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Abstract: This paper presents our research on a traffic signal control system (TSCS) at V2X intersec-
tions. The overall objective of the study is to create an implementable TSCS. The specific objective
of this paper is to investigate a distributed system towards implementation. The objective function
of minimizing queue delay is formulated as the integral of queue lengths. The discrete queueing
estimation is mixed with macro and micro traffic flow models. The novel proposed architecture
alleviates the communication network bandwidth constraint by processing BSMs and computing
queue lengths at the local intersection. In addition, a two-stage distributed system is designed to
optimize offsets, splits, and cycle length simultaneously and in real time. The paper advances TSCS
theories by contributing a novel analytic formulation of delay functions and their first degree of
derivatives for a two-stage optimization model. The open-source traffic simulation engine Enhanced
Transportation Flow Open-Source Microscopic Model (ETFOMM version 1.2) was selected as a
simulation environment to develop, debug, and evaluate the models and the system. The control
delay of the major direction, minor direction, and the total network were collected to assess the
system performance. Compared with the optimized TSCS timing plan by the Virginia Department
of Transportation, the system generated a 21% control delay reduction in the major direction and
a 7% control delay reduction in the minor direction at just a 10% penetration rate of connected
vehicles. Finally, the proposed distributed and centralized systems present similar performances in
the case study.

Keywords: highway traffic operations; queue length model; vehicle detection; signal optimal control;
basic safety messages

MSC: 90-10

1. Introduction

Connected vehicle (CV) technology, or Vehicle-to-Everything (V2X) Communications,
could provide mobility, safety, and environmental benefits to arterial traffic operations [1–3].
The National Highway Traffic Safety Administration (NHTSA) performed a detailed benefit
study in 2016 [4]. A few review papers [5–7] have captured the dynamics of CV and its
benefits after hundreds of papers were researched and summarized. Currently, connected
vehicle technology is still in the simulation and/or experimental stages, and the full
implementation of this technology (i.e., 100% penetration rates of connected vehicles) is
still decades from completion.

The majority of traffic signals in the US are operated as actuated control systems
and require a labor-intensive and costly traffic engineering study to periodically “re-time”
traffic signal plans. The advanced generation of Adaptive Traffic Control Systems (ATCS,
discussed in Section 2.1) has been developed to overcome the retiming process for a few
decades. It has had limited success in market deployment. V2X brings a major advantage
for CV-based ATCS over traditional ATCS since V2X alleviates the dedicated advanced
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sensor and sensor communication costs. V2X infrastructure needs to be deployed by state
Departments of Transportation (DOT) and local agencies. However, budgetary, institutional,
technological, and training constraints have cast uncertainty over deployment timelines. To
help state DOTs and local agencies, the objective of the research was to create Traffic Signal
Control System (TSCS) models and implementation algorithms for the early deployment
of V2X (10% penetration rate, for example) and examine its mobility, safety, fuel, and
emissions benefits [1–3].

The specific objective of the research presented in this paper was to investigate a
distributed system towards implementation. This paper presents the core of the system
and the novel models and algorithms. In the prior reports and Transportation Research
Board (TRB) papers [1–3], it was assumed that Basic Safety Messages (BSMs) from each
Roadside Unit (RSU) would be forwarded to a central computer for storing and processing
without considering the communication network bandwidth and processing computing
power. This might be acceptable for a rural community where the number of RSUs is of
moderate quantity (under one hundred units, for example).

We are motivated to overcome the potential limitations in BSM communication and
processing demand on centralized systems. In a future scenario with high percentages
of CVs, like a metropolitan area, BSMs are broadcast to the RSUs at each intersection
and then forwarded to the computer installed with the proposed systems. Let’s assume
congested intersections are processing 10,000 vehicles per hour, the RSU communication
range is 1500 ft, the average spacing between vehicles is 50 ft, and vehicles communicate
with RSUs 10 times per second at each intersection. This would result in having 833 BSMs
per second. With 320 Bytes/BSM [8], 268,000 Bytes/s or about 262 MB per second per
intersection will be expected. In an extreme case with 1000 such intersections, the demands
for communication bandwidth and computing power at the central computer system
could be as high as 250 GB/s. Such high communication and processing demands might
overburden and crash the centralized system. To make the proposed algorithm work
under the above scenario, a distributed system should be explored to see if there is still a
significant benefit. [2]

IBM defines distributed computing as “A distributed computer system consisting of
multiple software components on multiple computers but run as a single system. . . .Distri-
buted computing aims to make such a network work as a single computer” [9]. IBM’s
definition of “Distributed” above is applied in this research. Most existing controllers in the
US operate on (semi-)actuated and fixed time mode with time-based coordination between
selected upstream and selected down-street intersections. The TSCS in operations and the
market is a locally decentralized computing system, and it is not considered a distributed
system since there is no single centralized computing system to run all controllers; each
control system is run independently. Several advanced ATCS are distributed systems and
will be discussed in Section 2.1 of the next section. One must notice that only one percentage
of US TSCS are ATCS [10].

