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Abstract: Spatio-temporal dynamic mode decomposition (STDMD) is an extension of dynamic mode
decomposition (DMD) designed to handle spatio-temporal datasets. It extends the framework so that
it can analyze data that have both spatial and temporal variations. This facilitates the extraction of
spatial structures along with their temporal evolution. The STDMD method extracts temporal and
spatial development information simultaneously, including wavenumber, frequencies, and growth
rates, which are essential in complex dynamic systems. We provide a comprehensive mathematical
framework for sequential and parallel STDMD approaches. To increase the range of applications of the
presented techniques, we also introduce a generalization of delay coordinates. The extension, labeled
delay-embedding STDMD allows the use of delayed data, which can be both time-delayed and space-
delayed. An explicit expression of the presented algorithms in matrix form is also provided, making
theoretical analysis easier and providing a solid foundation for further research and development.
The novel approach is demonstrated using some illustrative model dynamics.

Keywords: DMD method; spatio-temporal dynamic mode decomposition; Koopman operator;
delay embedding
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1. Introduction

Dynamical systems are prevalent in science and engineering, yet analyzing and pre-
dicting them remains challenging. While linear systems are well characterized, nonlinear
systems are difficult to characterize. They can exhibit an extremely wide range of behav-
iors, including chaos, and generally do not yield analytical solutions. Koopman operator
theory plays an important role in the analysis of such systems [1,2]. The idea is based
on transforming the finite-dimensional dynamics of the nonlinear state space into an
infinite-dimensional linear dynamical system of functions on the state, represented by the
Koopman operator. Through the eigendecomposition of the Koopman operator, we can
understand the behavior, stability and long-term dynamics of complex systems. One of the
leading algorithms for Koopman spectral analysis is dynamic mode decomposition (DMD),
introduced by Schmid in [3]. The method comprises a mathematical technique for identify-
ing spatio-temporal coherent structures from high-dimensional data. After its introduction,
the method is now used in a variety of fields, including various jets [4,5], epidemiology [6],
video processing [7], neuroscience [8], financial trading [9–11], robotics [12] and cavity
flows [13,14]. For a review of the DMD literature, we refer the reader to [15–19]. For some
recent results on DMD extensions, we recommend [20–42] to the reader.

While standard DMD is a powerful technique for analyzing dynamic systems, it has
limitations related to its assumptions, sensitivity to noise, ability to capture long-term dy-
namics, computational complexity, parameter sensitivity and others. Researchers continue
to develop and refine variations in the DMD method to address these shortcomings and
improve its applicability to a wide range of data analysis tasks. Over the last few years,
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several variants of DMD have been proposed. Chen [20] proposed an optimized DMD
method that can reduce numerical sensitivity and calculate the modal growth rate and
frequency accurately. Williams et al. [21] suggested extended DMD (EDMD), which can
produce improved approximations of the leading Koopman eigenfunctions and eigen-
values. Moreover, Le Clainche et al. [22] developed higher-order DMD (HODMD), which
extends DMD to resolve delayed snapshots. In [23], Le Clainche and Vega introduce
spatio-temporal Koopman decomposition (STKD), which incorporates higher order DMD and a
spatio-temporal approach for the Koopman operator.

One of the modifications of the DMD method, which will play a key role in the
exposition of the present work, is the delay-embedding DMD (or Hankel DMD) [43,44].
Delay-embedding methods have also been employed for system identification, most notably
by the eigensystem realization algorithm (ERA)[45] and in climate science with singular
spectrum analysis (SSA) [46]. Brunton et al. [47] developed a variant of this technique
called the Hankel alternative view of Koopman (HAVOK) analysis.

In the present work, we consider the spatio-temporal DMD (STDMD), a generalization
of the DMD method designed to handle spatio-temporal datasets. It extends the framework
so that it can analyze data that have both spatial and temporal variations, by extracting
spatial structures and their temporal evolution. The STDMD method extracts temporal
and spatial development information simultaneously, including wavenumber and spatial
growth rate. This can be crucial in complex dynamic systems. The “spatio-temporal” aspect
refers to the fact that DMD is applied to data that vary both in space and time, such as
sequences of images or sensor measurements collected over time and across multiple spatial
locations. In such data, patterns and structures can evolve both spatially and temporally,
and the approach aims to capture these spatio-temporal dynamics. Applications of spatio-
temporal DMD span various fields, including fluid dynamics, neuroscience, climate science,
and engineering, where understanding and predicting complex spatio-temporal behaviors
is essential. Some recent publications related to the topic suggest applications in the
fields of unsteady shear layer flow [48], wake of a circular cylinder [49], urban flow [50],
aerodynamic modeling [51], turbulent flow [52] and binary fluid convection [53].

