there exists a pair (v∗, λ∗) ∈ ∂B[0, r]× [0, 1] such that v∗ = K(v∗, λ∗).

For more details on fixed-point results and their applications in nonlinear analysis, we
refer to the monographs [47,48].

2.5. Continuity of Superposition Operator in Lebesgue Spaces

Proposition 3 (Krasnoselskii’s theorem). Let G be a bounded domain in the real n-space Rn and
let Q : G ×R → R be a function such that

• there exist constants p1 ≥ 1, p2 ≥ 1, b > 0, and a function a ∈ Lp2(G ) such that

|Q(x, y)| ≤ a(x) + b|y|p1/p2 ,

for any y ∈ R and almost every x ∈ G ;
• the function Q(·, y) : G → R is measurable for any y ∈ R;
• the function Q(x, ·) : R → R is continuous for almost every x ∈ G .

Then the superposition operator NQ defined by NQ[w](·) := Q
(
·, w(·)

)
is continuous and bounded

as a mapping from Lp1(G ) into Lp2(G ).

A detailed proof of this proposition can be found in the monograph [49], Chapter I, § 2.

3. Description of Assumptions on Model Data and Weak Formulation of Problem

We assume that the model under consideration is subject to the five conditions:

(H.1) the function µ : R+ → R+ is continuous, and there exist constants µmin and µmax
such that 0 < µmin ≤ µ(τ) ≤ µmax for all τ ∈ R+;

(H.2) with a positive constant µ⋆, the inequality

µ(t)t − µ(s)s ≥ µ⋆(t − s)

holds for any t, s ∈ R+ such that t ≥ s;
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(H.3) the functions f1(·, y), f2(·, y), f3(·, y) : Ω → R and g(·, y) : Ω → R are measurable
for any y ∈ R;

(H.4) the functions f1(x, ·), f2(x, ·), f3(x, ·) : R → R and g(x, ·) : R → R are continuous for
almost every x ∈ Ω;

(H.5) there exist functions fmax ∈ L2(Ω) and gmax ∈ L2(Ω) such that

| f (x, y)| ≤ fmax(x), |g(x, y)| ≤ gmax(x)

for any y ∈ R and almost every x ∈ Ω.

It can easily be checked that condition (H.2) holds for any C1-smooth function µ : R+ → R+

satisfying
µ(τ) ≥ µmin > 0, µ′(τ) ≥ 0, ∀τ ∈ R+,

where µ′ := dµ/dτ. Indeed, by the Mean Value Theorem (Lagrange’s theorem) and condi-
tion (H.1), we derive

µ(t)t − µ(s)s =
[
µ′(ζ(t, s))ζ(t, s) + µ(ζ(t, s))

]
(t − s)

≥ µmin(t − s),

for arbitrary t, s ∈ R+, t > s, and some ζ(t, s) ∈ [s, t].
Note that the requirements (H.1) and (H.2) imposed on the viscosity function µ are

less restrictive compared to the conditions used in [23] (see page 53) for the variational
formulation of the problem concerning isothermal flows of non-Newtonian fluids. Notably,
a Newtonian fluid with constant viscosity µ ≡ µmin satisfies (H.1) and (H.2) with µ⋆ = µmin.

Now, let us provide the weak formulation of problem (1).

Definition 2. We shall say that a pair (u, θ) is a weak solution to problem (1) if the following two
conditions hold:

• the pair (u, θ) belongs to the space V(Ω)× H1(Ω);
• the equalities

−
3

∑
i=1

∫
Ω

uiu · ∂v
∂xi

dx +
∫

Ω
µ(|D(u)|)D(u) : D(v) dx

+ α
∫

Ω
u · v dx =

∫
Ω

f (x, θ) · v dx,

−
3

∑
i=1

∫
Ω

uiθ
∂η

∂xi
dx + k

∫
Ω
∇θ · ∇η dx + β

∫
∂Ω

θη dS

=
1
cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2η dx +
∫

Ω
g(x, θ)η dx

are valid for all test functions v ∈ V(Ω) and η ∈ H1(Ω).

By M we denote the set of all weak solutions to problem (1).

Remark 1. Having a weak solution (u, θ) in hand, the corresponding pressure π can be obtained
by the well-known de Rham theorem (see, for example, [50], Chapter I, § 1). The triplet (u, θ, π) is
called a full weak solution.

