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Abstract: Terrorism poses a significant threat to international peace and stability. The ability to predict
potential casualties resulting from terrorist attacks, based on specific attack characteristics, is vital for
protecting the safety of innocent civilians. However, conventional data sampling methods struggle
to effectively address the challenge of data imbalance in textual features. To tackle this issue, we
introduce a novel algorithm, GA-CatBoost-Weight, designed for predicting whether terrorist attacks
will lead to casualties among innocent civilians. Our approach begins with feature selection using the
RF-RFE method, followed by leveraging the CatBoost algorithm to handle diverse modal features
comprehensively and to mitigate data imbalance. Additionally, we employ Genetic Algorithm (GA)
to finetune hyperparameters. Experimental validation has demonstrated the superior performance of
our method, achieving a sensitivity of 92.68% and an F1 score of 90.99% with fewer iterations. To
the best of our knowledge, our study is the pioneering research that applies CatBoost to address the
prediction of terrorist attack outcomes.

Keywords: terrorist attack prediction; feature selection; CatBoost; sample imbalance
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1. Introduction

Terrorism, driven by motives such as political, economic, religious, or social aims,
utilizes violence and illicit methods to intimidate, coerce, and instill fear [1] and remains
a grave menace to international peace and security. Since the “9/11” attacks, efforts
in counter-terrorism have been significantly intensified in the European and American
regions to combat the development of terrorist forces. According to data from the Global
Terrorism Database, there have been over 200,000 recorded terrorist attacks between 2010
and 2020, resulting in numerous casualties and property damage. Despite a decreasing
trend in terrorist attacks since 2015, the future outlook on the risk of terrorist attacks
remains concerning. The outbreak of COVID-19 at the end of 2019 not only severely
disrupted people’s lives, health, and travel routines but also dealt a heavy blow to market
economies, nurturing negative emotions among the general populace and further fueling
the unfavorable trends of terrorism [2]. In early 2022, the outbreak of the Russo–Ukrainian
War significantly affected the development and security of neighboring countries and
regions. Under the conflicts between nations and ethnicities, ordinary people are bound to
harbor feelings of hatred, exacerbating the spread and escalation of terrorism [3]. With the
ongoing escalation of the Israeli–Palestinian conflict, many countries are facing internal
divisions, intensified opposition sentiments, posing threats to social stability and facing
significant risks of terrorist attacks [4]. While many studies indicate that the purpose
of terrorism is to advance specific political objectives, the act of terrorism itself not only
spreads social panic but also results in infrastructure damage and the loss of innocent lives.
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Due to the complexity of counter-terrorism measures and emergency controls, it is crucial
to develop effective methods to predict the consequences of terrorist attacks.

Machine learning, as a robust computational tool, plays a pivotal role in decision-
making processes for analyzing casualties in terrorist attacks. Research indicates that the
incorporation of textual feature information derived from terrorism datasets can signif-
icantly improve the performance of models [5]. In previous studies, textual features in
terrorism datasets were typically handled separately using text vectorization techniques
and then combined with other types of features for analysis of terrorist attacks through ma-
chine learning algorithms. Hence, conventional data sampling techniques face challenges
in addressing data imbalance within the aforementioned methods. However, no research
has proposed a method that considers data imbalance while handling textual features
of terrorist attacks. To fill this gap, we present a CatBoost-based model for predicting
casualties in terrorist attacks, which can forecast whether terrorist attacks pose a threat to
the safety of innocent civilians. The results of this study not only assist decision-makers
in adjusting and deploying appropriate emergency measures but also provide valuable
information support.

In the proposed algorithm, to eliminate feature redundancy and reduce computational
complexity, we conducted feature selection by combining Random Forest (RF) and Re-
cursive Feature Elimination (RFE) methods. Leveraging the advantages of CatBoost in
handling numerical, categorical, and textual features simultaneously, we trained the model
using CatBoost algorithm by combining textual features with the selected features obtained
through screening to improve data imbalance issues. Additionally, hyperparameter tuning
was performed using a genetic algorithm. Building on the GTD dataset, we compared the
performance of our method with several state-of-the-art methods such as LR, DT, RF, Ad-
aboost, XGBoost, and LightGBM. Experimental results demonstrate the superiority of our
method over the aforementioned methods. Therefore, one can conclude that our approach
is an efficient and effective algorithm for analyzing the risk of casualties in terrorist attacks.

