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Abstract: This paper is dedicated to the development of a novel class of quasi-Newton techniques
tailored to address computational challenges posed by memory constraints. Such methodologies
are commonly referred to as “limited” memory methods. The method proposed herein showcases
adaptability by introducing a customizable memory parameter governing the retention of historical
data in constructing the Hessian estimate matrix at each iterative stage. The search directions
generated through this novel approach are derived from a modified version closely resembling the
full memory multi-step BFGS update, incorporating limited memory computation for a singular term
to approximate matrix–vector multiplication. Results from numerical experiments, exploring various
parameter configurations, substantiate the enhanced efficiency of the proposed algorithm within the
realm of limited memory quasi-Newton methodologies category.

Keywords: quasi-Newton methods; multi-step methods; unconstrained optimization; limited
memory methods
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1. Introduction

Unconstrained Optimization is concerned with the minimization of a specific objective
function as follows:

minimize f (x), where f : Rn → R.
The aforementioned problem can be solved by employing a class of methods referred

to as the quasi-Newton techniques for unconstrained optimization. Only the function
and its first derivatives are required for quasi-Newton (QN) methods [1]. The Hessian
does not need to be available or even coded. To integrate updates in the function and the
corresponding gradient, an approximation matrix to the actual Hessian is retained and
updated across the iterations.

Given Bi, the current Hessian approximation, a new Hessian estimation Bi+1 needs
to be constructed, for the new solution estimate xi+1. To find Bi+1, we can utilize the
Taylor series of order one to the gradient vector about the point xi+1 to obtain the following
relation (known as the Secant equation) [2–6]:

Bi+1si = yi, (1)

where
si = xi+1 − xi,

and
yi = gi+1 − gi,
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where gi ≡ g(xi), is the gradient at iterate xi. The computed Hessian matrix approxima-
tions must satisfy (1). To estimate the next Hessian approximation matrix Bi+1 using the
current matrix Bi and the vectors si and yi, an update of the form Bi+1 = Bi + Ci is applied,
where Ci is a correctional update matrix. It may be preferable to use Hi+1 = Hi + Di, where
Di is an update term and Hi+1 = B−1

i+1. The update can be of rank one or two. A widely
used rank two correction formula is referred to as the BFGS formula. The BFGS is given by

BBFGS
i+1 = Bi +

yiyT
i

yT
i si
−

BisisT
i Bi

sT
i Bisi

,

and the corresponding inverse matrix as

HBFGS
i+1 = Hi +

[
1 +

yT
i Hiyi

yT
i si

]
sisT

i
yT

i si
−

siyT
i Hi + HiyisT

i
yT

i si
. (2)

Reported numerical outcomes show that this formula outperforms other updating
formulas, particularly when the line search is inexact. BFGS is regarded as a standard
update formula [3,5,7,8].

The search direction for the standard quasi-Newton methods is computed using

Bi pi = −gi.

2. Literature Review

Limited memory QN methods (L-BFGS) have gained considerable prominence in
optimization due to their ability to handle large-scale problems efficiently, especially with
memory constraints. These iterative methods are mostly classified as quasi-Newton tech-
niques [9–12]. The versatility of L-BFGS methods is evident in their application across
various domains. In machine learning, they are integral to training support vector machines
(SVMs), optimizing logistic regression models, and fine-tuning neural networks. Their
memory-efficient design makes them invaluable when working with large datasets. Addi-
tionally, L-BFGS plays a pivotal role in structural optimization, a field where finite element
analysis involves high-dimensional design spaces. In computational chemistry, L-BFGS
aids in optimizing molecular structures, facilitating breakthroughs in drug discovery and
materials science.

Nevertheless, L-BFGS distinguishes itself from the classical quasi-Newton methods
by storing only a limited number of recent iterations data, often referred to as memory
pairs (si, yi), where si, represents the alteration in the optimization variable, and yi denotes
the change in the gradient (see (1)). These memory pairs are instrumental in updating the
approximate Hessian matrix, achieving a balance between computational efficiency and
optimization accuracy.

