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Abstract: The squeeze film damper (SFD) is proven to be highly effective in mitigating rotor vibration
as it traverses the critical speed, thus making it extensively utilized in the aeroengine domain. In
this paper, we investigate the stiffness and damping of SFD using the Reynolds equation and neural
network models. Our specific focus includes examining the structural and operating parameters of
SFDs, such as clearance, feed pressure of oil, rotor whirl, and rotational speed. Firstly, the pressure
distribution analytical model of the oil film inside the SFD based on the hydrodynamic lubrication
theory is established, as described by the Reynolds equation. It obtained oil film forces, pressure,
stiffness, and damping values under various sets of structural, lubrication, and operating parameters,
including length, clearance, boundary pressure at both sides, rotational speed, and whirling motion,
by applying difference computations to the Reynolds equation. Secondly, according to the significant
analyses of the obtained oil film stiffness and damping, the following three parameters of the most
significance are found: clearance, rotational speed, and rotor whirl. Furthermore, neural network
models, including GA-BP and decision tree models, are established based on the obtained results of
difference computation. The numerical simulation and calculation of these models are then applied
to show their validity with all given parameters and the three significant parameters separately as
two sets of model input. Regardless of either set of model inputs, these established neural network
models are capable of predicting the nonlinear stiffness and damping of the oil film inside an SFD.
These sensitive parameters merely require measurement, followed by the utilization of a neural
network to predict stiffness and damping instead of the Reynolds equation. This process serves
structural enhancement, facilitates parameter optimization in SFDs, and provides crucial support for
refining the design parameters of SFDs.

Keywords: SFD; oil film pressure distribution; stiffness; damping; neural network model

MSC: 37M05

1. Introduction

Squeeze film dampers (SFDs) can effectively reduce the vibration of a rotor system
at critical speeds, so they have been widely used in the field of aeroengines. The stiffness
and damping of an oil film are important characteristic parameters of SFDs, which are
seriously influenced by the structural and working parameters of SFDs. The relationship
between damping and stiffness and the dynamic load, rotational speed in the shaft, static
eccentricity, and journal trajectory is found using theory and experiments [1–4]. For
example, Fu [3] found that uncertainties in the inter-shaft bearing stiffness and speed ratios
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generally influence the modal characteristics and dynamical behaviors of the dual-rotor
system. The quantitative effects of the oil film length and gap are compared, and factors
such as structural characteristics and working variations of SFD are considered, including
lubricating cavities, gas suction, sealing forms, oil inlet holes, and oil groove forms. Siew [5]
proposed that the damping of SFDs is related to the viscosity of lubricating oil. Zhang [6]
used the finite difference method to analyze the dynamic parameters such as oil film
pressure distribution, bearing capacity, oil film stiffness, and damping characteristics
of SFD.

Mathematical modeling is pivotal in scientific and engineering disciplines, providing a
structured framework for analyzing complex systems and phenomena. According to Isaac
Lare Animasaun [7], its significance lies in its ability to quantitatively represent real-world
scenarios, facilitating prediction, optimization, and a deeper understanding of intricate
relationships within diverse fields. Keir Harvey Groves and Philip Bonello [8] developed
a finite difference method using Chebyshev polynomial fitting to identify the Reynolds
equation, which can quickly solve the transient value of oil film pressure distribution and
realize the consideration of cavitation, oil inlet, oil film pressure analysis for oil inlet, face
seal, and the variation of oil supply pressure.

If SFDs are not designed properly, the nonlinear condition of oil film stiffness will oc-
cur, and damping will be affected. The research on the mechanism of the nonlinear stiffness
and damping of SFDs is relatively clear now. Based on the assumption of incompressible
fluid in the oil film, the oil film distribution of SFD obtained by solving the Reynolds
equation with short bearings and Sommerfeld oil film boundary conditions has instanta-
neous displacement and velocity dependence [9–11]. It uses the finite difference method to
analyze the fluid–structure interaction dynamics of the oil film and the embedded elastic
ring and obtains the direct stiffness and damping coefficient, as well as the cross stiffness
and damping coefficient of the SFD, which has the characteristics of hard nonlinearity [12].
Based on the Reynolds equation, Gu [13] studied the nonlinear characteristics of SFDs
using the two-coefficient method. The results show that the variation of the damping
coefficient of SFD is nonlinear. Gunter and Allaire [14,15] used the rotor unbalance as
the design parameter of SFDs in SFD design and found that when the eccentricity ratio is
greater than 0.4, SFDs have nonlinear characteristics. Cao [16,17] used the finite difference
method to solve the Reynolds equation and calculated the oil film pressure of the SFD,
thereby further obtaining the equivalent stiffness and damping and using the finite element
method to calculate the elasticity under the premise that the floating ring does not rotate.
The Reynolds equation in generalized polar coordinates of the inner and outer oil films is
derived from the relationship between the stiffness of the floating ring and the eccentricity.
Gu [18] proposed an SFD (VPSFD) with controllable structural parameters, which replaced
the cylindrical journal and outer ring with a conical structure with a change in the radial
clearance and constant. By keeping the inner cone of the damper, the radial clearance of the
cone can be changed and controlled in real time by changing the axial position of the outer
cone of the oil film. Liu [19] studied the amplitude–frequency characteristics of the elastic
bearing stiffness, oil film gap, and other parameters of the centering SFD and obtained
the optimal design method of the SFD. Chu [20] found that when the oil supply pressure
and static eccentricity ratio increase, due to the highly nonlinear characteristics of the oil
film force, the damping of the rotor system increases, but it also causes a large drift in
the resonance position. At present, there are still some problems in the application of the
above research results in engineering design, mainly because the relationship between the
dynamic characteristic parameters of SFD to the structure and working parameters cannot
be directly established due to the lack of clearance, the pressure boundary, and the different
oil supply pressures. The influence sensitivity law and the working parameters are mainly
rotational speed, whirling momentum, and so on.

Considering the fact that the commonly used SFDs are of a short journal structure
and the oil film state during operation varies greatly and is seriously affected by the
rotor motion, it is necessary to carry out a sensitivity analysis of the key parameters and
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establish a quick computational analysis method for the nonlinearity of SFD characteristic
parameters, which cannot be limited to the elastic flow pressure differential equation
or finite difference numerical methods. The commonly used SFDs are all short journal
structures [21–23], and the variation in oil film during the working process is seriously
affected by the rotor.

The nonlinear fast computational analysis method cannot be limited to elasto-
hydrodynamic differential equations or finite difference numerical methods. As men-
tioned above, the oil film force formula and nonlinear dynamic model of SFD are com-
plicated mathematical expressions, and it is difficult to deal with these important design
parameters after sensitivity analysis. Therefore, the introduction of a surrogate model
based on a neural network can well establish the relationship between the important
parameters and the dynamic characteristics to achieve high-precision prediction of the
damper dynamic parameters.