The organization of the remaining sections of this paper is as follows: Section 2, we
briefly review relevant literature. Section 3, we introduce the entire experimental process
based on the CatBoost method proposed by us. Section 4, we conduct extensive numerical
experiments to evaluate the performance of the proposed method. Finally, Section 5, we
summarize the entire paper and analyze the advantages of our method.

2. Literature Review

Early statistical methods have been an efficient approach for analyzing terrorist attacks,
with many studies conducting assessments of the consequences of terrorist attacks in real
scenarios. Guo et al. constructed a risk assessment method for terrorist attacks on civil
aviation airports using event trees and probabilistic risk assessment models, which evaluate
the risk of various types of terrorist attacks on civil aviation airports [6]. Yang et al. utilized
the FAHP-SWOT method to design a risk assessment model, analyzing various risk factors
for terrorist attacks on religious sites [7]. The evaluation-based methods mentioned above
allow for quantifiable analyses of specific scenarios but still suffer from high subjectivity.

With the increase in data volume and diversity of feature types, machine learning
has provided algorithmic support for the analysis of consequences of terrorist attacks.
Lanjun et al. aimed to select the most crucial indicators affecting the risk of terrorist attacks
from various perspectives. They selected 28 indicators from several data sources and
used the Random Forest algorithm to compute feature importance rankings, followed
by a recursive process to obtain the most impactful set of features influencing the risk of
terrorist attacks [8]. Zhang et al. considered 17 influencing factors in terrorist attack data
and assessed the risk level of geographical regions in Southeast Asia using an improved
location recommendation algorithm [9]. Feng et al. proposed a novel RP-GA-XGBoost
algorithm to predict whether terrorist attacks would result in casualties [10].

While the aforementioned methods are single-model approaches, the complexity and
quantity of data have led to the increasing advantages of hybrid models in analyzing ter-
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rorist attack issues. Shafiq et al. introduced a hybrid classifier to predict the type of attack
in terrorist events, incorporating K-nearest neighbors, Naive Bayes, and decision trees [11].
Meng et al. proposed a hybrid classifier framework for terrorist attack prediction, compris-
ing SVM, K-nearest neighbors (KNN), Bagging, and C4.5, and optimized the weights of
individual classifiers using a genetic algorithm to enhance prediction accuracy [12].

Most current research on terrorist attacks focuses primarily on numerical and categori-
cal features, with relatively limited studies exploring the inclusion of textual features to
enhance model performance. Mohammed Abdalsalamde et al.’s study demonstrated that
by using text representation techniques to process textual features and combining them
with other types of features, the performance of predictive models for terrorist attack types
can be improved [5]. However, they did not perform data cleaning on the text to remove
redundant information and utilizing text representation techniques added processing steps
and extra computational overhead to the model. Therefore, in future research, it may be
beneficial to further investigate how to effectively handle textual features, optimize model
performance, and reduce unnecessary computational costs.

If different terrorist attacks with varying levels of risk are treated equally in the context
of terrorist attacks, it may lead decision-makers to make misjudgments and result in the
waste of resources. Therefore, the issue of data imbalance is a crucial factor influencing
terrorist attack models. Varun Teja Gundabathula et al. proposed using machine learning
models to predict terrorist groups based on historical data and employing data sampling
techniques to improve the accuracy of classification models [13]. Fahad Ali Khan and
colleagues utilized the Particle Swarm Optimization (PSO) algorithm to determine the
optimal weight distribution for Random Forest and Extreme Gradient Boosting Machine
in accurately predicting whether terrorist activities would result in casualties. To address
the issue of class imbalance, they applied the Synthetic Minority Oversampling Technique
(SMOTE) to handle imbalanced data [14]. The aforementioned studies alleviate data
imbalance issues through data sampling techniques. However, due to the structural nature
of text data, these data sampling techniques are not suitable for directly processing textual
information. Although text data can be first vectorized before data sampling, the conversion
may result in the loss of some semantic information. Additionally, data sampling techniques
are difficult to generate text information based on context. Currently, there is no research
considering data sampling for terrorist attack texts, and text vectorization techniques
independent of predictive models do not enhance model performance as effectively as
end-to-end models.

