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Abstract: Semi-continuous data are very common in social sciences and economics. In this paper,
a Bayesian variable selection procedure is developed to assess the influence of observed and/or
unobserved exogenous factors on semi-continuous data. Our formulation is based on a two-part
latent variable model with polytomous responses. We consider two schemes for the penalties of
regression coefficients and factor loadings: a Bayesian spike and slab bimodal prior and a Bayesian
lasso prior. Within the Bayesian framework, we implement a Markov chain Monte Carlo sampling
method to conduct posterior inference. To facilitate posterior sampling, we recast the logistic model
from Part One as a norm-type mixture model. A Gibbs sampler is designed to draw observations
from the posterior. Our empirical results show that with suitable values of hyperparameters, the
spike and slab bimodal method slightly outperforms Bayesian lasso in the current analysis. Finally, a
real example related to the Chinese Household Financial Survey is analyzed to illustrate application
of the methodology.

Keywords: two-part latent variable model; spike and slab prior; Bayesian lasso; MCMC sampling;
CHFS
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1. Introduction

Semi-continuous data, which are characterized by excessive zeros, are very common
in the fields of social sciences and economics. A typical example is given by [1] in an
analysis of medical expenditures, in which the zeros correspond to a subpopulation of
patients who do not use health services, while the positive values describe the actual
levels of expenditures among users. For understanding such a type of data structure, a
two-part model [2] is a widely appreciated statistical method. The basic assumption for
a two-part model is that the overall model consists of two processes: one binary process
(Part One) and one continuous positive-valued process (Part Two). The binary process,
usually formulated within a logistic or probit regression model, is used to indicate whether
the items have been responded to or not, while the continuous process, conditioning of the
binary process, is used to describe what the actual levels of the responses are (see, e.g., [3]).
By combining two processes into one, a two-part model provides a unified and flexible way
to describe various relationships underlying semi-continuous data. Now, two-part models
have been widely used for health services [4–6], medical expenditures [1,7–10], household
finances [11], substance use studies [12,13], and genome analysis [14].

A traditional two-part model usually formulates exogenous explanatory factors as
fixed and observed. However, in many real applications, especially for socials survey,
many unobserved/latent and random factors also have important impacts on the outcome
variable(s). This fact is revealed by [15] in a study of children’s aggressive behavior.
Ref. [15] noted that two factors, the propensity to engage in aggressive behavior and the
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propensity to have highly aggressive activity levels, had significant influence on children’s
aggressive behavior. The authors incorporated two such latent factors into their analysis
and established a two-component–two-part mixture model to identify the heterogeneity
of the population. Ref. [16] noticed that in China, the financial literacy of a family had a
non-ignorable effect on the desire to hold finance debts and also affected the amount of
finance debt being held. They suggested conducting a joint analysis of latent factors and
observed covariates in a two-part regression model. Latent factors are further manifested
by multiple binary measurements via a factor analysis model. Ref. [17] incorporated a
two-part regression model into a general latent variable model framework and analyzed the
internal relationships between multiple factors longitudinally. These methods have brought
significant attention to two-part models in behavioral science, economics, psychology,
and medicine in recent years: see, for example [14,18,19], and references therein for further
developments of two-part models.

In an analysis of semi-continuous data, an important issue is to determine which
explanatory factors are helpful for improving model fit. This issue is especially true
when the number of exogenous factors is large since the commonly used forward and
backward regression procedure is extremely time-consuming. Now, lassos and their
extensions [20–27] have been the most commonly used methods for feature extraction.
A typical feature of these methods is to put some suitable penalties on the coefficients and
shrink many coefficients to zero, thus performing variable selection. Recently, these penal-
ization/regularization approaches have been applied widely for prediction and prognosis
(see, for example, [28,29]). Though more appealing, lasso-type regularization methods also
suffer some limitations. For example, most contributions are developed within the frequen-
tist framework, and their performance heavily depends on the large sample theory (see,
for example [20,21,26,27], and references therein). This also readily leads to computational
difficulty in the analysis of mixed data. An alternative to variable selection is conducted
within the Bayesian framework. Statisticians have introduced hierarchical models with
mixed spike-and-slab priors that can adaptively determine the amount of shrinkage [30,31].
The spike and slab prior is the fundamental basis for most Bayesian variable selection
approaches and has proved remarkably successful [30–36]. Recently, Bayesian spike and
slab priors have been applied to predictive modeling and variable selection in large-scale
genomic studies: see [37] for a simple review. Nevertheless, model selection has never been
considered in a two-part regression model with latent variables. In this study, we introduce
a spike and slab model and Bayesian lasso that have been combined into a two-part latent
variable model, which is a first attempt for this model.

Our formulation is more along the lines of the spike and slab bimodal prior in [34] and
the Bayesian lasso in [38]. We formulate the problem by specifying a normal distribution
with mean zero to the regression coefficient or factor loading of interest. The probability of
a related variable being excluded or included is governed by the variance. To model the
shrinkage of coefficients properly, we consider two schemes for the variance parameter:
One is a two-point mixture model with one component located at a point close to zero
and the other component situated at a point far away zero. The mixing proportion is
governed by a beta-distribution with suitable hyperparameters. The other scheme uses a
Bayesian lasso for which the variance is specified via a gamma distribution that is scaled
by the penalty parameters. The two schemes are unified into a hierarchical mixture model.
Within the Bayes paradigm, we developed a fully Bayesian selection procedure for the
two-part latent variable model. We resort to the Markov chain Monte Carlo sampling
method. A Gibbs sampler is used to draw observations from the posterior. We obtain all
full conditionals. Posterior analysis is carried out based on the simulated observations.
We investigate the performance of the proposed methods via a simulation study and a
real example. Our empirical results show that the two schemes result in similar results
for variable selection, but the spike and slab bimodal prior with suitable hyperparameters
slightly outperforms the Bayesian lasso in terms of the correct rate.
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The remainder of this paper is organized as follows. Section 2 introduces the pro-
posed model for semi-continuous data with latent variables. Section 3 develops an MCMC
sampling algorithm for the proposed model. Bayesian inference procedures to include
parameter estimation and model assessment are also presented in this section. In Section 4,
we present the results of a simulation study to assess the performance of the proposed
methodology and illustrate the practical value of our proposed model by analyzing house-
hold finance debt data. Section 5 concludes the paper with a discussion. Some technical
details are given in Appendix A.

2. Model Description

In Section 2.1, a basic formulation for analyzing semi-continuous data with latent
variables is presented. Section 2.2 presents a Bayesian procedure for feature extraction.

2.1. Two-Part Latent Variable Model

Suppose that for i = 1, . . . , n, si is a semicontinuous outcome variable that takes a value
in [0, ∞); xi is a generic vector with r fixed covariates representing the collection of observed
explanatory factors of interest. We assume that each xij in xi is standardized in the sense
∑n

i=1 xij = 0 and ∑n
i=1 x2

ij = 1 for j = 1, . . . , r. Moreover, we include m latent/unobserved

variables ωi = (ωi1, . . . , ωim)
T into the analysis to account for the unobserved heterogeneity

of responses. Conceptually, these latent variables can be the covariates that are not directly
observed or the synthesization of some highly correlated explanatory items with the noise.
Inclusion of latent variables can improve model fit and strengthen the power of model
interpretation: see [39] for more discussion of the latent variables in a general setting.
To deal with the spike of si at zero, we follow the common routine in the literature (see,
for example [10,12]) and identify si with two surrogate variables: ui = I{si > 0} and
zi = log(si|si > 0), where I(A) denotes the indicator function of set A. That is, we separate
the whole dataset into two parts: one part is the binary dataset that corresponds to the
response-to-nonresponse indicators of the subject and the other part is the set of logarithms
of positive values. Our interest focuses on the exploration of the effects of exogenous factors
on the two parts.