In the past decade, L-BFGS has seen significant methodological advancements and
the emergence of new variants tailored to address specific optimization challenges. For
example, L-BFGS-B extends the method to handle bound-constrained optimization prob-
lems effectively [10]. Innovations like L-BFGS-TF and L-BFGS++ have been introduced
to enhance scalability and convergence properties. These methodological innovations
have substantially widened the scope of L-BFGS applications, encompassing areas such as
machine learning, deep learning, and numerical simulations.

Limited memory BFGS algorithms often derive using the updated identity for the
inverse Hessian given as [10]

Hi+1 =
(

I − ρisiyT
i

)
Hi

(
I − ρiyisT

i

)
+ ρisisT

i ,

where si and yi are as in (1) and ρi = 1/sT
i yi.
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For a given identity matrix I, a sequence of vectors qi−m, . . . .., qm is defined such that
qi ≡

(
I − ρisiyT

i
)
qi+1. Then, the quantities qi and qi+1 are recursively computed. For more

details see [10].
Next, we present some successful limited-memory BFGS formulas. These formulas

are all variations of the standard L-BFGS formula, and they are designed to enhance the
numerical behavior of the L-BFGS algorithm for certain types of problems. One of the
well-known limited memory methods is the Liu–Nocedal formula [9]. The updated Hessian
matrix is the previous Hessian matrix updated with a correction term. The correction term
is a weighted sum of the two recent steps and gradient differences, where the weights are
chosen to make certain that the updated Hessian matrix is positive-definite. The formula is
given as

Hi = Hi−1 +
si−1sT

i−1

sT
i−1yi−1

−
Hi−1yi−1yT

i−1Hi−1

yT
i−1Hi−1yi−1

+
ρisi−2sT

i−2

sT
i−2yi−2

−
ρi Hi−1yi−2yT

i−2Hi−1

yT
i−2Hi−1yi−2

Another successful formula is the Byrd–Nocedal–Schnabel formula [13]. The correction
term is a weighted sum of the latest m steps and gradient differences, where the weights
are chosen to ascertain that the newly computed Hessian matrix is positive-definite. The
formula is defined as

Hi = Hi−1 +
si−1sT

i−1

sT
i−1yi−1

−
Hi−1yi−1yT

i−1Hi−1

yT
i−1Hi−1yi−1

+ ∑i−1
j=i−m

ρisjsT
j

sT
j yj
−∑i−1

j=i−m

ρi Hi−1yjyT
j Hi−1

yT
j Hi−1yj

. (3)

A variation of (3) is the Zhu–Byrd–Nocedal formula [14]. The correction component
is a weighted sum of the latest m steps and gradient differences, where the weights are
also chosen to make certain that the newly computed Hessian matrix is positive-definite.
Additionally, the correction term includes a term that is designed to improve the behavior of
the L-BFGS algorithm for problems with non-smooth objective functions [15]. The formula
is defined by

Hi = Hi−1 +
si−1sT

i−1

sT
i−1yi−1

−
Hi−1yi−1yT

i−1Hi−1

yT
i−1Hi−1yi−1

+∑i−1
j=i−m

ρisjsT
j

sT
j yj
−∑i−1

j=i−m

ρi Hi−1yjyT
j Hi−1

yT
j Hi−1yj

+
ρisi−msT

i−m

sT
i−myi−m

−
ρi Hi−1yi−myT

i−m Hi−1

yT
i−m Hi−1yi−m

. (4)

In (3) and (4), the parameter m controls the number of past update terms that are
used to update the Hessian matrix. A larger value of m will result in a more precise
approximation of the Hessian matrix, closer to that of the standard QN methods.