This paper bridges all gaps in TSCS at V2X intersections identified in a research re-
view [11] published just in 2023. Our case studies confirmed that the implemented optimized
control saves 40% of delays at a low penetration rate of 10%. (gap 1). We used a mesoscopic
traffic model to advance vehicles within links and forward to the next links with the V2X
information from BSMs and traditional infrastructure-based sensors for non-V2X vehicles.
(gap 2 and 3). In addition, we simultaneously and continuously optimize cycle length, split,
and offset in real-time in a rolling horizon time frame. On top of exceeding those challenges,
we pioneered the distributed architecture necessary to alleviate BSM communication and
processing challenges to TSCS. The novel analytic formula of the first degree of derivatives
of queue delays lays the foundations for any researchers seeking a gradient-based heuristic
optimization to use the queue delay model as objective functions. These implemented models,
algorithms, and experiments prove the equivalent benefits of such systems to centralized
systems. Finally, the TSCS proposed in this paper fits all features of ATCS; for simplicity, we
use the term TSCS throughout the paper when referring to our proposed system.
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We present a comprehensive literature review in Section 2 and introduce the objectives
and approaches in Section 3. We discuss the methodologies and distributed models in
detail in Section 4. After the present case studies in Section 5, we summarize our findings
in the conclusion and the future directions in Section 6.

2. Literature Review

While research papers regarding TSCS at large are vast, a few review papers [12–15]
have summarized a comprehensive spectrum of architectures, models, algorithms, and
case studies. In this research, we have decided to narrow the literature research to those
works related to the proposed system and those comparable to the proposed research. After
briefing and discussing the existing state of practice in TSCS in Section 2.1, we present
some unique research papers on TSCS with CV data in Section 2.2. In Section 2.3, we
also discovered several papers that apply distributed architecture/computing in TSCS
with/without CV data. We finally summarize our findings in the Section 2.4.

2.1. Traditional Distributed Traffic Signal Systems in Operations

In a report produced by the Florida Department of Transportation (FDOT) in 2016 [16],
a research group summarized Adaptive Traffic Control Systems (ATCS). Five of the ATCSs
were distributed systems, including Real-Time Hierarchical Optimized Distributed and
Effective System (RHODES) [17], Optimization Policies for Adaptive Control (OPAC),
Adaptive Control ACS Lite [18], Kadence [19], and InSync. RHODES estimated queue
lengths and arrivals locally; the queue lengths and arrivals were then transferred from
the local controllers to the central computer. RHODES used DSL communication via
a modem and VME (Versa Module Europa, an American National Standards Institute
(ANSI) and the IEEE standard), the speed of which could reach 320 MB/s to transport the
signal messages (containing the signal event and signal time plan information) and the
detector messages (containing detector event information). OPAC used local controllers
to optimize timing plans without a fixed cycle length. Local controllers optimize green
phases and the cycle length of each coordinated intersection, while central computers
optimize offsets of coordinated intersections. OPAC used regular digital subscriber line
(DSL) communication via a modem. Adaptive Control System (ACS) Lite used local
programs to predict traffic status reports (i.e., volume, queue, speed, etc.). The National
Transportation Communications for Intelligent Transportation Systems Protocol (NTCIP)
protocol was used for communication. The traffic status message (i.e., traffic signal timing
plan and traffic volume) would be transferred between local controllers, master controllers,
and a centralized computer. ACS Lite and Kadence used the NTCIP protocol over dial-up
channel service. The two types of NTCIP communications were center-to-field (C2F) and
center-to-center (C2C). Kadence [18], based on ACS Lite, adjusted offset in local controllers.
Cycle length and phase lengths were changed at the central level.

2.2. Traffic Signal Control Systems at V2X Intersections

We focus our reviews on TSCS optimizations using data from CV. In the real world, at
V2X-equipped intersections, TSCSs can receive V2X data as BSM. It is noticed that in most
research papers reviewed, converting BSMs to the data the system could accept is ignored.
Summaries of a review research paper about adaptive signal control and coordination [13]
have been added here for the reader’s convenience. In the review, the authors listed five
types of objective functions used in 22 ACSs: delay, queue length, waiting time, number of
stops, and travel time (which is correlated to delay), among which there are thirteen delay
functions and five queue length functions. Signal coordination was listed separately from
ACS control parameters. There are nine papers considering coordinates, two overlapping
with ACS. Authors detailed uses of online/offline CV data, rolling horizontal approaches,
optimization algorithms, application functions, and the benefits in case of studies for
20 research papers. Finally, three challenges and the future directions for overcoming those
challenges are identified. First, most of the existing CV-based ACS control methods do
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not address the CV penetration rate limitations in the foreseeable future. They identified
nine studies with minimum penetration rates and found no methods that solved the low
penetration rate of 10% and ultra-low rate of 5% in real-time (gap 1). Second, despite
considerable improvements in traffic models in the last several decades, efficient and
accurate models need to be improved (gap 2). Finally, predictive control strategies for
CV and non-CV need further studies (gap 3). An earlier review [20] in 2017 and a recent
review [21] in 2023 of these topics are also helpful, especially for those needing a starting
point to understand the problem comprehensively. The 2017 review [20] found that only
three out of twenty-six papers considered non-CV.

