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Abstract: In positron emission tomography (PET), the original points of emission are unknown, and
the scanners record pairs of photons emitting from those origins and creating lines of response (LORs)
in random directions. This presents a latent variable problem, since at least one dimension of relevant
information is lost. This can be solved by a statistical approach to image reconstruction—modeling
the image as a Gaussian mixture model (GMM). This allows us to obtain a high-quality continuous
model that is not computationally demanding and does not require postprocessing. In this paper,
we propose a novel method of GMM estimation in the PET setting, directly from lines of response.
This approach utilizes some well-known and convenient properties of the Gaussian distribution
and the fact that the random slopes of the lines are independent from the points of origin. The
expectation–maximization (EM) algorithm that is most commonly used to estimate GMMs in the
traditional setting here is adapted to lower-dimensional data. The proposed estimation method is
unbiased, and simulations and experiments show that accurate reconstruction on synthetic data is
possible from relatively small samples.

Keywords: Gaussian mixture models; EM algorithm; positron emission tomography; missing data
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1. Introduction

Positron emission tomography (PET) is an imaging technique that uses radioisotopes
(i.e., radiotracers) and rings of crystal detectors. The injected tracer, designed to attach
itself to the object or process of interest, decomposes and emits pairs of photons in opposite
directions, creating a line that the scanner detects and records as an event when two
crystals are activated simultaneously [1]. In a fully three-dimensional scanner, all possible
pairs of crystals create tubes, i.e., volumes of response (VORs), which capture the events.
Alternatively, in the two-dimensional case, pairs of crystals form lines of response (LORs),
and the scanner detects events along a single plane, which are later used to reconstruct the
3D image.

Traditional reconstruction methods in tomography generally fall under two
categories—analytic or iterative algorithms [2,3]. Analytic methods are based on the
Fourier transform and its inverse, using the projection-slice theorem (sometimes called
the central section theorem) [4]. The most used is the filtered back projection, also known
as the Radon inverse transform [5,6]. This method filters the projections to reduce noise
and artifacts and then backprojects them along different angles, and is still widely used
in CT scan reconstructions [7]; however, the resulting image is of lower resolution com-
pared with other methods. Similar traditional methods, now outperformed by others, are
back projection filtering, where the filtering step occurs after the back projection, and the
Fourier transform method that transforms the data into the frequency domain, which
manipulates it there and then transforms it back to the spatial domain [8]. These methods
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are computationally simple and fast; however, they assume that the data are noise-free
and they do not account for randomness or stochastic variability. This means that they
require a lot of pre- and postprocessing in order to obtain good image quality. By definition,
the inverse problem is ill-posed and is therefore very sensitive to small perturbations in
the original data. Before reconstruction, raw data are corrected for attenuation and noise,
and filters can be applied in both the spatial and frequency domains. Filtering is also
commonly applied at the postprocessing stage, as well as various regularization techniques
that enforce smoothness and penalize undesired properties [9].

The main problem in PET image reconstruction is attenuation, i.e., the loss of detection
of true coincidence events due to photons being absorbed in the body, scattering out of the
field of view or changing course after collision. There are many attenuation correction tech-
niques using either additional CT scans or properties of the PET scanner itself. In clinical
settings, the choice of method depends on resources like computational power and avail-
ability of combined PET/CT scanners [10,11]. In recorded data, one of the consequences of
attenuation is wrongly recorded or false events. When one or both of the photons in a pair
change course, it activates the wrong crystal, and the resulting measurement is a line that
does not contain the real point of origin. This new event differs from the real unrecorded
one, and depending on the size of the error, i.e., the angle by which the course had changed,
it is considered as photon noncollinearity (small) or scattered coincidence (large difference).
Finally, given that the scanner records events at discrete times, it is possible for two or more
events to occur “at the same time”. If more than one pair of crystals is activated at the same
time, the scanner can pair them incorrectly, resulting in random coincidences [12].