Another idea, presented in [16], focuses on applying regularized Newton methods in
a versatile category of unconstrained optimization algorithms. The method they propose
has the potential to combine favorable characteristics from both approaches. The pri-
mary emphasis is on the integration of regularization with limited memory quasi-Newton
methods, leveraging the unique structure inherent in limited memory algorithms. The
paper explores an alternative globalization technique, akin to the less familiar siblings of
line search and trust-region methods, known as regularized Newton methods. The de-
rived methods are referred to as regularized quasi-Newton methods. The methods utilize
the relationship:

(B i + µi I)pi = −gi,

which is used in the computation of the search direction pi, instead of the one used by the
standard quasi-Newton methods. The parameter µi serves as the regularization parameter.
The derived methods integrate features from both line search and trust region techniques
and update a limited memory version of the Hessian matrix estimate. The method displays
good behavior overall though it involves the solution of a system of linear equations at
each iteration, which increases the time complexity of the algorithm.

A recent paper also introduces a limited memory quasi-Newton type method for
unconstrained multi-objective optimization problems [17], which is suitable for large-scale
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scenarios. The proposed algorithm approximates the convex combination of the Hessian
matrices of the objective function using a positive definite matrix. The update formula for
the approximation matrix is an extension of the one used in the L-BFGS method for scalar
optimization [18]. The method is well defined even in the nonconvex case and exhibits
global and R-linear convergence to Pareto optimality for twice continuously differentiable
strongly convex problems. In the method derived in [17], the matrix used to update the
inverse Hessian approximation is given by

Hi+1 =
(

I − ρisiuT
i

)
Hi

(
I − ρiuisT

i

)
+ ρisisT

i ,

where ρi = 1/sT
i ui and ui is the summation of the previous yi dictated by the number of

vectors retained in memory. Those y values are multiplied by optimal Lagrange multipliers
needed to achieve global convergence.

The performance of the algorithm is evaluated through computational comparisons
with state-of-the-art Newton and quasi-Newton approaches in multi-objective optimization.
The results show that the proposed approach is generally efficient. While testing the method,
it failed to converge on some of our test functions, but it did well on others and managed
to find global minimizers.

The paper in [19] presents a new numerical method for solving large-scale uncon-
strained optimization problems, derived from a modified BFGS-type update. The update
formula is extended to the framework of a limited memory scheme. The update utilized in
that paper takes the form

Hi+1 =
(

I − ρisiuT
i

)
Hi

(
I − ρiuisT

i

)
+ ρisisT

i ,

where ρi = 1/sT
i ui and ui = yi + γisi, for some scalar γi to ensure convergence. The

paper discusses the global convergence and convergence rate of the algorithm with weak
Wolfe–Powell line search.

A modified q-BFGS algorithm is proposed for nonlinear unconstrained optimization
problems [20]. It uses a simple symmetric positive definite matrix and a new q-quasi-
Newton equation to build an approximate q-Hessian. The method preserves global con-
vergence properties without assuming the convexity of the objective function. Numerical
results show improvement over the original q-BFGS method. A limited memory quasi-
Newton method is introduced for large-scale unconstrained multi-objective optimization
problems. It approximates the convex combination of the Hessian matrices of the objectives
and exhibits global and R-linear convergence to Pareto optimality. Empirical comparisons
demonstrate the efficiency and effectiveness of the proposed approach [21]. A new L-BFGS
method with regularization techniques is proposed for large-scale unconstrained optimiza-
tion. It guarantees global convergence and is robust in terms of solving more problems [4].
The momentum-accelerated quasi-Newton (MoQ) method approximates Nesterov’s accel-
erated gradient as a linear combination of past gradients, and its performance is evaluated
on a function approximation problem.

3. A New Multi-Step Limited Memory Method

In this section, we devise a new QN-limited memory method inspired by the methods
in (3) and (4). The method is characterized by its utilization of more of already computed
past data to better the quality of the generated Hessian (inverse) approximations.