The application of neural network technology to the field of dynamics, especially for
the dynamic analysis and dynamic design of SFD, has important innovations, especially in
the aspects of nonlinear parameter identification of SFD and multi-objective optimization
of structural design. M. Ananda Rao and J. Srinivas [24] proposed a BP algorithm to
train the input and output data of a supervised multi-layer neural network model for the
nonlinear model determination problem associated with the rotor axis trajectory and oil
film force. The intelligent algorithm of data-driven rotor motion response and oil film
force as neural network output under different bearing parameters is derived. Philip
Bonello [25,26] used a neural network to analyze SFD modeling based on experimental
data. Some factors that are difficult to model (such as geometric defects, compressibility,
and cavitation effects) can be considered. The established multi-input and multi-output
(input is shaft displacement and rotational speed; the output is oil film pressure and force)
damping force model considering the full range of clearance changes is relatively accurate
and reasonable. It can characterize the nonlinear function relationship between force, shaft
displacement, and rotational speed, as well as unpredictable nonlinear behaviors such as
jumps and non-synchronous vibrations when the load is large.

However, these studies based on neural networks do not focus on the dynamic charac-
teristics and working conditions of SFD in engineering design. Previously, some parameters
were found to affect the dynamic characteristics of SFDs using the Reynolds equation. But
there are the following three research questions:

1. No one has studied the parameters that affect SFDs based on the dynamic characteris-
tics of SFDs.

2. Some parameters affecting SFD are difficult to obtain in practical engineering applications.
3. The single neural network model based on multiple parameters cannot perfectly adapt

to the rotor system at different rotational speeds.

It is necessary to find the sensitive parameters that affect the dynamic characteristics
of SFDs using the Reynolds equation and neural networks and realize the prediction of SFD
stiffness and damping through a small number of key parameters, which lays a foundation
for engineering practice.

The main contributions are generalized as follows:

1. A differential equation analysis model is established based on the hydrodynamic
lubrication theory for SFDs. This model considers structural parameters (length and
clearance amount), state parameters (boundary pressure at both ends and oil pressure),
and working parameters (rotational speed and whirling) within a defined range.

2. The peak pressure, stiffness, and damping of the SFD are determined by the differential
equation. This involves conducting parametric correlation analysis to identify relation-
ships and understand their impact on pressure distribution and stiffness damping.

3. Finally, a neural network is used to predict crucial structural parameters and damper
dynamics characteristics. The prediction results of different models under different rotor
system states are analyzed to determine some reasonable prediction models. These
models allow for fast and highly accurate predictions, facilitating the design process.
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2. Model and Numerical Methods

The working principle of SFD is that a small gap is reserved between the bearing outer
ring and the bearing seat, the lubricating oil is passed into the oil, and the oil film is formed.
The ends of some dampers are equipped with end-sealing rubber rings to prevent a large
amount of oil leakages from the end face. When the end seal is used, pressure builds up
inside and outside the cavity. The rotor is running, the journal will be whirled to drive the
bearing outer ring movement, and the oil film will be squeezed, and then the damping and
vibration reduction effect will be produced. This is shown in Figure 1a.
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Figure 1. Typical structure of SFD and SFD-rotor system. (a) Installation of the SFD system. (b) 
Schematic of the SFD system. 
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Figure 1. Typical structure of SFD and SFD-rotor system. (a) Installation of the SFD system.
(b) Schematic of the SFD system.

Before establishing the Reynolds equation for SFDs, it is necessary to refer to the
theory of hydrodynamic lubrication, which relies on the relative motion between a pair
of solid friction surfaces to generate pressure in the lubricating fluid film between solids
to withstand external loads and avoid contact between solids, thereby reducing friction
resistance and protecting the solid surface.

Some assumptions need to be made before establishing the Reynolds equation of a
squeeze oil film damper with hydrodynamic lubrication theory:

1. Ignore the fluid inertia force.
2. The oil film is considered an incompressible fluid.
3. The oil film viscosity coefficient is constant and does not consider the effect of temperature.
4. The oil film pressure is constant along the thickness direction and does not consider

the effect of temperature.

With reference to the hydrodynamic lubrication theory, the working principle of the
SFD necessitates the establishment of a coordinate system, as illustrated in Figure 1b. Ob
denotes the center of the outer ring of the oil film and Oj denotes the center of the journal.
The remaining variables also include the journal feed eccentricity distance (e), the oil film
thickness (h), the journal radius (R), the radius of the journal of oil film (r), and the oil film
ring and journal of oil film angular velocity are ωb and ωj. θ is the angular coordinate,
and the oil film thickness is at its minimum when θ = 0. Ω is the journal precession
angular velocity.

Reynolds equation for SFD based on the hydrodynamic lubrication theory:

∂

∂θ

(
h3 ∂p

∂θ

)
+ R2 · ∂

∂z

(
h3 ∂p

∂z

)
= 12 · µ · R2(ε ·Ω · sin θ +

.
e · cos θ) (1)

where
.
e = de

dt , ε is the eccentricity, ε = e/c. c is the clearance of oil film radius, c = h− e cos θ,
p is the pressure of the film in the cavity, µ is the viscosity of oil, and z is the axial direction
of SFD.
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When the ratio of the length L of the damper to the diameter D is less than or equal to
0.25, the short bearing can be used for an approximate solution when the two ends are not
sealed. According to (1), it can be concluded that

∂

∂z

[
(1 + ε cos θ)3 ∂P

∂z

]
=

12µ

c2 (εΩ sin θ +
.
ε cos θ) (2)

The eccentricity (ε) and the rate of change in the eccentricity and pressure angles do
not change when the journal is moving in the bearing, and the axis lines of both are always
kept parallel. Based on the above assumptions and Figure 1, taking the central section of
the damper as a reference, the integral limit is taken from the effective length of the damper,
and the boundary condition is the pressure of the inner and outer cavity. When there is an
end seal in the SFD, as shown in Figure 1a, the pressures on the left and right ends of the
end seal are p1 and p2.

The z in Equation (1) is integrated twice, with limits taken from −L/2 to L/2. If the
boundary condition Z = −L/2, p = p1, when Z is equal to L/2, p = p2. p1 and p2 will be
discussed in detail later.

As shown in Figure 2.
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p(θ, z) = − 6µ

c2(1 + ε cos θ)3 (εΩ sin θ +
.
ε cos θ)

(
L2

4
− z2

)
+ (p2 − p1)

z
L
+

1
2
(p2 − p1) (3)

When there is no end seal in the SFD, the oil pressure at both ends is equal to atmo-
spheric pressure, and the pressure of the inner and outer oil chambers is equal. The oil film
distribution pressure can be obtained as follows:

p(θ, z) = − 6µ

c2(1 + ε cos θ)3 (εΩ sin θ +
.
ε cos θ)

(
L2

4
− z2

)
(4)

where L is the film width and Ω is the shaft diameter feed angular speed. In synchronous
whirling, the journal whirling angular velocity Ω is equal to the rotor rotation angular velocity.