We provide a comprehensive mathematical framework for sequential and parallel
STDMD approaches. A clear expression of the presented algorithms in matrix form is also
provided. This facilitates theoretical analysis and provides a solid foundation for further
research and development. Furthermore, we introduce a delay coordinate generalization
of STDMD, enabling the use of both time-delayed and space-delayed snapshots. This
extension, labeled delay-embedding STDMD, can be considered as an alternative approach
to the STKD method proposed in [23]. The proposed STDMD approach is compared with
the results obtained from STKD.

The following is an outline of the paper: in the rest of Section 1, we describe the DMD
and some basic concepts related to it; spatio-tempral DMD approaches are in Section 2;
in Section 3, we introduce and discuss the framework for delay-embedding STDM; in
Section 4, we present the numerical results; in Section 5, we provide the conclusion.

1.1. Dynamic Mode Decomposition

In this paragraph, a brief introduction to the classical dynamic mode decomposition
(DMD) framework is provided. For details, we refer the reader to [16,17,19] and the
references therein. Consider the system of time-invariant ordinary differential equations of
the form

ẋ(t) = f (x(t)), (1)

where x ∈ Rn is the state vector and f : Rn → Rn is a nonlinear map (n ≫ 1). Let the
discrete-time representation of (1) be

xk+1 = F(xk), (2)
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where xk ∈ Rn is a high-dimensional state vector sampled at tk = k△t for k = 0, . . . , m,
and F is an unknown map that describes the evolution of the state vector between two
subsequent sampling times. The initial condition is defined by x(0) = x0.

Suppose that the evolution of the high-dimensional state x is governed by some
underlying low-dimensional dynamics. Then, the DMD computes a data-driven linear
approximation to the system (2) as follows: the sequential set of data

D = [x0, . . . , xm] (3)

is arranged into the following two large data matrices

X = [x0, . . . , xm−1] and Y = [x1, . . . , xm]. (4)

The goal of the DMD approach is to find a relationship between the future state xk+1 and
the current state xk, given by

xk+1 = Axk , (5)

where A ∈ Rn×n is called the DMD operator. The solution of (5) may be expressed simply
in terms of the eigenvalues λj and eigenvectors ϕj of A:

xk =
r

∑
j=1

ϕjbjλ
k
j = ΦΛkb , (6)

where Φ is the eigenvector matrix of A, Λ is the diagonal matrix of eigenvalues Λ =
diag{λi}, b = Φ†x0, and Φ† is the Moore–Penrose pseudoinverse of Φ. The parameter r is
determined by the low-rank eigendecomposition of matrix A.

Therefore, the corresponding continuous-time approximation of the system (1) can be
written as

ẋ = Ax , with A = exp(A) (7)

and the initial condition x(0). Then, the state-variable evolution in time can be approxi-
mated by the following modal expansion

x(t) =
r

∑
j=1

ϕjbj exp(ωjt) = Φ exp(Ωt)b , (8)

where ϕj are also the eigenvectors of the approximated matrix A and matrix Ω = diag(ωj)
is a diagonal matrix whose entries are

ωj = ln(λj)/△t (9)

the eigenvalues of A, with λj the eigenvalues of A. The real part of ωj regulates the growth
or decay of the DMD modes, while the imaginary part of ωj drives oscillations in the DMD
modes. In this sense, while the discrete-time eigenvalues λi imply stability when they are
inside the unit disc in C, the continuous-time eigenvalues ωi imply stability when they are
in the left half-plane of C. Each component bj of vector b, in (6) and (8), is a complex scalar
that represents the i-th modal contribution of initial vector x0 and can be interpreted as the
amplitude of the corresponding DMD mode ϕj.

1.2. Reduced-Order DMD Operator

The relation (5) can be rewritten in terms of snapshot matrices

Y = AX. (10)
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Then, the dynamic mode decomposition of data matrix D is given by the eigendecompo-
sition of A. The DMD finds the best-fit solution A, one that minimizes the least-squares
distance in the Frobenius norm

arg min
A

∥Y − AX∥F , (11)

where ∥.∥F is the Frobenius norm. The solution A to this optimization problem is given by

A ≈ YX† , (12)

where X† denotes the Moore–Penrose pseudo-inverse of X. This is the same as saying
that A minimizes ∥xk+1 − Axk∥2 across all time steps. The DMD modes and eigenvalues are
intended to approximate the eigenvectors and eigenvalues of A.

In practice, the A matrix can be too large and it is computationally inefficient to
explicitly compute A ≈ YX†. It should be noted that calculating the eigendecomposition
of the n × n matrix A can be prohibitively expensive if n is large, i.e., n ≫ 1. In such cases,
DMD aims at finding a reduced representation of A by Ã ∈ Rr×r with r ≪ n. Matrix Ã
can be used to construct DMD modes associated with specific temporal frequencies. Thus,
we can use the dynamics of low-rank approximation to represent the full state dynamics.
This basis transformation takes the form

x = Qx̃, (13)

where Q is usually a unitary matrix or such that Q∗Q = I. The reduced-order model,
corresponding to (5), can be derived as follows:

x̃k+1 = Ax̃k, (14)

where the corresponding reduced-order matrix is

Ã = Q∗AQ, (15)

such that Ã ∈ Rr×r. The eigenvalues of Ã and A are equivalent, because of similarity
transformation and the eigenvectors are related via a linear transformation.

