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Abstract: Lightweight and adaptive adjustment are key research directions for deep neural networks
(DNNs). In coal industry mining, frequent changes in raw coal sources and production batches can
cause uneven distribution of appearance features, leading to concept drift problems. The network
architecture and parameters should be adjusted frequently to avoid a decline in model accuracy. This
poses a significant challenge for those without specialist expertise. Although the Neural Architecture
Search (NAS) has a strong ability to automatically generate networks, enabling the automatic design
of highly accurate networks, it often comes with complex internal topological connections. These
redundant architectures do not always effectively improve network performance, especially in
resource-constrained environments, where their computational efficiency is significantly reduced. In
this paper, we propose a method called Topology Complexity Neural Architecture Search (TCNAS).
TCNAS proposes a new method for evaluating the topological complexity of neural networks and
uses both topological complexity and accuracy to guide the search, effectively obtaining lightweight
and efficient networks. TCNAS employs an adaptive shrinking search space optimization method,
which gradually eliminates poorly performing cells to reduce the search space, thereby improving
search efficiency and solving the problem of space explosion. In the classification experiments of coal
and gangue, the optimal network designed by TCNAS has an accuracy of 83.3%. And its structure is
much simpler, which is about 1/53 of the parameters of the network dedicated to coal and gangue
recognition. Experiments have shown that TCNAS is able to generate networks that are both efficient
and simple for resource-constrained industrial applications.

Keywords: Neural Architecture Search; lightweight neural network; topological complexity;
multiobjective optimization; adaptive adjustment

MSC: 68Q25; 68Q10

1. Introduction

With the rapid development of the coal industry, the automated classification of coal
and gangue becomes the key to enhancing production efficiency and protecting the environ-
ment. Gangue is solid waste produced during the process of coal mining. It is usually gray
or black in color, contains low levels of coal, and is harder than coal. Due to the distinctive
lustre and laminar structure of coal, coal and gangue have obvious textural differences in
appearance, which can be effectively recognized by direct observation or by applying image
recognition techniques. The appearance of coal and gangue is characterized in Figure 1.
Traditional classification methods based on image processing and pattern recognition are
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increasingly applied in industrial production to address the harsh working conditions
and inefficiency associated with the labor-intensive manual sorting of coal and gangue.
Traditional machine learning methods [1], such as SVM, KNN, CART, and AdaBoost, are
used to train the classifier based on processed feature data. However, the manual feature
extraction required in traditional machine learning methods is time-consuming and prone
to errors [2–4]. For this problem, several researchers [5–9] have deployed deep learning
for the issue of coal and gangue recognition. Typically, deep-learning-based methods are
able to achieve high accuracy in classifying coal and gangue because they use multi-layer
convolution to enable automatic extraction of feature information.

Figure 1. Comparison of the appearance and characteristics of coal and gangue.

Deep learning techniques currently face a significant challenge in accurately distin-
guishing between coal and gangue. This difficulty arises primarily from the wide variety
and variability in their appearance, which is influenced by their different sources. Coal, for
instance, can come from various mines or geographical regions, leading to differences in
glossiness, colors, and texture due to the geological types and mineral compositions unique
to each source. These variations can cause a phenomenon known as concept drift, where
the data distribution that the model was trained on does not align with the data encoun-
tered in real-world applications. This misalignment can lead to a decline in the model’s
performance, as it struggles to adapt to the new appearances of coal and gangue. In the
context of automatic identification systems for coal and gangue, this issue is compounded
by the fact that models can only be trained on datasets representing a limited selection
of coal sources and batches. When the appearance of coal deviates beyond the model’s
trained range, it can significantly impact production efficiency and challenge the system’s
recognition accuracy and stability.

Although noise reduction techniques, such as Laplace operators and Gaussian filter-
ing [10], can be applied to enhance the robustness of the system and suppress the accuracy
degradation to a certain extent, these methods often fail to ensure the continued stability of
the system when the concept drift is significantly out of range. Therefore, the occurrence of
concept drift means that the architecture and parameters of the neural network need to be
adapted in a timely manner to accommodate data changes, a task that is both complex and
time-consuming. This issue is particularly challenging for production personnel who lack
specialized knowledge. Therefore, in the process of classifying coal and gangue, facing the
phenomenon of concept drift, finding an effective strategy to adjust the architecture and
parameters of the neural network has become a critical challenge.

NAS is powerful in searching high accuracy networks and has been applied in several
fields such as computer vision [9,11–18], speech processing [19,20]. and natural language
processing (NLP) [21,22]. However, the networks generated by NAS often comprise
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millions of parameters, which can consume significant memory resources and limit running
efficiency when using limited computing resources. To address this problem, hardware-
aware NAS [23] has been developed, focusing more on reducing computational costs
such as latency, number of parameters, floating point operations per second (Flops), and
memory footprint while maintaining a certain level of accuracy. However, ignorance of
network architectural complexity makes hardware-aware NAS inadequate in reducing
computational costs. The higher the complexity of the network architecture, the more
nodes and edges its topology has, and therefore the more parameters it requires. As the
computational cost of neural networks mainly comes from the updating and computation
of parameters, the topology can directly affect the computational complexity of forward and
backpropagation algorithms. Deeper or wider networks mean that more parameters need to
be updated during training, which directly increases the computational cost. Networks with
high topological complexity will contain a large number of layers and parameters, which
not only increases the difficulty of training but also requires more computational resources
when deployed. For example, although a network with multiple convolutional layers and
intricate connection structures may exhibit outstanding performance in terms of accuracy,
it could face limitations in applications within constrained hardware environments.

For the above difficult problems, there are shortcomings regarding NAS in the current
related literature. First, the topological complexity is ignored while searching for and
generating a lightweight network. This can lead to suboptimal results, as too simplistic
networks may not be able to handle the complexity of real-world tasks. Second, the search
space refinement can only be manually executed by experts. This is a time-consuming and
resource-intensive process, making it difficult to guarantee the efficiency of search opera-
tions. Table 1 summarizes the advantages and limitations of various existing techniques.
According to the table, despite the excellent performance of traditional methods and exist-
ing NAS technologies in some aspects, they still fall short when dealing with the complex
and variable problem of coal and gangue classification. To overcome these issues, this paper
proposes Topology Complexity Neural Architecture Search (TCNAS). TCNAS provides a
more balanced and efficient solution by introducing topological complexity considerations.
TCNAS does not rely on fine-tuning of the search space by human experts. It employs an
adaptive search space shrinking mechanism that automatically refines the search space
without involving experts. This helps to unleash the full potential of NAS, generating
networks that are both lightweight and powerful, to tackle more challenging problems.

Table 1. Comparison of different methods in coal and gangue classification tasks.

Method Advantages Limitations

Manual Sorting
• Simple to implement • High labor intensity

• Strong subjectivity
• Low accuracy
• Inefficiency

Traditional Machine-Learning-
Based Methods

• Easy to implement
• Effective on small-scale data

• Requires manual feature extraction
• Struggles with high-dimensional data
• Poor adaptability to changes in appear-

ance features
• Limited generalization capability

Deep-Learning-Based
Methods

• Powerful automatic feature ex-
traction capability

• High accuracy
• Strong generalization ability

• High computational resource requirements
• Needs large datasets
• Intensive computational resources
• Model tuning and trial and error require hu-

man expertise

NAS Techniques

• Automated network architecture
search

• High accuracy of generated
models

• High computational cost
• Inadequate consideration of network complex-

ity might Affect the practicality of the model
• Extensive expert involvement needed to set

up the search space
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An improved NAS for considering both topological complexity and search efficiency
is motivated by the above discussion. The main contributions of this work are as follows:

1. This study proposes a novel complexity evaluation method for neural network topol-
ogy. Since the number of neurons and the connections among them contribute to the
overall complexity of the network architecture, an evaluation metric is calculated by
mapping their features and internal structures.