Comparing with the above-mentioned studies, the main contributions of this article
are as follows:

1. First, we propose an innocent civilian casualties prediction model named GA-CatBoost-
Weight for terrorist attacks based on CatBoost. CatBoost is capable of directly handling
numerical, categorical, and textual features, and its powerful computational capability
has been widely applied in various fields. However, to our knowledge, there has been
no research applying CatBoost to the issue of terrorist attacks. Therefore, we use the
CatBoost algorithm combined with some strategies to enhance algorithm performance
to predict whether terrorist attacks will result in casualties;

2. Secondly, we employ RF-RFE for feature selection. High-dimensional features not
only increase the computational cost of models but also affect model performance.
In this paper, we combine RF and RFE to reduce feature redundancy and effectively
decrease computational costs. This method obtains importance scores for each feature
using RF, reduces feature numbers based on feature importance ranking to generate a
model performance curve, and obtains the optimal feature subset based on the trend
of the curve;

3. Thirdly, we conduct hyperparameter tuning for CatBoost. In the case of data imbalance
where traditional data sampling techniques struggle to handle textual information,
we propose using CatBoost’s built-in parameters to improve the data imbalance
issue in terrorist attack scenarios. Instead of additional processing at the data level,
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we address the data imbalance issue from the model perspective in an end-to-end
manner to prevent the loss of excessive semantic information in textual features.
GA is an excellent hyperparameter optimization algorithm that is not commonly
combined with CatBoost for tuning. Hence, in this study, we choose genetic algorithm
to effectively enhance the performance of our innocent civilian casualties prediction
model for terrorist attacks.

3. Materials and Methods

In this paper, we have developed a casualty prediction algorithm for terrorist attacks
based on CatBoost to predict whether terrorist attacks will result in casualties. The overall
framework of the proposed method consists of four stages, as shown in Figure 1. Firstly,
we preprocess the missing values, features, and labels in the dataset. Secondly, we conduct
feature selection using the RF-RFE method. Subsequently, we employ GA to optimize
the hyperparameters of CatBoost. Finally, we evaluate the trained model on the test set
using evaluation metrics. The following sections provide detailed information on the
primary steps.
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3.1. Data Preprocessing

The data used in this study are from the Global Terrorism Database (GTD) maintained
by the National Consortium for the Study of Terrorism and Responses to Terrorism (START)
(https://www.start.umd.edu/gtd) (accessed on 28 August 2022). The database collects
information on global terrorist events from 1970 to 2020, including data from sources such
as news, books, and legal documents. It consists of 135 features and over 200,000 samples.

To ensure the quality and reliability of the data, we first removed features with missing
values exceeding 70%. We then further eliminated irrelevant features for predictions such
as event number, event summary, event source, and similar. We also directly eliminated
event records with outliers. The data was then normalized using the Min-Max scaling

https://www.start.umd.edu/gtd
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method to scale the data to the [0, 1] interval [15]. The transformation formula is defined as
follows:

x′(k) =
x(k)− minx(k)

maxx(k)− minx(k)
(1)

After preprocessing, we have obtained 98,508 samples and 24 features. For the selected
event records, we use “nkill” to represent the number of fatalities in the event and “nwound”
to represent the number of wounded individuals in the event. An attack event is considered
to have resulted in casualties only when the sum of fatalities and injuries is greater than
0. Since the focus is on civilian casualties in each attack event, casualties caused by
terrorists themselves, such as in suicide attacks or due to being killed, are excluded from
the event. We define “risk” as a binary label related to the casualty situation. Among the
98,508 samples, there are 33,499 samples where no casualties occurred and 65,009 samples
where casualties occurred.