With increased computational powers, iterative models became widespread at the
end of the 20th century [13–18] and are still most widely used, often in combination
with analytical techniques [3]. They are usually based on the expectation–maximization
(EM) algorithm [19], traditionally using maximum likelihood estimation (MLEM) [20]. In
general, these techniques discretize the image domain into distinct pixels or voxels and
iteratively improve their estimation of pixel/voxel values. In the maximum likelihood
approach, the Poisson distribution is most commonly used to model the number of times
each detector pair would record an event. The MLEM was later updated to accelerate
convergence with methods that use only parts of the data at each step, e.g., the ordered
subsets EM algorithm (OSEM) [21]. These methods are more resistant to noise, but they still
require postfiltering for denoising, as well as some regularization methods to counteract
issues arising from ill-conditioned problems [22].

It should be mentioned that recent progress in medical imaging has been achieved
by utilizing deep learning and AI-based solutions [23–26]. This new approach is proving
to be most useful in solving previously unfeasible problems that are ill-posed or lacking
the mathematical framework, but in standard image reconstruction problems, traditional
methods are still competitive [27]. Deep learning methods can be used to improve existing
methodology, e.g., by denoising the data [28], but a full implementation of AI-based models
is limited by evaluation and interpretability issues [29,30] and computational memory [31].

Standard modern algorithms in image reconstruction include some sort of stochastic
model that utilizes prior or additional knowledge. The Gaussian mixture model (GMM) has
been proven suitable for a variety of segmentation problems [32–34]. In PET reconstruction
problems, the original data (i.e., points of origin) are unobserved, so GMMs are used to
model activity at points of observation, with spatial dependence modeled by Markov
random fields [35–37]. An alternative approach is to model the unknown points of origin
using GMMs directly by utilizing nice statistical properties of the Gaussian distribution
to overcome missing information [38,39]. This novel strategy yields a continuous model
of infinite resolution that can be reconstructed directly and evaluated at any point in the
imaging plane. Furthermore, it requires a much smaller sample than traditional methods,
which means that scanning requires lower doses of radiation and less time in the scanner.

This paper presents a new method for estimating Gaussian parameters from lower-di-
mensional data. Using synthetic measurements, we demonstrate how this approach can
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be used to estimate a full Gaussian mixture model on PET data using an iterative EM-like
algorithm. In Section 2, we show how to estimate parameters of a single distribution,
and in Section 3, we expand this idea to simultaneously estimate parameters of a mixture
of Gaussian distributions. Section 4 demonstrates the approach on synthetic data, and a
discussion concludes the paper.

2. Gaussian Estimation from PET Data

Original PET data are a set of events recorded when the scanner registers a pair of
photons activate two crystals simultaneously. These events can be represented as lines
connecting the pairs of crystals, while the points of origin remain unknown (Figure 1).

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Simulated measurement

Figure 1. N = 100 events, with their (unobserved) points of origin. Contours denote the underlying
originating distribution.

Traditionally, these data would be stored as a histogram of events across all angles,
called a sinogram. The original location of the tracer that emitted the photons would then
be reconstructed using analytic or iterative methods, and corrected for measurement errors.
In this paper, we assume that the points of origin follow a known distribution and estimate
the parameters of that distribution directly from the lines.

To start, assume that the location of any point x, where a positron is annihilated and
emits the pair of photons, follows a single Gaussian distribution with the parameters µ
and Σ. Note that the following calculations are performed in the 2D setting for simplicity,
but analogous claims are true in the three-dimensional case. An event, i.e., line, in the 2D
setting can be represented by two parameters, and possible representations are of course
interchangeable. In this work, we will observe the line slope k = tan φ, where φ ∈

[
−π

2 , π
2
]
,

and an intercept l. Therefore, N events give us a series of N equations:

y = tan φi · x + li , i = 1, . . . , N. (1)
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2.1. Estimation of µ