In the basic Secant equation, a straight line L is utilized to find a new iteration
xi+1 given the iterate xi, whereas higher-order interpolants are used in the multi-step
approaches [22,23]. The main advantage of using polynomials is that they exploit more of
the already computed data in the matrix update rather than simply discarding them. This
is expected to result in better Hessian approximations.
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Multi-step methods generally update the Hessian estimates to satisfy the form

Bi+1ui = wi, (5)

for which the classical Secant relation simply refers to the choices uk = sk and wk = yk,
respectively. One of the alternatives to ui and wi proposed in [24] is

ui = si − µi−1si−1 and wi = yi − µi−1yi−1, (6)

where µi−1 = δ2/(1 + 2δ) and δ = ∥si∥/∥si−1∥.
Thus, Equation (5) becomes:

Hi+1(yi − µi−1yi−1) = si − µi−1si−1

Concentrating on the BFGS updating method (2), the inverse Hessian approximation
at iteration i may be expressed after manipulation as

Hi+1 = Hi +
(

uT
i wi

)−1
{[

1 +
wT

i ri

uT
i wi

]
uiuT

i − uirT
i − riuT

i

}
(7)

where ri = Hiwi.
Contained memory techniques are developed using the identity

pi+1 = −Hi+1gi+1

which is equivalent to (using (7))

pi+1 = pi − Hiyi −
(

uT
i wi

)−1
{([

1 +
wT

i ri

uT
i wi

]
uT

i gi+1 − rT
i gi+1

)
ui +

(
uT

i gi+1

)
ri

}
. (8)

However, the problem in using (7) is that of computing ri and Hiyi without actually
storing Hi. The simplest option would be to make the choice Hi = I at each iteration and,
thus, ri = yi and Hiyi, in that case, reduces to yi. However, this is a numerically improper
choice since it abandons previous information collected in the updated matrices. Another
proposal is considered here and that is to retain some approximation of the vector ri and
correct every cycle. This can be performed using:

Start with r0 = H0w0 = w0 (since H0 = I)

r1 = H1w1 = w1 +
(

uT
0 w0

)−1
{([

1 +
w0wT

0

uT
0 w0

]
uT

0 w1 −
(

wT
0 w1

))
u0 −

(
uT

0 w1

)
w0

}
(9)

and, recurrently, for any i, we use

ri = Hi−1wi +
(

uT
i−1wi−1

)−1
{([

1 +
wT

i−1ri−1

uT
i−1yi−1

]
uT

i−1wi −
(

rT
i−1wi

))
ui−1 −

(
uT

i−1wi

)
ri−1

}
. (10)

Relation (10) can then be utilized in (8) to compute the next direction vector. Still, the
term Hi−1wi in (10) is not accessible. The obvious option is to set, ri−1 to wi−1 in (8). Such a
choice is expected to affect negatively the updated matrix. Thus, our goal next is to build an
expression for both Hi−1wi and Hiyi to complete the derivation. By doing so, we will then
have derived a method that is expected to be computationally superior to that of setting Hi
to be just the identity matrix in (8). This is because more of the previously accumulated
information is utilized in updating the matrix. Therefore, the preference computationally is
to approximate the aforementioned matrix vector products as will be shown next.
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To proceed with the derivation, it should be noted that for a diagonal matrix H0, the
next matrix in recurrence can be expressed as

H1 = H0 + U(H0, u0, w0)

and

H2 = H0 + U(H0, u0, w0) + U(H1, u1, w1)
H3 = H0 + U(H0, u0, w0) + U(H1, u1, w1) + U(H2, u2, w2) . . . . and so on

for vectors u and w, as in (5).
Let η refer to the upper limit of the correction terms U that can be saved. Because H0 is

diagonal, the limit count of n-vectors that can be utilized to build the matrix approximation
is 2η + 1. We have hit our storage limit once Hη is produced. In this case, newer vectors
start replacing older ones:

Hη = H0 + U(H0, u0, w0) + . . . + U
(

Hη−1, uη−1, wη−1
)
.

This idea was influenced by Nocedal’s algorithm [10]. Nocedal’s technique is founded
on the idea that the latest data should be provided in the update, and replacing the oldest
information is one compelling option. However, there is no assurance that the computed
matrices will be positive-definite. Loss of positive-definiteness leads to search directions
that are not necessarily descent, thus threatening the method’s convergence. To avoid this
problem, the standard BFGS updating formula is expressed in the form [2]:

Hi+1 = VT
i HiVi + ρiuiuT

i , (11)

where ρi =
(
uT

i wi
)−1 and Vi = I + ρi wiuT

i , where ρi is a parameter that is chosen to
ascertain that the newly computed Hessian matrix is positive-definite and m is a parameter
that controls the number of past updates that are used to update the Hessian matrix.