4. Main Results and Their Proof

The main results of this article are formulated in the following theorem.

Theorem 1. Suppose Ω is a bounded Lipschitz domain in R3 and conditions (H.1)–(H.5) are
satisfied. Then:

(a) problem (1) has at least one weak solution, that is, M ̸= ∅;
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(b) any pair (u, θ) ∈ M satisfies the energy equalities:∫
Ω

µ(|D(u)|)|D(u)|2 dx + α
∫

Ω
|u|2 dx =

∫
Ω

f (x, θ) · u dx, (12)

k
∫

Ω
|∇θ|2 dx + β

∫
∂Ω

|θ|2 dS

=
1
cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2θ dx +
∫

Ω
g(x, θ)θ dx;

(13)

(c) the set M is compact in the space V(Ω)× H1(Ω) as well as in the space Lp(Ω)× Lp(Ω),
where the exponent p can be chosen arbitrarily from the closed interval [1, 6].

Proof. We perform the proof of statement (a) in five steps.
Step 1: Auxiliary problem. Let us consider a one-parameter problem:
Find a pair of functions (u, θ) from the space V(Ω)× H1(Ω) that satisfy the following

two equations:

− λ
3

∑
i=1

∫
Ω

uiu · ∂v
∂xi

dx +
∫

Ω
µ(|D(u)|)D(u) : D(v) dx

+ λα
∫

Ω
u · v dx = λ

∫
Ω

f (x, θ) · v dx, ∀v ∈ V(Ω),

(14)

− λ
3

∑
i=1

∫
Ω

uiθ
∂η

∂xi
dx + k

∫
Ω
∇θ · ∇η dx + β

∫
∂Ω

θη dS

=
λ

cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2η dx + λ
∫

Ω
g(x, θ)η dx, ∀η ∈ H1(Ω),

(15)

where λ is a numerical parameter belonging to the interval [0, 1].
Step 2: A priori bounds. Let us derive a priori bounds for solutions of the above problem.

Suppose that a pair (u, θ) ∈ V(Ω)× H1(Ω) satisfies (14) and (15) for some λ ∈ [0, 1].
By setting v = u in equality (14), we obtain

− λ
3

∑
i=1

∫
Ω

uiu · ∂u
∂xi

dx +
∫

Ω
µ(|D(u)|)|D(u)|2 dx

+ λα
∫

Ω
|u|2 dx = λ

∫
Ω

f (x, θ) · u dx.

(16)

The first term on the left-hand side of (16) is zero. Indeed, applying integration by parts,
we obtain

3

∑
i=1

∫
Ω

uiu · ∂u
∂xi

dx =
1
2

3

∑
i=1

∫
Ω

ui
∂|u|2
∂xi

dx

= −1
2

3

∑
i=1

∫
Ω

∂ui
∂xi

|u|2 dx

= −1
2

3

∑
i=1

∫
Ω
(div u)|u|2 dx = 0.

(17)

Of course, here we used the two identities: div u ≡ 0 in Ω and u ≡ 0 on ∂Ω.
In view of (17), equality (16) reduces to∫

Ω
µ(|D(u)|)|D(u)|2 dx + λα

∫
Ω
|u|2 dx = λ

∫
Ω

f (x, θ) · u dx. (18)
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From this equality, using assumptions (H.1) and (H.5) as well as the Cauchy–Schwarz
inequality, we deduce that

µmin∥u∥2
V(Ω) ≤

∫
Ω

µ(|D(u)|)|D(u)|2 dx ≤ λ
∫

Ω
f (x, θ) · u dx ≤

∫
Ω

fmax|u| dx

≤
( ∫

Ω
| fmax|2 dx

) 1
2
( ∫

Ω
|u|2 dx

) 1
2

= ∥ fmax∥L2(Ω)∥u∥L2(Ω).