It has been shown that the mean µ can be estimated in many ways, e.g., from in-
tersections of lines [40] or directly from the sinogram [39]. For this part, we follow
the methodology from [38], which shows that the mean is accurately estimated as the
point that minimizes the total squared Euclidean distance from all events. If we denote
ai = [tan φi −1]T , the location of this point can be calculated as follows:

µT =

(
N

∑
i=1

limi

)
·
(

N

∑
i=1

(2Mi − N i)

)−1

, (2)

where

[
Mi
mi

]
= Bi

[2I ai
aT

i 0

][
2I
0

]
−

1 0
0 1
0 0

,
[

N i
0

]
= BT

i

[
2I
0

]
− Ĩ

1 0
0 1
0 0

,

Bi =

([
2I ai
aT

i 0

]−1
)T

· Ĩ and Ĩ =

[
I 0
0 0

]
.

Once the center has been estimated, we can also find the points on each line that are
nearest to it. Consider the i-th event and the original unknown point of origin xi = [xi, yi]

T .
Equation (1) can also be written as follows:

cos φi(y − yi) = sin φi(x − xi). (3)

Any line perpendicular to the i-th line has the slope − 1
tan φi

= − cos φi
sin φi

, and especially
one that goes through µ satisfies the following:

− sin φi(y − µy) = cos φi(x − µx). (4)

For simplicity, denote si = sin φi and ci = cos φi. If we omit the index i in the
coordinates for legibility, denote the point on line i nearest to the center µ as yi = [xs, ys]T .
This point satisfies (3) and (4), which can be written in matrix form:

[
si −ci
ci si

]
·
[

xs
ys

]
=

[
si −ci 0 0
0 0 ci si

]
·


xi
yi
µx
µy

,

and gives the following solution:

yi =

[
xs
ys

]
=

[
s2

i xi −−− siciyi + c2
i µx + siciµy

−sicixi + c2
i yi + siciµx + s2

i µy

]
. (5)

It is straightforward to show from (5) that E(yi) = µ as well.

2.2. Estimation of Σ

Statistical properties of the set of “nearest points” found in the previous section by (5)
can be connected to the statistical properties of the original set of (unknown) points, which
will enable us to estimate the original covariance matrix:

Σ =

[
Σ11 Σ12
Σ12 Σ22

]
.

Consider the ith point of origin xi = [xi, yi]
T from a Gaussian distribution with the

parameters (µΣ) and its corresponding point nearest to the center, y = [xs, ys]T . We will
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now show how their covariance matrix C = E((y − µ) · (y − µ)T) relates to the original
covariance matrix Σ. First, assume for simplicity that µ = [0, 0]T , i.e., that the measurements
have been centered. Equation (5) can now be written as follows:[

xs
ys

]
=

[
s2

i xi − sici yi
−sicixi + c2

i yi

]
=

[
s2

i −si ci
−sici c2

i

]
·
[

xi
yi

]
.

Then we have the following:

C = E([xs, ys]
T · [xs, ys]) = E

([
s11 s12
s21 s22

])
,

where

s11 = s4
i x2

i − 2s3
i cixiyi + s2

i c2
i y2

i

s12 = −s3
i cix2

i + 2s2
i c2

i xiyi − c3
i siy2

i = s21

s22 = s2
i c2

i x2
i − 2sic3

i xiyi + c4
i y2

i .