Thus, given the above-proposed strategy, Nocedal suggests a form of the update
as follows:

For i + 1 ≤ η,
Hi+1 = VT

i VT
i−1 . . . V0H0 . . . Vi−1Vi

+VT
i . . . VT

1 ρ0u0uT
0 V1 . . . Vi + . . .

+VT
i . . . VT

i−1ρi−2ui−2uT
i−2Vi−1 . . . Vi

+VT
i ρi−1ui−1uT

i−1Vi + ρiuiuT
i

For i + 1 > η,
Hi+1 = VT

i VT
i−1 . . . Vi−η+1H0 . . . Vi−η+1Vi−1Vi

+VT
i ..VT

i−η+2ρi−η+1ui−η+1uT
i−η+1 . . . Vi + . . .

+VT
i ..VT

i−1ρi−2ui−2uT
i−2Vi−1 . . . Vi

+VT
i ρi−1ui−1uT

i−1Vi ++ρiuiuT
i .

(12)

Back to our problem, we adopt Nocedal’s approach with a suitably chosen small η to
build an approximation to the product Hi−1wi in (8). For example, for η = 1, we have

Hi−1wi = VT
i−2H0Vi−2wi +

(
ρi−1uT

i−2wi
)
ui−2

= H0wi −
[
ρi−2uT

i−2wi
]
H0wi−2

+ρ2
i−2
[(

wT
i−2H0wi−2

)(
uT

i−2wi
)
−
(
uT

i−2H0wi
)(

uT
i−2wi−2

)
ui−2

]
+
(
ρi−2sT

i−2wi
)
ui−2.

Similarly, to compute the product Hiyi the following may be used:

Hiyi = VT
i−1H0Vi−1yi +

(
ρi−1uT

i−1yi
)
ui−1

= H0yi −
[
ρi−1uT

i−1yi
]
H0wi−1

+ρ2
i−1
[(

wT
i−1H0wi−1

)(
uT

i−1yi
)
−
(
uT

i−1H0yi
)(

uT
i−1wi−1

)
ui−1

]
+
(
ρi−1sT

i−1yi
)
ui−1.
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In general, the following is employed to build the above products for a given η and an
appropriate replacement of the matrix/vectors involved (Algorithm 1):

Algorithm 1 MSCBFGS

0. LET k = i− 1;
1. IF k ≤ η THEN (incr = 0; bound = k)

ELSE (incr = k− η; bound = η)
2. qbound = wi
3. FOR l = bound− 1 . . . 0

{j = l + incr ;
αl = ρjuT

j ql+1;
ql = ql+1 − αlwj;}

4. z0 = H0q0
5. FOR l = 0, 1, . . . , bound− 1;

{j = l + incr;
β j = ρjwT

j zl ;

IF (k ≻ η) THEN zl+1 = zl + u
(

αl − β j

)
ELSE zl+1 = zl + u(αl − βl)}. (13)

Our multi-step limited memory BFGS (MSCBFGS) algorithm can be stated as:
Start with an approximate point x0 to the solution
Start with H0 = I (or a scalar multiple of it)
i← 0
Find g0 = g(x0)
Repeat
Step 1. Let pi = −Higi
Step 2. Minimize f (xi + αpi) where α ∈ R to find a step length αi along pi. To make certain that
the obtained search direction is adequately descent, the parameter αi is required to satisfy the
strong Wolfe conditions [25]

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk

And

dT
k g(xk + αkdk) ≥ σ dT

k gk,

where 0 < δ < σ < 1
Step 3. xi+1 = xi + αi pi
Step 4. Compute si = xi+1 − xi yi = gi+1 − gi, wi = yi − µiyi−1 and

ui = si − µisi−1.
Step 5. If wT

i ui > 0, then compute HBFGS
i+1 using the recurrence in (8).