2. Regarding limited computational resources, this study proposes a Topology Complex-
ity Neural Architecture Search (TCNAS) method to search and generate a lightweight
network. This method can significantly reduce architectural parameters of networks
and facilitate the generation of networks in a quick and simple way.

3. An adaptive search space shrinking optimization method is proposed to enhance
the search capability and efficiency. The method calculates the effectiveness of each
cell of the overall search space, removes cells with poor effects, and retains high-
quality cells to form an optimized search space. In this regard, the search efficiency is
largely improved.

The remainder of this paper is organized as follows: Section 2 reviews relevant
works and introduces the basic principles and applications of NAS technology. Section 3
describes the design and implementation of the TCNAS, including the evaluation method
for the topology complexity of neural networks and the adaptive search space shrinking
optimization method. Section 4 validates the effectiveness of the TCNAS method through
experiments and compares it with existing technologies. Section 5 discusses the significance
of TCNAS, and Section 6 concludes the research findings, summarizing the shortcomings
and future research directions.

2. Related Work
2.1. Neural Architecture Search

Neural Architecture Search (NAS) stands at the heart of Automated Machine Learning
(AutoML), focusing on the automated discovery of optimal deep neural network (DNN)
architectures. The ultimate goal of AutoML is to minimize human intervention and op-
timize model selection and parameter tuning through an automated process, leading to
more efficient machine learning model development. In this context, not only the field of
NAS but also innovative approaches in other research areas [24] have shown the potential
to reduce human intervention. Currently, NAS has demonstrated its powerful performance
in tasks such as image classification [9,11–14,25–29], object detection [16,18], and semantic
segmentation [15,17].

NAS consists of three components: search space, search strategies, and performance
evaluation. The search space outlines all potential architectures, while search strategies
guide the identification of the most effective architecture. Common search strategies include
evolutionary algorithms (EA) [13,30], reinforcement learning (RL) [11], gradient-based
methods [27], and Bayesian optimization [9,31]. Performance evaluation mechanisms are
used to evaluate the performance of the searched architectures. AmoebaNet [13] compared
RL-based NAS with EA-based NAS and showed that EA-based NAS can converge faster
with the same hardware, especially in the initial phase of the search. Methods based
on RL and EA consume huge computational resources, although they can achieve high
architectural performance. AmoebaNet achieved better results on both the Cifar-10 dataset
and the ImageNet dataset, but the search took 3150 GPU days. Compared with RL, gradient-
based algorithms reduce the consumption of computational resources. ENAS [32] adopts
a gradient-based search strategy to improve the search efficiency by parameter sharing,
which reduces the search time to within one GPU day, but it requires the construction of a
supernet in advance, which requires high expertise.

2.2. Search Space Design

In previous studies on NAS, much of the focus has been on refining search strategies.
Yet, the construction of the search space plays a crucial and immediate role in shaping NAS
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effectiveness and the caliber of architectures it can uncover. The search space consists of a
collection of networks defined by parameters such as network depth, types of operations,
types of connections, kernel sizes, and the number of filters, where various operations are
combined within the set to generate network architectures. It encompasses the entire set
of possible operations for neural networks. A well-designed search space can elevate the
upper limit of NAS performance and simultaneously increase the likelihood of discovering
high-performance architectures.

However, there is a delicate balance between the size of the search space and its design.
A smaller search space, if comprised of carefully selected decisions, can facilitate NAS
in finding high-performance architectures more easily. However, this approach requires
significant labor costs for human experts to design excellent search spaces and can also
limit the ability of algorithms to discover truly innovative architectures. Conversely, a
larger search space increases the probability of finding novel architectures but also requires
longer search times and more computational resources.

In the early stages, Zoph et al. [11] adopted a NAS method based on RL, utilizing
parameters such as the type, size, and connections of each layer in the network to construct
a global search space. An RNN controller was employed to search and identify architec-
tures with outstanding accuracy. However, its simultaneous search of a large number of
parameters and architectures requires a large amount of computational resources, and its
shortcomings in search efficiency and computational cost have motivated researchers to
explore more efficient algorithms.

To reduce computational burdens, an effective approach is to transition from tradi-
tional global search methods into cell-based local search. NASNet [12] introduced this
cell-based search framework, where the design of the search space involves stacking op-
timized cells, including normal and reduction cells, repetitively. This approach not only
reduces the cost and enhances the efficiency of the search process but also enriches the
diversity of the search space. NASNet constructs scalable architectures modularly through
reusable normal and reduction cells. Normal cells maintain the size of the feature maps,
whereas reduc cells downsample the input feature maps, halving their dimensions and re-
ducing their spatial resolution. NASNet searches the above two optimal cells from the small
dataset, cifar10, and extends the network architecture by increasing the number of cells
and repeated stacking and successfully migrates them to the large dataset Imagine, with
excellent performance, which improves the portability of NAS. After that, many studies [33]
have adopted the cell-based search space design and improved it in several aspects.

Progressive Neural Architecture Search (PNAS) [34] inherits the methodology of
NASNet, employing a progressive search strategy that starts from the smallest structures
and iterates through them, incrementally increasing the scale of cell parameters for efficient
exploration of the search space. Unlike the earlier NASNeT, PNAS reduces the search space
by controlling the step size, and each stage concentrates on evaluating the architectures
focused on those most likely to improve performance. Liu et al. proposed differentiable
architecture search (darts) [27] based on NASNeT. Darts takes a continuous representation
of the previously discrete search space and constructs a graph in the form of a supernet,
where the operation with the highest probability of operation in the network is selected
by gradient descent. This continuous search space allows darts to smoothly adjust the
architecture throughout the search process.

However, many of the existing neural network architectures operate under a human-
set framework, requiring human experts to predefine a cell with a sufficiently small range
and high performance potential as the basis of the search space. This not only increases
the human cost but also puts high demands on professional knowledge and has certain
limitations. To address these issues, some studies on search space optimization methods
have appeared in recent years. In the binary NAS algorithm proposed by EBNAS [35], it
was found that convolutional operations are detrimental to search if they are too dominant,
so it uses some search space simplifying strategies to ensure that the search is efficient. The
activation distribution is adjusted by removing the BatchNorm and PReLU layers from
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the initial search space to improve the binary network performance. CNAS [28] leverages
curriculum learning to gradually expand the search space, utilizing previously acquired
knowledge to inform the exploration of larger spaces. Conversely, AutoSpace [29] employs
a differentiable fitness function to assess cell performance and a differentiable evolutionary
algorithm to refine the search space for future explorations. However, AutoSpace may face
some challenges in optimizing the search space using EA, such as high redundancy and
slow convergence rates. These issues primarily stem from the typically large scale of the
initial search spaces, as EA tends to perform poorly when dealing with large search spaces.
Actually, even using random searches may yield powerful results if there is a rich, but
not overly broad, search space [27,36] . This process often involves repeated attempts and
adjustments, so there is still a need for human involvement in search space optimization,
and there is still a certain amount of manual intervention.