This can be expressed in matrix form as follows:s11
s12
s22

 =

 s4
i −2s3

i ci s2
i c2

i
−s3

i ci 2s2
i c2

i −c3
i si

s2
i c2

i −2sic3
i c4

i

 ·

 x2
i

xiyi
y2

i

. (6)

The key observation here is that the first matrix on the right-hand side is a function only
of the angles at which the lines appear. These angles are random, uniformly distributed,
and independent from the points of origin. Therefore, when taking the expectation of (6), it
can be separated into a product of two expectations:

E

s11
s12
s22

 = E

 s4
i −2s3

i ci s2
i c2

i
−s3

i ci 2s2
i c2

i −c3
i si

s2
i c2

i −2sic3
i c4

i

 · E

 x2
i

xiyi
y2

i

. (7)

Since the angle φ is uniformly distributed over
[
−π

2 , π
2
]
, we can calculate, e.g., as

follows:

E(s4
i ) =

∫ π
2

− π
2

sin4 φ dφ =
3
8

, E(−2s3
i ci) = −2

∫ π
2

− π
2

sin3 φ cos φ dφ = 0,

and similar calculations for other expressions in (7) yield the following:

E

 s4
i −2s3

i ci s2
i c2

i
−s3

i ci 2s2
i c2

i −c3
i si

s2
i c2

i −2sic3
i c4

i

 =

 3
8 0 1

8
0 1

4 0
1
8 0 3

8

 =: M. (8)

To estimate the original covariance matrix, we begin by estimating the covariance
matrix of the (centered) nearest points:

Ĉ =
N

∑
i=1

yiy
T
i =

[
c11 c12
c21 c22

]
.

From (7) and (8), the following is derived:
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 σ2
x

σxy
σ2

y

 = E

 x2
i

xiyi
y2

i

 = M−1 · E

s11
s12
s22


=

 3 0 −1
0 4 0
−1 0 3

 · E

s11
s12
s22

, (9)

which means the following:  σ̂2
x

σ̂xy
σ̂2

y

 =

 3 0 −1
0 4 0
−1 0 3

 ·

c11
c12
c22

.

3. Gaussian Mixtures in PET Imaging
3.1. Gaussian Mixture Model

The Gaussian mixture model [41] assumes that a d-dimensional observation x is
generated from a mixture of K Gaussian densities, as follows:

p(x|πk, µk, Σk) =
K

∑
k=1

πk fG(x|µk, Σk), (10)

where πi (i = 1, ..., K) are the weights of each Gaussian component, and fG(x|µk, Σk) are the
component densities. Each density is a d-variate Gaussian function of the following form:

fG(x|µk, Σk) =
1√

(2π)d|Σk|
exp

(
− 1

2
(x − µk)

TΣ−1
k (x − µk)

)
,

and we assume that x originates from exactly one of the components (clusters). This is a
model with a latent (hidden) variable that records component membership. If we denote
this variable by Z, we can write πk = P(Z = k) as the probability that x belongs to the k-th
Gaussian component, with ∑K

k=1 πk = 1 . The model parameters that need to be estimated
are the mean vectors {µk}, covariance matrices {Σk}, and mixture weights {πk} for each
Gaussian component.

Even in the traditional setting, this is a model with latent variables. Since the com-
ponent membership of each observation is unknown, the maximum likelihood approach
will not provide a closed-form solution. Several estimation methods have been proposed,
and the most common one is the iterative expectation–maximization (EM) algorithm [19].
In the following section, we will adapt this approach to our estimation method from
Section 2.

3.2. EM-like Algorithm

Broadly, the original EM algorithm iterates between two steps:

E: Given a set of parameters Θ = {πk, µk, Σk}, calculate the probability that each obser-
vation x(i) originated from the k-th component:

h(i)k = P(Zi = k | x(i)) =
p
(

x(i)| µk, Σk

)
πk

∑K
j=1 p

(
x(i)| µj, Σj

)
πj

.

These probabilities are sometimes also called responsibilities, or posterior probabilities.
M: Given the set of probabilities {h(i)k }, estimate the parameters of each component.

This step is named after the maximum likelihood method that is used to estimate
the parameters.
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The algorithm can be initialized either from a random set of parameters θ or by
randomly assigning the probabilities h. Note that, in our approach, the estimation is
not derived directly from max likelihood given that we do not have the original data;
nevertheless, we can adapt this algorithm to achieve satisfactory results.