3.2. Feature Processing

The Global Terrorism Database (GTD) contains numerical, categorical, and text fea-
tures. In order to fully leverage the performance of the model, feature preprocessing
is necessary.

While some studies on terrorist attacks have shown that time variable features have
less importance in the analysis of terrorist attacks, it is important to consider that the
consequences of terrorist attacks may not solely depend on a single time variable but may
be related to specific dates within a week. Therefore, for the specific time variable features
“iyear”, “imonth”, and “iday” that represent the occurrence of events, these three individual
time variable features are transformed into a new time variable feature “date” representing
the day of the week, defined within the interval [1,7]. This can provide additional context
related to the day of the week.

The text feature “summary” provides a brief description of terrorist events, including
specific details such as the time, location, individuals involved, and the method of the attack.
Current studies on terrorist attacks that consider text features typically extract information
from text through text vectorization techniques. With the advantage of CatBoost’s text
processing technology, it can directly compute text features without the need for additional
natural language processing (NLP) steps. However, in this experiment, the “summary”
feature contains information about the date of the attack and the consequences of the attack,
which conflicts with the prediction target of this study. Therefore, it needs to be removed.

To avoid introducing high subjectivity during feature selection, common feature
selection methods include filter, embedded, and wrapper methods [16]. However, many
studies on terrorist attacks often subjectively determine the number of features [12,17]. In
order to effectively eliminate redundant features, reduce computational costs, and manage
feature dimensions, this study utilizes a method combining RF with RFE to determine a
subset of features.

Random Forest can be considered as an ensemble learning model consisting of multiple
decision trees, widely used for classification and regression analysis. Due to its inherent
randomness, Random Forest retains some sample data through random sampling with
replacement during training, known as Out of Bag (OOB) data. These OOB samples are
often used to measure the importance of features [18]. In essence, Random Forest calculates
the corresponding Out of Bag score (OOB score) through the OOB data. If adding noise to
a particular feature significantly decreases the OOB score, it indicates that this feature is
important for influencing the outcome.

In this experiment, the importance of features is evaluated based on the OOB score
of Random Forest, which helps in ranking the features based on their importance. The
OOB scores are used to assess the importance of features, as shown in Figure 2, where
the horizontal axis represents the score of each feature and the vertical axis represents the
feature names.
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Figure 2. Feature importance ranking.

After obtaining the importance ranking of the original features, in order to objectively
determine the number of features, we utilize RFE to analyze the performance of RF with
different subsets of features. RFE works by iteratively constructing different subsets of
features based on their importance, starting with the most important features determined
earlier. This process involves incrementally adding individual features in order of impor-
tance to form various feature subsets. Using RF, the performance of the model is validated
with different feature subsets, and the optimal feature subset is identified based on the
trend of performance changes.

Figure 3 illustrates the model performance curve based on RF, where the horizontal
axis represents the number of features, and the vertical axis represents the model evaluation
metric. By analyzing this curve, we can determine the optimal number of features that
maximize the model’s performance. Based on Figure 3, we observe that by continuously
adding features based on their importance ranking, the ROC, accuracy, F1, and sensitivity
model evaluation curves continue to increase until reaching a peak when the feature
subset contains eight features. After that, the model performance starts to decline and
reaches a balance. While there is some incremental improvement afterwards, it is not
significant. The precision model evaluation curve reaches its peak when the number of
features reaches seven.
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Therefore, we have selected the top 8 features according to their importance rank-
ing as the feature subset for our method: ‘city’, ‘latitude’, ‘longitude’, ‘attacktype1_txt’,
‘targtype1_txt’, ‘targsubtype1_txt’, ‘weapsubtype1_txt’, ‘date’. At this point, the model not
only exhibits high reliability but also significantly reduces computational cost. It is worth
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noting that our custom time variable feature “date” is also included in the selected feature
subset, validating the rationality of the features we constructed.