In FHWA reports and prior studies [1–3], several signal control strategies at V2X
intersections were presented. Vehicle speeds and locations were extracted from BSMs to
incorporate with upstream and stop-bar detectors as control system input. The control
strategies adjusted or optimized offsets, splits, and cycle length. The simulation-based
case study considered five different penetration rates of CVs (10–70%). Two case studies
in various locations show that the strategies could generate more than a 40% reduction in
control delay, a 25% reduction in fuel consumption and emissions on environment-related
impacts, and about a 45% conflict reduction in safety, with a mere CV penetration rate
of 10%. Feng et al. [22] presented an ATCS optimization model in a CV environment.
Two-level optimization focused on queue length minimization (lower level) and total delay
(upper level) minimization. In addition, estimating a non-CV queue is an integral part of
the model. Li et al. noticed that Feng’s models require a 25% minimum penetration rate to
perform [11]. Zhang et al. [23] presented optimal control and coordination of connected
and automated vehicles. The research focused on urban traffic intersections and minimized
fuel consumption. In addition to those papers, several papers have attempted to optimize
the TSCS timing plan and vehicle arrivals (referred to as trajectory planning). For example,
Wu [24] formulated the control as problems of optimizing green time and sliding the green
windows by adjusting the CVs’ speed. Astarita et al. [25] presented an interesting paper
using “connected vehicle” (any vehicle that reports its GPS position to its system) as input
(no traditional loop detection) to Floating Car Data Adaptive Traffic Signals, which applied
simple rules to adjust green time in fixed cycle intersections.

A few research studies are related to distributed TSCS with CV data. Islam [26,27]
presented their traffic optimization research based on the cell transmission model (CTM) to
distribute the computing powers at each intersection with the consideration of stop bar
detector data and CV data. The models and algorithms were evaluated in VISSIM through
the Component Object Model (COM) interface developed by Microsoft in the 1990s. Under
100% of the CV penetration rate, Agafonov et al. [28] proposed a cooperative control of
vehicle trajectories and TSCS phases. The cooperative control combined a predictive control
algorithm and a trajectory construction algorithm. They reported more significant savings
in stop delays than other performance indexes like travel time and fuel consumption.

Artificial intelligence and deep learning have proven excellent approaches to the
same problem in this research in recent decades, a few of which applied distributed
intelligence as well. Li’s review listed several research papers [11]. There is also a review
of reinforcement-based TSCS [29]. For example, Mo et al.’s [30], Maadi et al. [31], and
Chen’s [32] research papers are well received. Due to the limitation of our scope of work
and the word limitations, we did not conduct a full review of the approaches. Additionally,
information about queue lengths, delays, and other outstanding traffic conditions can be
obtained by combining data from a BSM and the sensory interpretation of an artificial
backpropagation neural network (NN). This same ideology is proposed by Gao et al. [33],
referred to as a queue length sensing model. Again, the BSM contributes information
that would otherwise be unknown from the traditional loop and video detectors—things
such as a vehicle’s acceleration, position in the queue, speed, and others—and the NN
is sophisticated enough to handle complex logic operations [33]. Through building a
road network in VISSIM and verifying the results of the two sub-models in MATLAB,
the researchers found that their queue length sensing model had an accuracy of 95% for
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a high penetration rate (70%) and an accuracy of 85% for a low penetration rate (10%).
Additionally, the results were most favorable for mixed traffic conditions (i.e., saturated
and under-saturated).

2.3. Distributed Traffic Signal Control Systems

Zhang et al. [34] developed models and algorithms in distributed cloud nodes that
replicated intersection computing powers. The architecture enabled parallel processing
of the data and distributed the Genetic Algorithms. Mehrabipour et al. [35] modeled the
TSCS at the network level as Mixed Integer Linear Programming (MILP), distributing
algorithms to the intersection level for solutions. Ahmed and Easa [36] addressed a real-
time distributed signal control system. The system included “purely” distributed control
logic, whereas a distributed system that is non-purely distributed requires neighboring
controllers’ information and needs a centralized computing system. In addition, a person-
based hypothesis aimed to enhance area-wide control without centralized infrastructure
(i.e., the system individually predicts queue congestion at local controllers). The local
controller’s function is to set up each phase’s green time according to queue lengths.