3.2.1. Initialization

To ensure a “smart” initialization that will minimize the number of iterations later, we
adapt the approach from [39]. This part combines k-means(-like) clustering with parameter
estimation from the previous section (Matlab (R2022b) code for all experiments can be
made available on request from the corresponding author).

1. Each line is initially randomly assigned to exactly one component, while ensuring
that each component has approximately the same number of lines.

2. Mean vectors of each component are estimated as described in Section 2.
3. Lines are reassigned to the component whose estimated mean vectors are nearest to

them in terms of Euclidean distance. In this step, we still adhere to the so-called hard
classification; i.e., each line is assigned to only one component.
Steps 2 and 3 are repeated until the changes in mean vectors are sufficiently small.

Once the hard classification and reassignment are completed, the initial covariances are
estimated once from all lines assigned to them following the methodology from Section 2.
Initial weights {πk} are calculated as the relative size of the components, i.e., the proportion
of all lines that are assigned to a specific component.

3.2.2. E Step

As in the traditional algorithm, given a set of parameters θ = {πk, µk, Σk}, this step

calculates the probabilities {h(i)k } that the i-th observation belongs to the k-th component.
If we denote by γi our i-th observation (i.e., some parametrization of the line), we need
to calculate the following:

h(i)k = P(Zi = k | γi) =
p(γi| µk, Σk)πk

∑K
j=1 p

(
γi| µj, Σj

)
πj

. (11)

The term p(γi| µk, Σk) is the integral of the density along the following line:

p(γi| µk, Σk) =
∫

γi

fG(x|µk, Σk)dγi,

where fG again denotes the (bivariate) Gaussian density. For a quicker computation, we
can utilize the following nice properties of the Gaussian distribution:

1. A Gaussian distribution retains properties when rotated.
2. Marginal distributions of a Gaussian are again Gaussian.

If an event is at an angle φ, rotating the coordinate system by ψ = π
2 − φ makes it

parallel to the y-axis and defined by its abscissa coordinate x = −l sin ψ. The coordinates of
the center µ and covariance Σ are now Rµ and RΣRT , where R denotes the rotation matrix.
Given that the line is now parallel to the y-axis, the integral along the line simply gives us
the marginal distribution in the first coordinate (in our new coordinate system):

p(γi| µk, Σk) = fG(−l sin ψ | (Riµk)1, (RiΣkRT
i )11), (12)

where Ri denotes the operator of rotation by ψi and fG is now the univariate Gaussian
density. In the two-dimensional setting, this can be calculated as follows:

p(γi| µk, Σk) = fG(−l sin ψ | cos ψiµx − sin ψiµy, cos2 ψiΣ11 − 2 cos ψi sin ψiΣ12 + sin2 ψiΣ22).

For more details, see [38], and Figure 2 illustrates the idea.
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Figure 2. Illustration of coordinate system rotation.

3.2.3. M-like Step

Given the estimated posterior probabilities {h(i)k } and previous component centers
{µk}, we re-estimate the parameters. For each component, we have the following:

1. Find the nearest points yi to the (previous iterations’) center for each line.
2. Calculate the weighted mean and covariance of y′

is with probabilities h as weights:

µk =
∑i h(i)k yi

∑i h(i)k

, Ck =
∑i h(i)k (yi − µk)(yi − µk)

T

∑i h(i)k

.

3. Calculate Σk from Ck as in Section 2.
4. Mixture weights πk are calculated, as in the original EM algorithm, as the proportion

of all lines (events) assigned to each component: πk =
1
N

N

∑
i=1

h(i)k .

The E and M steps are repeated until there are only small changes between iterations,
specifically until there is virtually no change in estimated weight of each component.
The following section evaluates our approach, both for a single component and in the
mixture setting.