Let the eigendecomposition of Ã be

ÃW = WΛ (16)

where W is the eigenvector matrix and Λ is the diagonal matrix of the associated eigenval-
ues Λ = diag{λi}. Then, the matrix of DMD modes is

Φ = QW (17)

which approximates the eigenvector matrix of A.

Some possible choices for the projection matrix Q in (13) are:
(i). The left singular vector matrix of X. A common approach to choosing the transfor-

mation matrix Q is
Q = U, (18)

from the truncated SVD of X:
X = UΣV∗, (19)

where U ∈ Rn×r, Σ ∈ Rr×r and V ∈ Rm×r. In this case the reduced order matrix Ã in (15),
can be expresses as

Ã = U∗YVΣ†. (20)
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The DMD modes have the following presentation

Φ = YVΣ†W. (21)

This approach to implementing the DMD method is called exact DMD, since Tu et al. [16]
proves that DMD modes computed by (21) are the exact eigenvectors of A. DMD modes
computed by (17) are known as projected eigenvectors of A. See [38,39] for some other results.

In this case, the projected matrix of D, in (3), has the following presentation:

D̃ = U∗D = [x̃0, . . . , x̃m] (22)

or in equivalent block-matrix form

D̃ = [UX | Uxm]. (23)

If D is a full-rank matrix, then (23) has the form

D̃ = [ΣV∗ | Uxm]. (24)

(ii). The left singular vector matrix of D. We can choose the transformation matrix Q,
in (13), to be

Q = UD , (25)

where UD is from the truncated SVD of the full data matrix D:

D = UDΣDV∗
D , (26)

where UD ∈ Rn×r, ΣD ∈ Rr×r and VD ∈ Rm×r, see [22].
Then, the projected matrix of D, in (3), has the following presentation:

D̃ = U∗
DD = [x̃0, . . . , x̃m] (27)

and if D is a full-rank matrix, then

D̃ = ΣDV∗
D . (28)

The matrix of DMD modes In this case, is

Φ = UDW, (29)

where W is the eigenvector matrix of Ã = U∗
D A UD .

1.3. Optimal Amplitudes of DMD Modes

Finding the DMD mode amplitudes that best fit the DMD modes of a collection of
data is referred to as the reconstruction problem. In the context of DMD, reduced-order
modeling seeks to identify a subset of DMD modes that perform well in data reconstruction
for a data set or a variety of data sets.

Let us consider again Equation (6), which represents the DMD reconstruction of data
snapshots D. In the standard DMD approach the vector of amplitudes is computed by

b = Φ†x0 (30)

as shown in (6). It is possible to improve this estimate with optimization over all snapshots.
It is straightforward to show that (6) has the following equivalent expression:

D = Φ diag{bi}Vand(λ) , (31)
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where Vand(λ) is a Vandermonde matrix

Vand(λ) =


1 λ1 . . . λm

1
1 λ2 . . . λm

2
...

...
. . .

...
1 λr . . . λm

r

. (32)

This demonstrates that the temporal evolution of the dynamic modes is governed by the
Vandermonde matrix, which is determined by the r complex eigenvalues λi of Ã which
contain information about the underlying temporal frequencies and growth/decay rates.

Therefore, determination of the unknown vector of amplitudes b can be considered as
the following optimization problem:

min
b

∥D − Φ diag{bi}Vand(λ)∥2
F. (33)

Using the truncated SVD of D = UDΣDV∗
D , and the definition of the matrix Φ = UDW

in (17), we bring this problem into the following form:

min
b

∥ΣDV∗
D − W diag{bi}Vand(λ)∥2

F (34)

or in equivalent form, by using (27) and (28)

min
b

∥∥D̃ − W diag{bi}Vand(λ)
∥∥2

F (35)

where W is the eigenvector matrix and λ is the eigenvalues vector of the reduced-order
operator (15). This is a convex optimization problem that can be solved using standard
methods. For instance, we can represent (35) in matrix form as

Mb = h, (36)

where M ∈ Cr.(m+1)×r is the coefficient matrix, h is the forcing term and the unknown
amplitude vector b as given by

M =


W

WΛ
. . .

WΛm

, h =


x̃0
x̃1
. . .
x̃m

, and b =


b1
b2
. . .
br

, (37)

where Λ = diag{λi} ∈ Cr×r is a diagonal matrix formed by the eigenvalues of Ã in (16).
Therefore, we can solve the Equation (36) by least-squares approach

b = M†h, (38)

where the pseudoinverse M† may be computed through SVD of M.