3.3. Hyperparameter Tuning Method Based on CatBoost

The CatBoost algorithm is a new gradient boosting algorithm that improves model
performance by having each decision tree learn from the previous tree and influence the
next tree. In traditional Gradient Boosting Decision Tree (GBDT) algorithms, the ensemble
of weak classifiers for each round is used as the final result. Representing a decision tree as
T(·), the model can be expressed as follows:

fD(x) =
D

∑
d=1

T(x; Θd) (2)

Here, D represents the number of decision trees, and Θd denotes the parameters
of each decision tree. Each decision tree continuously minimizes the empirical risk of
the parameters Θd by training on the residuals from the previous round’s decision tree
to obtain:

Θd = argmin︸ ︷︷ ︸
Θd

S

∑
s=1

L(yi, fd−1(xi) + T(x; Θd)) (3)

Here, s represents the number of parameters xi, and yi represents the target value
that needs to be fitted. During the process of estimating residuals, GBDT mainly uses the
negative gradient of the loss function to iteratively fit each decision tree in every round.
The overall basic workflow of the algorithm is as follows:

1. Initialize the first decision tree:

f0(x) = argmin
S

∑
s=1

L(yi, c) (4)

where L(yi, c) is the loss function, and c is the initialized constant value.
2. For each iteration d = 1, 2, . . ., D:

(a) Compute the negative gradient of the loss function to fit the residual values in
the current iteration of the model:

rdi = [
∂L(yi, f (xi))

∂ f (xi)
]

f (x)= fd−1(x)
(5)

(b) In the leaf node region of the current iteration Rmj, j = 1, 2, . . . , J of the model,
fit a decision tree for rdi (using CART regression tree as an example) using
(xi, yit). Here, t represents the index of yi. Calculate the optimal value within
the leaf node region:

Cdj = argmin ∑
xiϵRmj

L(yi, fm−1(xi) + c) (6)

(c) Update the model:

fm(xi) = fm−1(xi) +
j

∑
j=1

cdj I
(
xi ∈ Rmj

)
(7)

3. Output the final strong learner fM(x).

CatBoost has made several improvements over traditional GBDT, with key character-
istics in the following areas:
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1. Feature handling: CatBoost introduces the Ordered Target Statistic method to handle
categorical features. This method sorts each category feature value based on its rela-
tionship with the target variable and performs corresponding statistical calculations.
This technique can be used to encode category features, helping the model better
understand the meaning of category features. The formula is as follows:

xσp ,z =
∑

p−1
n=1

[
xσn ,z = xσp ,z

]
Yσr + ap

∑
p−1
n=1

[
xσn ,z = xp,z

]
+ a

(8)

Here,
(

xσp ,z, Yσp

)
represents the sample representation of example σp in the sample

sequence σ. p is the prior; a is the weight; z is the category to which the sample belongs.
For text features, CatBoost first maps text features to a fixed-length feature vector

through feature hashing, compressing different text features into vectors of the same length.
Subsequently, CatBoost processes the feature vectors obtained from feature hashing by
combining them. This combination enables the model to capture relationships and inter-
actions between features more effectively. This processing method can effectively process
text features, making CatBoost more convenient and efficient in handling text data. In
addition, CatBoost provides various additional methods to handle text features, including
converting text features to numerical features using category encoding, representing text
features as bag-of-words models such as word frequency or TF-IDF, transforming text
features into vector representations of fixed length as text embeddings, and extracting
n-gram features based on text features for feature derivation. Depending on the specific
problem and characteristics of the data, appropriate methods can be chosen for feature
processing and model training. In this study, we use the default handling method.

During the second split of trees, CatBoost combines features within the tree to enrich
the feature dimensions of the model, thereby further learning the nonlinear relationships
between features.

2. Addressing Gradient Bias: Traditional GBDT methods estimate gradients using the
same dataset for model training, which can lead to cumulative bias and overfitting
due to incomplete consistency in data distribution. To address this issue, CatBoost
introduces the Ordered Boosting method. The approach involves first shuffling
the sample data. For each sequence σ, t models M1, . . . , Mt are trained, where t
represents the number of samples. Each model Mq(q = 1, 2, . . . , t) is trained using
data preceding the current sample sequence.