4. Experiments and Results
4.1. Single-Component Estimation

To demonstrate that the approach described in Section 2 correctly estimates the covariance
matrix, we experimented with five covariances representing different shapes and types:

Σ1 =

[
0.0625 0

0 0.0625

]
, Σ2 =

[
0.04 0.03
0.03 0.09

]
, Σ3 =

[
0.04 0.006
0.006 0.01

]
Σ4 =

[
0.09 −0.0135

−0.0135 0.09

]
, Σ5 =

[
0.04 0.004
0.004 0.04

]
Note that the corresponding correlation coefficients are as follows:

ρ1 = 0, ρ2 = 0.5, ρ3 = 0.3, ρ4 = −0.15, ρ5 = 0.1.

Estimation was performed n = 100 times for each covariance type and for sample
sizes N varying from N = 1000 to N = 100, 000. For each iteration, the relative error was
calculated as follows:

Rel. error =
||Σ − S||F
||Σ||F

, (13)

where || · ||F denotes the Frobenius norm of the matrix. Figure 3 shows the average relative
error for all covariance types and all values of N. We see that accurate reconstruction is
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achieved even from small (in the context of PET imaging) samples, starting with approxi-
mately N = 2000, regardless of the covariance type.

0 1 2 3 4 5 6 7 8 9 10

Sample size N 104

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Rel.  error for N = 1000 to 100,000

Covariance Type 1

Covariance Type 2

Covariance Type 3

Covariance Type 4

Covariance Type 5

Figure 3. Relative error of covariance estimation (one component).

4.2. Gaussian Mixture Estimation

To illustrate the effectiveness of the proposed algorithm, several experiments were
conducted for two and three components. First, for K = 2, the following parameters were set:

N = N1 + N2 ,
N2

N1
=

5
7

, µ1 =

[
0
1

]
, µ2 =

[
1
0

]
, Σ1 =

[
0.0625 0

0 0.0625

]
, Σ2 =

[
0.04 0.03
0.03 0.09

]
.

The total sample size N varied from 3000 (N1 = 1750, N2 = 1250) to 60,000 (N1 = 35,000,
N2 = 25,000). Each experiment was repeated 100 times, and the results are given in Figure 4.

1 2 3 4 5 6

Sample size N 104

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Rel.  error for N = 3000 to 60,000

Center of first comp.

Center of second comp.

Covariance of first comp.

Covariance of second comp.

Figure 4. Relative error for two components.



Mathematics 2024, 12, 764 10 of 18

The estimated component weight was calculated as follows:

N̂k =
N

∑
i=1

h(i)k ,

where h(i)k was calculated as in (11). The criterion for stoppage was that each component
weight changed by less than 10 between iterations. Note that the algorithm performed only
a few (approx. 4–5) iterations each time before there was virtually no change in component
weights. Figure 5 shows the ratio of relative and actual component sizes N̂k/Nk, calculated
as an average over all simulations for each sample size. Clearly, component weights are
well estimated regardless of the total sample size.

1 2 3 4 5 6

Sample size N 104

0.97

0.98

0.99

1

1.01

1.02

1.03
Estimated component size relative to real

First component

Second component

Figure 5. Estimated to real component size ratio N̂k/Nk (two components).

Similar experiments were performed for K = 3 components with varying sizes and
shapes. The following parameters were used:

N = N1 + N2 + N3 ,
N2

N1
=

5
7

,
N3

N1
=

2
7

, µ1 =

[
0
1

]
, µ2 =

[
1
0

]
, µ3 =

[
1.25
−1

]
Σ1 =

[
0.0625 0

0 0.0625

]
, Σ2 =

[
0.04 0.03
0.03 0.09

]
, Σ3 =

[
0.04 0.006

0.006 0.01

]
.