The radial and tangential forces of the SFD are obtained by integrating the above
equation as follows:

Fr =
µRL3

c2

[
2Ωε2

(1−ε2)
2 +

π
2 ·

.
ε(1+2ε2)
(1−ε2)

5/2

]
Ft =

µRL3

c2

[
πΩε

2(1−ε2)
3/2 +

2ε
.
ε

(1−ε2)
2

]
+ (p1 + p2)LR

(5)

The above equation can be decomposed into x-y coordinates. Let the SFD forces in
the horizontal and vertical directions for the journal at the center position (0, 0) and (x, y)
position be
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Fx = −µRL3

[
π

.
x

2(c2−x2−y2)
3/2 +

3πx(x
.
x−y

.
y)

2(c2−x2−y2)
5/2 +

2
.
y(x2+y2)

1/2

(c2−x2−y2)
2 −

4y(x
.
x+y

.
y)

(c2−x2−y2)
2
(x2+y2)

1/2

]
Fy = −µRL3

[
π

.
y

2(c2−x2−y2)
3/2 +

3πy(x
.
x−y

.
y)

2(c2−x2−y2)
5/2 −

2
.
x(x2+y2)

1/2

(c2−x2−y2)
2 + 4x(x

.
x−y

.
y)

(c2−x2−y2)
2
(x2+y2)

1/2

] (6)

The oil film stiffness coefficient K and damping coefficient C of SFD are expressed as

K0 = − Fr

e
C0 = − Ft

eΩ
(7)

The corresponding stiffness and damping coefficients are

K0 =
µRL3

c3 · 2Ωε

(1− ε2)
2 C0 =

µRL3

c3 · π

2(1− ε2)
3/2 (8)

According to the above content, the derivation calculation process is as follows (Algo-
rithm 1):

Algorithm 1: Input: µ, r, L, c, P1, P2, Ω, e, ε. Output: p, K0, C0.

1. Initialize: Set µ, r, L, P1, P2, Ω→ data from measurement;
2. while (e < c) do;
3. prior z← [−L/2, L/2];
4. posterior φ← [0, 2π]
5. else p← zeros(φ, z)
6. deterministic representation m← length (z)
7. n← length(φ)
8. for j = 1: m
9. for i = 1: n
10. calculate (i, j) by Equation (4)
11. end for
12. update parameters top
13. end while
14. calculate K0, C0 by Equation (8)
15. end

3. Parameters Impact Analysis for Stiffness and Damping of SFD Based on the
Reynolds Equation

A theoretical analysis model is used based on the principles of hydrodynamic lubri-
cation theory to examine structural parameters such as eccentricity (ε) and clearance (c),
as well as state parameters including oil pressure at both ends and working parameters
like rotational speed and whirling motion within a specified range. This will obtain the
pressure peak, and the stiffness and damping values of SFD are analyzed for parameter
correlation using the numerical solution of differential equations.

A rotor system using a support structure with a squeeze film damper and its parame-
ters are shown in Table 1.

3.1. Impact Analysis of State Parameters

The oil supply method of SFDs is generally either through the oil hole or a circum-
ferential sink. The bearing has a strict left and right axial seal; that is, the left side is the
positioning limit for the outer ring installation, and the right side has a seal. Therefore, there
are both pressures on the left and right sides of the seal. Usually, for the circumferential oil
supply method, it is assumed that the oil pressure in the oil tank is constant, and with the
continuous operation of the rotor system, the oil pressure at the left and right ends of the
SFD will change continuously.
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Table 1. Parameter of SFD.

Parameter Data

Radius of journal (mm) 42.5
Viscosity oflubricating oil (Pa·s) 0.0153

Eccentricity 0.1-0.9
Oil pressure p1 and p2 (MPa) 0.3

Oil film width (mm) 19
Clearance (mm) 0.2–0.5

Initial frequency (Hz) 50
Eccentric distance (mm) 0.03

3.1.1. Effect of Pressure Distribution with Oil Pressure Variation

At the initial state, the clearance (c) is 0.2 mm, the eccentricity (ε) is 0.9, and both
ends of the oil pressure are 0.3 MPa; the pressure distribution is shown in Figure 3. The
angular pressure distribution is 0 near the maximum oil film thickness (180◦); from 0◦

to 180◦ (or 180◦–360◦, with respect to the direction of feed) is the negative pressure zone,
and 180–360◦ is the positive pressure zone (when the cavitation effect is not considered,
the pressure in the negative pressure region is usually set as 0; it is considered that the
oil film has no bearing capacity in the negative pressure region). We need to consider the
cavitation effect in the negative pressure zone when the oil film pressure is greater than
the cavitation. When the oil film is under pressure, it is considered that the oil film still
has a carrying capacity, and when the oil film is under pressure, the force is less than the
cavitation pressure, and the oil film loses its bearing capacity.
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Then, consider the fact that the pressure at the right end is greater than the pressure at
the left end when p1=0.1 MPa and p2=0.3 MPa, and the pressure distribution is shown in
Figure 5.
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As can be seen from the figure, when the oil pressure appears different, the axial oil
film pressure changes, and the higher the oil pressure, the greater the oil film pressure.
Therefore, according to the calculation of the Reynolds equation, the oil supply pressure at
both ends will affect the pressure distribution of the SFD.

3.1.2. The Effect on Stiffness and Damping

The oil film stiffness and damping when the oil pressure is different between the left
and right ends are shown in Table 2.

Table 2. Results of oil film stiffness and damping under different pressure conditions.

Condition K (N/m) C (N·s/m)

p1 > p2 1.39× 106 5.57× 104

p1 < p2 1.39× 106 5.57× 104

As can be seen from the table, when the oil pressure at both ends is different, it has no
effect on the oil film stiffness and damping. It can be observed that the oil pressure at both
ends is not impacted by the stiffness and damping of SFDs.

3.2. Impact Analysis of Structural Parameters

The radius difference between the outer ring of the bearing and the seat of the plate,
i.e., the clearance (c), will lead to a change in the value through machining and assembly;
at the same time, this makes the eccentricity (ε) have variation.

3.2.1. The Effect on Pressure Distribution

The pressure distribution is in the range of 0.1–0.9 for ε and 0.2 mm–0.5 mm for
clearance (c). Taking it as 0.5 mm, the different pressure distributions are shown in Figure 6a.
When the center of the shaft makes a circular motion, the oil film pressure distribution
along the axial direction is approximately parabolic, and the oil film pressure is at its
maximum near the center. When the eccentricity (ε) = 0.9, the pressure distribution of
different clearances is shown in Figure 6b. It can be determined that both the clearance (c)
and eccentricity (ε) have an effect on the pressure distribution of the SFD.