Step 6. i = i + 1
until ∥ gi ∥2 < ε, (where ε ∈ R is a convergence parameter).

We now need to establish that (8) produces a descent direction vector. To do so, it
suffices to show that the matrix used in the computation of (8) is positive-definite.

Theorem 1. The matrix Hi+1 update in (7) is positive-definite if Hi is positive-definite and
if uT

i wi > 0.

Proof of Theorem 1. We first show that if Hi+1 is positive-definite, then uT
i wi > 0. From

(5), it follows that
wT

i ui = wT
i Hi+1wi > 0.
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Now, given that wT
i ui > 0 and ri = Hiwi (from (7)), we proceed to prove that Hi+1 is

positive-definite by showing that vT Hi+1v > 0, for any vector v ̸= 0. Using (7) and (11),
we have

vT Hi+1v = vTV
T
i HiViv + ρi

(
uT

i v
)2

, (14)

where ρ =
(
uT

i wi
)−1, ui = si − µi−1si−1, Vi = I + ρi wiuT

i , and ρi is a parameter that is
chosen to make certain that the newly computed Hessian matrix is positive-definite. Since
Hi is positive-definite, VT

i HiVi is also positive-definite. The second term is also positive.
Thus, the whole expression in (14) is positive-definite. □

It should be noted here that conditions (13) ensure only that sT
i yi > 0 while there are

no guarantees for wT
i ui. In our implementations, the condition wT

i ui > 0 is tested, and if it
is not satisfied, we revert to using the classical Secant update at that specific iteration with
ui = si and wi = yi.

As the new algorithm is not stripping away the main structure of the BFGS update,
the derived method possesses the same convergence properties as those that belong to
the same class such as those in [10,26]. The R-linear convergence rate of the MSCBFGS
method is proved under the assumption that the objective function is strongly convex.
However, the method can also converge R-linearly for non-convex objective functions. The
convergence rate of the MSCBFGS method can be affected by the choice of the memory
parameter η. A larger value of η can lead to a faster convergence rate, but it can also make
the method more sensitive to noise. The proof for the convergence rate is very similar to
that conducted in [26].

Estimating the time complexity of the described optimization algorithm involves
several factors. The number of iterations (k) in the optimization process, along with the
computational costs of algorithmic components (O(f )) and convergence conditions (O(g)),
collectively shape the overall time complexity. A very rough estimate of the algorithm’s
time complexity could be expressed as O(k × (f + g)), considering the iterative nature of the
optimization and the associated computations. However, a more precise analysis would
require a detailed breakdown of specific operations and their computational costs. As a
result, the per iteration complexity and storage requirement is O(ηn) where η ≤ n is the size
of the stored frame and n is the problem dimension, thus, reducing the O(n2) computational
complexity and memory requirements of standard quasi-Newton methods.

The main feature of this algorithm is that it computes the search vector at each iteration
using a formula that is almost the full memory multi-step BFGS version with only an
approximation applied to the term Hi−1wi in (10). This is expected to produce results close
to the full multi-step BFGS version, as the results reveal.

4. Numerical Results

The new method (7) is benchmarked against the methods in (3) and (4). Those are
experimented on thirty distinct test problems with dimensions varying from 2 to 10,000.
The total number of tested problems is 900. The functions tested are classified into four
categories and can be found in [7,13,27–29]. The categories are as follows:

a. Low dimension (2 ≤ n ≤ 15)
b. Medium dimension (16 ≤ n ≤ 45)
c. Moderate-High dimension (46 ≤ n ≤ 10000)
d. High dimension (81 ≤ n ≤ 10000)

Each of the test problems possesses one or more of the following properties:

(a) Non-convexity;
(b) Global minimum;
(c) Multi-modality;
(d) Ill-conditioned;
(e) Highly non-linear;
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(f) Symmetry around the global minimum;
(g) Periodic;
(h) Discrete optimization domain.