2.3. Computing-Cost-Aware NAS

In many domains, models obtained by NAS exhibit unprecedented accuracy. However,
these high-performance models often contain millions of parameters and require billions
of floating-point operations (Flops), making their deployment in scenarios with limited
computational resources a significant challenge. In industrial applications requiring real-
time performance, such as dynamic classification equipment for coal and gangue, these
devices must detect objects in real time on conveyor belts and cannot afford the latency
involved in sending data to the cloud and waiting for results.

Traditional approaches to NAS have tended to focus on network performance while
ignoring the computing costs. This leads to a large number of redundant structures.
However, in practice, computation costs and storage resources are often limited. The
existence of redundant structures not only increases the computation and storage costs
but may also negatively affect the performance improvement. For this reason, adopting a
computation-cost-aware NAS method has significant practical value.

Computational-cost-aware NAS methods involve balancing computation cost and
performance while searching for architectures. This method aims to identify architectures
that maintain high performance at lower computational costs. By employing computational-
cost-aware NAS methods, the computational and storage costs of neural networks can
be reduced. To assess model efficiency, many NAS methods [11,12,37] employ hardware-
agnostic metrics such as FLOPs. However, FLOPs are not always directly related to the
number of parameters and cannot reliably reflect computational costs. Architectures
with lower FLOPs are not necessarily faster [38]. For example, although NASNet and
MobilenetV1 have similar Flops, the latter has a shorter runtime latency in hardware
due to its simpler architecture [39], indicating that Flops are not a perfect measure of
hardware cost.

To measure the hardware cost more accurately, researchers have proposed hardware-
aware NAS methods. The hardware cost assessment method and its advantages and
limitations are shown in Table 2. These primarily leverage hardware-aware computa-
tional cost metrics, including latency [38], memory usage [40], and the number of param-
eters [41]. Recently, some researchers [42–44] have used real-time measurements, where
the explored model is executed on the target hardware during the search. MnasNet [38]
designs lightweight network architectures by measuring the latency of a model on a mobile
device, using accuracy and latency as a multi-objective reward function to find the optimal
balance between accuracy and responsiveness. Real-time measurements can measure la-
tency, but it is only applicable to mobile CPUs. ChamNet [45] combines energy, accuracy,
and latency predictors during the search process to efficiently search for CNNs on the target
system. This strategy is not scalable and requires all hardware platforms to be available,
which is computationally expensive. The research field has gradually shifted towards more
flexible and efficient alternatives, so prediction models and lookup table methods have
emerged. Srinivas et al. [46] achieved architectural performance optimization during the
search process by reading latency and energy values from their respective lookup tables.
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FBNet [42] et al. created a lookup table based on the delay of each network cell in order to
avoid time-consuming delay calculations so that the delay of the entire network structure
can be quickly calculated. NASCaps [40] performs high-dimensional modeling for specific
dedicated CNN and CapsNet hardware accelerators, enabling rapid estimation of memory
usage, energy consumption, and latency. Although these techniques are effective, they
require hardware experts to build the models.

Table 2. Comparison of definitions, advantages, and limitations of computational cost-perception
assessment methods.

Method How the Method Is
Achieved? Advantages Limitations Hardware Cost Metric

Real-time
measurements

The sampled model is
executed on the
hardware target while
searching.

High accuracy, reliable
results

High computational
cost, hardware
dependency, not easy
to apply across
platforms

Latency [38,42–44,47]

Energy [38,47]

Lookup table models

A lookup table will be
pre-created by the
system and extensive
testing will be
performed to collect
data about hardware
power consumption,
latency, etc. Once the
search begins, the
system will calculate
the total cost.

Rapid estimation, easy
to implement

Requires extensive
data, high maintenance
cost, accuracy limited
by the level of detail in
the lookup table

Energy [38,46]

Analytical estimation

Compute a rough
estimate using the
processing time, the
stall time, and the
starting time.

Quick estimation, no
need for hardware
execution

Lower accuracy, may
not precisely predict
performance across all
hardware
configurations

Latency [40,45,48]

Energy [40,45]

Memory
footprint [40,45]

Prediction model

Build an ML model to
predict the cost using
architecture and
dataset features.

Improved accuracy
through training, high
flexibility and
scalability

Requires extensive data
for training; model
construction and
training process can be
complex and
time-consuming

Latency [43,49]

Different from traditional computational-cost-aware methods, this study focuses on the
topology of neural networks without preliminary preparation of data to construct lookup
tables and prediction models and does not have to run in hardware devices. It analyzes and
evaluates the complexity through the nodes and edges of the internal topology to reduce
the computational complexity and improve the model interpretability. Considering the
topological complexity of the network is essential to effectively reduce computational cost
in NAS.

In this work, we propose an adaptive method for shrinking the search space, which
can effectively filter out and retain efficient cells, thereby avoiding the need for experts to
make multiple attempts to evaluate the performance of different cells. In addition, to search
for lightweight networks, we innovatively proposed a method to evaluate the network
complexity from the perspective of topology by calculating the number of connection
relationships between feature maps and convolutions in the architecture to evaluate the
topological complexity. This methodology enables the computation of topological complex-
ity to predict computational costs before the architecture is trained, without consuming
computational resources in hardware devices. The computational cost estimation process
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is simple and fast. We proposed a search method, TCNAS, that achieves a balance between
accuracy and topological complexity. This way, we can not only reduce the human involve-
ment and improve the search efficiency but also obtain lightweight networks with simple
structure, low computational cost, and high accuracy.

3. Proposed Method

This research proposes a novel method for automatically designing lightweight neural
network architectures specifically for coal and gangue classification tasks. The essence
of this method lies in minimizing human intervention during the NAS process, thereby
significantly enhancing the efficiency and performance of the search. The overall framework
of TCNAS is shown in Figure 2.
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Figure 2. Explanation of TCNAS for optimizing the search space and conducting a lightweight
network search. In the first stage, the search is conducted based on accuracy as the evaluation metric
to obtain the effectiveness probability of the cell and gradually eliminate cells with poor performance
to optimize the search space. In the second stage, a multi-objective optimization is performed on
accuracy and topological complexity in the optimized search space to guide the NAS search for a
lightweight network.

The TCNAS process is divided into two phases. The first phase is dedicated to search
space optimization. The aim is to explore an initial search space guided by the principle of
optimal precision, gradually eliminating poorly performing units to refine the search space
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and avoid potential combinatorial explosions. The second phase focuses on evaluating the
topology complexity of the network. Within this refined search space, the search task shifts
to finding lightweight and efficient architectures. This approach not only improves the
accuracy and efficiency of the search but also greatly reduces the resources required for
training and deployment, providing an effective and practical solution for the automatic
classification of coal and gangue.