We assume that ui and zi satisfy the following sampling models:

log
(

P(ui = 1)
1 − P(ui = 1)

)
= ηu

i = α + βT
x xi + βT

ωωi, (1)

p(zi|ui = 1, ωi) = N(ηz
i , σ2), (2)

ηz
i = γ + ψT

x xi + ψT
ωωi,

in which α and γ are the scalars of the intercept parameters, βx and ψx are the vectors of
the regression coefficients, and βω and ψω are the vectors of the factor loadings; σ2 is the
scale and ‘T’ is the transpose operator of the vector or matrix. For compactness, we write
β = (βT

x , βT
ω)

T and ψ = (ψT
x , ψT

ω)
T and treat wi = (xT

i , ωT
i )

T as the complete explanatory
variables. Note that Equation (1) can be represented as

p(ui|xi, ωi) = exp(uiη
u
i )/(1 + exp(ηu

i )), ui = 0, 1, (3)

and we refer to it as the logistic model.
The involvement of latent variables apparently complicates the model. It readily

leads to model identification problems [40,41]. This is especially true when the dimension
of ωi is high. In this case, any auxiliary information is required to manifest ωi further.
Among various easy constructs, we consider a latent variable (LV) [40,41] approach. A basic
assumption of the LV approach is that there exists, say, p manifestations yi = (yi1, · · · , yip)

T ,
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of which each yij may be continuous, counted, or categorical, and we assume that they
satisfy the following link equation:

F(yi, ωi, ϵi,φ) = 0, (4)

where F is a known and fixed link function, ϵi is the vector of errors used to identity the
idiosyncratic part of yi that cannot be explained by ωi, and φ is a vector of unknown
parameters used to quantify the uncertainty of the model. The information about ωi is
manifested by yi via F. In this paper, in view of real applications, we consider p ordered
categorical variables yi = (yi1, · · · , yip)

T , for which yij takes a value in {0, 1, . . . , cj}(cj > 1)
and satisfies the following link model:

yij = ℓj if δj,ℓj
< y∗ij ≤ δj,ℓj+1, (5)

where δj,0 < δj,1 < · · · < δj,cj < δj,cj+1 are the threshold parameters satisfying δj,0 = −∞
and δj,cj+1 = +∞, and y∗

i = (y∗i1, · · · , y∗ip)
T is the vector of latent responses satisfying the

factor analysis model:

y∗
i = µ + Λωi + ϵi, (6)

ωi
iid.∼ Nm(0, Φ), ϵi ∼ Np(0, Ip), and ωi ⊥ ϵi, (7)

where µ is the p-dimensional intercept vector, Λ is the p × m-dimensional factor loading
matrix, and Ip is an identity matrix of order p. We assume that, conditional on ωi, si and yi
are independent.

We refer to the model specified by (1), (2), and (5) associated with (6) as the two-part
latent variable model with polytomous responses. It provides a unified framework to
explore the dependence of binary, continuous, and categorical data simultaneously. The
dependence between them results from the sharing of common factors or latent variables.
If ωi is degenerated at zeros or the factor loadings are taken as zeros, the dependence
among them disappears, and the overall model reduces to a traditional two-part model
and ordinal regression model.

To facilitate efficient calculation and motivated by the key identity in [42] (see Equation (2)
in their seminal paper), we express model (3) as a mixture model with form

exp(ui(α + βTwi))

1 + exp(α + βTwi)

= 2−1 exp(κi(α + βTwi))
∫ ∞

0
exp

{
−

u∗
i

2
(α + βTwi)

2
}

pPG(u∗
i )du∗

i , (8)

where κi = ui − 0.5, and pPG(u) is the standard Pólya–Gamma probability density func-
tion. Assuming that we introduce auxiliary variables u∗

i and augment them with ui, then
Equation (3) can be considered to be the marginal density of the joint distribution

p(ui, u∗
i | xi, ωi) = 2−1 exp

{
κiη

u
i −

u∗
i

2
ηu2

i

}
pPG(u∗

i ). (9)

Note that the exponential part is the kernel of the normal density function with respect
to ηu

i . Hence, it admits conjugate full-conditional distributions for all regression coefficients,
factor loadings, and factor variables, leading to a straightforward Bayesian computation.
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Let U = {ui}n
i=1, Z = {zi}n

i=1, and Y = {yi}n
i=1 be the sets of observed variables. We

write Ω = {ωi}n
i=1 for the collection of factor variables and U∗ = {u∗

i }n
i=1, Y∗ = {y∗

i }n
i=1

for the sets of latent response variables. The complete data likelihood is given by

p(U, U∗, Z, Y, Y∗, Ω|θ)
=p(U, U∗|Ω, α, β)p(Z|U, Ω, γ, ψ, σ2)p(Y|Y∗, δ)p(Y∗|Ω, µ, Λ)p(Ω|Φ)

=
n

∏
i=1

exp
{

κiη
u
i − 1

2
u∗

i (η
u
i )

2
}

pPG(u∗
i |1, 0)

× ∏
i∈I

1√
2πσ

exp
{
− 1

2σ2 (zi − ηz
i )

2
}

×
n

∏
i=1

p

∏
j=1

cj

∑
ℓ=0

I{δjℓ < y∗ij ≤ δj,ℓ+1, yij = ℓ}

×
n

∏
i=1

p

∏
j=1

1√
2π

exp
{
− 1

2
(y∗ij − µj − ΛT

j ωi)
2
}

×
n

∏
i=1

1
(
√

2π)m|Φ|1/2
exp

{
− 1

2
tr[Φ−1ωiω

T
i ]

}
.

where I = {i : ui = 1} is the set of indices, δ = {δjℓ} is the set of threshold parameters, and
θ = {α, β, γ, ψ, σ2, µ, Λ, Φ, δ} is the vector of unknown parameters. For the moment, we
assume θj in θ are all free.

2.2. Bayesian Feature Selection

Generally speaking, regression variables xi and factor variables ωi may not impact
ui and zi simultaneously, and some redundant variables may exist. The presence of re-
dundant variables not only decreases the model fit but also weakens the power of model
interpretation. Therefore, it is necessary to determine which regression coefficient or factor
loading is significantly far from zero. In the context of frequentist inference, this issue is
generally tackled via stepwise regression, during which for each variable it is decided to be
excluded or included according to the model fit. However, the situation becomes complex
when the number of independent variables is large. In this paper, we pursue a Bayesian
variable selection procedure. To this end, we follow [38] and assume

β ∼ Nq(0, diag{γ2
βk}), ψ ∼ Nq(0, σ2diag{γ2

ψk}), (10)

in which we use diag{ak} to represent a diagonal matrix with the kth diagonal element
ak and let q = r + m. That is, we assume that each βk in β (ψk is similar) is centered at
zero (or equivalently, each wik is excluded from wi), but the probability is governed by
the variance γ2

βk. If γ2
βk is close to zero, then the probability of βk taking zero increases

and wik tends to be excluded; conversely, if γ2
βk is large, then the probability of βk being

zero is small and wik tends to be maintained. As a result, the value of γ2
βk plays a key

role in determining whether wk is relevant to be selected in Part One. With this in mind,
a reasonable assumption about γ2

βk and γ2
ψk is that:

γ2
βk

ind.∼ (1 − wβ)δνβ0η2
βk
(·) + wβδη2

βk
(·), (11)

γ2
ψk

ind.∼ (1 − wψ)δνψ0η2
ψk
(·) + wψδη2

ψk
(·), (12)

where δa(·) is the Dirac measure concentrated at point a, wβ is the random weight used
to measure the degree of similarity between γ2

βk and η2
βk, and η2

βk is the hyperparameter
used to represent how far βk is away from zero or the slab; νβ0 is a previously specified
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small positive value used to identity the ‘spike’ of βk at zero. In other words, every γ2
βk is

assumed to be equal to η2
βk with probability wβ and equal to νβ0η2

βk
with probability 1 − wβ.

This is also true for wψ, ηψk and νψ0. To model wβ and wψ properly, we assign the following
beta distributions to them:

p(wβ|aβ, bβ) = Beta(aβ, bβ), p(wψ|aψ, bψ) = Beta(aψ, bψ), (13)

where aβ, aψ, bβ, and bψ are the hyperparameters used to control the shape of the beta
density: that is, to determine the magnitude of weights in (0, 1). For example, if aβ1 in
Equation (13) is small and bβ1 is large, then Equation (13) encourages wβ to take a small
value with high probability. In contrast, it follows from 1 − Beta(aβ, bβ) = Beta(bβ, aβ)
that a large aβ and small bβ encourage wβ to take a large value in (0, 1). In the case that
aβ = bβ = 1.0, Equation (13) reduces to a uniform distribution on (0, 1). In this case,
every value in (0, 1) is possible for wβ with identical probability. In real applications, if no
information is available, one can assign these values in a manner that ensures the beta
distribution is inflated enough.