The functions and their properties are listed in Table 1.

Table 1. Set of test problems.

Function Name (Dimension) Properties

Rosenbrock (n = 2) a, b, c, d, f
Quadratic function (n = 2) b
Watson function (3 ≤ n ≤ 31) c, e
Extended Rosenbrock (2 ≤ n ≤ 10000, n even) a, c, d
Extended Powell (2 ≤ n ≤ 10000, n divisible by 4) a, c
Penalty function I (2 ≤ n ≤ 10000) a, c, e
Variably dimensioned function (2 ≤ n ≤ 10000) a, c
Trigonometric function (2 ≤ n ≤ 10000) a, c, g
Modified Trigonometric function (2 ≤ n ≤ 10000) a, c, g
Broyden Tridiagonal function (2 ≤ n ≤ 10000) a, c
Discrete Boundary value function (2 ≤ n ≤ 10000) a, c, h
Oren and Spedicato Power function (2 ≤ n ≤ 10000) a, c, e
Full Set of Distinct Eigen Values Problem (2 ≤ n ≤ 10000) a (if all eigenvalues are negative)
Tridiagonal function (2 ≤ n ≤ 10000) a, c, f
Wolfe function (2 ≤ n ≤ 10000) a, c, e
Diagonal Rosenbrock’s function (2 ≤ n ≤ 10000, n even) c, e
Generalized Shallow function (2 ≤ n ≤ 10000, n even) c, e
Freudenstein and Roth (n = 2) a, c, e
Powell Badly Scaled (n = 2) a, d, e
Brown Badly Scaled (n = 2) a, d, e
Beale (n = 2) a, b, c
Bard (n = 3) a, b, c
Freudenstein and Roth (n = 2) a, b, c
Powell Badly Scaled (n = 2) a, b, c
Brown Badly Scaled (n = 2) a, b, c
Beale (n = 2) a, b, c
Bard (n = 3) a, b, c
Gaussian (n = 3) B

Tables 2–5 report the results for each category. Table 6 reports the totals. The figures
presented in each table indicate the total number of iterations, function/gradient evalua-
tions, the timings, and the points for every algorithm. A point is granted to a method if it
obtains the minimal evaluations count in solving a problem. Ties are resolved using the
count of iterations. The percentages in each table indicate the improvements (or otherwise)
of each method on each of the evaluation categories (iterations, evaluations, and time score)
as opposed to the benchmark method of Byrd et al. A lower percentage indicate the savings
obtained in comparison to the benchmark method that is assigned the full percentage.
Our results for the above method seem to bias method 3 for η = 3. Bigger η have not
introduced worthwhile improvements in performance over the other methods to justify
the extra memory expense. Therefore, the test results reported on the new method are
conducted with η = 3.

Table 2. Large problems test results.

Method Evaluations Iterations Time (s) Scores

Byrd et al. [13] 25,039 22,106 426.42 32
100% 100% 100%

Zhu and Byrd [14] 22,699 19,838 392.08 51
90.66% 89.7% 91.95%

MSCBFGS 21,609 18,461 319.95 71
86.30% 83.5% 75.03%
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Table 3. Moderate high dimension problems test results.

Method Evaluations Iterations Time (s) Scores

Byrd et al. [13] 12,841 9673 3348.5 90
100% 100% 100%

Zhu and Byrd [14] 12,343 8864 3075.9 129
96.12% 91.64% 91.8%

MSCBFGS 11,654 8717 2980.4 162
90.76% 90.12% 89.1%

Table 4. Medium-size dimension problems test results.

Method Evaluations Iterations Time (s) Scores

Byrd et al. [13] 11,745 11,061 18,645.71 66
100% 100% 100%

Zhu and Byrd [14] 11,603 11,132 17,422.51 78
98.79% 100.64% 93.44%

MSCBFGS 10,869 9850 13,916.57 110
92.54% 89.06% 74.64%

Table 5. Small dimension problems test results.