Mathematics 2024, 12, 771 9 of 21

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 22 
 

 

3.2.1. The Effect on Pressure Distribution 
The pressure distribution is in the range of 0.1–0.9 for ε and 0.2 mm–0.5 mm for clear-

ance (c). Taking it as 0.5 mm, the different pressure distributions are shown in Figure 6a. 
When the center of the shaft makes a circular motion, the oil film pressure distribution 
along the axial direction is approximately parabolic, and the oil film pressure is at its max-
imum near the center. When the eccentricity (ε) = 0.9, the pressure distribution of different 
clearances is shown in Figure 6b. It can be determined that both the clearance (c) and ec-
centricity (ε) have an effect on the pressure distribution of the SFD. 

0 100 200 300
Circumferential angle (°)

0

0.5

1

1.5

2

P（
Pa

）

105

ε= 0.1

ε=0.8 

ε=0.9 

ε=0.7 

ε=0.6 

ε=0.5 

ε=0.4 

ε=0.3 

ε=0.2 
ε=0.1 

0 100 200 300
0

0.2

0.4

0.6

0.8

1.0

1.2

P
（

Pa
）

106

c = 0.5

Circumferential angle (°)

(a) (b)
c = 0.4
c = 0.3
c = 0.2

ε= 0.2
ε= 0.3
ε= 0.4
ε= 0.5
ε= 0.6
ε= 0.7
ε= 0.8
ε= 0.9

P(
Pa

)

P(
Pa

)

 
Figure 6. Pressure distribution under different eccentricity and oil film clearances (a) when clearance 
(c) = 0.5 mm and (b) when eccentricity (ε) = 0.9. 

3.2.2. The Effect on Stiffness and Damping 
When the eccentricity and clearance change, the tendency of stiffness and damping to 

change with the eccentricity and clearance can be obtained, as shown in Figures 7 and 8. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.8

1.0

1.2

1.4

K
(N

/m
)

10 6

c = 0.2
c = 0.3
c = 0.4
c = 0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6
C

(N
·  S/

m
)

104

c = 0.2
c = 0.3
c = 0.4
c = 0.5

(a) (b)

Eccentricity (Ɛ) Eccentricity (Ɛ)  
Figure 7. The variation trend of stiffness and damping with eccentricity; (a) stiffness; and (b) damping. 

0.2 0.3 0.4 0.5Clearance (c)

1.4

K
(N

/m
)

10 6

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5
ε = 0.6
ε = 0.7
ε = 0.8
ε = 0.9

1.2

1.0

0.8

0.6

0.4

0.2

0
0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

C
(N

s/
m

)

4

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5
ε = 0.6
ε = 0.7
ε = 0.8
ε = 0.9

10

(a) (b)

.
 

Clearance (c)  
Figure 8. Variation of stiffness and damping with oil film clearance: (a) stiffness; (b) damping. 

Figure 6. Pressure distribution under different eccentricity and oil film clearances (a) when clearance
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3.2.2. The Effect on Stiffness and Damping

When the eccentricity and clearance change, the tendency of stiffness and damping to
change with the eccentricity and clearance can be obtained, as shown in Figures 7 and 8.
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It can be seen from the above trend graph that, with the variation in clearance and
eccentricity, the oil film stiffness and damping have strong nonlinear characteristics. When
the eccentricity is higher than 0.7, a steep increase in stiffness and damping occurs. At
the same time, the oil film gap amount for clearance (c) changes more significantly in
the range interval of 0.2 mm–0.3 mm. Therefore, it can be judged that the eccentricity
and oil film clearance (c) are important parameters in the corresponding range, and it is
necessary to improve the damping performance of the squeeze film damper by adjusting
these two parameters in the de
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3.3. The Effect Analysis of Working Parameters

When the rotor system is running, the variation in the rotational speed and the
whirling state generated during operation will have a certain influence on the stiffness and
damping of SFDs. At the same time, during the operation of the rotor, as the rotational
speed increases to different states, the journal also whirls, and its whirling state will also
affect the stiffness and damping. Therefore, the working state of the rotor will be divided,
considering the journal whirling state.

3.3.1. The Effect of Rotational Speed on Pressure Distribution without the Whirling State

When the rotor system rotational speed increases, the pressure distribution of the SFD
will change drastically with the increase in the rotational speed. After setting the rotational
frequency, the pressure distribution of the three rotational speeds can be observed, as
shown in Figure 9. It can be seen from the graph that the peak pressure of the oil film
increases when the rotational speed increases.
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Figure 9. Oil film pressure distribution of SFD at different rotational frequencies (L = 19 mm).
(a) Angular pressure distribution of the oil film. (b) Axial pressure distribution of the oil film.

3.3.2. The Effect of Rotational Speed on the Stiffness and Damping

Firstly, the oil film stiffness and damping of the SFD at different frequencies are shown
in Table 3. It can be seen that when the frequency is increased, the oil film stiffness shows a
linear increasing trend, while the damping does not change.

Table 3. Oil film stiffness and damping of SFD at different rotational speed.

Rotational Speed (Hz) K (N/m) C (N·s/m)

100 1.78× 105 3560
200 3.56× 105 3560
300 5.34× 105 3560

When putting the SFD into the rotor system, this will be affected by the dynamic
characteristics of the rotor system. The oil film pressure distribution, stiffness, and damping
will change under different rotor rotational speeds. Due to the error in manufacturing, the
centroid of each section of the rotor generally has a slight deviation from the rotation axis.
When the rotor rotates, the centrifugal force caused by the above deviation will cause the
rotor to produce a whirling motion, resulting in nonlinear changes in SFD stiffness and
damping. The simulation model of the high-pressure rotor system with SFDs of a certain
type of air engine is established [27], and according to the vibration response of different
rotational speeds (including the axis trajectory), as shown in Figure 10, the first order is
280 Hz. When the rotor system works, it is accompanied by different whirling states, and
when the rotational speed is below the critical rotational speed, the rotor system is in a
small whirling state. When the rotational speed reaches the critical rotational speed, the
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amplitude of the rotor system is in a large whirling state. After the critical rotational speed,
the rotor is in a medium whirling state. In the following article, the characteristics of the
pressure distribution, stiffness, and damping of the oil film pressure distribution, SFD, and
the different rotational speeds of the different rotational speeds are discussed.
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3.3.3. The Effect of the Whirling State on Pressure Distribution 
When whirling occurs during rotor operation, it remains constant, and clearance (c) 

will change with eccentricity (ε).When the rotor is running, with the change in the rota-
tional speed, the rotating shaft will bend and deform under the action of unbalanced 
torque, which will produce a whirling motion. And according to the different speed, 
which is only considered by the first critical speed, the following three rotor whirling con-
ditions are considered: (1) small amplitude whirling (ε = 0.3, 130 Hz); (2) medium ampli-
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Figure 10. Vibration response in different rotational speed.