Finally, to measure the magnitudes of the ‘slab’ in the distributions of βk and ψk, we
specify gamma distributions for η−2

βk and η−2
ψk , or equivalently,

η2
βk|aβ1, aβ2

iid.∼ IG(τβ0, ζβ0), η2
ψk|aψ1, aψ2

iid.∼ IG(τψ0, ζψ0), (14)

where we use ‘IG(τ, ζ)’ to signify the inverse gamma distribution with mean ζ/(τ − 1)
for τ > 1 and variance ζ2/((τ − 1)2(τ − 2)) for τ > 2; τβ0, ζβ0, τψ0, and ζψ0 are the
hyperparameters, which are treated as fixed and known. Similarly, one can assign values
to them to ensure that (14) is dispersed enough. For example, we can follow the routines
in [34] for ordinary regression analysis and set τβ0 = τψ0 = 1.0 and ζβ0 = ζψ0 = 0.05 to
obtain dispersed priors.

Note that Equations (11) and (12) can be formulated as a hierarchy as follows: for
k = 1, . . . , q,

γ2
βk

= fβkη2
βk, γ2

ψk = fψkη2
βk,

fβk|νβ0, ωβ
iid.∼ (1 − wβ)δvβ0(·) + wβδ1(·), (15)

fψk|νψ0, wψ
iid.∼ (1 − wψ)δvψ0(·) + wψδ1(·), (16)

where fβk and fψk are the latent binary variables. Such a formulation aims to separate η2
βk

and η2
ψk from the distributions (11) and (12) to facilitate posterior sampling.

It is instructive to compare the proposed method to the Bayesian lasso [38], in which the
variance parameters γ2

βk and γ2
ψk in Equation (10) are specified via exponential distributions

as follows:

p(γ2
β | λ2

β) =
q

∏
k=1

λ2
βk

2
exp(−λ2

βkγ2
βk/2), (17)

p(γ2
ψ | λ2

ψ) =
q

∏
k=1

λ2
ψk

2
exp(−λ2

ψkγ2
ψk/2), (18)

where λ2
β = (λ2

β1, . . . , λ2
βq)

T and λ2
ψ = (λ2

ψ1, . . . , λ2
ψq)

Tλ2
ψk are the shrinkage/penalty

parameters used to control the amount of shrinkage of βk and ψk toward zero.
Modeling γ2

βk and γ2
ψk like Equations (17) and (18) leads to marginal distributions of

βk and ψk as Laplace distributions with location zero and scale λk. The penalty parameters
λ2

βk and λ2
ψk are rather crucial for determining the amount of shrinkage of parameters.

Figure 1 presents the plots of densities of Laplace distribution LA(λ)(λ > 0) across various
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choices of λ. It can be seen that the larger the value of λ is, the more kurtosis the density
has, indicating more penalties on the regression coefficient.
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Figure 1. Plot of the densities of Laplace distribution for different choices of λ.

Due to the key roles in Equations (17) and (18) of λ2
β and λ2

ψ, we assign the following
gamma priors to them, i.e.,

p(λ2
β) =

q

∏
k=1

p(λ2
βk) =

q

∏
k=1

Ga(ak0, bk0), (19)

p(λ2
ψ) =

q

∏
k=1

p(λ2
ψk) =

q

∏
k=1

Ga(ck0, dk0), (20)

where ‘Ga(ν, λ)’ denotes a gamma distribution with mean ν/λ. As previously discussed,
the values of ak0, bk0, ck0, and dk0 should be selected with care since they relate the shrink-
ages directly. Similar to [43], one can set ak0 = ck0 = 1 and bk0 = dk0 = 0.05 to enhance the
robustness of inference. This routine is followed in our empirical study.

Let F∗
β = { fβk}, F∗

ψ = { fψk}, γ2
β = {γ2

βk}, γ2
ψ = {γ2

ψk}, η2
β = {η2

βk},η2
ψ = {η2

ψk}. We

treat νβ0 and νψ0 as the known hyperparameters. Note that γ2
β and γ2

ψ are totally determined

by F∗
β, F∗

ψ and η2
β, η2

ψ. In the following, we abbreviate the spike and slab bimodal prior to
SS and the Bayesian lasso to BaLsso.

3. Bayesian Inference
3.1. Prior Specification and MCMC Sampling

In view of the model complexity, we consider Bayesian inference. Some priors are
required to specify unknown parameters to complete Bayesian model specification. Based
on the model convention, it is natural to assume that the parameters involved in the
different models are independent.

Firstly, for µ, Λ, and Φ, we consider the following conjugate priors:

p(µ) = Np(µ0, Σ0), (21)

p(Λ) =
p

∏
k=1

p(Λk) =
p

∏
k=1

Nm(Λ0k, H0k), (22)

p(Φ) = IW(ρ0, R−1
0 ), (23)

where ‘IW(ρ, R)’ denotes an inverse Wishart distribution with degrees of freedom ρ and
scale matrix R [44]; ΛT

k is the kth row vector of Λ; µ0, Σ0(p × p) > 0, Λ0k, H0k(m × m) > 0,
ρ0 > 0, and R0(m×m) > 0 are the hyperparameters, which are treated as fixed and known.
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Secondly, for α, γ, and σ2 in Parts One and Two, we assume they are mutually
independent and satisfy

p(α) = N(α0, σ2
α0), p(γ) = N(γ0, σ2

γ0), p(σ−2) = Ga(a0, b0), (24)

where α0, σ2
α0, γ0, σ2

γ0, a0, and b0 are the fixed hyperparameters.
Lastly, for threshold parameter δ, without loss of generality, we assume that cj,

the number of categories of yij, is invariant across the subscript j and equals c. More-
over, we assume that p(δ) = ∏

p
j=1 p(δj), where δj = (δjk) is the jth row vector of δ. In the

following, we suppress the subscript j in δjk for notational simplicity and write δ for δj.
Let F0(·) be any strictly monotonically increasing and differentiable function on R,

with F0(+∞) = 1 and F0(−∞) = 0. For example, one can take F0 = Φ(·/τ0) for some
τ0 > 0 or the distribution function of Student’s t-distribution with degrees of freedom
ν0, where Φ(·) is the standard normal distribution function. To specify a prior for δ, we
follow [45] and let pj = F0(δj) − F0(δj−1) for j = 1, · · · , c. It is easily shown that this
transformation is invertible with Jacobi determination unity. We first consider the following
Dirichlet distribution for p = (p1, · · · , pc)T :

π(p) =
1

B(η1, . . . , ηc+1)
pη1−1

1 · · · pηc−1
c (1 −

c

∑
ℓ=1

pℓ)ηc+1−1

where B(η1, . . . , ηc+1) = ∏c+1
j=1 Γ(ηj)/Γ(∑c+1

j=1 ηj) is the multivariate beta function evaluated
at η1, . . . , ηc+1, and ηj > 0. Then, by the formula of inverse transformation, the joint
distribution of δ is given by

π(δ) =
1

B(η1, . . . , ηc+1)
pη1−1

1 · · · pηc−1
c (1 −

c

∑
ℓ=1

pℓ)ηc+1−1
c

∏
j=1

f0(δj)I{δ1 < · · · < δc}, (25)

where f0(x) is the derivative of F0(x) with respect to x. We call (25) the transformed
Dirichlet prior and use it as the prior of δ. An advantage of working with (25) is that,
conditional upon δj−1 and δj+1, the transformed distribution of δj has the beta distribution
given by

F0(δj)− F0(δj−1)

F0(δj+1)− F0(δj−1)
|(δj−1, δj+1) ∼ Beta(ηj, ηj+1), (j = 1, . . . , c). (26)