1.4. Delay-Embedding Dynamic Mode Decomposition

Delay-embedding is also an important technique when the temporal or spectral com-
plexity of a dynamical system exceeds the spatial complexity, for example, in systems
characterized by a broadband spectrum or spatially undersampled. In this case, we arrive
at a “short-and-wide”, rather than a “tall-and-skinny”, data matrix D, and the standard
algorithm fails at extracting all relevant spectral features.

Delay-Embedding DMD (or Hankel DMD) overcomes several shortcomings of the
standard DMD method by extending its capabilities to handle nonlinear dynamics, non-
uniformly sampled data, long-term temporal behavior, high-dimensional datasets, and noisy
data. This makes it a more versatile and robust technique for dynamic mode decompo-
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sition in various applications. The Takens embedding theorem [54] provides a rigorous
framework for analyzing the information content of measurements of a nonlinear dynami-
cal system.

To implement delay-embedding DMD, given the data sequence D in (3), we stack
s ≤ m time-shifted copies of the data to form the augmented input matrix. The following
Hankel matrix H is formed:

Daug =


x1 x2 . . . xm−s+1
x2 x3 . . . xm−s+2
...

...
. . .

...
xs xs+1 . . . xm

, (39)

where the applied embedding dimension is s. The augmented data matrix Daug is then
used in place of D and processed by the standard DMD algorithm. The DMD algorithm pre-
scribed in Equations (3)–(8) is applied to the augmented matrices Xaug, Yaug ∈ R(n.s)×(m−s)

in place of X and Y, giving eigenvalues Φaug and modes Λaug. The first n rows of Φaug
correspond to the current (not shifted) time and are used to forecast x(t).

Arbabi and Mezić [43] have shown the convergence of this time-shifted approach to the
eigenfunctions of the Koopman operator. They also illustrated remarkable improvements
in the prediction of simple and complex fluid systems. Further examples and theoretical
results on delay-embedding and the Hankel viewpoint of Koopman analysis are given
by Brunton et al. [47] and Kamb et al. [44]. They demonstrated that linear time-delayed
models are an effective and efficient tool to capture nonlinear and chaotic dynamics.

2. Spatio-Temporal DMD

The idea behind the spatio-temporal extension of the DMD method is to extend the
application range of DMD by implementing the simultaneous capture of both spatial and
temporal dynamics. This approach is particularly useful for analyzing complex systems
where dynamics evolve both in space and time, such as fluid flows, biological systems,
and climate phenomena. To our knowledge, the first paper in the literature in which this
idea has been attempted is Sharma et al. [55], and later, it was realized by Clainche et al. [23];
see also [56]. In [23], Le Clainche and Vega introduce spatio-temporal Koopman decomposition
(STKD), which incorporates higher order DMD (HODMD) and a spatio-temporal approach
for the Koopman operator. For some applications, see [48,49].

In principle, this expansion can be obtained in two ways:
(i). Sequential method. A temporal DMD algorithm is first applied to the snapshot

matrix and a spatial DMD algorithm is applied to the spatial modes. Obviously, the order
in which temporal and spatial DMDs are applied can be reversed, and the result of the
direct and reverse methods is not identical.

(ii). Parallel method. Reduced SVD is first applied to the snapshot matrix D, and then,
spatial and temporal DMD algorithms are applied to the rescaled left and right singular
vector matrices.

In the following, we provide a detailed mathematical description of the parallel STDMD
and sequential STDMD approaches.

2.1. Parallel STDMD

The parallel spatio-temporal DMD method simultaneously decomposes spatio-temporal
data across both spatial and temporal dimensions, providing insights into the interplay
between spatial and temporal dynamics.

Let us recall that the DMD algorithm presented in Section 1.1 uses a low-rank approxi-
mation of the linear mapping that best approximates the dynamics of the data D, in (3),
collected for the system. Moreover, if we choose the projection matrix to be the matrix UD
from the truncated SVD of the full data matrix D, as shown in (26)

D = UDΣDV∗
D ,
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we obtain the reduced-order model given by the following data matrix

D̃ = [x̃0, . . . , x̃m],

which coincides with the scaled right singular vector matrix of D, i.e.

D̃ = ΣDV∗
D ,

according to (27) and (28). Applying the standard DMD approach to reduced model data
D̃, we obtain the following expansion according to (6):

x̃k = WΛkb , (40)

where W is the eigenvector matrix, Λ = diag{λi} is the diagonal matrix of associated
eigenvalues of the corresponding DMD operator, and b = W−1x̃0. For our purposes, we
will call W the matrix of temporal DMD modes and Λ the matrix of temporal DMD eigenvalues.