3.1. Adaptive Shrinking Search Space Optimization Method

Traditional cell-based search spaces, which often share the best normal and reduction
cells, can lead to limited global diversity in network architectures. To overcome this
limitation and enhance the diversity of architectures obtained through NAS, this paper sets
exclusive sub-search spaces for different network depths. This approach allows networks
to be constructed in a more flexible and diverse manner. Specifically, the network adopts a
chain-like structure, consisting of eight cells connected by a fully connected layer. After
every three normal cells, there is a reduction cell for dimensionality reduction. Independent
sub-search spaces are set for the first three normal cells, the last three normal cells, and the
two reduction cells in the network. This arrangement allows each layer of the network to
choose the most suitable cell from its corresponding sub-search space, and the cells between
different layers can be different. Each sub-search space contains the most effective cells at
the respective depth, thereby enhancing the overall performance of the network.

In the design of the search space, depthwise separable convolutions are extensively
used in place of traditional convolution operations to create a more lightweight search
space. In order to ensure that the search space is excellent, an adaptive shrinking search
space optimization method is adopted. This approach allows human experts to design
what they consider efficient cells as the initial search space based on their professional
knowledge and judgment, thus avoiding excessive time spent on determining whether the
search space is reasonable.

The optimization of the search space follows a structured process aimed at refining the
selection of cells to improve network performance. The optimization process of the search
space follows the steps of Algorithm 1: Firstly, various networks are randomly generated
at the beginning of an exploration phase within a vast search space predefined by a human.
Then, the performance, such as accuracy, of all generated architectures is tested and these
architectures are ranked based on accuracy. Next, these architectures are ranked according
to accuracy to identify the best performing architecture. A key step is to select the top k
architectures and analyze how often each cell is used in all the architectures as well as in the
top architectures. This analysis helps to calculate the effectiveness probability of each cell,
defined as the ratio of the number of times a cell appears in top architectures to its overall
usage rate. This effectiveness probability serves as a clear indicator of the cell’s contribution
to improving the model performance, with higher values indicating a greater impact on
improving accuracy. Subsequently, the cells with the lowest effectiveness probability are
removed and those that are more effective are retained. Finally, the decision to conclude
the optimization process depends on the size of the search space. If the search space has
been reduced to a reasonable range, the optimization process is complete; otherwise, the
process is restarted until the search space reaches an ideal size. This adaptive approach to
shrinking the search space optimization can reduce labor and time costs while retaining
superior units to improve search efficiency. The search space optimization process is shown
in Figure 3.

The adaptive shrinking search space optimization approach is the key for TCNAS
to reduce manual intervention in the field of automated architecture design. By cleverly
designing and adapting the search space, TCNAS ensures that the network architecture is
both diverse and efficient, allowing the system to autonomously optimize and shrink the
search space within a vast and complex search domain. The method not only improves
search efficiency but also facilitates the deployment of high-performance neural networks
in resource-constrained environments.
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Figure 3. Flowchart of the search space optimization method for adaptive shrinkage.

Algorithm 1 Optimize Search Space Algorithm

Input: Initial search space S, dataset D, retention cell ratio k (as a percentage)
Output: Optimized search space S’

1: Initialize candidate network set C = {}
2: for i = 1 to N do
3: Randomly generate a network Ni from S
4: Evaluate the performance of Ni on dataset D: Acc = Ni(D)
5: Add (Ni, Acc) to C
6: end for
7: Sort the networks in C based on their performance (Acc)
8: Select the top k% of networks from C to form the preferred set C′

9: for each cell u in S do
10: Calculate the frequency of occurrence of u in C′

11: end for
12: Retain the cells with the highest frequency of occurrence to form the optimized search

space S′

13: return S′

3.2. TCNAS Search for Lightweight Network
3.2.1. Complexity Evaluation

Based on the optimized search space, we further explore in depth how to search for
lightweight networks suitable for resource-constrained environments through the TCNAS
approach, maintaining a balance between efficiency and performance.

This section introduces a novel approach for evaluating the topological complexity
of neural networks, drawing inspiration from Thomas McCabe’s classical complexity as-
sessment framework [50] originally developed for computer software testing. McCabe’s
methodology quantifies complexity through the analysis of a program’s control flow, em-
ploying a program flowchart or directed graph to vividly depict the flow of information
within the program. It is crucial to recognize that while these program flow graphs are
directed, they do not inherently constitute strongly connected graphs. To address this, Mc-
Cabe’s approach integrates auxiliary lines at the program’s beginning and end, converting
the flow graph into a strongly connected graph and facilitating complexity computation.

Inspired by McCabe’s method, this study proposes a new method to assess the topo-
logical complexity of neural networks. A neural network consists of multiple layers, where
each node in a layer receives input from the previous layer and outputs to the next layer,
up until the output layer. This process of information transfer does not involve loops,
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indicating that a neural network is essentially a Directed Acyclic Graph (DAG). In this
research, the structural and topological information of the neural network is first converted
into a format similar to a program control flow graph, and then the McCabe complexity
assessment method is applied for analysis.

To accomplish this transformation, the study constructs auxiliary lines to connect the
output and input layers of the neural network, as shown in Figure 4. These auxiliary lines,
functioning as 1 × 1 convolutions, not only preserve the original topological structure
of the neural network but also transform it into a DAG. By doing so, this study success-
fully applies McCabe’s complexity assessment method to the field of neural networks,
providing an effective tool for understanding and analyzing the topological complexity of
neural networks.

······

······

Input layer Output layerMiddle hidden layer

Figure 4. Strongly connected graph of the topology of the neural network. Each node represents a
feature map. Each edge represents a convolution. Assuming a 1 × 1 convolution between the output
layer and the input layer, construct a directed auxiliary line from the output layer feature map to the
input layer feature map to form a strongly connected graph.

When applying McCabe’s complexity assessment method to neural networks, two
key aspects require special attention. First, the topological structure of the neural network
must be accurately represented, which includes clearly defining the number of layers in the
network, the number of feature maps in each layer, and the connections between layers. In
this representation, each feature map is viewed as a node, and the convolution operations
between two feature maps are represented as edges. Second, identifying the strongly
connected components within the neural network architecture is necessary. The topological
structure of a neural network typically forms a DAG with multiple inputs and outputs. To
construct a strongly connected graph, this study achieves this by adding auxiliary lines
and calculating the number of strongly connected components. In a strongly connected
neural network structure, finding the largest strongly connected subgraph is a key step in
determining the number of strongly connected components.

Therefore, the complexity of a neural network can be calculated based on the number
of nodes, the number of edges, and the number of strongly connected components. Taking
into account the influence of convolution kernels of varying sizes on the network’s com-
putational complexity, this study assigns appropriate weight coefficients to these kernels
based on their dimensions. In this method, the number of feature maps is denoted as N,
the number of strongly connected components as P, and complexity weight coefficients for
convolution kernels of different sizes are set as α. The calculation formula for the topolog-
ical complexity T of the neural network can be represented as a function that combines
these parameters. This approach allows for a more precise assessment and understanding
of the structural and computational complexity of neural networks, providing a new per-
spective for network design and optimization. The formula for calculating the topological
complexity T of a neural network is as follows:

T = ∑
i

αi ∗ Ei − N + P (1)

where αi represents the complexity weighting coefficient of the i-th layer convolution, and
Ei represents the number of edges between the i-th and (i + 1)-th layers in the strongly
connected graph of the neural network topology. N represents the number of nodes, i.e.,
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the number of feature maps in the neural network topology. P represents the number of
strongly connected components in the neural network topology.