3.2. MCMC Sampling

With the prior given above, the inference about θ is based on the posterior po(θ|U, Z, Y),
which has no closed form. Motivated by the key idea in [46], we treat latent quantities
as the missing data and augment them to the observed data to form the complete data.
The statistical inference is carried out based on the complete data likelihood. To this end,
apart from Ω, U∗, and Y∗ mentioned before, we further let Q∗ be the collection of latent
quantities involved in the specifications of β and ψ, i.e., Q∗ = {F∗

β, F∗
ψ, η2

β, η2
ψ, wβ, wψ}

under SS and {λ2
β, λ2

ψ} under BaLsso. Rather than working with the posterior po directly,
we consider the following joint distribution

pjoint(Ω, U∗, Y∗, Q∗, θ|U, Z, Y), (27)

where po can be considered as the marginal of pjoint. We use the Markov chain Monte
Carlo (MCMC) [47,48] sampling method to simulate observations from this target distribu-
tion. In particular, a Gibbs sampler is implemented to draw observations iteratively from
the full conditional distributions as follows:

• Draw Ω from p(Ω | U∗, Q∗, Y∗, θ, U, Z, V);
• Draw U∗ from p(U∗ | Ω, Y∗, Q∗, θ, U, Z, V);
• Draw Y∗ from p(Y∗ | Ω, U∗, Q∗, θ, U, Z, V);
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• Draw Q∗ from p(Q∗ | Ω, U∗, Y∗, θ, U, Z, V);
• Draw θ from p(θ | Ω, U∗, Y∗, Q∗, U, Z, V).

Upon convergence, the posterior is approximated by the empirical distribution of the
simulated observations. The convergence of the algorithm can be monitored by plotting
the traces of estimates for different starting values or observing the values of EPSR [49] of
unknown parameters. The technical details for implementing MCMC sampling are given
in Appendix A.

Simulated observations obtained from the blocked Gibbs sampler can be used for sta-
tistical inference via a straightforward analysis procedure. For example, the joint Bayesian
estimates of unknown parameters can be obtained via sample averaging as follows:

θ̂ = M−1
M

∑
m=1

θ(m),

where {θ(m) : m = 1, · · · , M} are the simulated observations from the posterior. Con-
sistent estimates of the covariance matrices of estimates can be obtained via sample
covariance matrices.

The main purpose of introducing SS and BaLsso is to screen the variables in wi. Unlike
that in the frequentist inference, Bayesian variable selection does not produce estimates
β̂ and ψ̂ that are exactly equal to zero, and hence, it is necessary to determine which
component can be treated as zero. This can accomplished via posterior confidence intervals
(PCIs) of β j and ψj, which are given by

P(|β j| < cα/2|U, Z, Y) = 1 − α, P(|ψj| < dα/2|U, Z, Y) = 1 − α (28)

where α is any previously specified value in (0, 1). Calculation of the PCI can be achieved
via the Monte Carlo method. For example, let {β

(k)
j : k = 1, . . . , K} be the K observations

generated from the posterior distribution. Then the PCI of β j with confidence level 100(1 −
α)% is given by [β j,100(α/2),β j,100(1−α/2)], where β j,k is the kth order statistics.

Another choice for variable determination in SS is based on the posterior probabilities
of fβj = 1 and fψj = 1, which can be approximated by

f̂βj =
1
K

K

∑
k=1

I{ f (k)βj = 1}, f̂ψj =
1
K

K

∑
k=1

I{ f (k)ψj = 1}, (29)

where f (k)βj and f (k)ψj (k = 1, . . . , K) are the k observations drawn from the posterior distribu-

tion via the Gibbs sampler. The variable wj is selected in Parts One and Two if f̂βj > 0.5
and f̂ψj > 0.5.

4. Simulation Study

In this section, a simulation study is conducted to assess the performance of the
proposed method. The main objective is to assess the accuracy of estimates and the
correct rate of variable selection. We consider one semi-continuous variable si, two factor
variables ωi1 and ωi2, and six categorical variables yij(j = 1, . . . , 6). We assume that si,
ωij and yij satisfy Equations (1), (2), and (5) associated with (6), respectively, in which the
number of fixed covariates is set to five. We generate xi1 and xi2 from the standard normal
distribution, xi3 and xi4 from a binomial distribution with a probability of success of 0.3,
and x5 from a uniform distribution on (0, 1). All covariates were standardized to unify the
scales. For ordered categorical variables, we take cj = c = 4: that is, each yij belongs to
{0, 1, 2, 3, 4}.

The true values of the population parameters are set as follows: α = γ = 0.7,
β = (0.7, 0.0, 0.7, 0.0, 0.7, 0.0, 0.8)T , γ = 0.7, ψ = (0.7, 0.0, 0.7, 0.0, 0.7, 0.8, 0.0)T , σ2 = 1.0,
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µ = 0.7 × 16, where 16 is a 6 × 1 vector for which the elements are in unity. The factor
loading matrix Λ and covariance matrix Φ are taken as

ΛT =

[
1.0 0.8 0.8 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.8 0.8

]
, Φ =

[
1.0 0.3
0.3 1.0

]
, (30)

in which the ones and zeros in Λ are treated as fixed to identify the model; the thresholds
are set as δk = (−1.5∗, 0.0, 1.2, 2.5∗)T for k = 1, . . . , 6, where the elements with an asterisk
are treated as fixed for model identification. Based on these setups, we generate data by first
drawing latent factors from N2(0, Φ) and then drawing latent responses Y∗ from (6). The
the indicator responses U, the intensity responses Z and the ordered categorical responses
Y, are sequentially generated from (1), (2) and (5). To investigate the effect of sample size
on the estimates, we take n = 400 and 1000, respectively, which represent small and large
levels of sample size.

For Bayesian analysis, we consider the following inputs for the hyperparameters: for
the parameters involved in the measurement model, we take µ0 = 06 and Σ0 = 100.0 × I6;
the elements in Λ0 corresponding to the free parameters in Λ are set at zero, and H0k = I2
for k = 1, . . . , 6; ρ0 = 10.0, and R−1

0 = 6.0 × I3; for the threshold parameters δ, we take
η1 = · · · = η5 = 1.0, which denotes the uniform distribution of p on the simplex in R5;
for the intercept parameters α, γ, and scale σ2 in the two-part model, we set α0 = γ0 = 0,
σ2

α0 = σ2
γ0 = 100, and a0 = b0 = 2.0; the hyperparameters involved in the formulation of β

and ψ are set as before. Note that these values can ensure that the corresponding priors
are inflated enough; hence, we can expect this to enhance the robustness of the inference.
In addition, we set νβ0 = νψ0 = 0.001 in Equations (11) and (12) to guarantee βk and ψk
clumping at zero sufficiently.

The MCMC algorithm described in Section 3 is implemented to obtain the estimates of
unknown parameters θ. Before the formal implementation, a few test runs are conducted
as a pilot to monitor the convergence of the Gibbs sampler. We plot the values of EPSR of
unknown parameters against the number of iterations under three different starting values.
For SS, Figure 2 presents the plots of EPSR of unknown parameters under three different
starting values with sample size n = 400.
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Figure 2. Plot of the values of EPSR of unknown parameters under three different starting values in
which the colored solid lines represent the trajectories of EPSR of estimates against the number of
iteraitons: simulation study and n = 400.

It can be found that the convergence of estimates is fast and all values of EPSR are less
than 1.2 in about 300 iterations. To be conservative, we remove the first 2000 observations as
the burn-in phase and further collect 3000 observations for calculating the bias (BIAS), root
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mean square (RMS), and standard deviation (SD) of the estimate across 100 replications.
The BIAS and RMS of the j-th component θ̂j in θ̂ are respectively defined as follows:

BIAS(θ̂j) = (θ̄j − θ0
j ), θ̄j =

1
100

100

∑
κ=1

θ̂
(κ)
j , RMS(θ̂j) =

√√√√ 1
100

100

∑
κ=1

(θ̂
(κ)
j − θ0

j )
2, (31)

where θ0
j is the j-th element of the population parameters θ0. The summaries of the

estimates of the main parameters for the two scenarios are reported in Tables 1 and 2, where
the sums of the SDs and RMSs across the estimates are presented in the last rows.

Table 1. Summary of the estimates of unknown parameters under SS and BaLsso: simulation study
and n = 400.