In a distributed system such as the ones mentioned above, the TSCS must maintain
real-time information for every approach to an intersection. The TSCS will be required
to control the signal timings for some indefinite period after they are installed and must
then adapt accordingly and efficiently as changes in traffic volume, as well as other un-
foreseeable events, occur. This ever-growing problem is often called the infinite horizon
distributed control problem. To alleviate such a problem, Srinivasan et al. [37] produced
research that may serve as a solution for the controller’s need to make continuous in-
ferences and improvements when faced with evolving traffic conditions. This research
proposes a multiagent system based on computational intelligence and improves upon
an earlier proposed simultaneous perturbation stochastic approximation neural network
(SPSA-NN) system [37]. Simulation testing of the hybrid NN-based model was conducted
within the PARAMICS framework. The simulated traffic network comprised 25 signalized
intersections [37]. During the six-hour simulation, vehicle speeds recovered quickly at the
conclusion of the second peak period, utilizing the hybrid NN-based multiagent system
within its traffic network. The hybrid system reduced network-wide mean delay by 78%
and stoppage time by 85% [37].

A plethora of research on distributed TSCSs in back-pressure modeling originated
from research groups, mainly at the University of Minnesota. Several research papers also
apply the Cell Transmit Model using distributed computing resources. Those models are
generally macroscopic and are different from our approaches. The readers may refer to
those papers for further information [34,38–44].

2.4. Summaries

Our literature review indicated research papers on TSCS at V2X intersections have
been widely performed and have dramatically improved the performance of ACSs. We also
identified significant gaps in research and implementation of research. It is noticed that in
most research papers reviewed, converting BSMs to the data the system could accept is
ignored. More importantly, BSM’s processing power and communication bandwidth have
not been discussed. Most of the existing CV-based ACS control methods do not address
the low CV penetration rate limitations in the foreseeable future. In reality, a field study
performed by Purdue University measured less than 5% connected vehicle penetration rate
in 2021 [45]. Efficient and accurate models need to be improved. Finally, predictive control
strategies to accommodate CV and non-CV need further studies.

3. Objectives and Approaches
3.1. Objectives

The objectives of this research paper were (1) to design a distributed TSCS, adding
new models and algorithms and improve the models and algorithms in prior studies that
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fit the distributed system, (2) to implement the design, models, and algorithms, and (3) to
perform a case study to compare the mobility benefits between distributed and centralized
systems and (4) to improve the performance of distributed systems.

3.2. The Distributed System Approach

The proposed distributed system advances the state of the TSCS. NTCIP compliance
and a central computer are the requirements for the system. The RSU and fiber network are
a part of future V2X infrastructures. The hybrid Macro/Micro traffic model, or Intersection
Queue Estimation Program (IQEP) [46], provides future real-time queue lengths of all
approaches at each intersection.

For IQEP [46], a low-cost client computer might need to be added at the intersection if
the computing resource in the TSCS is not powerful enough or IQEP is not allowed to be
installed on the controller inside the cabinet. A computer at the data center performs TSCS
optimization: the computer receives predicated queue lengths, traffic signal indications,
phasing plans, etc., from each intersection in real time. The computer pushes the optimized
TSCS timing plan back to the intersections. In a closed-loop system, updating the timing
plan could be accomplished by the master controller. The feasibility of such architecture
has been proven in a FHWA report [3].

In the reviewed traditional traffic signal system with V2X discussed in Section 2.2,
vehicle trajectory is used as input to the objective functions in optimization algorithms at
a centralized computer. BSMs, the only native data from V2X, are only available at the
intersections. The computing resources and communications bandwidth are generally
ignored. In our proposed distributed approaches, BSM is processed at the intersection level
and objective function (delays), and the first degree of objective function (the queue length)
is obtained through processing BSMs at the intersection level. The aggregated data, delay,
and queue length are transmitted from the intersection to the central computer. There is no
need to transmit the BSM to a central computer and process BSMs from all intersections at
the central computer.

The literature review indicated a distributed system of TSCS usually distributed
some sub-tasks to local computing powers (controllers). For example, the field imple-
mented, tested, and deployed RHODES uses a local-level process to predict queues and
arrivals [17]. We followed a similar distributed architecture as used in queue length pre-
diction. With this architecture, the software program developed in this research optimizes
offsets, splits, and cycle lengths of intersections sequentially within the central computer
(Figure 1).