(19)

Note that
∥u∥L2(Ω) ≤ ∥I∥L (V(Ω),L2(Ω))∥u∥V(Ω). (20)

Here and in the succeeding discussion, the symbol I denotes the identity operator.
Taking into account (20), we can continue (19) as follows:

µmin∥u∥2
V(Ω) ≤ ∥I∥L (V(Ω),L2(Ω))∥ fmax∥L2(Ω)∥u∥V(Ω),

whence

∥u∥V(Ω) ≤
1

µmin
∥I∥L (V(Ω),L2(Ω))∥ fmax∥L2(Ω) =: φ(Ω, µmin, fmax). (21)

Next, on setting η = θ in (15), we find

− λ
3

∑
i=1

∫
Ω

uiθ
∂θ

∂xi
dx + k

∫
Ω
|∇θ|2 dx + β

∫
∂Ω

|θ|2 dS

=
λ

cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2θ dx + λ
∫

Ω
g(x, θ)θ dx.

(22)

The first term on the left-hand side of the last equality is zero. Indeed, using the
integration by parts formula and taking into account the identities div u ≡ 0 in Ω and
u ≡ 0 on ∂Ω, we obtain

3

∑
i=1

∫
Ω

uiθ
∂θ

∂xi
dx =

1
2

3

∑
i=1

∫
Ω

ui
∂|θ|2
∂xi

dx

= −1
2

3

∑
i=1

∫
Ω

∂ui
∂xi

|θ|2 dx

= −1
2

∫
Ω
(div u)|θ|2 dx = 0.

Therefore, equality (22) simplifies to

k
∫

Ω
|∇θ|2 dx + β

∫
∂Ω

|θ|2 dS =
λ

cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2θ dx + λ
∫

Ω
g(x, θ)θ dx. (23)

From (23), using assumption (H.5) and the Cauchy–Schwarz inequality, we derive

min{k, β}∥θ∥2
H1(Ω) ≤ k

∫
Ω
|∇θ|2 dx + β

∫
∂Ω

|θ|2 dS

=
λ

cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2θ dx + λ
∫

Ω
g(x, θ)θ dx

≤ µmax

cp
∥Dρ(u)∥2

C(Ω)

∫
Ω
|θ| dx +

∫
Ω
|gmax||θ| dx

≤
(

µmax

cp
∥Dρ(u)∥2

C(Ω)

√
meas(Ω) + ∥gmax∥L2(Ω)

)
∥θ∥L2(Ω).

(24)



Mathematics 2024, 12, 756 11 of 15

Notice that

∥θ∥L2(Ω) ≤ ∥I∥L (H1(Ω),L2(Ω))∥θ∥H1(Ω).

Therefore, (24) can be continued as follows:

min{k, β}∥θ∥2
H1(Ω) ≤

(
µmax

cp
∥Dρ(u)∥2

C(Ω)

√
meas(Ω) + ∥gmax∥L2(Ω)

)
× ∥I∥L (H1(Ω),L2(Ω))∥θ∥H1(Ω),

whence

∥θ∥H1(Ω) ≤
(

µmax

cp
∥Dρ(u)∥2

C(Ω)

√
meas(Ω) + ∥gmax∥L2(Ω)

)∥I∥L (H1(Ω),L2(Ω))

min{k, β} . (25)

Taking into account inequalities (3), (20), and (21), from (25) we can easily derive the
following bound for θ:

∥θ∥H1(Ω) ≤
(

µmax

cp
M2(ρ, Ω)∥I∥2

L (V(Ω),L2(Ω))
φ2(Ω, µmin, fmax)

√
meas(Ω)

+ ∥gmax∥L2(Ω)

)∥I∥L (H1(Ω),L2(Ω))

min{k, β}
=: ψ(Ω, µmin, µmax, fmax, gmax, cp, ρ, k, β).

(26)

Step 3: Operator formulation. Now, let us proceed with an operator interpretation of
system (14)–(15). To achieve this, we introduce the eight operators:

A1 : V(Ω) → [V(Ω)]∗,

⟨A1(u), v⟩[V(Ω)]∗×V(Ω) :=
∫

Ω
µ(|D(u)|)D(u) : D(v) dx;

A2 : H1(Ω) → [H1(Ω)]∗,

⟨A2(θ), η⟩[H1(Ω)]∗×H1(Ω) := k
∫

Ω
∇θ · ∇η dx + β

∫
∂Ω

θη dS;

A : V(Ω)× H1(Ω) → [V(Ω)]∗ × [H1(Ω)]∗,

A(u, θ) :=
(
A1(u),A2(θ)

)
;