3.3.3. The Effect of the Whirling State on Pressure Distribution

When whirling occurs during rotor operation, it remains constant, and clearance
(c) will change with eccentricity (ε).When the rotor is running, with the change in the
rotational speed, the rotating shaft will bend and deform under the action of unbalanced
torque, which will produce a whirling motion. And according to the different speed,
which is only considered by the first critical speed, the following three rotor whirling
conditions are considered: (1) small amplitude whirling (ε = 0.3, 130 Hz); (2) medium
amplitude whirling (ε = 0.6, 280 Hz); and (3) large amplitude whirling (ε = 0.9, 220 Hz).
These different conditions and parameters are shown in the Table 4. The obtained oil film
pressure distribution is shown in Figure 11. It can be seen that the pressure distribution
is has more of an impact and the pressure peak is higher when large amplitude whirling
occurs in the rotor system.

Table 4. Three different conditions with parameters of the rotor system.

Case Whirling Rotational Speed (Hz)

1 ε = 0.3 130
2 ε = 0.6 280
3 ε = 0.9 220
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Figure 11. Oil film pressure distribution under different conditions (a) ε = 0.3, 130 Hz; (b) ε = 0.6,
280 Hz; and (c) ε = 0.9, 220 Hz.

As the rotational speed increases, the oil film area decreases after reaching the reso-
nance frequency and large amplitude whirling, but the pressure increases steeply. After
passing the resonance frequency, the oil film area becomes larger when medium amplitude
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whirling occurs and the pressure decreases gradually. Thus, it can be determined that
when in a state of large whirling, the pressure distribution of the oil film has more impact.
According to Equation (4), the peak value of oil film pressure is directly proportional to
eccentricity. In the three cases, the maximum and minimum pressure values differ by
thousands of times, which shows that eccentricity is very sensitive to the oil film pres-
sure. Larger oil film pressure is an important prerequisite for ensuring that an SFD has
sufficient damping.

3.3.4. The Effect of the Whirling State on the Stiffness and Damping

We set up three cases according to three states. We set 10 rotational speeds for each
case and calculated their stiffness values as follows: (1) Case 1: e = 0.3c, 0–130 Hz; (2) Case
2: e = 0.6c, 280–600 Hz; (3) Case 3: e = 0.9c, 180–230 Hz. In these cases, the stiffness results
of the SFD are shown in Figure 12.
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Based on the analysis of different cases, when the whirling state of the rotor system
is introduced into the calculation of the stiffness and damping of the SFD, according to
Equations (7) and (8), rotor whirling mainly affects the stiffness, and the relationship
between the rotational speed and the stiffness is linear, so the stiffness changes dramatically
with the rotational speed.

Based on the above research, it can be concluded that the oil film force, the pressure
distribution of the oil film, and the oil film stiffness and damping are analyzed and com-
pared using the Reynolds equation. The structural parameters gap c and eccentricity will
have an effect on the stiffness and damping of the SFD. In the rotor system, the rotational
speed impacts the stiffness and damping of the SFD when the rotor system works with-
out considering the whirling state. When considering the whirling state of the rotor, the
variation in eccentricity causes a certain change in the oil film clearance, and the pressure
distribution changes sharply so that the stiffness changes sharply. Therefore, the working
parameter and the whirling of the journal at different rotational speeds will have an effect
on stiffness and damping.

Therefore, in practical engineering applications, if the lubricating oil temperature is
too high, this will make its viscosity decrease significantly, which, on the one hand, can lead
to poor lubrication and cooling effects and, on the other hand, will weaken the squeeze
film damper damping effect [28]. At the same time, the damping effect is related to the
viscosity of the liquid; the larger the viscosity, the more obvious the damping effect, but
the relationship is not linear [29]. When the oil viscosity (on both sides of the pressure in
SFD), oil supply pressure, flow, and other parameters are difficult to measure and identify,
a neural network system can be introduced using the above several parameters to complete
the SFD oil film pressure distribution and stiffness analysis.

4. Parameter Analysis for Stiffness and Damping of SFDs Based on Neural Networks

Through the above sensitivity analysis of the important parameters affecting the
stiffness and damping of SFDs based on the Reynolds equation, some parameters can
be obtained that have the strongest influence on stiffness and damping. Then, based on
neural network technology, an adaptive neural network model without artificial decision
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is proposed using the simulation data in the multi-input (load conditions, working condi-
tions, and structural parameters) and multi-output (peak pressure and damping stiffness)
nonlinear approaches.

The neural network model is divided into the BP neural network, the improved BP
neural network based on a genetic algorithm (GA-BP), the particle swarm optimization
BP network (PSO-BP), and the decision tree model. According to the Reynolds equation,
the results of stiffness and damping are obtained by establishing a dynamic model and
changing the values of different parameters. According to different working conditions,
it is divided into three groups of data, with each group of data training sets comprising
200 groups and 10 test set groups. The test set contains different state parameters, working
parameters, and structural parameters. Through the prediction of the above four models
and the comparison of the error of the results, the accuracy and applicability of the model
can be detected, and a nonlinear prediction model with intermediate variables of damper
state parameters and multiple input and output characteristics can be established, which
can be jointly driven by multiple sets of simulation data.

4.1. Data-Driven Modeling and Method
4.1.1. BP Neural Network Model

The BP neural network is the most widely used artificial neural network model. It
consists of the following two processes: the forward propagation of information and
the back propagation of errors. The weights and thresholds are updated by the error of
the output results. Establishing the model mainly involves the following aspects: the
reasonable selection of input and output parameters; the selection of the number of hidden
layer intermediate nodes; and the optimization of initial weights and thresholds. It needs
to select reasonable input and output parameters. Although the neural network model
does not focus on specific physical processes, the research object itself has a clear physical
meaning, and there is a clear physical correspondence between each output and input
parameter. If the input and output parameters are randomly selected, it may provide wrong
information to the neural network model. Using a correlation analysis, the input parameters
can be effectively determined according to the output parameters. Nine parameters have
been determined (µ, e, R, c, L, p1, p2, ω, and ε), including the output stiffness K and damping
C two parameters. The hidden layer is 10, as shown in Figure 13.
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When the neural network has a large number of layers, the gradient information in the
backpropagation algorithm will be passed back to the input layer through many layers, and
each layer will be multiplied by the derivative of the activation function. If these derivatives
are all less than 1, then as the number of layers increases, the gradient multiplied by the
derivative will shrink and eventually become very close to 0. This causes the gradients to
gradually disappear during propagation, and the weight of the shallow network cannot
be effectively updated, thus making the network unable to learn effective representations
and models. The gradient disappearance problem mainly occurs in deep neural networks.
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To mitigate this problem, BP neural networks need to be optimized, usually by using
more appropriate activation functions, batch normalization, residual chaining, or more
appropriate weight initialization methods. Therefore, BP neural network optimization
models GA-BP and PSO are used for comparative analysis.