SS BaLsso

PAR BIAS RMS SD BIAS RMS SD

α = 0.7 −0.015 0.097 0.129 0.028 0.150 0.134
β1 = 0.7 −0.056 0.143 0.142 −0.152 0.217 0.136
β2 = 0.0 −0.001 0.021 0.061 −0.019 0.042 0.079
β3 = 0.7 −0.144 0.216 0.145 −0.122 0.251 0.148
β4 = 0.0 0.005 0.030 0.064 −0.008 0.040 0.078
β5 = 0.7 −0.091 0.147 0.137 −0.045 0.135 0.137
β6 = 0.0 0.017 0.028 0.075 0.026 0.055 0.096
β7 = 0.8 −0.187 0.237 0.184 −0.126 0.209 0.184
γ = 0.7 0.010 0.079 0.084 0.008 0.063 0.085
ψ1 = 0.7 −0.035 0.079 0.077 −0.011 0.065 0.074
ψ2 = 0.0 0.005 0.032 0.051 −0.018 0.031 0.054
ψ3 = 0.7 −0.007 0.061 0.070 −0.021 0.085 0.069
ψ4 = 0.0 −0.007 0.029 0.049 −0.003 0.031 0.053
ψ5 = 0.7 −0.070 0.093 0.077 −0.018 0.082 0.075
ψ6 = 0.8 −0.040 0.086 0.089 −0.020 0.069 0.088
ψ7 = 0.0 −0.011 0.033 0.062 0.014 0.036 0.069
σ2 = 1.0 0.085 0.129 0.117 0.038 0.082 0.111
λ21 = 0.8 0.042 0.078 0.073 0.058 0.098 0.071
λ31 = 0.8 0.030 0.072 0.071 0.034 0.063 0.072
λ52 = 0.8 0.058 0.079 0.072 0.052 0.090 0.073
λ62 = 0.8 0.031 0.060 0.072 0.037 0.064 0.073
Φ12 = 0.3 0.014 0.041 0.074 0.018 0.058 0.076
Total - 1.870 1.975 - 2.016 2.035

Examination of Tables 1 and 2 gives the following findings: (i) Both methods produce
satisfactory results. The performance of SS is slightly superior to that of BaLsso in terms of
the sums of RMS and SD. For n = 400, the total RMS and SD are 1.870 and 1.975, respectively,
under SS and amount to 2.016 and 2.035, respectively, under BaLsso. (ii) Except ψ2 in Table 1
and ψ4 in Table 2, for the regression coefficients and factor loadings with true values at zero,
the RMSs and SDs produced by SS are uniformly smaller than those produced by BaLsso.
This indicates that SS imposes more penalties on the regression coefficients and factor
loadings than BaLsso to shrink them toward zero. (iii) For non-zero β j and ψj, the situation
becomes fiendishly complex. For example, the RMSs and SDs of the estimates of β5, β7 ,
ψ1, ψ5, and ψ6 in Table 1 show that the SS does a weaker job than BaLsso. This is also true
for β3 and ψ3 in Table 2. The underlying reason perhaps lies in that the penalties imposed
on the non-zero regression coefficients and factor loadings by SS are similar to those of
BaLsso, and one is not overwhelmingly superior to the other. (iv) As expected, increasing
the sample size improves the accuracy of the estimates for both SS and BaLsso.

Another simulation is conducted to assess the performance of the proposed method
for variable selection when the covariates and latent variables are correlated. In this setting,
we generate covariates and latent factors jointly from the multivariate normal distribution
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with mean zero and covariance matrix Σ(7 × 7) with Σjk = ρ|j−k|, where Σjk is the (j, k)th

entry of Σ. We consider three scenarios for ρ: (i) ρ = 0.1, (ii) ρ = 0.5, and (iii) ρ = 0.8,
which represent, respectively, weak, mild, and strong dependence among them. The values
of β and ψ are taken as (1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0)T and (1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0)T ,
respectively, and the sample size is taken as n = 1000. The remainder of the model is set up
the same as before. We implement MCMC sampling and collect 3000 observations after
removing the first 2000 observations for posterior inference. We follow [43] and treat a
regression coefficient as zero if the absolute value of its estimate is less than 0.1. Table 3
gives the summary of variable selection across 100 replications.

Table 2. Summary of the estimates of unknown parameters under SS and BaLsso: simulation study
and n = 1000.

SS BaLsso

PAR BIAS RMS SD BIAS RMS SD

α = 0.7 0.052 0.096 0.087 0.009 0.092 0.087
β1 = 0.7 0.005 0.069 0.089 0.055 0.117 0.090
β2 = 0.0 0.003 0.048 0.058 0.032 0.052 0.060
β3 = 0.7 0.007 0.086 0.093 −0.045 0.076 0.091
β4 = 0.0 0.004 0.015 0.049 −0.020 0.043 0.060
β5 = 0.7 0.010 0.071 0.086 0.013 0.074 0.085
β6 = 0.0 −0.003 0.029 0.059 0.032 0.064 0.077
β7 = 0.8 0.002 0.102 0.120 −0.042 0.108 0.114
γ = 0.7 0.017 0.042 0.053 0.030 0.056 0.054
ψ1 = 0.7 −0.023 0.038 0.046 −0.016 0.039 0.047
ψ2 = 0.0 −0.007 0.019 0.033 −0.005 0.018 0.037
ψ3 = 0.7 −0.028 0.060 0.042 −0.014 0.026 0.043
ψ4 = 0.0 −0.007 0.023 0.033 0.000 0.018 0.036
ψ5 = 0.7 −0.005 0.035 0.046 0.003 0.043 0.047
ψ6 = 0.8 −0.031 0.058 0.053 −0.039 0.063 0.054
ψ7 = 0.0 −0.001 0.031 0.045 −0.025 0.081 0.053
σ2 = 1.0 0.018 0.049 0.068 0.041 0.053 0.071
λ21 = 0.8 0.021 0.041 0.045 0.033 0.038 0.045
λ31 = 0.8 0.016 0.049 0.045 0.028 0.038 0.045
λ52 = 0.8 0.032 0.049 0.045 0.054 0.057 0.045
λ62 = 0.8 0.043 0.059 0.046 0.043 0.054 0.046
Φ12 0.016 0.043 0.049 0.005 0.037 0.048
Total - 1.112 1.290 - 1.247 1.335

Table 3. Number of correctly selected variables in the two-part model on the simulated datasets.

SS BaLsso

PAR ρ = 0.1 ρ = 0.5 ρ = 0.8 ρ = 0.1 ρ = 0.5 ρ = 0.8

β1 = 1.0 100 100 100 100 100 100
β2 = 0.0 98 96 85 88 86 76
β3 = 1.0 100 100 100 100 100 100
β4 = 0.0 96 95 86 93 93 85
β5 = 1.0 100 100 100 100 100 100
β6 = 0.0 96 94 93 97 92 87
β7 = 1.0 100 100 100 100 100 100
ψ1 = 1.0 99 100 100 100 100 100
ψ2 = 0.0 100 99 95 100 98 93
ψ3 = 1.0 100 100 100 100 100 100
ψ4 = 0.0 100 100 97 98 100 91
ψ5 = 1.0 100 100 100 100 100 100
ψ6 = 1.0 100 100 100 100 100 100
ψ7 = 0.0 100 98 97 97 96 96
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Based on Table 3, it can be found that (i) for nonzero regression coefficients, the two
methods exhibit satisfactory performances, with both having 100% correct rates across
all situations; (ii) for zero regression coefficients, there are differences between the two
methods, and SS uniformly outperforms BaLsso. The underlying reason perhaps is that for
SS, the variances of estimates are set to be small enough to ensure that the coefficients are
close to zero, while for BaLsso, the variances of estimates are controlled by the shrinkage
parameters, which may not be large enough to ensure this point; (iii) with an increase in the
strength of dependence, the correct rates of the two methods decrease. As an illustration,
Figure 3 gives the plots of the correct rates of the selected variables for three scenarios; the
values on the x-axis are the true values of β1 to ψ7 in the order given in Table 3.
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Figure 3. Plots of the correct rates of the selected variables under three scenarios: simulation study
and n = 1000.