If IQEP [46] estimates queue lengths in major and minor directions once a cycle, the
projection horizon is at least a cycle. To increase the accuracy of queue length estimation
within a cycle, the prediction of queue lengths of major/minor direction is updated twice a
cycle. When major or minor directions are shorter links, or RSU’s communication range
cannot cover the entire link length, the queue length prediction may not contain all vehicles
that need to be adequately accounted for. In this case, the vehicles in an upstream link must
be added.
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4. Methodologies and Models

BSM and detector data are collected through simulation APIs with ETFOMM
version 1.2 (ETFOMM is referred in this paper) [47] in our case studies. There are ET-
FOMM functions to convert BSM to vehicle trajectories [47]. Those data are fed into the
IQEP model described in Section 4.1. In the world, BSMs are accessed through RSU, and
detector information is obtained through traffic signal controllers via NTCIP. The queue
length is then transmitted to a computer for optimization. The queue length from 4.1 feeds
into the objective function and its first degree of derivatives is described in Section 4.2.

The objective function and the queue length are dynamically updated through the
BSMs and detector information in real-time traffic. The optimization utilized a rolling
horizon to optimize the signal timing plan consistently according to the traffic dynamics.
Once the optimization is completed, the signal timing plan, including cycle length, offset,
and phase lengths, is transmitted back to the computer within the traffic control cabinet,
where the signal timing plan is changed through NTCIP. The performance of the proposed
system is evaluated in terms of control delays generated by ETFOMM.

According to the Highway Capacity Manual, control delay is the measure of effec-
tiveness at signalized intersections. Control delay best measures traffic flow efficiency
and reduction in congestion at the intersection level. Queue delay, adopted as objective
function, accounts for about 80% of control delays.

4.1. Forecast the Number of Vehicles in the Queue

The IQEP is based on traffic models discussed in this subsection. CV data and tradi-
tional loop detector data as part of actuated controllers are used for queue length forecasting.
BSMs from CVs contain information such as speed and vehicle trajectories. The timestamps
of vehicles arriving at an upstream detector and departing from a stop bar are collected
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from simulated detectors. The details of the queue length forecast are in the previous
research [3,46].

4.2. The Objective Function and Its First Degree of Deviations

Table 1 lists the variables and parameters in the formula developed in the proposed
models and algorithms. The derivative of queue delay with respect to decision variables
was formulated to optimize control decision variables in Equation (2) (phase length, offsets,
and splits). When traffic propagates from one intersection to the next intersection, the
queue lengths during the projected time can be estimated. The total queue delay of all
phases at all intersections is summarized as

F = f(X) = min ∑M
m=1 ∑P

p=1 sm,p = ∑M
m=1 ∑P

p=1

∫ Cm

0
qm,p,tdλt (1)

where
X = (C1, . . . Cm , O1 . . . Om , g1,1 . . . g1,P, . . . , gm,1 . . . gm,P )T (2)

Table 1. Set subscript parameters and variables used in the formulation.

m The index of coordinated intersections (m = 1, 2, 3, . . ., and M)

M Total number of coordinated intersections in a signalized arterial

d Approach of each intersection (d = 1, 2, 3, . . ., and D)

D Total number of approaches for an intersection

p(, p(c), p(n))
The index of phases (on coordination directions and non-coordination directions) for an intersection (p = 1, 2,
3, . . ., and P)

P(, P(c), P(n)) Total numbers of phases (on coordination directions and non-coordination directions) for an intersection

∆ Time interval to calculate queue delays (1s is used)

t The t’th time interval in the projection horizon (t = 1, 2, 3, . . . and T)

T Total number of time intervals in the projection horizon

λt Time since the beginning of the projection horizon λt = ∆ × t

F = f (X) The total queue delay function within the projection horizon (one cycle)

X Traffic signal control variables, including cycle length, offset, and phase green time

sm,p The total queue delay of phase p at the m’th intersection within the projection horizon (one cycle)

qm,d,t The number of vehicles in the queue of approach d at intersection m at time interval t

Om Offset of intersection m

Rm,p The duration of red indications before green phase p at intersection m (seconds)

gm,p The duration of green time of phase p at intersection m (seconds)

Cm The cycle length of coordinated intersections

lm The total lost time of intersection m due to all red and startup loss time (seconds) for one cycle.

ωm,p Vehicle movement of phase p at intersection m within projection horizon (%) (Turning Percentage)

vm,d,t Number of arrival vehicles joining the queue at intersection m at projection horizon t (vehs)

αm,d(n),t
Number of vehicles in the initial queue region at intersection m that remains in the queue at a time interval t
(vehs, in a non-coordinated phase)

βm,d(n),t
Number of vehicles in queue formulation region at intersection m at a time interval t (vehs, in a
non-coordinated phase)

γ 1,m,d(n),t
Number of vehicles in progression formulation region one at intersection m at a time interval t (vehs, in a
non-coordinated phase)
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Table 1. Cont.