By accurately evaluating the topological complexity of networks, the performance
and efficiency of network architectures can be better understood and analyzed, further
driving the search for efficient and computationally inexpensive models. Concurrently,
architectures that are computationally expensive with limited performance gains can be
effectively identified and eliminated, thus ensuring that the search direction is focused on
efficient network architectures.

3.2.2. Multi-Objective Optimization Guided Lightweight Network Search

Based on the above understanding of network complexity, this study employs a
multi-objective optimization approach to guide the search of lightweight networks, aiming
to find an ideal balance that satisfies performance requirements while accommodating
resource constraints.

As the applications of convolutional neural networks expand and the number of net-
work layers increases, deploying them on edge devices with limited computing resources
becomes increasingly challenging. Against this backdrop, traditional NAS methods, which
typically use accuracy as the sole performance metric, can identify high-accuracy net-
works but face challenges in practical industrial applications. Particularly on industrial
devices with limited hardware resources, high-accuracy models are difficult to run and
deploy effectively.

To address the challenges of model deployment in industrial applications, the search
process in NAS needs to go beyond mere accuracy considerations and incorporate multiple
evaluation metrics. Topological complexity becomes one of these key metrics, reflecting
the complexity of the network architecture, including factors such as depth, width, and
connectivity. Generally, the higher the topological complexity of a network, the more
computational resources it requires. Therefore, TCNAS seeks a balance between accuracy
and hardware resource utilization, making it more suitable for environments with limited
computational resources.

TCNAS employs a linear weighted sum approach for multi-objective optimization,
aiming to find an appropriate balance between topological complexity and accuracy. It
combines multiple objective functions into a comprehensive target function, namely the
TCNAS evaluation metric. This enables TCNAS to search for neural networks that are
both low in topological complexity and high in accuracy, allowing these networks to be
effectively run and deployed on devices with limited computational resources. Multi-
objective optimization guides the lightweight network search process following the steps of
Algorithm 2. The calculation formula for the TCNAS evaluation metric takes into account
both topological complexity and accuracy, thus providing a comprehensive assessment of
network performance. The formula for calculating the TCNAS evaluation metric using
topological complexity and accuracy is as follows:

Accnorm =
Acc − AccMin

AccMax − AccMin
(2)

Tnorm =
T − TMin

TMax − TMin
(3)

S = β ∗ Accnorm +(1 − β) ∗ Tnorm (4)

where S denotes the TCNAS evaluation metric proposed in this paper, which can show the
balance between accuracy and complexity of the architecture. Acc and Accnorm represent
the accuracy of the test set and the normalized accuracy of the test set, respectively, and
T and Accnorm denote the topological complexity of the neural network and its normal-
ized form. Where β is the TCNAS balance coefficient, which is the balance coefficient
between accuracy and topological complexity according to the actual needs of the task, Acc
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represents the accuracy of the test set, and T represents the topological complexity of the
neural network.

Algorithm 2 Multi-objective Optimization Guided Lightweight Network Search

Input: Optimized search space S′, dataset D, balance coefficient β, complexity evaluation
function G

Output: Lightweight network N∗

1: Initialize best_score = 0 and best_network = None
2: for i = 1 to M do
3: Randomly generate a network Ni from S′

4: Calculate the accuracy of Ni on dataset D: Acci = Ni(D)
5: Calculate the topological complexity of Ni: Ti = G(Ni)
6: Calculate the TCNAS evaluation metric of Ni: TCNAS_scorei = β × Acci + (1 −

β)× Ti
7: if TCNAS_scorei > best_score then
8: Update the best network: N∗ = Ni
9: Update the best score: best_score = TCNAS_scorei

10: end if
11: end for
12: return the best lightweight network N∗

To improve model generalization, TCNAS uses L1 and L2 regularization techniques
to prevent overfitting. However, excessive regularization can negatively impact model
performance. Therefore, TCNAS performs hyperparameter searches on both L1 and L2
regularization coefficients during model performance evaluation; i.e., both network param-
eters and architecture are searched during the search process. This helps to allow further
reduction of manual intervention during the architecture design process and improves the
adaptive tuning capability of the system.

In essence, integrating multi-objective optimization into the TCNAS process demon-
strates a commitment to designing neural networks that are both predictive and consider
operational constraints. This balanced approach ensures that the networks obtained from
the TCNAS process are practical and deployable solutions, reflecting the crucial principles
of efficiency and effectiveness in the field of neural network applications.

4. Experiment
4.1. Data Acquisition and Development Environment

We collected over 20,000 original images from coal mining enterprises. After filtering,
cropping, and labeling the coal and gangue images collected from the coal mining site,
8542 coal and gangue grey scale images were obtained as the dataset, of which 6542 were
used for training, 1000 for validation, and 1000 for testing. Our coal and gangue images
dataset is shown in Figure 5. We resized each image to 32 × 32.

These images were captured using an industrial camera equipped with a VS1614-10m.
To fully consider the effects of the different speeds of motion of the conveyor belt, image
acquisition was conducted at three typical speeds: low speed (0.1 m/s), medium speed
(0.2 m/s), and high speed (0.4 m/s). Under these settings, the camera’s field of view was
set to 80 cm × 80 cm, and the frame rate of the camera was 60 frames per second.

We used Python and PyTorch with batch normalization to implement our method.
During the optimization of the search space, in order to speed up the efficiency of the multi-
round search and training, we use the Adam optimizer. After the search space is optimized,
in order to further improve the accuracy and convergence performance of the network, we
use the SGD optimizer for search and training. In the process of training the network, we
introduced L1 and L2 regularization techniques to prevent overfitting, which helps NAS to
find architecture with better generalization ability. During the architectural optimization
process, we also performed hyperparameter searches on the number of channels, L1 and
L2 regularization coefficients, which helped to achieve the goal of avoiding overfitting
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while ensuring that the model was sufficiently expressive. The batch size was set to 64, and
the momentum of the SGD optimizer was set to 0.9. The learning rate and weight decay
coefficient were both set to 0.001. We used the warm-up strategy and the multi-step decay
learning rate adjustment strategy to ensure that the model can converge quickly and stably.
The learning rate was reduced to half its original value at the 10th and 18th epochs.

The proposed TCNAS method has been deployed on a Windows 10 system, with an
AMD Ryzen 9 5950X 16-Core Processor (3.40 GHz), 32 GB DDR4 3600 MHz RAM, and an
NVIDIA GeForce RTX 3080 Ti with 12 GB of video memory. The code was programmed
with Python 3.7, PyTorch 1.8.1, cuda 11.1, and numpy 1.21.6 to develop our proposal.

4.2. Define the Initial Search Space

When defining the initial search space, we borrowed design concepts from three
classic neural network architectures, Vgg [51], Resnet [52], and Mobilenet [53]. These
architectures provide us with valuable references by employing different techniques to
balance the expressiveness and computational cost of the network. Vgg increases the depth
of the network by stacking multiple 3 × 3 convolutional layers to improve expressiveness
while keeping the computational cost relatively low due to the small kernel size of the
convolutions. Resnet addresses the vanishing gradient problem in deep networks by
introducing skip connections, allowing for the construction of deeper network architectures.
Mobilenet significantly reduces the number of parameters and computational cost by
replacing traditional convolutions with depthwise separable convolutions, maintaining
high accuracy levels. Building on these concepts, our search space is designed to contain
1 × 1 convolutions, 3 × 3 convolutions, and depthwise 3 × 3 convolutions for constructing
each cell. The 1 × 1 convolutions are used for channel mixing to enhance the network’s
non-linear expressive capability. The 3 × 3 convolutions serve as basic feature extractors,
balancing performance and computational cost. The depthwise 3 × 3 convolutions, inspired
by Mobilenet’s design, further reduce computational costs.