5. Chinese Household Financial Survey Data

To demonstrate the usefulness of the proposed methodology, in this section, a small
portion of Chinese household finance debt data is analyzed. The dataset is collected from
the Chinese Household Financial Survey (CHFS), a non-profit institute organized by the
Southeast University of Finance and Economics in Chengdu, Sichuan Province, China.
The survey covers a series of questions that touch on information about various aspects
of a household’s financial situation. In this study, we only focus on the measurement
‘gross debts per household (DEB)’: the amount of secured debt and unsecured debt for
the household under investigation. We extracted the data from a survey of Zhejiang
Province in 2013. Due to some uncertain factors, some measurements of DEB are missing.
The missing proportion is about 2.7%. We remove the subjects with missing entries, and the
ultimate sample size is 884. A preliminary data analysis shows that the DEB measurements
contain excessive zeros, and the proportion of zeros is about 72.58%. Naturally, we treat
this variable as the outcome variable si and identify it with ui and zi. Figure 4 presents
the histogram of DEB as well as the logarithms of positive values. It can be seen clearly
that the dataset illustrates strong heterogeneity. The skewness and kurtosis of DEB are
1.1042 and 2.3361, respectively, which indicates that a single parametric model for DEB
may be unappreciated.

We include the following measurements as the potential explanatory factors to inter-
pret the variability of DEB: gender (x1), age (x2), marital status (x3), health condition(x4),
educational experience (x5), employment status of the household head (x6), the number
of family members (aged over 16, x7), and the household annual income (x8). Table 4
gives the descriptive summary of these measurements. To unify the scale, all covariates
were standardized.
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Figure 4. Histograms of DEB and the logarithms of their positive values: Chinese Household Financial
Survey data. (Left) panel corresponds to DEB and (right) panel corresponds to log(DEB|DEB > 0).

Table 4. Descriptive statistics of explanatory variables: CHFS data.

Variable Description Mean Max Min SD

Gender (x1) =1, male; =0, otherwise 0.756 1 0 0.430
Age (x2) 51.81 91 19 14.931
Marital status (x3) =1, married; 0, otherwise 0.863 1 0 0.344
Health condition (x4) =1, good; 0, otherwise 0.833 1 0 0.373
Educational experience (x5) =1, high school or above;

=0, otherwise 0.352 1 0 0.478
Employment (x6) =1, yes; 0, otherwise 0.092 1 0 0.290
No. of adults (x7) 3.002 3 0 1.301
Annual Income (CYN) (x8) * 9.3764 8.0605 0 4.2494

* Note: Superscripts are used to indicate values raised to the power of 10 (thus, ab = a × 10b). The
measurement is taken as the middle value of the range in the questionnaire.

Besides the observed factors mentioned above, we also include family culture η as
a latent factor into the current analysis. It is well-known that China is an ancient civilization
with a long history, and Confucian culture is deeply rooted in social development. Economic
activity or social development cannot be independent of cultural development. Hence, it is
of practical interest to investigate how family culture affects behavior related to household
finance debt. Based on the design of the questionnaire, we select the following three
measurements as manifestations for η: (i) The preference for boys (BP, y1): this is a three-
category measurement coded as 0, 1, and 2, which correspond to the attitudes ‘opposed’,
‘doesn’t matter’, and ‘strongly support’; (ii) The attitude toward having a single child (SC),
coded by 0, 1 and 2, according to the level of support. (iii) The importance of family in one’s
life: this measurement was originally based on a six-point scale (0 to 5) according to the
support level. However, in view of the frequencies in the last three groups being small, we
grouped them into three categories and recoded them as 0 (does not matter), 1 (important),
and 2 (very important). In addition, as some manifestations are missing, we treat missing
data as missing randomly and ignorable [50] and ignore the specific mechanics that result
in missing data.

Let U = {ui}, Z = {zi}, and Y = {Yobs, Ymis}, where Yobs is the collection of
observed data and Ymis is the set of missing data. We formulate U, Z, and Y within
Equations (1), (2), and (6) and assume that ηi, iid. ∼ N(0, 1). The inputs of the hyperpa-
rameters in the priors are taken as follows: Λj0 = 0.0, Hj0 = 1, and ηj1 = ηj2 = ηj3 = 2.0.
The values of other hyperparameters are taken to be the same as those in the simu-
lation study. To implement the MCMC sampling algorithm, we need to impute the
missing data in Y. This is done by drawing yij,mis from the conditional distribution
p(yij,mis|θ, Yobs) = N(µj,mis + Λj,misηi, 1), where µj,mis and Λj,mis are the components of
µ and Λ, respectively, that correspond to the missing entries yij,mis in yi. In addition,
to identify the model and scale the factor, we set Λ1 = 1. We also adopt the method in [51]
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in the context of a latent variable model with polytomous data and fix δj1 at Φ−1( f j1/nj),
where nj is the size of yobs,ij that is equal to 1, and f j1 is the observed frequency of 0 in yobs,ij.
To assess the convergence of the algorithm, for SS, we plot the traces of estimates under
three different initial values (see Figure 5). It can be seen that the algorithm converges at
about 3000 iterations. To be conservative, we collect 6000 observations after deleting the
initial 4000 observations for calculating the estimates and their standard deviations.
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Figure 5. Trace plots of the estimates of unknown parameters against the number of iterations under
SS prior, in which the colored solid lines repsent the traces of estimates under three starting values:
CHFS data.

Table 5 gives the summary of two estimates of unknown parameters in the two-part
model and factor analysis model. Examination of Table 5 shows that most of the estimates
for both models are very close, but there exist differences in the estimates of β4, β5, β7, β8,
ψ2, ψ7, and ψ8. For example, the estimates of β4, β5, and β7 under SS are 0.428, 0.577, and
0.747 with standard deviations of 0.062, 0.070, and 0.072, respectively, while they equal
0.072, 0.082, and 0.092 with standard deviations of 0.07, 0.081, and 0.092 under BaLsso.
These differences reflect the fact that the two methods impose different penalties on the
regression coefficients during variable selection.

To see more clearly, Table 6 gives the resulting selected variables according to SS and
BaLsso. It can be seen that (i) for Part One, both methods give the same results for the
selection of factors ‘gender’, ‘age’, ‘marital status’, ‘employment’, ‘number of adults’, and
‘family culture’. The two methods favor ‘age’,‘marital status’, and ‘number of adults’ as
helpful for improving model fit, while ‘gender’ and ‘family culture’ have less influence
on the probability of holding household finance debt. However, there exist contradictory
conclusions when selecting ‘health condition’, ‘education’, and ‘income’. (ii) For Part Two,
except for the factors ‘age’ and ‘number of adults’, the two methods give the same results.
In particular, both methods support that ‘family culture’ is relevant to the amount of
household finance debt being held. This fact is also revealed by [18] in an analysis of the
CHFS using a two-part nonlinear latent variable model. Further interpretation is omitted
in order to save space.
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Table 5. Estimates and standard deviation estimates of unknown parameters under SS and BaLsso:
CHFS data.

SS BaLsso SS BaLsso

Par Est. SD Est. SD Par Est. SD Est. SD

α −0.835 0.078 −0.838 0.080 γ 9.782 0.152 9.670 0.125
β1 0.050 0.063 0.076 0.070 ψ1 −0.137 0.103 −0.107 0.088
β2 −0.750 0.099 −0.757 0.102 ψ2 −0.147 0.141 −0.015 0.081
β3 0.107 0.085 0.147 0.088 ψ3 −0.022 0.065 −0.006 0.075
β4 0.428 0.062 0.072 0.070 ψ4 −0.019 0.060 −0.029 0.069
β5 0.577 0.070 0.082 0.081 ψ5 0.259 0.123 0.322 0.107
β6 0.004 0.040 0.005 0.052 ψ6 0.035 0.058 0.053 0.067
β7 0.118 0.079 0.130 0.079 ψ7 0.043 0.072 0.281 0.113
β8 0.747 0.073 0.092 0.077 ψ8 0.384 0.132 0.188 0.118
βη −0.059 0.112 −0.039 0.092 ψη 1.205 0.106 1.910 0.104
σ2 0.312 0.150 0.300 0.152

λ21 −0.791 0.062 −0.714 0.057
λ31 −0.865 0.067 −0.625 0.068

Table 6. The selected variables in the CHFS data—0: excluded and 1: included.