γ2,m,d(n),t
Number of vehicles in progression formulation region two at intersection m at time interval t (vehs, in a
non-coordinated phase)

ηm,p,t Number of discharge vehicles in phase p at intersection m at projection horizon t (vehs)

ηm,d,t Number of discharge vehicles in approach d at intersection m at projection horizon t (vehs)

hm,p,t Discharge headway of vehicle in phase p at intersection m at projection horizon t (vehs/s)

hm,p,i Any discharge headway of vehicle in phase p at intersection m at time i (vehs/s) where i ≤ t

r r’th iteration in seeking optimal cycle length, offset, and green time

The queue length is determined by arrival vehicles and discharge vehicles. CV and
upstream detector data determine the number of arrival vehicles in each phase. Stop-bar
detectors and CV data determine the discharge headway hm,p,i. Then queue delay sm,p is
the integral of queue lengths qm,p,t within one cycle, as shown in Equations (3) and (4).
The terms at intersection m at turning movements corresponding to phase p are detailed.
Equations (5)–(7) are the first-degree derivative of the delay objective function with respect
to control variables of cycle length, offsets, and green splits. Equations (8)–(10) are the queue
length formulation, the details of which can be found in Dr. Lei Zhang’s dissertation [48].

Equations (12)–(19) are the constraints. Equation (11) ensures all cycle lengths in the
corridor are the same (common cycle length). Equation (12) keeps the ring/barrier structure
maintained. Equations (13) and (16) ensure the timing plan in each ring is enforced as cycle
length. Equations (15)–(17) make sure the number of vehicles is positive. Equation (18)
warrants the offset is less than the cycle length.

sm,p =
∫ Rm,p

0 (ωm,p × vm,d, t )dλt +
∫ Rm,p +gm,p

Rm,p
(ωm,p × vm,d, t − ηm,p, t )dλt

+
∫ Cm

Rm,p +gm,pt
(ωm,p × vm,d, t )dλt

(3)

sm,p =
∫ Cm

0
(ωm,p × vm,d, t )dλt −

∫ Rm,p +gm,p

Rm,p
ηm,p, t dλt (4)

Therefore,
∂
(
sm,p

)
∂Cm

= (ωm,p × vm,d, t ) (5)

∂
(
sm,p

)
∂Om

= ωm,p ×
∫ Cm

0

∂(vm,d, t )

∂om
dλt (6)

∂
(
sm,p

)
∂gm,p

= −ηm,p,t (7)

vm,d(n),t − ηm,d(n), t = αm,d(n),t + βm,d(n),t + γ2,m,d(n),t + γ1,m,d(n),t (8)

vm,d(c),t = ∑p∈P ηm−1,d(c),0 − θm,d(c),t (9)

ηm,p,t = n { where ∑t
i=Rm,p

hm,p,i < (λt − Rm,p ) ≤ gm,p and ∑t+1
i=Rm,p

hm,p,i <

(λt − Rm,p ) ≤ gm,p}
(10)

S.T.
C1 = C2 = C3 . . . = Cm (11){

gm,1 + gm,2 + lm(1,2) = gm,5 + gm,6 + lm(5,6)

gm,3 + gm,4 + lm(3,4) = gm,7 + gm,8 + lm(7,8)
(12)

gm,1 + gm,2 + gm,3 + gm,4 + lm(1−4) = Cm (13)
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gm,5 + gm,6 + gm,7 + gm,8 + lm(5−8) = Cm (14)

αm,d(n),t ≥ 0 (15)

βm,d(n),t ≥ 0 (16)

γ1,m,d(n),t ≥ 0 (17)

Om < Cm (18)

Given that the objective function is non-linear, the Newton–Raphson iteration
method [48] was chosen to find the minimum point of the objective function f (X). The
selected method is advantageous when compared to other non-linear approaches due to
having an efficient, quadratic order of convergence when it does come to converge to a
solution [48]. The (r + 1)’th interactions can be found from r’th iterations in (19).(

XT
)r+1

=
(

XT
)r

− H−1((X)r)/ f ′
(
(X)r) (19)

where H is the Hessen Matrix (the matrix of the second degree derivatives) of f at x.

4.3. Two-Stage Models in Distributed System

Two-stage optimization models in which control variables in major and minor direc-
tions are optimized in two different stages are explored. For the major direction, optimized
variables contain offsets, green splits of the major direction, and the cycle length. For the
minor direction, optimized variables include green splits of minor direction. The equations
shown below are major and minor direction optimization objective functions.