We select eight normal cells and eight reduction cells to define the initial search space,
providing sufficient flexibility and diversity for the search algorithm to explore different
network topologies. Normal cells are used to maintain the dimensions of the feature
maps, while reduction cells halve the dimensions of the feature maps. The overall network
structure consists of six normal cells and two reduction cells, with a configuration of three
normal cells followed by a reduction cell, based on the best practices from multiple experi-
ments and previous research [9,12,27]. This configuration balances the depth and width of
the network and ensures sufficient representation capacity while limiting computational
cost. Additionally, this grouping helps the model to capture features at different scales,
enhancing the model’s adaptability to scale variations. Through the initial search space
shown in Figure 6, we provide a balanced starting point for network search, aiming to find
a network architecture that is both highly accurate and computationally efficient through
subsequent search processes.

4.3. Search Space Optimization Results

The proposed search space adaptive optimization and reduction method is evaluated
based on accuracy as the only performance metric for searching and is searched for a
total of 500 architectures. The ratio of the number of times the cell is used in the 50
networks with the best performance to the number of times the cell is used in all generated
networks is used to calculate the effectiveness probability of each cell. After optimization,
the effectiveness probabilities of each cell are shown in Table 3. The four most effective cells
with the highest effectiveness probability are selected to form the optimized search space
for each sub-search space. In the first three layers of normal cells, the most effective cells are
H, G, A, and E, with effectiveness probabilities of 0.245, 0.242, 0.223, and 0.206, respectively.
In the last three layers of normal cells, the most effective cells are F, G, B, and C, with
effectiveness probabilities of 0.247, 0.242, 0.222, and 0.216, respectively. The most effective
cells of the two-layer reduction cell are O, M, I, and K, with effectiveness probabilities of
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0.339, 0.268, 0.241, and 0.210, respectively. After the search space is optimized, an empty
operation cell is added to the optimized normal cell search space, which allows the NAS
to have the ability to adaptively adjust the network layer depth during the next stage of
TCNAS search for lightweight architectures, which helps discover networks with fewer
layers and lower architectural complexity.

Figure 5. Example image of our coal and gangue dataset.

Concat +

Ghost1

Ghost2

Concat

(A) (B) (C) (D)

Concat

Channel spilt

Channel shuffle

+

outc/2

inc

outc/2

outc/2

outc

206

206

206

outc
inc

inc

206outc

outc

outc

outc/2

+

+

+

(E) (F) (G) (H)

outc
outc

194

outc

outc
inc

inc

206

206

206

outc

Concat +

+

(I) (J) (K) (L)

Channel shuffle

outc/2

Stride=2 outc

Stride=2

outc

outc/2

outc/2

outc

outc

Stride=2

outc

outc/2

outc

Stride=2

outc/2

Stride=2 inc

Stride=2 outc/2

Stride=2

Figure 6. Cont.



Mathematics 2024, 12, 759 16 of 24

+
+ +

+

Maxpooling  

(M) (N) (O) (P)

outc

Stride=2
outc

Stride=2
outc

outc

outc

Stride=2

outc

outc

Stride=2

206

206

206

inc
inc

Stride=2

inc

Stride=2

inc outc

inc

206

: 1×1 convolutional layer : 3×3 convolutional layer

: 3×3 depthwise convolutional layer

*

*

*

Figure 6. The architecture of the search space. * indicates the number of output channels and stride
settings for each convolutional layer. (A–H) indicate normal cells, and (I–P) indicate reduction cells.
Reduction cells are mainly downsampled by the stride of 2 and maxpooling.

Table 3. The effectiveness probability of each cell after pre-search.

The Search Space of Normal Cells
in the First Three Layers A B C D E F G H

Effectiveness Probability 0.223 0.128 0.175 0.200 0.206 0.176 0.242 0.245

The Search Space of Normal Cells
in the Last Three Layers A B C D E F G H

Effectiveness Probability 0.165 0.222 0.216 0.158 0.179 0.242 0.247 0.167

The Search Space of
the Two Reduction Cells I J K L M N O P

Effectiveness Probability 0.241 0.207 0.210 0.081 0.268 0.035 0.339 0.186
A–P denotes the cell that was set by the authors in this experiment. See Figure 6 for details.

4.4. Compare the Ratio of Parameters between Various Convolutions

Before conducting TCNAS, it is necessary to determine the ratio between the various
convolutional computation costs. Therefore, we conducted experimental comparisons
of two mainstream neural networks, Vgg and Resnet. The architectures used in this ex-
periment only include commonly used 1 × 1, 3 × 3, and 3 × 3 depthwise convolutions.
It is worth noting that the number of parameters in the 3 × 3 convolution is a multi-
ple of the number of groups in the 3 × 3 depthwise convolution. Therefore, once the
number of parameters in a 3 × 3 convolution is known, the number of parameters in a
3 × 3 depthwise convolution can be determined. We measured the number of parameters
in four network architectures by replacing the convolutional layers with all 1 × 1 convolu-
tions and all 3 × 3 convolutions. We replace all the convolutions in the four networks with
1 × 1 convolutions or 3 × 3 convolutions and then calculate the parameters of these net-
works to approximate the computational cost of 3 × 3 convolutions and 1 × 1 convolutions.
The experimental results in Table 4 show that the total number of parameters in a network
consisting entirely of 3 × 3 convolutions is about eight times that of a network consisting
entirely of 1 × 1 convolutions. Therefore, the ratio of computational costs between 1 × 1,
3 × 3, and 3 × 3 depthwise convolutions is 1 : 8

G : 8. This ratio will be used as the weight
ratio of each convolution to calculate the topological complexity of the neural network in
the following experiments.
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Table 4. Comparison of the parameters of the above four networks all constructed by 1 × 1 or
3 × 3 convolutions, where ‘parameter scale’ is the parameters of the network constructed by all
3 × 3 convolutions divided by the parameters of the network constructed by all 1 × 1 convolutions.

Models

Params Convolution

1 × 1 3 × 3 Parameter Scale

Vgg16 1,906,506 14,982,472 7.8586

Vgg19 2,497,610 20,292,170 8.1246

Resnet18 1,407,562 11,173,962 7.9385

Resnet34 2,537,290 21,282,122 8.3877

Average scale: 8.0774

4.5. TCNAS Balance Coefficient Value Experiment

In the TCNAS search method for lightweight networks proposed in this paper, the
accuracy and topological complexity of the model are given different weights. Then they
are linearly weighted and summed. In this process, the selection of weights is crucial,
effectively achieving a suitable balance between accuracy and topology complexity. We
selected TCNAS balance coefficient β to be 0.5, 0.6, 0.7, and 0.8 to conduct TCNAS search
experiments. Search under different β values, and take the average performance indicators
of the six architectures with the largest TCNAS evaluation metric obtained from the search.
The experimental results are shown in Table 5. When β is 0.5, although the number of
parameters and topological complexity is low, its accuracy is also relatively low. On the
contrary, when β is 0.8, although the accuracy is higher, it requires more parameters and
has a larger topological complexity. This experiment determined that a β of 0.6 is a more
appropriate weight distribution scheme. The following experiments will use 0.6 as the
TCNAS balance coefficient for further experimental verification.