Part One Part Two

VAR SS BaLsso SS BaLsso

Gender 0 0 1 1
Age 1 1 1 0
Marital status 1 1 0 0
Health condition 1 0 0 0
Education 1 0 1 1
Employment 0 0 0 0
No. of adults 1 1 0 1
Income 1 0 1 1
Family culture 0 0 1 1

6. Discussion

A two-part latent variable model can be considered to be an extension of a tradi-
tional two-part model for situations where the latent variables are included to identify
the unobserved heterogeneity of a population resulting from the absence of the observed
covariates. When analyzing such a model, an important issue is to determine which factors
are relevant to the outcome variable. This is especially true when the number of exogenous
factors is high, because usual model selection/comparison procedures are extremely time-
consuming. In this paper, we resort to a Bayesian variable selection method and develop a
fully Bayesian variable selection procedure for semi-continuous data. Our formulation is
along the lines of a spike and slab bimodal prior and recasts the distribution of regression
coefficients and factor loadings as a hierarchy of priors over the parameter and model
space. The selected variables are identified based on having a high posterior probability
of occurrence. We also consider an adaptive Bayesian lasso (BaLsso) for reference. To
facilitate computation, we recast the logistic regression model in Part One as a flavor of
a normal mixture model by introducing latent Pólya–Gamma variables. This admits the
conjugate full-conditional distributions for all regression coefficients, factor loadings, and
factor variables.

Although Bayesian variable selection has its unique advantages, there are still some
limitations that need to be considered with care. Firstly, its computational complexity
is high. Bayes SSL requires Monte Carlo sampling to estimate the posterior distribution,
which can lead to slower calculation speed, especially when working with high-dimensional
datasets. Secondly, the method is sensitive to hyperparameter and data distribution as-
sumptions. The selection of the hyperparameters of the prior distribution, such as the ratio
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of spike to slab, lasso penalty parameters, and data distribution assumptions, will have
a great impact on the results. When the data do not conform to the model’s convention,
the performance of the method is poor. Therefore, these issues need to be carefully consid-
ered in real applications to ensure that the Bayesian SS method can be effectively applied
to the specific dataset.

The proposed method can be applied to more general latent variable models, in-
cluding multilevel SEMs [51] and longitudinal dynamic variable models with discrete
variables [17,52]. These extensions are left for further study.
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Appendix A

In this section, we present some technical details of the full conditionals for MCMC
sampling. For ease of exposition, for any scalar or vector x, we use p(x| · · · ) to denote
the conditional distribution of x given ‘· · · ’. Note that under the scenarios SS and BaLsso,
the full conditionals of Ω, U∗, Y∗, and θ are exactly the same. The following derivations
are mainly based on Bayes theorem.
1. Full conditional of p(Ω| · · · )

It follows from Equations (2), (6) and (9), that

p(Ω| · · · ) =
n

∏
i=1

p(ωi| · · · ),

where

p(ωi| · · · ) ∝ p(ui, u∗
i |ωi, α, β)p(zi|ui, ωi, γ, ψ, σ2)p(y∗

i |ωi, µ, Λ)p(ωi|Φ).
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Let κ∗i = κi − u∗
i (γ + xT

i βx) and z∗i = zi − γ − xT
i ψx. By some algebra, it can be

shown that

p(ωi| · · · )
D
= Nm(µ̂ωi, Σ̂ωi), (A1)

where

µ̂ωi = Σ̂ωi

[
βωκ∗i + ψωuiz∗i /σ2 + ΛT(y∗

i − µ)
]
,

Σ̂ωi =
[

βω βT
ωu∗

i + ψωψT
ωui/σ2 + ΛTΛ + Φ−1

]−1
.

Hence, the drawing of Ω can be obtained by simulating ωi independently from the
normal distribution (A1).
2. Full conditional of p(U∗| · · · )

Following a similar derivation to that in [42], it can be shown that, given U, Ω, and
θ, U∗ is the Pólya–Gamma distribution through exponential tilting of the standard Pólya–
Gamma density given by

p(U∗ | · · · ) =
n

∏
i=1

PG(u∗
i |1, ηi) (A2)

where ηi = α + βTwi. Drawing ui from this distribution can be achieved via a rejection
sampling method; see [42] or [53] for more details about this issue.
3. Full conditional of p(Y∗| · · · )

Note that

p(Y∗| · · · ) ∝ p(Y|Y∗, δ)p(Y∗|Ω, µ, Λ)

=
n

∏
i=1

p

∏
k=1

(
c

∑
ℓ=0

I{yik = ℓ, δkℓ < y∗ik ≤ δkℓ+1}
)
× 1√

2π
exp

{
−1

2
(y∗ik − µk − ΛT

k ωi)
2
}

.

Hence, given Ω, the full conditional of Y∗ only depends on µ, Λ, Y, and Ω and is
given by

p(Y∗| · · · ) =
n

∏
i=1

p

∏
k=1

p(y∗ik|ωi, θ, yik),

p(y∗ik|ωi, θ, yik) = N(µk + ΛT
k ωi, 1)I{δk,yik

< y∗ik ≤ δk,yik+1}. (A3)

This is the truncated normal distribution, and its drawing can be obtained via an
inverse distribution sampling method; see, for example, [54].
4. Full conditional of p(θ| · · · )

Recall that θ consists of α, β, γ, ψ, σ2, µ, Λ, Φ, and δ. Hence, the drawing of θ can be
accomplished by (i) drawing α from p(α| · · · ), (ii) drawing β from p(β| · · · ), (iii) drawing
γ from p(γ| · · · ), (iv) drawing (ψ, σ2) from p(ψ, σ2| · · · ), (v) drawing µ from p(µ| · · · ),
(vi) drawing Λ from p(α| · · · ), (vii) drawing Φ from p(Φ| · · · ), and (viii) drawing δ from
p(δ| · · · ) sequentially. Note that given U∗, Y∗, and Ω, the models (2), (6) and (9), reduce
to ordinary regression models and, hence, most of the full conditionals, similar to the
regression coefficients and variance/covariance in the Bayesian regression analysis, are



Mathematics 2024, 12, 783 19 of 23

standard distributions such as normal, gamma, inverse gamma, and Wishart distributions.
As a matter of fact, by some tedious but non-trivial calculations, it can be shown that

p(α| · · · ) = N(µ̂β, σ̂2
β), p(β| · · · ) = Nq(µ̂β, Σ̂β), (A4)

p(γ| · · · ) = N(µ̂γ, σ̂2
γ), p(ψ, σ2| · · · ) = IG(α̂σ, β̂σ)× Nq(µ̂ψ, σ2Σ̂ψ), (A5)

p(µ|Ω, Λ, Y∗) = Np(m̂µ, Σ̂µ), p(Λ| · · · ) =
p

∏
k=1

p(Λk| · · · ) =
p

∏
k=1

Nm(Λ̂k, Ĥk), (A6)

p(Φ−1| · · · ) = Wm(ρ + n, R̂), (A7)

in which

µ̂α = σ̂2
α

n

∑
i=1

(κi − u∗
i βTwi), σ̂2

α = (
n

∑
i=1

u∗
i + σ−2

α0 )−1,

µ̂β = Σ̂β

n

∑
i=1

wi(κi − αu∗
i ), Σ̂

−1
β =

n

∑
i=1

u∗
i wiwi + diag{γ−2

β },

µ̂γ = σ̂2
γ

n

∑
i=1

ui(zi − ψTwi)/σ2, σ̂2
γ = (

n

∑
i=1

ui/σ2 + σ−2
γ0 )

−1,

µ̂ψ = Σ̂ψ

n

∑
i=1

wi(zi − γ)ui/σ2, Σ̂
−1
ψ =

n

∑
i=1

uiwiwi + diag{γ−2
ψ },

α̂σ = a0 + |I|/2,

β̂σ = b0 +
1
2
(

n

∑
i=1

uiz2
i − µ̂T

ψΣ̂
−1
ψ µ̂ψ + ΛT

0kH−1
0k Λ0k),

m̂µ = Σ̂µ(Σ
−1
0 µ0 + n(Ȳ∗ − ΛΩ̄)), Σ̂

−1
µ = nIp + Σ−1

0 ,

Λ̂k = Ĥk(H
−1
0k Λ0k + ΩTY∗∗

[k]), Ĥ−1
k = nΦ−1 + ΩTΩ,

R̂−1 = R−1
0 + ΩTΩ,

where Y∗∗ is the n × p matrix with ith row y∗T
i − µT , Y∗∗

[k] is the kth column of Y∗∗, and Ω is

the n × m matrix with ith row ωi; Ȳ∗ =
n
∑

i=1
y∗

i /n, Ω̄ =
n
∑

i=1
ωi/n are the sample means of Y∗

and Ω, respectively, and |I| denotes the size of I = {ui = 1}.
However, for δ, we note that

p(δ| · · · ) =
p

∏
k=1

p(δk|Y∗
[k], Y[k]), and

p(δk|Y∗
[k], Y[k]) ∝ p(δk)

n

∏
i=1

c

∏
ℓ=0

I{yik = ℓ, δkℓ < y∗ik ≤ δk,ℓ+1}.