The genetic algorithm (GA) is a method that searches for the optimal solution by
simulating the natural evolution process. The algorithm converts the solution process of
the optimal value problem into a genetic process that is similar to the genetic processes in
biological evolution using mathematical methods. Compared with some conventional opti-
mization algorithms, it usually obtains better optimization results faster. The optimization
process is shown as follows: after determining the structure of the BP neural network, the
initial weights and thresholds of the neural network are input into the genetic algorithm,
and the error after the training of the neural network is used as the fitness value, and then
the weights and thresholds of the neural network are optimized. After the optimal weight
threshold is obtained, it is substituted into the training and prediction processes of the
neural network. The GA-BP algorithm based on the input parameters of SFDs is shown in
Figure 13. In three different states, the prediction results of the nine-parameter input GA-BP
neural network prediction model are compared with the Reynolds equation simulation
results in Figure 14.
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The particle swarm optimization (PSO) algorithm is a global random search algorithm
based on swarm intelligence, which is proposed by simulating the migration and swarming
behavior of birds in the process of foraging. It regards the individuals in the group
as particles without mass or volume in the D-dimensional search space. Each particle
moves in space at a certain rotational speed and gathers to its own historical best position
(pbest) and the neighborhood historical best position (gbest) to realize the evolution of
candidate solutions. It is simple, has a fast convergence rotational speed, has fewer setting
parameters, and has other advantages. In three different states, the prediction results of
the nine-parameter input PSO neural network prediction model are compared with the
Reynolds equation simulation results.
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4.1.2. Decision Tree Model

A decision tree is a special tree structure. It is similar to the structure of a flow chart,
where each internal node represents a ‘test’ on an attribute, each branch represents the result
of the test, and each leaf node represents a class label (the decision taken after calculating
all attributes). The path from root to leaf represents the classification rule, resulting in a
decision tree. Machine learning techniques that generate decision trees from data are called
decision tree learning or decision trees. In machine learning, a decision tree is a prediction
model that establishes a mapping relationship between predicted object attributes and
object values. In data mining, a decision tree is often used, which can be used to analyze
data and make predictions. In general, a decision tree contains a root node, several internal
nodes, several branches, and several leaf nodes. The root node is generally used for the
input; each internal node represents a judgment on the attribute; each branch represents
an output of the judgment result; and finally, each leaf node represents a classification
result. In the process of prediction, the decision tree model has the characteristics of better
processing classification data, especially high-accuracy classification rules, and processing
multi-channel input and output.

The results were compared with those obtained by the Reynolds equation and the
above four neural network models to predict stiffness and damping, as shown in Figure 15.
It can be seen from the figure that the stiffness prediction results of BP and its improved
model in Case 1 are highly consistent with the results of the Reynolds equation. The
result of the decision tree in Case 2 is better than that of PSO. But the PSO results in
Case 3 are highly consistent with the results of the Reynolds equation. According to the
comparison of the prediction results in the three cases, the neural network model shows that
the rotational speed and eccentricity have a significant influence on the stiffness of SFDs,
which is consistent with the analysis results of the Reynolds equation. Since the stiffness
prediction is only carried out for different rotational speeds, the damping calculation in the
Reynolds equation does not involve the rotational speed. Therefore, the damping result
error is very small when the four methods are used to predict the results.
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4.1.3. The Prediction Results of Different ε and c with the Same Rotational Speed of
Rotor System

In the above Reynolds equation and the above neural network predictions, since the
rotational speed has no effect on the damping, the model has limitations on the prediction
of damping. Therefore, this section focuses on the prediction of stiffness and damping
according to different eccentricity (ε) and clearance (c) levels when the rotational speed is
constant. The stiffness and damping prediction results of each model with Case 1 and Case
2 are shown in Figure 16.
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4.2. Comparison of Results of Different Neural Network Models under Different Working Conditions

The result obtained by the Reynolds equation is defined as a real value; the result
obtained by the above model is defined as a prediction value. The result obtained by the
Reynolds equation for 10 different speeds in each case is TV = (TV1, TV2, . . ., TV10), and
the prediction result obtained by neural network model is PV = (PV1, PV2, . . ., PV10), so
the relative error at each speed is REn = (TVn − PVn)/TVn. The mean relative error is
MREn = (RE1 + RE2 + . . . + RE10)/10. The mean relative error of nine parameters to K and
C is shown in Tables 5 and 6.

Table 5. Mean relative error (%) of nine parameters to K in the three cases (different rotational speed).

Model Case 1 Case 2 Case 3

BP 0.0057 0.031 0.21
GA-BP 0.0018 0.0065 0.76
PSO 0.00004 0.0096 0.0014
DT 0.06 0.02 0.03

Table 6. Mean relative error (%) of nine parameters to K and C in the three cases (same rotational speed).

Model
K C

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

BP 0.23 0.04 84 0.52 1.04 39
GA-BP 0.04 0.01 13 0.08 0.02 25
PSO 2.45 0.31 31 10.2 0.88 17
DT 2.15 0.13 0.1 0.16 0.08 0.13

It can be found that the prediction results of the BP neural network and its two
improved methods (GA-BP and PSO) are more accurate at low and medium rotational
speeds. At high rotational speed, the prediction results of the PSO model and the decision
tree model in the neural network model with nine parameter inputs are more accurate. At
the same rotational speed, the prediction results of GA-BP are relatively accurate in Cases 1
and 2. The prediction results of the decision tree are relatively accurate in Case 3. Different
suitable neural network models can be selected to predict the stiffness and damping of
SFDs under different rotor states instead of the Reynolds equation.

4.3. Parameter Impact Analysis Based on a Neural Network Model

In practical engineering applications, the oil viscosity, internal and external oil pres-
sures in SFD, and other parameters are not easy to measure and identify. Aiming at the
difficulty of obtaining parameters such as SFD structure and working state and the influ-
ence of stiffness and damping sensitivity, the sensitivity of each parameter is identified
using the Sobol method [30], as is the contribution ratio of each input parameter to the
output variance.

The core idea of the Sobol method is variance decomposition [31]. It decomposes the
model into a single parameter and a function of the combination of parameters, calculates
the contribution of the variance of a single input parameter or input parameter set to the
output variance, and then analyzes the importance of the parameters and the interactions
between parameters.