The total sample size N varied from 3500 (N1 = 1750, N2 = 1250, N3 = 500) to 105,000
(N1 = 52,500, N2 = 37,500, N3 = 15,000). Each experiment was repeated 100 times, and
Figure 6 depicts the mean relative errors calculated as in (13) using the Euclidean norm
for centers. The centers are well estimated even for very small samples, as well as the
covariance of the smallest (third) component. A slightly larger sample is required for
accurate covariance estimation for components with larger proportions of weight. Still,
a total sample size of ≈100,000 is still significantly smaller than the traditional PET mea-
surement size.

As in the two-component case, Figure 7 shows that component sizes (weights) were
correctly estimated even from small sample sizes. It can also be noted that the number of
iterations increased approximately from 10 to 20 with growing sample sizes, with no simu-
lation exceeding 22 iterations per component. The results presented here are representative



Mathematics 2024, 12, 764 11 of 18

of many simulations for different types and combinations of covariance matrices, which
were omitted here for brevity. Some additional similar results can be found in Appendix A
for comparison.
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Figure 6. Relative error for three components.
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Figure 7. Estimated to real component size ratio N̂k/Nk (three components).

Finally, Figure 8 illustrates the similarity between the original Gaussian model, i.e., the
unknown components, and the proposed estimated reconstruction.
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Ground truth Reconstruction

Figure 8. Original (left) and estimated (right) GMM for K = 2, N = 6000.

4.3. Noise Resistance

To demonstrate how this approach would behave in a more realistic setting, two types
of noise have been simulated. First, a noise effect was added to some points of origin.
Points were generated from three mixture components as described in Section 4.2, and a
certain number of them were offset by error:

x̃ = x + ε, ε ∼ N (0, σI).

Recall that when a photon slightly changes course, the resulting measurement is an
event that is “close” to the original point, but does not pass through it. Since line directions
are random and independent from the points themselves, this type of noise mimics the
occurrence of photon noncollinearity—an event is recorded that does not contain the real
point of origin, but is close to it. The parameters σ = 0.005 and σ = 0.01 were selected to
represent approximately 10% and 20% variability of the original data, respectively, and a
randomly selected subset of 10% of data was “noisified”. The results are shown in Figure 9.
Compared with Figure 6, we see that the error decays more slowly, but satisfactory precision
is still achieved.
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(b)
Figure 9. (a) Relative error for three components with σ = 0.005 noise level; (b) relative error for
three components with σ = 0.01 noise level (10% of data are noisy).

To assess how the estimation behaves with different quantities of photon noncollinear-
ity, an error with σ = 0.005 was added to an increasing percentage of data (from 1% to
20%). This experiment was performed on a sample size N = 105,000, corresponding to
component sizes of N1 = 52,500, N2 = 37,500, N3 = 15,000, and the results are shown in
Figure 10. The precision deteriorates with added noise, but even with 20% of noisy data,
the error terms are still below 5%.
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Figure 10. (a) Estimated to real component size ratio; (b) relative errors for three components, added
noise with σ = 0.005 in increasing percentage.

To represent random coincidences, additional false measurements were added to the
original measurements. The points of origin were generated randomly within the scanner
field of view and added to the real measurements. The algorithm was slightly modified
to accommodate potential outliers. One of the oldest and simplest ideas is the so-called
“three-sigma rule”, where measurements are classified as outliers if they are more than three
standard deviations away from the mean [42]. Here, estimation was first performed on the
full dataset. Then, each line was projected to one dimension as described in Section 3.2.2,
along with the component means and variances (see Figure 2). If the line was more than
three standard deviations away from all three components, it was classified as an outlier.
Finally, the parameters were estimated again with the outliers omitted. The experiment
was performed with the parameters as in Section 4.2 and the total sample size ranging
from N = 3500 to N = 105,000, with 2% random events added. The results are shown in
Figure 11. More advanced and precise outlier detection methods will be incorporated when
the algorithm is applied to real data, but this demonstrates that the method on its own is
robust for small amounts of random coincidences.
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Figure 11. (a) Estimated to real component size ratio; (b) relative errors for three components, with 2%
random coincidences.