Table 5. The results of various performance indicators of the excellent network obtained by searching
under different TCNAS balance coefficients.

TCNAS
Balance Coefficient

(β)
Accuracy Parameters Topological

Complexity

TCNAS
Evaluation

Metrics

β = 0.5 0.8198 182,386 161,234 0.8852
β = 0.6 0.8235 227,102 197,197 0.8710
β = 0.7 0.8215 215,132 191,348 0.8523
β = 0.8 0.8243 264,011 231,941 0.8403

4.6. Comparison with Other Hardware Cost Metric Search Methods

To validate the effectiveness of the proposed method for evaluating topological com-
plexity, we used three hardware cost indicators: parameter, latency, and topological com-
plexity. Each of the three hardware cost metrics is fused with accuracy for three lightweight
architecture search experiments. Our proposed TCNAS performs a lightweight architecture
search guided by both topological complexity and accuracy and compares search results
using parameter count and latency as measures of computation cost. The latency refers to
the real hardware inference time on a 3080 Ti GPU in the workstation of the author. The
previous experiments have verified that the TCNAS balance coefficient β of 0.6 is a suitable
parameter, so the accuracy and topology complexity are fused at a ratio of 6:4. The number
of parameters and latency are experimented at the corresponding suitable ratios.



Mathematics 2024, 12, 759 18 of 24

In the optimized search space, we used three hardware cost metrics and accuracy to
guide the search for 500 architectures. We compare the performance of the five architectures
with the best overall performance in the experiments of different hardware cost indicators.
Tables 6 and 7 show the results of experiments conducted using parameter and latency
as hardware cost metrics, respectively. Although the first-ranked architecture is 0.1% less
accurate than the second-ranked architecture, the parameters are only 0.5 times those of
the second-ranked architecture, which has the best comprehensive performance.

Table 6. Performance of the architecture obtained from the search guided by accuracy and parameters.

Rank Architecture and
Number of Channels

Acc
(%)

Hardware-Aware Cost Metrics Multi-Objective Optimization
Metrics for

Accuracy and Parameters
Topological
Complexity Params Latency

1
G, A, G, I, Q, C, F, M,

82.1 116,081 133,364 2.8737 0.871996, 96, 192, 64, 32, 128, 32, 160, 32

2 G, A, Q, I, G, C, Q, K, 82.2 200,329 228,628 2.5778 0.866564, 64, 64, 64, 32, 32, 256, 128, 64

3 Q, G, Q, I, F, Q, B, O, 81.8 155,487 174,496 2.2593 0.8644192, 32, 96, 128, 96, 64, 32, 64, 64

4 G, G, G, O, F, B, Q, M, 82.0 205,967 227,648 2.5896 0.863564, 128, 160, 128, 96, 32, 32, 96, 192

5 Q, A, G, O, F, G, F, O, 82.0 233,721 257,600 2.3544 0.861464, 192, 128, 96, 64, 256, 64, 64, 160

Table 7. Performance of the architecture obtained from the search guided by accuracy and latency.

Rank Architecture and
Number of Channels

Acc
(%)

Hardware-Aware Cost Metrics Multi-Objective Optimization
Metrics for

Accuracy and Latency
Topological
Complexity Params Latency

1 Q, H, G, O, G, Q, Q, K, 82.7 931,099 1,043,658 2.0953 0.833496, 64, 192, 64, 32, 192, 256, 256, 32

2 A, Q, G, O, Q, Q, F, M, 81.3 178,279 196,224 1.8657 0.8312192, 64, 64, 192, 128, 96, 256, 32, 32

3 Q, G, Q, I, Q, F, F, K, 80.9 80,413 92,288 1.7957 0.825532, 160, 64, 64, 96, 64, 32, 32, 32

4 G, G, Q, I, F, Q, Q, K, 81.3 296,765 335,120 1.9334 0.817396, 160, 192, 32, 32, 32, 96, 160, 160

5 Q, H, Q, O, F, Q, F, O, 82.2 519,429 571,626 2.4098 0.814664, 96, 96, 256, 128, 192, 64, 128, 256

The top five architectures obtained from the TCNAS are shown in Table 8. TCNAS
performs multi-objective optimization on accuracy and topology complexity, and searches
for the architecture with the best overall performance [Q, G, Q, I, F, Q, B, O, 192, 32, 96, 128,
96, 64, 32, 64, 64], which achieved the highest accuracy rate of 83.3%, a topology complexity
of 155,487, and a TCNAS evaluation metric of 0.8883. Our experimental results demonstrate
that the proposed topological complexity metric can effectively reflect the complexity level
of neural networks.

Table 8. Performance of the architecture obtained by TCNAS.

Rank Architecture and
Number of Channels

Acc
(%)

Hardware-Aware Cost Metrics TCNAS
Evaluation Metric

(β = 0.6)
Topological
Complexity Params Latency

1 Q, G, Q, I, F, Q, B, O, 83.3 155,487 174,560 2.2817 0.8883192, 32, 96, 128, 96, 64, 32, 64, 64

2 G, G, G, O, F, B, Q, M, 82.5 205,967 231,072 2.6230 0.872664, 128, 160, 128, 96, 32, 32, 96, 192

3 G, Q, G, O, Q, G, C, I, 82.5 236,747 263,652 2.7075 0.8704160, 128, 32, 192, 128, 128, 64, 256, 160

4 G, Q, A, O, G, C, F, O, 82.4 281,285 307,044 3.3112 0.865796, 160, 192, 32, 32, 32, 96, 160, 160

5 A, A, G, O, G, C, G, M, 81.6 128,171 150,324 3.4036 0.8647256, 64, 32, 32, 128, 96, 32, 160, 160
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4.7. Performance Comparison with Other NAS Methods

In this experiment, we evaluated the performance of different cell-based NAS methods
under the same 100 h of search time cost and found that TCNAS has significant advan-
tages in adaptive shrinking search space optimization and multi-objective optimization.
Table 9 compares the search cost, top-1 accuracy, parameters, and topological complexity of
ProxylessNAS, DARTS, ENAS, NASNet, and our TCNAS.

Table 9. Performance comparison of cell-based NAS methods under the same search condition for
100 h.

Architecture Topological Complexity Params Top-1 Accuracy (%)

ProxylessNAS [43] 97.7 M 4.71 M 79.69
DARTS [27] 91.8 M 4.38 M 80.22
ENAS [32] 82.1 M 3.92 M 78.48

NASNET [11] 17.4 M 0.79 M 80.23
TCNAS 4.0 M 0.17 M 83.30

ProxylessNAS, despite using parameter sharing and random uniform sampling to
reduce the search space, did not use a proxy model during the search process, resulting in
relatively high search cost, parameters, and topological complexity of 4.71 M and 97.7 M,
respectively. DARTS and ENAS, while achieving higher accuracy, had relatively large
parameters and topological complexity of 4.38 M/91.8 M and 3.92 M/82.1 M, respectively.
NASNet adopted a multi-objective optimization strategy, significantly reducing the parame-
ter count to 0.79 M while maintaining a top-1 accuracy of 80.23%. However, the topological
complexity remained relatively high.