3. Symmetric Trees. Compared to conventional decision trees, CatBoost uses a lower-
degree symmetric tree structure, which has the following characteristics:

(a) Symmetric Splitting: In contrast to traditional decision tree algorithms that
split nodes based on a single optimal feature dimension, the symmetric tree in
CatBoost splits nodes based on two feature dimensions simultaneously. This
symmetric splitting allows for more effective utilization of relationships and
interactions between features, enhancing the model’s training efficiency and
generalization capability;

(b) Feature Interaction: In a symmetric tree, decision tree nodes at the same level
consider the mutual influence of multiple features simultaneously. This feature
interaction helps the model capture feature interactions better, enhancing
accuracy and robustness.

These features of the symmetric tree enhance CatBoost’s understanding of feature
interactions, thereby improving the model’s generalization capability and reducing overfit-
ting to noise and irrelevant features in training data. Additionally, the classification method
of the symmetric tree during predictions eliminates the need for traversal from the root
node; instead, it can be implemented simply through array indexing, reducing computation
during prediction and improving prediction speed.
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CatBoost is composed of multiple hyperparameters, each controlling different func-
tions, which makes hyperparameter optimization extremely complex. Firstly, there are
interactions and influences between hyperparameters; changing one hyperparameter may
affect the optimal values of other hyperparameters, making the optimization process com-
plex and challenging. Secondly, a larger hyperparameter search space requires trying more
different combinations of hyperparameter values, leading to high computational costs. Ad-
ditionally, the large number and wide range of hyperparameters create a high-dimensional
search space that demands significant time and computational resources. Lastly, exces-
sive or frequent searching may result in overfitting on the training set, compromising
the model’s generalization ability. Therefore, hyperparameter optimization is seen as a
complex and challenging task.

Genetic algorithms simulate the theory of survival of the fittest, allowing the initial
population to evolve towards better solutions and eventually converge to the most suitable
individual for the environment [19]. In genetic algorithms, chromosomes are typically
represented as binary strings in the solution space, with a fitness function indicating
the quality of individuals or solutions. Genetic operators typically include selection,
mutation, and crossover. The selection operator involves selecting good individuals from
the old population with a certain probability to form a new population. The mutation
operator helps prevent the algorithm from getting stuck in local optimal solutions during
optimization. The crossover operator randomly selects two individuals’ chromosomes for
exchange and recombination to create new individuals. Genetic algorithms have good
robustness and simplicity, which can make CatBoost more stable and efficient. In this
study, the Uniform Crossover genetic operator is used to enhance the algorithm’s search
capability, while model performance evaluation metrics are used as the fitness function.

The pseudo of GA-CatBoost is shown in Algorithm 1.

Algorithm 1. GA-CatBoost hyperparameters tuning mechanism.

Input: cross-validation fold K, mutation type MT, fitness function Func, crossover type CT, total
iterations I, Dataset D, crossover probability C, mutation probability M
Output: The optimal hyperparameter values for CatBoost
1. Initialize i to 0
2. Initialize population randomly
3. Execute the following loop until i < I:
4. For each solution in the population do
5. Extract hyperparameters for CatBoost from solution
6. Split D into K parts, one part as testing set and the rest as training set
7. For each fold from 1 to K do
8. Training CatBoost on the training set
9. Predict values using CatBoost on the testing set
10. Calculate fitness value based on Func
11. End for
12. Compare and select the optimal model performance parameters
13. End for
14. Select solutions using roulette wheel selection
15. Apply crossover on the selected solutions with CT and C
16. Mutate of the new solutions with MT and M
17. Generate the new population
18. End loop
19. Return the optimal hyperparameter values of CatBoost

Due to the imbalance in the number of samples between the category of personnel
deaths and other categories in the dataset, there is a problem of data imbalance. This imbal-
ance may lead to classification models that overly rely on limited data samples, resulting
in overfitting and reduced accuracy and robustness of the model. In the classification of
casualties in terrorist attacks, misclassification of major casualty events can lead to unrea-
sonable resource allocation and decision-making errors, resulting in significant costs. Since
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the dataset involves textual features, traditional sampling methods at the data level may
not be suitable for sampling textual information.