Using equality (13), by multiplying the left side of Equation (40) by matrix UD , we
obtain the temporal DMD expansion, in (8):

xk = ΦΛkb .

Following the same idea, we can use the row vectors of the scaled left singular vector
matrix UΣD of D to obtain a spatial expansion similar to (40). Let us denote

D̄ = ΣDUT = [ȳ0, . . . , ȳn] , (41)

where ȳi is the i-th column vector of D̄. Applying the standard DMD approach to data D̄,
we obtain the following expansion, according to (6):

ȳk = W̄Λ̄kb̄ , (42)

where W̄ is the eigenvector matrix, Λ̄ = diag{λ̄i} is the diagonal matrix of associated
eigenvalues of the corresponding DMD operator, and b̄ = W̄−1ȳ0. We will call W̄ the
matrix of spatial DMD modes and Λ̄ the matrix of spatial DMD eigenvalues.

From expressions (40) and (42), using (31), obtain

D̃ = W diag{bi}Vand(λ) and D̄ = W̄ diag{b̄i}Vand(λ̄). (43)

Then, for the full-data matrix D, using equality

D = (UDΣD)Σ−1
D (ΣDV∗

D),

we obtain the matrix form presentation

D = VT
and

(
λ̄
)
diag

{
b̄i
}

Ψ diag{bi}Vand(λ), (44)

where r × r the matrix
Ψ = W̄TΣ−1

D W (45)

is the matrix of spatio-temporal DMD modes.
The following algorithm (Algorithm 1) summarizes the steps for parallel STDMD:
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Algorithm 1: Parallel STDMD algorithm

1. Compute the (reduced) SVD of D, writing D = UDΣDV∗
D .

2. Define spatial and temporal data matrices:

D̃ = ΣDV∗
D and D̄ = ΣDUT .

3. Perform the standard DMD approach to data set D̃
and compute temporal DMD modes, eigenvalues and amplitudes:

W, Λ and b.

4. Perform the standard DMD approach to data set D̄
and compute spatial DMD modes, eigenvalues and amplitudes:

W̄, Λ̄ and b̄.

5. Compute the matrix of spatio-temporal DMD modes

Ψ = W̄TΣ−1
D W.

The eigenvalues and DMD modes can then be used to reconstruct the full data xk in D.
Let us denote the elements of snapshot xk and matrix Ψ as follows:

xk = [x(k)1 , x(k)2 , . . . , x(k)n ]T and Ψ = [ψij]r×r.

Then, from (44), for the s-th coordinate of xk it follows:

x(k)s =
r

∑
i,j=1

ψijλ̄
s
i b̄iλ

k
j bj, (46)

where λ̄i and λj are the spatial and temporal DMD eigenvalues, respectively.

2.2. Sequential STDMD

In contrast to parallel STDMD, sequential involves decomposing spatio-temporal
data sequentially along the temporal axis, capturing both spatial and temporal dynamics
separately. This approach enables the identification of spatial structures evolving over time
and their corresponding temporal dynamics.

For conventional DMD, the temporal information (temporal growth rate and angular
frequency) is explicitly included in the eigenvalue matrix Λ, whereas the spatial information
(spatial growth rate and wavenumber) is implicitly hidden in the dynamic mode matrix
Φ. Therefore, this study aims to decompose dynamic modes in a certain way to obtain
spatial information.

Let us apply the standard DMD method described in Section 1.1 to the input data D
specified in (3), which results in temporal DMD expansion (8):

xk = ΦΛkb ,

where Φ = YVΣ†W is the matrix of (exact) DMD modes, Λ is the matrix of DMD eigenval-
ues and b is the vector of amplitudes; see (15)–(21). As we mentioned, this expression is
equivalent to (31):

D = Φ diag{bi}Vand(λ) .

Note that the spatial information, such as spatial growth rate and wavenumber, of the
dynamic in consideration is implicitly hidden in the dynamic mode matrix Φ. We can use
the row vectors of the DMD mode matrix Φ to obtain spatial expansion similar to (40). Let
us denote

D̄ = ΦT = [ȳ0, . . . , ȳn] , (47)
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where ȳi is the i-th column vector of D̄. Applying the standard DMD approach to data D̄,
we obtain the following expansion according to (6):

ȳk = Φ̄Λ̄kb̄ , (48)

where Φ̄ is the eigenvector matrix, Λ̄ = diag{λ̄i} is the diagonal matrix of associated
eigenvalues of the corresponding DMD operator, and b̄ = Φ̄−1ȳ0.