This section shows that the algorithm is resistant to a relatively small amount of noise
and false measurements. Therefore, less pre- and postprocessing would be required to
achieve accurate reconstruction, which is important given that excessive regularization
risks losing important features of the data.
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5. Conclusions

In this paper, we have presented a new way of estimating Gaussian parameters from
lower-dimensional observations in the PET context. The EM algorithm is adapted for
GMM estimation from projections, with experiments showing that accurate reconstruction
is possible from relatively small samples. The method relies on the geometric properties
of the Gaussian distribution, and simulations demonstrate that the obtained unbiased
estimators quickly converge to real parameter values. Compared with traditional methods
that estimate individual pixels (or voxels) and give quantized values, this approach results
in a continuous model of the PET image.

The limitation of this work is that it was performed on synthetic measurements,
and application to real data is the next step in ongoing research. This includes incorporating
scanner properties [43], as well as some issues that traditionally arise when dealing with
mixture models, such as determining the proper number of components [44]. As it stands,
this manuscript serves as proof of concept and of the feasibility of the approach.

To the best of our knowledge, Gaussian mixture models have not yet been used in
modeling PET images in this way, and estimating model parameters from data of this
type is a new and unresearched topic. Given the significance and usefulness of Gaussian
models in image reconstruction problems, these results are encouraging and imply efficient
reconstruction from fewer measurements that are currently used. This would, of course,
mean that accurate imaging could be achieved while exposing patients to significantly
lower doses of radiation. Additionally, the method could be applied to an array of other
mixture models where the distributions have similar properties to the Gaussian, thus
expanding the types of images that can be reconstructed in this manner.
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Appendix A

As mentioned earlier, the results in Section 4.2 represent similar results obtained
for various combinations of covariance matrices, some of which are presented here
for comparison.
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Appendix A.1. Different Covariances
All parameters from Section 4.2 are repeated with different covariance matrices.

Figure A1 shows average component sizes and estimation errors from 100 simulations,
and the results are similar to Figure 6.

N = N1 + N2 + N3 ,
N2
N1
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5
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N3
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[
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]
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0

]
, µ3 =

[
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]
Σ1 =

[
0.04 0

0 0.0625

]
, Σ2 =

[
0.09 0.045

0.045 0.09

]
, Σ3 =

[
0.04 −0.03
−0.03 0.01

]
.
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Figure A1. (a) Estimatedto real component size ratio; (b) relative errors for three components.

Appendix A.2. Equal Component Sizes

All parameters from Section 4.2 remain the same, but components are generated to
be of equal size. Component sizes vary from Ni = 2000 to 40,000 (N = 6000 to 120,000).
Figure A2 shows average component sizes and estimation errors from 100 simulations.
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Figure A2. (a) Estimated to real component size ratio; (b) relative errors for three components of the
same size.
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Appendix A.3. Four Components

Finally, simulations were expanded to include four components. A representative
result is presented below, with the parameters as follows:

N = N1 + N2 + N3 + N4 ,
N2

N1
=

5
7

,
N3

N1
=

2
7

,
N4

N1
=

3
7

,

µ1 =

[
0
1

]
, µ2 =

[
1
0

]
, µ3 =

[
1.25
−1

]
, µ4 =

[
−0.6

1

]
Σ1 =

[
0.0625 0

0 0.0625

]
, Σ2 =

[
0.04 0.03
0.03 0.09

]
, Σ3 =

[
0.04 0.006

0.006 0.01

]
, Σ4 =

[
0.09 −0.0135

−0.0135 0.09

]
.

The total sample size varied from 4500 to 135,000, and the results are presented in
Figure A3. They are (expectedly) slightly worse than the results for three components,
but for larger sample sizes, sufficient accuracy is still achieved.
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Figure A3. (a) Estimated to real component size ratio; (b) relative errors for four components.
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