Assume that the model Y = f (x) = f (x1, x2, . . . xn), where X = [x1, x2, . . . xn] is the
parameter vector, n is the number of parameters. After Sobol sampling of the respective
variables, the total variance is obtained. After decomposing it into several sub-variances,
the decomposition formula is expressed as follows:

D(Y) = ∑
i

Di + ∑
i≤j

Dij + · · ·+ D12···n (9)
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where D(Y) is the total variance of the model, Di is the variance term of the ith parameter;
Dij is the variance term of the joint action of the ith and jth parameters; D12. . .n is the
variance term for all interactions. In this paper, the first-order sensitivity Si is used as the
sensitivity index to calculate the following:

Si =
Di

D(Y)
(10)

Based on the above stiffness and damping formula, the journal radius and oil film
width of the six parameters are invariant, and the oil viscosity will change slightly during
the operation of the damper. Therefore, the value range of the parameters is shown in
Table 7. The sensitivity analysis results for these parameters are shown in Figure 18. It can
be seen that the sensitivity of the rotational speed, eccentricity, and oil film clearance is
relatively high.

Table 7. The value range of the parameters.

Variables Oil Viscosity
(Pa·s) Clearance (mm) Rotation (Hz) Eccentricity

Max 0.016 0.9 600 0.9
Min 0.015 0.1 1 0.1
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4.4. Prediction and Comparison Results Based on Three Parameters

Only three parameters of rotational speed, clearance (c), and eccentricity (ε) are neces-
sary to input into the neural network model according to different whirling states so as to
predict stiffness and damping accurately and reasonably. The prediction and comparison
results of different neural network models based on three input parameters in three cases
are shown in Figure 19. Since the damping prediction results are the same as previous
results, they will not be repeated here. The prediction results in Case 3 can only be made
using the decision tree in the Figure 20.
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Through the difference in rotational speed and the whirling state, the neural network
model can use rotational speed, clearance (c), and eccentricity (ε) as inputs and use the
relatively accurate prediction model discussed above to predict stiffness and damping in
three states, respectively. The results are outlined in Table 8. The prediction accuracy of
the three BP methods is very low, with different rotational speeds and large amplitude
whirling. The error predicted by the decision tree is relatively good, as shown in the Table 9.

Table 8. Mean relative error (%) of three parameters to K with a different rotational speed (%).

Model Case 1 Case 2 Case 3

BP 0.00019 0.017 9
GA-BP 0.000031 0.0021 84

PSO 0.029 0.0023 13
DT 18 17 0.034

Table 9. Mean relative error (%) of three parameters to K and C with the same rotational speed.

Model
K C

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

BP 24 13 120 31 15 25
GA-BP 0.38 0.0002 82 0.0008 0.0006 73
PSO 11 40 26 26 15 30
DT 20 70 0.1 43 64 0.13

GA-BP and decision tree methods have relatively low average relative errors for the
same rotational speed and different whirling states.

It can be seen that the accuracy of the GA-BP model’s prediction is further improved
when only three parameters are input. Because of the particularity of the decision tree
model, the results remain unchanged when three parameters are input. According to
the predicted results, it can be concluded that the GA-BP model has higher accuracy
when predicting stiffness in different whirling states, especially in low whirling states and
medium whirling states. In the high whirling state, the prediction of the decision tree model
is relatively accurate. At the same time, with large whirling, the stiffness and damping
of SFDs can be effectively predicted by the prediction model established by the neural
network with only three parameters, which provides a rich reference value for subsequent
design approaches and calculations.

4.5. Discussion of Results

The results can be discussed using the above analysis.
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1. Based on the predicted results, different neural network models can be selected to
predict SFD stiffness and damping according to different states of the rotor.

2. Three parameters affecting stiffness and damping are found using the Sobol method
and practical engineering applications, and stiffness and damping can be predicted
using the neural network model.

3. The neural network models are used to predict the SFD’s stiffness and damping of
the rotor system under different states using some sensitive parameters instead of the
Reynolds equation.

5. Conclusions

Firstly, a theoretical model designed to analyze the pressure distribution in SFDs
is presented. The critical parameters, including the oil film force, pressure distribution,
stiffness, and damping, are computed within this framework. Structural factors such as
length and clearance, state-related aspects like boundary pressure and oil inlet pressure,
and operational conditions such as rotational speed are taken into account during the
calculation process. Then, neural network prediction models like BP and decision tree
models were established based on the obtained theoretical results, incorporating all of the
given parameters. Thirdly, our conclusions are as follows:

1. We found that the three most significant parameters (rotational speed, eccentricity,
and clearance) are examined separately as inputs.

2. The neural network models prove effective in accurately predicting the nonlinear
stiffness and damping of the SFD with different parameters. Especially for the nonlin-
ear issue of the rotor system, different neural network models can be used for better
prediction under different rotor states.

3. The GA-BP model can be used for both low speeds and critical speeds. The decision
tree model can be selected for high speed.

4. Only the sensitive parameters are required to be measured and combined with the
neural network to predict the stiffness and damping of SFDs instead of using the
Reynolds equation.

Finally, the study in this paper will serve as a foundation for the structural enhance-
ment and facilitation of parameter optimization in SFDs. The precise predictions obtained
by the proposed approach are of significant importance, contributing to improvements
in design approaches and the optimization of performance across diverse engineering
applications. This methodology provides crucial support for refining the design parameters
of SFD.

Author Contributions: Conceptualization, Q.H., Y.Z. and H.W.; data curation, Y.Z. and T.Y.; formal
analysis, H.W.; funding acquisition, Q.H.; investigation, H.W.; methodology, Y.Z. and H.W.; project
administration, Q.H.; resources, Q.H. and Z.L.; software, Y.Z.; supervision, H.W. and Y.Z.; validation,
Y.Z.; visualization, H.W.; writing—original draft, H.W.; writing—review and editing, Y.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant No.
12072069).

Data Availability Statement: The datasets used and analyzed during the current study are available
from the corresponding authors upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Wang, W.M.; Wang, J.L. Investigation on the dynamic characteristics of a rotor-damper-casing coupling system under diving-

climbing maneuver. J. Sound Vib. 2024, 570, 118094. [CrossRef]
2. Andrés, L.S. Force coefficients for a large clearance open ends squeeze film damper with a central feed groove: Experiments and

predictions. Tribol. Int. 2014, 71, 17–25. [CrossRef]
3. Fu, C.; Zhang, K.F. A comprehensive study on natural characteristics and dynamic responses of a dual-rotor system with

inter-shaft bearing under non-random uncertainty. J. Sound Vib. 2024, 570, 118091. [CrossRef]

https://doi.org/10.1016/j.jsv.2023.118094
https://doi.org/10.1016/j.triboint.2013.10.021
https://doi.org/10.1016/j.jsv.2023.118091


Mathematics 2024, 12, 771 21 of 21

4. Tarkashvand, A.; Golmohammadi, A. Stability and modal analysis of an unbalanced asymmetric multi-disk rotor system on
bearings as viscoelastic substrate. Arch. Appl. Mech. 2022, 92, 2247–2271. [CrossRef]

5. Siew, C.C.; Hill, M.; Holmes, R. Evaluation of various fluid-film models for use in the analysis of squeeze film dampers with a
central groove. Tribol. Int. 2002, 35, 533–547. [CrossRef]

6. Zhang, W.; Ding, Q. Elastic ring deformation and pedestal contact status analysis of elastic ring squeeze film damper. J. Sound Vib.
2015, 346, 314–327. [CrossRef]

7. Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koríko, O.K. Ratio of Momentum Diffusivity to Thermal
Diffusivity: Introduction, Meta-Analysis, and Scrutinization, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2022; p. 410.