Then, for the full-data matrix D, we obtain the following matrix form presentation:

D = VT
and

(
λ̄
)
diag

{
b̄i
}

Ψ diag{bi}Vand(λ), (49)

where r × r matrix
Ψ = W̄T (50)

is the matrix of spatio-temporal DMD modes. The following algorithm (Algorithm 2) summa-
rizes the steps for sequential STDMD:

Algorithm 2: Sequential STDMD algorithm

1. Perform the standard DMD approach to data set D :

1.1. Define the data matrices: X and Y;

1.2. Compute the reduced SVD of X : X = UΣV∗;

1.3. Construct the reduced-order operator: Ã = U∗YVΣ†;

and compute the eigendecomposition of Ã : ÃW = WΛ;

1.4. Compute the DMD modes, eigenvalues and amplitudes:

Φ = YVΣ†W, Λ and b.

2. Define the spatial data matrix as transposed DMD modes:

D̄ = ΦT .

3. Perform the standard DMD approach to data set D̄ and

compute DMD modes, eigenvalues and amplitudes:

Φ̄, Λ̄ and b̄.

4. Compute the matrix of spatio-temporal DMD modes

Ψ = Φ̄T .

For the reconstruction of snapshots in D, we obtain similar to (46) expression

x(k)s =
r

∑
i,j=1

ψijλ̄
s
i b̄iλ

k
j bj, (51)

where x(k)s is the s-th coordinate of state xk. Note that although the notations of parameters
in (51) and (46) are the same, their values are different.

For both cases, in (46) and (51), it is straightforward to obtain the expression for the
continuous case, in the form

x(s, t) =
r

∑
i,j=1

ψij e ω̄is b̄i e ωjt bj =
r

∑
i,j=1

ψij b̄i bj e ω̄is+ωjt , (52)

where s denotes the spatial variable. The spatial DMD eigenvalues ω̄i give the information
about spatial wavenumbers and growth rates, while the temporal DMD eigenvalues ωj
give information about the underlying temporal frequencies and growth rates.
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3. Delay-Embedding STDMD

As already mentioned, traditional DMD approaches are limited in their ability to cap-
ture the full complexity of nonlinear and non-stationary systems, particularly when dealing
with high-dimensional and noisy datasets. Due to the fact that in Algorithms 1 and 2 the
standard DMD method is applied sequentially or in parallel, they inherit the disadvantages
of the DMD method. To address these limitations, we will propose an extension of STDMD
algorithms using the delay-embedding approach described in Section 1.

3.1. Parallel Delay-Embedding STDMD

This approach redesigns the input data of the system, creating new state variables.
However, the introduction of the new variables is made at the expense of reducing the
number of samples in the training data set. Hence, the number of these new variables
(number of rows in the Hankel matrix), in (39), has to be a balance between the ability to
detect dominant modes and the accuracy of the estimated model. The following algorithm
(Algorithm 3) provides a step-by-step implementation of parallel delay-embedding DMD:

Algorithm 3: Parallel delay-embedding STDMD

1. Compute the (reduced) SVD of D, writing D = UDΣDV∗
D .

2. Define spatial and temporal data matrices:

D̃ = ΣDV∗
D and D̄ = ΣDUT .

3. Perform delay-embedding DMD approach to data set D̃
and compute temporal DMD modes, eigenvalues and amplitudes:

W, Λ and b.

4. Perform delay-embedding DMD approach to data set D̄
and compute spatial DMD modes, eigenvalues and amplitudes:

W̄, Λ̄ and b̄.

5. Compute the matrix of spatio-temporal DMD modes

Ψ = W̄TΣ−1
D W.

The implementation of the corresponding algorithm for the sequential STDMD ap-
proach is similar, so we will omit it here. We note that although delay-embedding is only
applied to the reduced input matrices D̃ and D̃, the embedding can be applied to the full
input data matrix D as well.

3.2. Delay-Embedding STDMD vs. STKD

Le Clainche et al. [23] introduced spatio-temporal Koopman decomposition (STKD), which
incorporates higher order DMD [56] and a spatio-temporal approach for the Koopman
operator. Our goal in this section is to present an alternative approach to STKD. Below, we
outline some similarities and differences between the two approaches.

• The STKD scheme is similar to delay-embedding STDMD, with the difference that
STKD uses higher order DMD instead of augmented DMD. This implies greater
computational complexity in STKD than in STDMD, but on the other hand, it allows
easily extending the STKD to higher spatial dimensions when the snapshot matrix
becomes a tensor.

• In [23], the spatio-temporal expansion, by STKD, corresponding to (52) has the form

x(s, t) =
m,n

∑
i,j=1

aijqij e ω̂is+ω̃jt ,
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where qij are the normalized spatial modes and aij are the mode amplitudes. In ad-
dition, for STKD, the amplitudes aij are determined by the optimal amplitudes com-
putation scheme described in (34)–(38). We should note that although the calcula-
tion of the amplitudes in STDMD is through the standard Formula (30), which is
more cost-efficient, a better approximation of the data is achieved when using the
schemes (34)–(38).

Among the main advantages of the schemes proposed in this article are the following:

• The matrix form presentations (44) and (49) of the snapshot matrix D, which offer a
structured framework that facilitates easier understanding and implementation.