K̃1 : L4(Ω)× L4(Ω)× [0, 1] → [V(Ω)]∗,

⟨K̃1(u, θ, λ), v⟩[V(Ω)]∗×V(Ω) := λ
3

∑
i=1

∫
Ω

uiu · ∂v
∂xi

dx − λα
∫

Ω
u · v dx + λ

∫
Ω

f (x, θ) · v dx;

K̃2 : L4(Ω)× L4(Ω)× [0, 1] → [H1(Ω)]∗,

⟨K̃2(u, θ, λ), η⟩[H1(Ω)]∗×H1(Ω) := λ
3

∑
i=1

∫
Ω

uiθ
∂η

∂xi
dx +

λ

cp

∫
Ω

µ(|Dρ(u)|)|Dρ(u)|2η dx

+ λ
∫

Ω
g(x, θ)η dx;
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K̃ : L4(Ω)× L4(Ω)× [0, 1] → [V(Ω)]∗ × [H1(Ω)]∗,

K̃(u, θ, λ) :=
(
K̃1(u, θ, λ), K̃2(u, θ, λ)

)
;

J : V(Ω)× H1(Ω)× [0, 1] → L4(Ω)× L4(Ω)× [0, 1],

J(u, θ, λ) := (u, θ, λ);

K : V(Ω)× H1(Ω)× [0, 1] → [V(Ω)]∗ × [H1(Ω)]∗,

K(u, θ, λ) := (K̃ ◦ J)(u, θ, λ).

It is easy to see that system (14)–(15) is equivalent to the operator equation

A(u, θ) = K(u, θ, λ). (27)

Step 4: Properties of operators. Let us establish some properties of the operators A and K.
First, using assumption (H.2), we obtain(

µ(|D(u)|)D(u)− µ(|D(w)|)D(w)
)

:
(
D(u)−D(w)

)
= µ(|D(u)|)|D(u)|2 − µ(|D(u)|)D(u) : D(w)

− µ(|D(w)|)D(u) : D(w) + µ(|D(w)|)|D(w)|2

≥ µ(|D(u)|)|D(u)|2 − µ(|D(u)|)|D(u)||D(w)|
− µ(|D(w)|)|D(u)||D(w)|+ µ(|D(w)|)|D(w)|2

=
{

µ(|D(u)|)|D(u)| − µ(|D(w)|)|D(w)|
}
(|D(u)| − |D(w)|)

≥ µ⋆(|D(u)| − |D(w)|)2,

for any u, w ∈ V(Ω). From this, we deduce the inequality

⟨A1(u)−A1(w), u − w⟩[V(Ω)]∗×V(Ω) ≥ µ⋆
(
∥u∥V(Ω) − ∥w∥V(Ω)

)2.

This means that the operator A1 is d-monotone with κ(s) := µ⋆s, for s ∈ R+. Applying
Proposition 1, we obtain that the operator A1 is continuously invertible.

The same holds true for the operator A2. In order to prove the continuous invertibility
of this operator, we observe that

⟨A2(θ), θ⟩[H1(Ω)]∗×H1(Ω) ≥ min{k, β}∥θ∥2
H1(Ω)

and apply the classical Lax–Milgram lemma (see [45], Chapter I, § 1.3.1).
Thus, we see that the operator A is continuously invertible, and the following relation

A−1(h1, h2) =
(
A−1

1 (h1),A−1
2 (h2)

)
holds for any (h1, h2) ∈ [V(Ω)]∗ × [H1(Ω)]∗.

Next, note that, due to compact embedding results concerning Sobolev spaces (see [45],
Chapter II, § 2.6.1), we have

H1(Ω) ↪→↪→ Lp(Ω), ∀p ∈ [1, 6).

Therefore, the operator J is completely continuous. Moreover, by conditions (H.3)–(H.5),
Proposition 3 and Lemma 2, it can be directly checked that the operator K̃ is continuous.
Thus, we see that the operator K = K̃ ◦ J (and consequently, the operator A−1 ◦ K) is
completely continuous.
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Step 5: Solvability. Applying the operator A−1 to both sides of Equation (27), we obtain

(u, θ) = (A−1 ◦K)(u, θ, λ).