Major : min ∑M
m=1 ∑

P(c)
p(c)=1 sm,p

(
Om, gm,p(c), Cm

)
(20)

Minor : min ∑m∈M ∑
P(n)
p(n)=1 sm,p

(
gm,p(n)

)
(21)

As indicated in Figure 2, the boxes at the top show the optimization sequences. At the
start of the green indication of the major direction, the minor direction signal timing plan
optimization starts. The minor optimization ends before the major green indication ends.
When the minor green indication starts, the major direction’s optimization also starts.
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For major direction optimizations, the objective function and its first degree of deriva-
tives are the same as (1)–(7) except for the green times severing the major approaches. For
an eight-phase dual ring signal controller configuration that effectively reduces the number
of optimization variables by 4M (M is the total number of intersections),

% =
4M

8M + M + 1
≈ 4

9
= 44.4%

For minor direction optimization, the objective function is the same as (1). The opti-
mized variables are minor splits. The first degree of derivatives is in (22). This effectively
reduces the number of variables by 55.6% for eight-phase dual-ring National Electrical
Manufacturers Association (NEMA) controllers.

∂
(
sm,p

)
∂gm,p(n)

= −ηm,p(n),T (22)

5. Case Studies

This research selected a microscopic traffic simulator, Enhanced Transportation Flow
Open-source Microscopic Model (ETFOMM), for this case study. ETFOMM was devel-
oped based on CORridor SIMmulation (CORSIM) algorithms and concepts with updated
traffic flow models, advanced computing technology, and advanced CV features [3,47].
ETFOMM’s Application Programming Interface (API) or ETAPI is “built on the most re-
cent Microsoft Windows Communication Foundation (WCF) technology”. It is “the Most
Advanced API for Mobile/Distributed Computing” [3,47], the feature of which perfectly
fits this research.

5.1. Simulation Network Calibration and Case Studies

A simulation calibration is required before conducting a case study. The base case
is an actuated signal plan optimized by Synchro and implemented in the field. For this
case study, the network examined was Dolley Madison Boulevard in McLean, VA. The
intersections are Georgetown Pike, Chain Bridge Road, Old Chain Bridge Road, and
Old Dominion Drive @ Dolley Madison Blvd. The Virginia Department of Transportation
(VDOT) provided the Synchro file with an optimized TSCS timing plan and a performance
report. Calibration was performed to adjust simulation parameters. Traffic volumes, car-
following sensitive factors, and startup loss times were the calibrated parameters. After the
calibration, an average difference of 3.94% in control delays between ETFOMM simulation
and VDOT performance report was achieved, which shows the calibration is acceptable.
The details of the base case calibration are detailed in references [1–3,47].

The mobility benefits in this research are the percentages of control delay reductions;
Figure 3 and Table 2 show the percentage saving of control delays. The savings are
compared with the base case calibrated in the discussion above. The delays are divided
into major and minor street ones. Figure 3 and Table 2 indicate the mobility benefits are the
functions of control strategy (centralized and distributed with/without a real time limit)
and penetration rate.

Table 2. Control delay reduction of the distributed system.

1. Two-Stage DS with Time Limit

Summary 10% 25% 50% 60% 70%

Major Direction −21.82% −25.62% −29.54% −32.26% −33.30%

Minor Direction −7.43% −9.54% −10.81% −11.63% −12.27%



Mathematics 2024, 12, 773 12 of 16

Table 2. Cont.

2. Two-Stage DS without Time Limit

Summary 10% 25% 50% 60% 70%

Major Direction −23.33% −27.48% −31.08% −34.05% −34.95%

Minor Direction −8.37% −10.61% −11.83% −12.68% −13.32%

3. Two-Stage Centralized System without Time Limit and Full Optimization

Summary 10% 25% 50% 60% 70%

Major Direction −26.68% −31.25% −39.45% −42.80% −44.88%

Minor Direction −10.35% −11.48% −14.92% −15.83% −16.75%
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5.2. Mobility Benefit and Control Strategies

One critical consideration in a distributed real-time system is the time limitation
on optimization. In a two-stage optimization strategy, the time limitation function is
added to the optimization algorithm, which is a heuristic algorithm to guarantee a better
solution in each iteration. The time limit function is a function that checks the CPU time for
optimization within a cycle or within one stage. Suppose the CPU time consumed for the
optimization program is longer than the actual cycle length; in that case, the optimization
process is stopped, and the current feasible solution is the new signal timing plan.

Three scenarios are presented to showcase the impact of centralized and distributed
systems, with/without considering the real time. S1, the proposed distributed system,
described in Section 4.3 is in two-stage optimizations; all variables, including splits on
major and minor directions, are optimized twice in a cycle. In the S2 (centralized system),
all data are passed to the computer, and queue estimations are also performed on the
central computer. S3 (centralized system) is a two-stage optimization; splits on major and
minor are optimized sequentially in one of two stages. The two-stage centralized system
(S3) could generate the same control delay reduction as a two-stage distributed system (S1)
in the same configurations (no time limit, optimization model, or decision variables). The
results of distributed and centralized systems in the same condition (without time limit
and with all variables optimization) show that a distributed system (S1) could have almost
the same performance as a centralized system (S3)