• Additionally, the structured nature of the matrix representation allows for straightfor-
ward generalization to parallel computation architectures, enabling seamless scalabil-
ity and improved computational efficiency in analyzing large-scale spatio-temporal datasets.

• The STDMD approach, augmented with delay-embedding, offers enhanced computa-
tional efficiency compared to STKD.

• By augmenting the dataset with delayed observations, the analysis captures underly-
ing dynamics more effectively, reducing the impact of noise on mode identification
and reconstruction.

Overall, the delay-embedding STDMD enhances the accessibility and usability of the
proposed approaches, making them more practical and widely applicable to researchers
and practitioners in various fields.

4. Numerical Examples

In this section, we will illustrate the introduced approach to delay-embedding spatio-
temporal DMD. The considered examples are well known in the literature, and through
them, we illustrate the ability of the proposed scheme to accurately calculate spatio-
temporal DMD modes and eigenvalues, including spatial wavenumbers and growth rates
and temporal frequencies and growth rates. We mainly present the results of the application
of parallel delay-embedding STDMD (Algorithm 3). Since both methods use extended
data matrices and are computationally comparable, we collate the results obtained by
Algorithm 3 with those of the STKDM method presented by Le Clainche in [23]. All numer-
ical experiments and simulations were performed on Windows 7 with MATLAB release
R2013a on an Acer Aspire 571G laptop with an Intel(R) Core(TM) i3-2328M CPU at 2.2 GHz
and 4 GB of RAM.

Example 1. Combination of travelling wavetrains.
We begin by demonstrating the feature extraction technique for delay embedding STDMD for

a spatio-temporal signal:

x(s, t) = [0.5 + sin(s)][2 cos(k1s − ω1t) + 0.5 cos(k2s − ω2t)] , (53)

defined in a 1D periodic domain, s ∈ [0, 2π). This example was taken from [23] and the same
example was also discussed in [57]. It represents a simplified model of the signal proposed in [58]
with three basic features in the convective variability of the tropical atmosphere as a function of
longitude (s):

(i) A time-independent profile, 0.5+ sin(s), representing enhanced convective activity over warm
oceans over cold oceans such and continental land;

(ii) A long-wavelength eastward-propagating wave, cos(k1s − ω1t), representing a large-scale
mode of organized convection called Madden-Julian oscillation (MJO);

(iii) A short-wavelength westward-propagating wave representing the building blocks of the MJO
(so-called convectively coupled equatorial waves).

The natural time units in (53) are days, so the long wave has a period of 45 days and
the period of the short wave is approximately 14 days. These periods are comparable to the
timescales observed in nature.
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In (53), k1 and k2 are integer-valued wavenumbers set to k1 = 2 and k2 = 10, and ω1
and ω2 are time-dependent phases for the rationally independent frequencies ω1 = 2π/45
and ω2 =

√
10ω1. The color map of this pattern is depicted in Figure 1 (left). This pattern

is obtained with a spectral spatial and temporal complexity of 12 and 4, respectively.
This is because it involves 12 wavenumbers: ±k1,±k2,±(k1 ± 1) and ±(k2 ± 1), and four
frequencies: ±ω1 and ±ω2. This pattern is spatially periodic, with a period equal to 2π,
but temporally quasi-periodic.
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Figure 1. Spatio-temporal color map for the dynamics defined by (54), (left panel), and first 15
singular values of the generated data (right panel).

In order to apply the delay-embedding STDMD method, we discretize s and t in the
sampled intervals 0 ≤ s ≤ 10 and 0 ≤ t ≤ 5, using 50 and 25 points, respectively. Generated
data are 50 × 25, but its rank is 4 (see Figure 1 (right)), which yields unsatisfactory results
with the pure temporal DMD method.

Performing delay-embedding STDMD (Algorithm 1), with time-delaying index 2 and
spatial-delaying index 3, we identify the correct 12 wavenumbers and 4 frequencies. See
the dynamic reconstruction with delayed STDMD (Algorithm 1) in Figure 2. Figure 3
depicts the amplitude–frequency and growth rate–frequency diagrams. Figure 3 shows the
combinations of spatial modes and temporal modes used in the reconstruction of the data
in (52). They are grouped along straight lines in the plane, which may be either horizontal
or oblique, and correspond to either standing or travelling patterns, respectively. The results
are identical to those in [23], where the STKD method is applied to the same example and
input data.

Example 2. Dynamics of two counter-propagating waves
In this example, we consider the dynamics of two counter-propagating waves

x(s, t) = v(s, t) + v(−s, t) , (54)

where v is defined as

v(s, t) =
1
2

6

∑
−6

3−|m|ei m(10πs+30t) . (55)
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Figure 2. Spatio-temporal color map of reconstructed data computed by delay-embedding STDMD
(Algorithm 1).
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Figure 3. (Left panel) Spatial amplitude–wavenumber (‘+’) and temporal amplitude–frequency (‘o’);
(Right panel) Spatial growth rate–wavenumber (‘+’) and temporal growth rate–frequency (‘o’).