Hence, drawing of δ can be obtained by drawing δk from p(δk| · · · ) independently.
Moreover, under prior (25), it can be shown that

p(δkℓ|δk,(−ℓ), Y∗
[k], Y[k]) ∝ p(δkℓ, δk,(−ℓ))I{ max

yik=ℓ−1
{y∗ik},≤ δkℓ < min

yik=ℓ
{y∗ik}},

where δk,(−ℓ) is the vector of δk with δkℓ removed. Let hk,ℓ = max{δk,ℓ−1, maxyik=ℓ−1{y∗ik}},
gk,ℓ = min{δk,ℓ+1, minyik=ℓ{y∗ik}}. It follows from (26) that

F0(δkℓ)− F0(δk,ℓ−1)

F0(δk,ℓ+1)− F0(δk,ℓ−1)
|δk,−ℓ, Y∗

[k], Y[k] ∼ Beta(ηk,ℓ, ηk,ℓ+1)I{(sk,ℓ, tk,ℓ)}, (A8)
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where

sk,ℓ =
F0(hk,ℓ)− F0(δk,ℓ−1)

F0(δk,ℓ+1)− F0(δk,ℓ−1)
, tk,ℓ =

F0(gk,ℓ)− F0(δk,ℓ−1)

F0(δk,ℓ+1)− F0(δk,ℓ−1)
.

As a result, we can draw δkℓ by first generating a δ∗kℓ from the truncated beta distribution
(A8) and then transform it to δkl via an inverse transformation by setting F−1

0 (δ∗kℓ[F0(δk,ℓ+1)−
F0(δk,ℓ−1)] + F0(δk,ℓ−1)). A drawing of the truncated beta distribution can be obtained by
implementing an inverse distribution sampling method.
5. Full conditional of p(Q∗| · · · )

First of all, it is noted that Q∗ consists of Fβ, Fψ, wβ, wψ, η−2
β , and η−2

ψ under SS, and it

is formed by γ2
β, γ2

ψ, λ2
β, and λ2

ψ under BaLsso. Similar to that of θ, we update Q∗ by
drawing observations from their full conditionals per component sequentially.

Firstly, it is noted that

p(Fβ| · · · ) ∝
q

∏
k=1

p(βk| fβk, η2
βk
)p( fβk |wβ),

p(Fψ| · · · ) ∝
q

∏
k=1

p(ψk|σ2, fψk, η2
ψk
)p( fψk |wψ),

which indicates that the components in the posteriors of Fβ and Fψ are independent. Further,
it follows easily from (13) that

p( fβk|wβ, η2
βk, βk) = (1 − q̂βk)δνβ0(·) + q̂βkδ1(·),

p( fψk|wψ, η2
ψk, βk) = (1 − q̂ψk)δνψ0(·) + q̂ψkδ1(·),

where

q̂βk =
wβϕ(βk/ηβk)

(1 − wβ)ϕ(βk/(√νβ0ηβk)/
√

νβ0 + wβϕ(βk/ηβk)
,

q̂ψk =
wψϕ(ψk/(σηψk)

(1 − wψ)ϕ(ψk/(σ√νψ0ηψk)/
√

νψ0 + wψϕ(ψk/(σηψk))
,

and ϕ(·) is the standard normal probability density function.
Secondly, it is noted that

p(wβ|Fβ) ∝ p(wβ)p(Fβ|wβ) = p(wβ)
q

∏
k=1

p( fβk|wβ)

= cw
aβ−1
β (1 − wβ)

bβ−1
q

∏
k=1

w
I{ fβk=1}
p (1 − wβ)

I{ fβk=νβ0},

p(wψ|Fψ) ∝ p(wψ)p(Fψ|wψ) = p(wψ)
q

∏
k=1

p( fψk|wψ)

= cw
aψ−1
p (1 − wβ)

bψ−1
q

∏
k=1

w
I{ fψk=1}
ψ (1 − wψ)

I{ fψk=νψ0}.

Hence,

p(wβ| · · · ) = Beta(cβ1 + |{ fβk = 1}|, cβ2 + |{ fβk = νβ0}|), (A9)

p(wψ| · · · ) = Beta(cψ1 + |{ fψk = 1}|, cψ2 + |{ fψk = νψ0}|), (A10)

where |A|, as before, is the size of set A.



Mathematics 2024, 12, 783 21 of 23

Lastly, it follows from

p(η−2
β |Fβ, β) ∝ p(β|Fβ, η−2

β )p(η−2
β )

=
q

∏
k=1

(η−2
βk )

1/2 exp
{
−1

2
η−2

βk β2
k/ fβk

}
(η−2

βk )
aβ1−1 exp{−aβ2η−2

βk },

p(η−2
ψ |Fψ, ψ) ∝ p(ψ|Fψ, η−2

ψ )p(η−2
ψ )

=
q

∏
k=1

(η−2
ψk )

1/2 exp
{
−1

2
η−2

ψk ψ2
k / fψk

}
(η−2

ψk )
aψ1−1 exp{−aβ2η−2

ψk }

that

p(η−2
β |Fβ, β) =

q

∏
k=1

p(η−2
βk | fβk, βk) =

q

∏
k=1

Ga(τ̂βk, ζ̂βk),

p(η−2
ψ |Fψ, ψ) =

q

∏
k=1

p(η−2
ψk | fψk, ψk)

q

∏
k=1

Ga(τ̂ψk, ζ̂ψk),

where

τ̂βk = τβ0 + 1/2, ζ̂βk = ζβ0 + β2
k/(2 fβk),

τ̂ψk = τψ0 + 1/2, ζ̂ψk = ζψ2 + ψ2
k /(2 fψk).

For BaLasso, we follow the practice in [38] and can show

p(γ−2
β | · · · ) =

q

∏
k=1

p(γ−2
βk | · · · ) =

q

∏
k=1

IG(µ̂β, λ̂β),

p(γ−2
ψ | · · · ) =

q

∏
k=1

p(γ−2
ψk | · · · ) =

q

∏
k=1

IG(µ̂ψ, λ̂ψ),

in which

µ̂β =
√

λ̂β/β2
j , λ̂β = λ2

βk,

µ̂ψ =
√

σ2λ̂ψ/β2
j , λ̂ψ = λ2

ψk,

where IG(µ, λ) is an inverse Gaussian distribution with density
√

λ/(2π)x−3/2 exp{−λ(x −
µ)2/(2µ2x)}(x > 0) [55].

Similarly,

p(λ2
β| · · · ) =

q

∏
k=1

p(λ2
βk| · · · ) =

q

∏
k=1

Ga(âβk, b̂βk),

p(λ2
ψ| · · · ) =

q

∏
k=1

p(λ2
ψk| · · · ) =

q

∏
k=1

Ga(ĉψk, d̂ψk),

in which

âβk = ak0 + 1.0, b̂βk = bk0 + 0.5γ2
βk,

ĉψk = ck0 + 1.0, d̂ψk = dk0 + 0.5γ2
ψk.
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