However, our TCNAS demonstrated unique advantages in adaptive shrinking search
space optimization and multi-objective optimization. By treating parameters and topolog-
ical complexity as one of the objectives in multi-objective optimization, we achieved an
impressive 83.3% top-1 accuracy with only 0.17 M parameters. This is a dual-target opti-
mization of high accuracy and low parameters that other methods have failed to achieve.
At the same time, TCNAS also showed significant advantages in topological complexity,
reducing it to just 4.0 M compared to other methods. This means that our TCNAS method
can find more efficient neural network architectures, achieving a better balance between
accuracy and model complexity.

In summary, TCNAS has successfully achieved high accuracy, low parameters, and
low topological complexity through the combined effects of adaptive shrinking of the search
space and multi-objective optimization. This makes TCNAS a promising method with the
potential to enable efficient neural network design in resource-constrained conditions.

4.8. Performance Comparison with Other Networks

To validate the network performance obtained by TCNAS search, we tested our
method on coal and gangue image datasets. We compared the performance of the optimized
networks obtained by TCNAS with mainstream networks, lightweight networks, and
specialized networks for coal and gangue classification [9], including accuracy, F1-score,
and recall metrics, as shown in Table 10. Recall is a metric that evaluates the ability of the
model to identify positive class samples, which can reflect the ability of the model to capture
positive samples. F1-score is the reconciled average of accuracy and recall, a balanced
metric of accuracy and recall. The results show that the optimal architecture searched by
TCNAS achieves the highest accuracy of 83.3%, which is higher than Cellnet40 [9], the
network with the highest classification accuracy of coal and gangue in the past, and has only
1/53 the number of parameters as Cellnet40. Compared with mainstream networks and
lightweight networks, TCNAS not only achieves higher accuracy but also excels in F1-score
and recall, while maintaining a lower number of parameters, achieving the optimal balance
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between accuracy and efficiency. Experiments show that TCNAS, combined with topology
complexity, can effectively automatically search and design a network with higher accuracy
and simpler architecture. This is of great significance for deploying and promoting deep
neural networks in the industrial field.

Table 10. Comparison of the performance of TCNAS optimal network with mainstream network and
lightweight network on coal and gangue classification dataset.

Models F1-Score Recall Accuracy
(%)

Param
(M)

Mainstream network

Alexnet [54] 0.701 0.673 73.1 5.41
VGG16 [51] 0.776 0.756 79.7 33.61
Resnet34 [52] 0.786 0.783 78.8 21.29
Denesnet [55] 0.772 0.761 78.4 6.96
Vision Transformers [56] 0.778 0.757 80.1 71.32

Lightweight network

Mobilenet [53] 0.695 0.675 71.7 2.23
Shufflenet [57] 0.780 0.773 78.7 1.26
InceptionV3 [58] 0.783 0.765 80.1 22.12
Xception [59] 0.701 0.682 72.1 20.81
Sequeezenet [60] 0.772 0.752 79.2 0.73
Ghostnet [61] 0.730 0.704 75.8 5.48
MoCoVit [62] 0.772 0.787 75.7 9.78

Coal and gangue
classification network

Cellnet34 [9] 0.783 0.753 81.5 7.69
Cellnet40 [9] 0.795 0.774 81.8 9.26

Ours 0.814 0.796 83.3 0.17

5. Discussion

From a topological perspective, this is a relatively unexplored area in the study of
neural networks. We made an early attempt to evaluate the complexity of neural networks
by quantifying the number of nodes and edges. Different from traditional NAS, which
focuses on hardware metrics (e.g., Flops and latency), TCNAS directly quantifies the
complexity and computational cost of a network by evaluating the number of nodes and
edges inside the network. This approach not only strengthens the association between
network complexity and computational cost but also proves to be efficient in searching for
lightweight networks.

In this study, TCNAS successfully introduced the concept of topological complexity in
the NAS domain, demonstrating that utilizing this metric can effectively search for networks
that are structurally simple and have low computational costs. Although these networks
are not always the highest accuracy, they train quickly, help prevent overfitting, and are
more suitable for deployment in environments with limited computational resources, thus
promoting the understandability and interpretability of the neural network. Compared to
the work of Cellnet40, our method can reduce the number of network parameters by up
to 53 times, further demonstrating the ability of TCNAS to find lightweight and efficient
networks. Additionally, we introduced an adaptive shrinking search space optimization
method to improve search efficiency. This method allows for the automatic selection
of the best cells designed by human experts based on intuition as the optimized search
space, thereby reducing the degree of human intervention and decreasing design time and
labor costs.

TCNAS demonstrates significant potential and flexibility in handling diverse archi-
tectures and optimizing search algorithms. The approach is not only suitable for specific
tasks, such as coal and gangue classification, but its design philosophy and implementation
mechanism enable it to be easily extended to other domains, such as semantic segmenta-
tion and other image recognition tasks. In particular, we note that the attention module
has a significant effect on accuracy improvement, and TCNAS can flexibly incorporate
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advanced architectures like an attention module into the search space as needed to meet
diverse requirements.

Limitations: Despite the exceptional performance demonstrated by TCNAS in various
aspects, we recognize that it has some limitations. Particularly, regarding the adaptive
shrinking method for search space optimization, the process reduces human intervention
but still requires some human intervention and involvement, especially during the design
phase of the initial search space. There is a gap between this need for human involvement
and the ultimate goal of AutoML, which aims to eliminate the need for human intervention.

To get closer to the ultimate goal of AutoML, future research will focus on reducing
human intervention. In search space design and optimization, the aim is to achieve full
automation of search space construction as well as automated design of high-level architec-
tures. By introducing topological complexity at an earlier stage and imposing complexity
constraints on the cell structure, it will help to reduce invalid searches, improve search
efficiency, and facilitate the development of the automated design of lightweight networks.

6. Conclusions

This paper proposes the TCNAS method, which innovatively integrates topology
complexity assessment and adaptive search space optimization to address the challenging
issue of efficiently running high-precision networks on industrial devices with limited
computational resources. Overall, the proposed TCNAS method offers a promising so-
lution to the challenges of light weight and self-adjustment in deep neural networks. By
integrating topological complexity evaluation and efficient search techniques, it enables
the automated discovery of lightweight networks that maintain high accuracy, making
it particularly suitable for industrial applications. Compared with mainstream networks
and lightweight networks, the optimal network searched by TCNAS has higher accuracy,
simpler structure, and fewer parameters. The optimal architecture searched by TCNAS
achieved an accuracy of 83.3% in the coal and gangue classification experiment, which
is 1.5% higher than the accuracy of the best network, Cellnet40, in this task, previously
achieved by the author team, but with about 53 times fewer parameters than Cellnet40.
Therefore, the experiment effectively verifies that the topological complexity evaluation
method we proposed provides a new idea for lightweight neural network research.

Although TCNAS performs well in many aspects, it still has some limitations. In
particular, in the adaptive reduced search space optimization approach, this process reduces
manual intervention but still requires manual involvement in the initial design phase.
Future research will aim to further reduce manual intervention and automate search space
construction and efficient design.
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