The color map of this pattern is depicted in Figure 4. The two counter-propagating
waves are visible on the chart, but it is seen that the pattern can also be considered as a
modulated standing waves, in which the positions of the nodes and crests do not remain
constant, but oscillate left and right. The generated data have a low-rank structure, which
can be seen from the singular values depicted in Figure 4.

Figure 4. Spatio-temporal color map of reconstructed data computed by delay-embedding STDMD
(Algorithm 1).

If we apply the standard DMD approach, we obtain only seven modes and it gives poor
reconstruction of the input data. Instead, if we use delay-embedding STDMD (Algorithm 1),
with time delay of 2 and spatial delay also of 2, then we obtain 13 modes and reconstruct
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the input data with greater accuracy. See the dynamic reconstruction with delayed STDMD
(Algorithm 1) in Figure 5.
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Figure 5. Spatio-temporal color map for the dynamics defined by (54), (left panel), and first 15 singular
values of the generated data (right panel).

Note that, if we use optimal amplitude computation, in Algorithm 1, as shown
in (34)–(38), we obtain a better approximation of the dynamics data and reconstruct the
snapshots with a relative RMS error ∼1.4 × 10−12. Figure 6 depicts the amplitude–frequency
and growth rate–frequency diagrams. It shows that the relevant points are aligned in two
straight lines, which, according to (54), is consistent with the fact that the pattern is the
superposition of two counter-propagating travelling waves.
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Figure 6. (Left panel) Spatial amplitude–wavenumber (‘+’) and temporal amplitude–frequency (‘o’);
(Right panel) Spatial growth rate–wavenumber (‘+’) and temporal growth rate–frequency (‘o’).

Note that the counterpart to Equation (55) is given by

v(s, t) =
1
2

6

∑
−6

3−|m|e30i mt cos(10mπs) , (56)

which implies (from the equality cos(10mπs) = cos(−10mπs)) that the spatial complexity
is 7, while the spectral complexity is 13. It also follows from (56) that the pattern can be
seen as modulated standing waves.

5. Conclusions

In this paper, we have provided a detailed exposition of two variants of spatio-
temporal dynamic mode decomposition (STDMD), namely the parallel methods STDMD
and sequential STDMD. We have introduced the matrix representations underlying these
techniques, highlighting their respective computational frameworks for analyzing spatio-
temporal data. To address some shortcomings of the presented algorithms, which are
inherited from the classic DMD algorithm, we have introduced extensions to these ap-
proaches incorporating delay-embedding techniques. Furthermore, we have conducted
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numerical experiments to validate the efficacy of the proposed extensions in overcoming
the identified limitations of traditional DMD methods. Through these experiments, we
have illustrated the enhanced performance of delay-embedded STDMD, showcasing its
utility in analyzing complex spatio-temporal datasets.

For future work, there are several promising directions that can build upon the method-
ologies and findings presented in this paper. Firstly, further exploration and refinement
of the delay-embedding techniques introduced in our study could lead to more effective
approaches for capturing nonlinear dynamics and improving robustness against noise in
spatio-temporal DMD analyses. Additionally, investigating the application of our sequen-
tial and parallel approaches with delay-embedding across a wide range of spatio-temporal
datasets and real-world applications would provide valuable insights into their generaliz-
ability and practical utility. Furthermore, exploring hybrid methodologies that combine
elements of different spatio-temporal decomposition techniques, such as incorporating ma-
chine learning algorithms or Bayesian approaches, could offer new avenues for enhancing
the accuracy and interpretability of spatio-temporal analysis. Additionally, future research
could focus on the parallel implementation of the approaches introduced in this paper to
enhance computational efficiency. Investigating strategies for parallelizing the computation
of spatio-temporal DMD algorithms across multiple processing units or distributed com-
puting architectures could significantly reduce computational time and enable the analysis
of large-scale datasets. By investigating the parallel implementation of these techniques,
future research can enhance their computational efficiency and facilitate their widespread
adoption in scientific and engineering domains where timely analysis of spatio-temporal
data is critical. Overall, these future directions hold great potential for advancing the state-
of-the-art in spatio-temporal DMD methodologies and their applications in diverse fields.

In conclusion, our research contributes to the advancement of spatio-temporal DMD
methodologies by introducing extensions that enhance the robustness and accuracy of the
analysis. The proposed approaches offer valuable tools for researchers and practitioners
in diverse fields, enabling deeper insights into the dynamics of complex spatio-temporal
systems. We anticipate that our findings will stimulate further research and development
in this area, leading to continued advancements in the analysis and understanding of
spatio-temporal phenomena.
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