Method Evaluations Iterations Time (s) Scores

Byrd et al. [13] 9597 5049 10,744.0 44
100% 100% 100%

Zhu and Byrd [14] 9443 4953 10,503.0 41
98.39% 98.11% 97.76%

MSCBFGS 9754 5180 10,779.4 26
101.64% 102.61% 100.3%

Table 6. Overall scores for the test results for 900 problems.

Method Evaluations Iterations Time (s) Scores

Byrd et al. [13] 59,079 47,960 31,942 232
100% 100% 100%

Zhu and Byrd [14] 56,087 44,787 31,394 299
94.94% 93.38% 98.28%

MSCBFGS 53,887 42,209 27,996 369
91.21% 88.01% 87.65%

The results reveal clearly that MSCBFGS (corresponding to η = 3) method is superior
to the other two, especially on large problems. Figures 1–3 report the results comparisons
on each criterion while Figure 4 presents an overall overview of those.

Figure 1. Overall evaluations for 900 problems.
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Figure 2. Overall iterations for 900 problems.

Figure 3. Overall timings for 900 problems.

Figure 4. Performance overview of all criteria.
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The analysis of the numerical scores for the newly developed limited memory MSCBFGS
method in comparison to the Byrd et al. [13] and Zhu and Byrd [14] methods reveals no-
table improvements in efficiency and effectiveness. In terms of evaluations, the MSCBFGS
method requires only 91.21% of the evaluations compared to the Byrd et al. [13] method,
indicating enhanced computational efficiency. Additionally, it achieves a further reduction
in iterations, requiring only 88.01% of the iterations compared to the original method,
demonstrating improved convergence properties. Moreover, the MSCBFGS method sig-
nificantly reduces computation time, utilizing only 87.65% of the time compared to the
Byrd et al. [13] method, while outperforming both the original method and the Zhu and
Byrd method in terms of overall effectiveness, as evidenced by its higher score of 369 com-
pared to 232 and 299, respectively. Overall, these results suggest that the newly developed
MSCBFGS method offers substantial improvements in efficiency and effectiveness, making
it a promising approach for optimization problems.

5. Conclusions

In conclusion, this paper has presented a contribution to the field of optimization
through the development of a novel quasi-Newton method known as memory-sensitive
or limited BFGS (MSCBFGS). The method has been tailored specifically to address the
challenges posed by memory constraints in solving complex large-scale problems. By
allowing for flexibility in the choice of a storage variable that governs the retention of past
data in the formation of the new Hessian approximation, MSCBFGS exhibits adaptability
and versatility.

The outcomes of extensive numerical experiments have underscored the efficacy of
the MSCBFGS algorithm. These findings not only affirm the algorithm’s potential but also
pave the way for its practical application in a range of memory-limited optimization tasks.

One notable advantage of the proposed method lies in its adaptability to varying
memory constraints, offering a customizable parameter for controlling the retention of
past data. This flexibility enables the algorithm to effectively navigate memory-limited
environments, enhancing its applicability to a wide range of optimization problems.

6. Discussion

By utilizing a modified version of the full memory multi-step BFGS update, the method
derived in this paper maintains a balance between computational efficiency and accuracy
in approximating the Hessian matrix. However, it is crucial to acknowledge certain limita-
tions. One such drawback is the potential sensitivity of the algorithm’s performance to the
selection of parameters, which may require careful tuning for optimal results. Addition-
ally, while the method demonstrates improved effectiveness within constrained memory
contexts, its performance in comparison to alternative approaches warrants further inves-
tigation, particularly in scenarios with highly complex or nonlinear objective functions.
Overall, the presented method offers promising advancements in addressing memory
limitations in quasi-Newton optimization methods, yet ongoing research is essential to
fully understand its capabilities and limitations in diverse optimization scenarios.

Future research can deeper investigate the optimization of the memory parameter
selection process within MSCBFGS. Exploring adaptive or learning-based techniques to
dynamically adjust this parameter during optimization could enhance the algorithm’s
performance further, especially when taking the nature of the problem being solved into
account [30].
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