Taking into account the previously derived a priori bounds (21) and (26), which hold
for any solutions of (27), we apply Proposition 2 to conclude that the equation

(u, θ) = (A−1 ◦K)(u, θ, 1)

has a solution (u0, θ0) in a ball

B[(0, 0), r] := {(v, ω) : (v, ω) ∈ V(Ω)× H1(Ω) and ∥(v, ω)∥V(Ω)×H1(Ω) < r}

with sufficiently large radius r.
For example, we can take r = r⋆, where

r⋆ := max
{

φ(Ω, µmin, fmax), ψ(Ω, µmin, µmax, fmax, gmax, cp, ρ, k, β)
}
+ 1.

It is evident that
A(u0, θ0) = K(u0, θ0, 1)

and the pair of functions (u0, θ0) is a weak solution to problem (1). Thus, we establish that
M ̸= ∅, and hence part (a) is proved.

In order to establish (b), we just substitute λ = 1 into (18) and (23) and obtain the
required energy equalities (12) and (13).

Finally, let us prove statement (c). It is readily apparent from estimates (21) and (26)
that set M is bounded in the Cartesian product V(Ω)× H1(Ω). Moreover, this set coincides
with the fixed-points set of the completely continuous operator (A−1 ◦K)(·, ·, 1). Taking
into account these facts, it is easy to show the compactness of M in V(Ω)× H1(Ω).

Further, using the Sobolev embedding theorem (see, for example, [45], Chapter II,
§ 2.3.4), we obtain

V(Ω) ↪→ Lp(Ω), H1(Ω) ↪→ Lp(Ω), ∀p ∈ [1, 6].

Therefore, the set M belongs to the space Lp(Ω)× Lp(Ω) with p ∈ [1, 6] and is compact in
this space, since a continuous image of a compact set is compact. Thus, we have completed
the proof of Theorem 1.

Remark 2. In the particular case when µ = const and α = 0, the results of Theorem 1 coincide
with the results from the work [17] by the first author.

5. Conclusions

In this paper, we have proved the existence of stationary weak solutions to the general-
ized Boussinesq system with the spatially averaged Rayleigh function in the energy balance
equation. Unlike conventional approaches that overlook the viscous dissipation effect,
our model incorporates this factor, departing from the classical Boussinesq approximation.
Notably, our existence theorem does not necessitate smallness model data assumptions.
The proof of this theorem is based on an operator interpretation of the boundary value prob-
lem under consideration and applying the Leray–Schauder alternative. The key points in
our proof strategy are deriving suitable a priori estimates for weak solutions and establish-
ing the strong continuity of the used averaging operation and the continuous invertibility
of d-monotone operators. As a result, we overcame the mathematical challenges associated
with solving the corresponding strongly nonlinear PDEs. Furthermore, our analysis re-
vealed that the set of weak solutions is compact in the Cartesian product of Sobolev spaces,
and each solution from this set satisfies some energy equalities. The approach proposed
in the present work advances the insight of non-Newtonian fluid dynamics and provides
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new ways for exploring intricate heat and mass transfer models with energy dissipation.
The authors suggest the following directions for future research:

• existence and uniqueness of other types of solutions (strong, classical, etc.);
• continuous dependence of solutions on model data;
• global solvability of time-dependent problems;
• stability/instability issues;
• flow control and optimization problems.
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agreed to the published version of the manuscript.
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39. Łukaszewicz, G.; Krzyżanowski, P. On the heat convection equations with dissipation term in regions with moving boundaries.

Math. Methods Appl. Sci. 1997, 20, 347–368. [CrossRef]
40. Kakizawa, R. The initial value problem for motion of incompressible viscous and heat-conductive fluids in Banach spaces.

Hiroshima Math. J. 2010, 40, 371–402. [CrossRef]
41. Amorim, C.B.; de Almeida, M.F.; Mateus, E. Global existence of solutions for Boussinesq system with energy dissipation. J. Math.

Anal. Appl. 2024, 531, 127905. [CrossRef]
42. Adams, R.A.; Fournier J.J.F. Sobolev Spaces, Vol. 40 of Pure and Applied Mathematics; Elsevier: Amsterdam, The Netherlands, 2003.
43. Boyer, F.; Fabrie, P. Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models; Springer: New

York, NY, USA, 2013. [CrossRef]
44. Castillo, R.E.; Rafeiro, H. An Introductory Course in Lebesgue Spaces; Springer: Cham, Switzerland, 2016. [CrossRef]
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