8. Groves, K.H.; Bonello, P. Improved identification of squeeze-film damper models for aeroengine vibration analysis. Tribol. Int.
2010, 43, 1639–1649. [CrossRef]

9. Cao, J.; Dimond, T.; Allaire, P. Numerical analysis of flexible rotor with nonlinear bearings and squeeze film dampers. In ASME
2014 International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers Digital Collection:
New York, NY, USA, 2014.

10. Holmes, R. The damping characteristics of vibration isolators used in gas turbines. J. Mech. Eng. Sci. 1977, 19, 271–277. [CrossRef]
11. Holmes, R. The non-linear performance of squeeze-film bearings. J. Mech. Eng. Sci. 1972, 14, 74–77. [CrossRef]
12. Wang, X.J.; Han, Z.F.; Ding, Q. Influence of fluid inertia on dynamic characteristics of elastic ring squeeze film damper-rotor

system. J. Aerosp. Power 2018, 33, 2981–2990.
13. Gu, Z.P.; Zhi, X.Z. Nonlinear analysis of a squeeze-film damper. Mech. Eng. 2003, 25, 38–41.
14. Gunter, E.J.; Barrett, L.E.; Allaire, P.E. Design of nonlinear squeeze-film dampers for aircraft engines. J. Lubr. Technol. 1977, 99,

57–64. [CrossRef]
15. Allaire, P.E.; Barrett, L.E.; Gunter, E.J. Variational method for finite length squeeze film damper dynamics with applications. Wear

1977, 42, 9–22. [CrossRef]
16. Cao, L.; Gao, D.P. Damping machanism of elastic ring squeeze film damper. J. Vib. Eng. 2007, 20, 584–588.
17. Cao, L.; Gao, D.P. Investigation on critical speed characteristics of elastic ring sfd-rotor system. J. Propuls. Technol. 2008, 29,

235–239.
18. Gu, J.L.; Wang, Q. Active vibration control of rotor-support system by the controlled SFDB. Chin. J. Appl. Mech. 1990, 7, 41–47.
19. Liu, F.J.; Yin, X.Q. Studies of Parameters Cooperated for Squeeze film damper. Struct. Environ. Eng. 1996, 2, 27–34.
20. Chu, F.L.; Tai, J.Y. Nonlinear vibration of a rotor system supported by the squeeze film damper. Struct. Environ. Eng. 1996, 3,

32–38.
21. Zhao, X.W.; Luo, G.H. Numerical Analysis of Effects of Static Eccentricity on Vibration Characteristics of Squeeze Film Damper. J.

Aerosp. Power 2018, 3, 42–48.
22. Zhou, H.L.; Feng, G.Q. Damping mechanism of floating ring squeeze film damper. J. Aerosp. Power 2015, 30, 966–971.
23. Zhang, W.; Han, B.B.; Zhang, K.P.; Ding, Q. Dynamic analysis of a rotor system supported on squeeze film damper with air

entrainment. Int. J. Bifurc. Chaos 2017, 27, 1750212. [CrossRef]
24. Rao, M.A.; Srinivas, J. Dynamics of rotors supported on fluid-film bearings using neural networks. Proc. Inst. Mech. Eng. Part J J.

Eng. Tribol. 2001, 215, 149–155. [CrossRef]
25. Groves, K.; Bonello, P. An investigation into two alternative approaches for the identification of SFD bearings for aeroengine

analysis. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada,
6–10 June 2011; American Society of Mechanical Engineers Digital Collection; pp. 537–547.

26. Groves, K.; Bonello, P. Empirical identification of squeeze-film damper bearings using neural networks. Mech. Syst. Signal Process.
2013, 35, 307–323. [CrossRef]

27. Haobo, W.; Yulai, Z. Analysis on Influences of Squeeze Film Damper on Vibrations of Rotor System in Aeroengine. Appl. Sci.
2022, 12, 615.

28. Li, B.; Cheng, D.C. Experiment study on dynamic characteristics of elastic ring squeeze film damper rotor system. Gas Turbine
Exp. Res. 2015, 28, 19–22.

29. Zhang, L.H.; He, L.D. Structure design of an integral elastic ring squeeze film damper and experiments on the rotor passing
through critical speed. J. Vib. Shock 2019, 38, 72–78+108.

30. Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414.
31. He, K.; Yan, Z.; Xu, X.Y. Sobol’ method-based global sensitivity analysis of isolated microgrid currents. Autom. Electr. Power Syst.

2018, 42, 99–106.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00419-022-02176-4
https://doi.org/10.1016/S0301-679X(02)00048-8
https://doi.org/10.1016/j.jsv.2015.02.015
https://doi.org/10.1016/j.triboint.2010.03.010
https://doi.org/10.1243/JMES_JOUR_1977_019_055_02
https://doi.org/10.1243/JMES_JOUR_1972_014_011_02
https://doi.org/10.1115/1.3452990
https://doi.org/10.1016/0043-1648(77)90163-6
https://doi.org/10.1142/S0218127417502121
https://doi.org/10.1243/1350650011541792
https://doi.org/10.1016/j.ymssp.2012.08.014

	Introduction 
	Model and Numerical Methods 
	Parameters Impact Analysis for Stiffness and Damping of SFD Based on the Reynolds Equation 
	Impact Analysis of State Parameters 
	Effect of Pressure Distribution with Oil Pressure Variation 
	The Effect on Stiffness and Damping 

	Impact Analysis of Structural Parameters 
	The Effect on Pressure Distribution 
	The Effect on Stiffness and Damping 

	The Effect Analysis of Working Parameters 
	The Effect of Rotational Speed on Pressure Distribution without the Whirling State 
	The Effect of Rotational Speed on the Stiffness and Damping 
	The Effect of the Whirling State on Pressure Distribution 
	The Effect of the Whirling State on the Stiffness and Damping 


	Parameter Analysis for Stiffness and Damping of SFDs Based on Neural Networks 
	Data-Driven Modeling and Method 
	BP Neural Network Model 
	Decision Tree Model 
	The Prediction Results of Different  and c with the Same Rotational Speed of Rotor System 

	Comparison of Results of Different Neural Network Models under Different Working Conditions 
	Parameter Impact Analysis Based on a Neural Network Model 
	Prediction and Comparison Results Based on Three Parameters 
	Discussion of Results 

	Conclusions 
	References