The first and second scenarios are two-stage optimizations, as shown in Table 2 and
Figure 3, in which green times in major and minor directions are optimized sequentially
just in one of two stages. The first scenario is limited by real time, while the second scenario
does not have time limitations. In the third scenario, all variables are optimized simultane-
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ously in each stage. All data are averaged from 10 simulation runs with different random
number seeds. Two-stage optimization with a time limitation could generate a 33% control
delay reduction in the major direction and a 12% reduction in the minor direction. The
two-stage optimization without a time limit function and complete timing plan optimiza-
tion (cycle length, split, and offset) could generate better benefits on control delay reduction
to 44% in major and 16% in minor directions. The distributed system strategy demonstrated
exemplary performance in the mobility of traffic improvement. Overall, the performance
of the distributed systems (time limit and partial optimization) was degraded by 5–10% as
compared with that of the centralized system shown above. However, distributed com-
puting without time limits could recover about 2% of the performance. As the computer’s
computing power increases generation by generation, the optimized performance by time
limits should be able to catch up with the optimization without time limitation.

5.3. Mobility Benefit and Penetration Rates

As discussed in the literature review, one research gap is the impact of the penetration
rate on the mobility benefit, especially at the low penetration rate of 10%, and the mobility.
With closing the gap in mind, we demonstrated the proposed systems are highly effective
even when the penetration rate is low at 10%. In all three control strategies, the control
delays are reduced by at least 21–27% (close to) on major streets while the control delays
on major streets are improved as well (from 7.4% to 10.4%) even when real time limits
the optimization outcomes. Another encouraging outcome from the case studies is with
the increase of the penetration rate, the percentages of savings increased. That means the
higher the penetration rate, the better the mobility benefit. When the penetration rate is
more than 50%, the mobility benefit increase starts to slow down, although the increase is
still visible. When the penetration rate reaches 50%, the control delays on major streets are
reduced by close to at least 30% and could be as high as 33%. On the minor street, when
the penetration rate is 25%, the mobility benefit is at least close to 10%. In the best-case
scenario where there is a 70% penetration rate under centralized control strategies without
a time limit, the control delay could be as high as almost 45% on the major street and 16%
on the minor street.

Our case studies in this paper confirmed, once again, that with the proposed control
strategies and models, mobility benefits are available to BOTH major and minor streets. We
have the same findings as in all prior case studies [1–3]. This feature is much more desirable
than the existing manual traffic signal re-timing plan in which the mobility benefits on the
main streets increases at the expense of minor street mobilities.

6. Conclusions and Future Directions

This paper designed a distributed TSCS that processes BSM locally and passes queue
length information to the central computer. Models and algorithms were detailed in this
paper to provide solutions to optimize cycle length, offsets, and splits simultaneously in real
time in a rolling horizon time frame. The models evolved into two-stage distributed models.
The vehicle queue delays were established as an objective function. The first degree of
derivatives of queue delays with respect to control variables (cycle length, offset, and green
split) were explicitly formulated. The delay model took BSMs at a penetration rate as low
as 10% and traditional loop detector data as input.

The results of the distributed system with a 10–70% penetration rate showed that the
two-stage models in the distributed system could significantly reduce control delay. The
two-stage models in the distributed system with two-set variables optimization performed
similarly, with at least 30% in the major direction and 12% to 13% in the minor direction.
At a low penetration rate of 10%, the proposed distributed TSCS can bring about 22% of
mobility benefits on major streets and more than 7% mobility benefits in minor directions.

With proper design and implementation, the distributed system experiments demon-
strated that TSCS control algorithms at V2X intersections could be altered and implemented
in a distributed environment with minimum degrading of this optimization performance.
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This will help researchers focus on models, algorithms, field tests, and implementation
based on centralized systems in their initial development stages.

This paper is the first in R&D of distributed TSCS at V2X intersections to alleviate the
communication bandwidth and computing power cost. The novel analytic formulation of
delay functions and their first degree of derivatives for a two-stage optimization model
are proposed in this research. They provide foundations for any non-linear optimization
algorithms that are based on derivatives. The objective function and its derivatives were
further obtained from the prior research’s discrete queueing estimation mixed with macro
and micro traffic flow models. This paper also filled gaps in TSCS at V2X intersections.

There still needs to be an assumption about the existing models. The infrastructure-
based detector input and BSM are assumed to be synchronized. In the real world, BSM
and detector input come from two sources of data. The existing models will need to be
improved to account for this reality. Or a sensor fusion will need to be conducted to
pre-process BSM and detector input to synchronize two sources of data.

We will pursue further development of the proposed system to seek funding to
implement the proposed systems and field test the feasibility of the proposed systems. The
proposed system will need to be further tested in more simulation case studies by enhancing
the models and improving system reliabilities of algorithms. Once that is completed, a
hardware/communication in the loop simulation will be conducted in library conditions
to demonstrate the feasibility of the systems. After all those steps, a field study could
be conducted.
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