Therefore, our method addresses the issue of data imbalance by leveraging the built-in
parameter of CatBoost. We need to optimize key hyperparameters in CatBoost, including
learning rate, depth, l2_leaf_reg, min_data_in_leaf, and max_ctr_complexity. These hyper-
parameters affect the performance and generalization ability of the CatBoost model during
training. Additionally, by setting the “auto_class_weights” parameter to “Balanced”, we
enable CatBoost to automatically handle the issue of data imbalance. In other words, by
ensuring that the “auto_class_weights” parameter is set to “Balanced", CatBoost optimizes
the aforementioned five parameters. Specifically, CatBoost achieves data balancing by
comprehensively adjusting the frequency of each class in the training data, the gradient of
the loss function on samples in each iteration, and the splitting of tree nodes. Our method
utilizes the parameter tuning functionality of genetic algorithms, setting the crossover
probability of the genetic algorithm to 0.6, and the mutation probability to 0.01. The tuning
range for each hyperparameter of CatBoost is as shown in Table 1.

Table 1. Experimental hyperparameters tuning range.

Hyperparameter Name Interval Explain

learning_rate [0.01, 1] Weight of each step
depth [1, 16] Limiting the maximum depth of the tree model

l2_leaf_reg [0, 10] Penalizing the model complexity.
min_data_in_leaf [1, 1000] Making the model more robust.

max_ctr_complexity [1, 10] Controlling the complexity of feature combinations.
auto_class_weights Balanced Automatically adapt to the data imbalance issue.

4. Results
4.1. Model Training

After data preprocessing, we compared our method with traditional machine learning
methods in terms of model performance. In this experiment, the feature selection part
using RF-RFE with three-fold cross-validation to obtain intermediate results, while the main
machine learning algorithms employed ten-fold cross-validation to prevent overfitting and
better evaluate the model’s generalization ability. The iteration number for CatBoost was
set at 150 for the main experiment, with some comparative experiments using 50 iterations.
The final results were evaluated using metrics such as accuracy, sensitivity, precision, F1
score, and AUC. The experimental setup included an Intel Core i7 processor @2.80 GHz,
16 GB of memory, and Windows 10 operating system. Python environment was constructed
using Anaconda, and coding was performed using Python third-party libraries such as
numpy and pandas.

4.2. Comparison among CatBoost and Other Classifcation Methods

We analyzed the proposed method and compared its model performance with other
commonly used machine learning methods. When data preprocessing and feature selection
were the same, we comprehensively analyzed the performance of the models from different
categorical feature processing and different machine learning methods. Table 2 summarizes
the experimental results of LR, Adaboost, DT, RF, XGBoost, LightGBM, and CatBoost. Since
only LightGBM and CatBoost have the ability to handle categorical features, the input
features for these two algorithms do not require further processing, while the input features
for the remaining algorithms are processed using LabelEncoder. We can see that CatBoost
without text features performs similarly to LightGBM, but after adding text features, all
evaluation metrics show significant improvement. After further tuning with GA, the
performance of the GA-CatBoost model further improved. Building upon the GA-CatBoost
model, we addressed the data imbalance issue by setting data balance parameters, and our
proposed model outperformed other algorithms in terms of accuracy (87.87), sensitivity
(92.68), precision (89.35), F1 score (90.99), and AUC (85.59). Additionally, we found that the
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performance of Adaboost and RF surpassed that of LR and DT. Adaboost and RF belong
to ensemble learning algorithms, indicating that ensemble learning methods outperform
single learning classifiers.

Table 2. Performance comparison of different classification methods.

Feature Processing Training Models AUC Accuracy F1 Sensitivity Precision

LabelEncoder

Logistics regression 61.54 70.93 80.48 90.74 72.31
Adaboost 72.62 78.55 84.87 91.07 79.46

Decision tree 74.98 77.25 82.65 82.04 83.27
Random forest 79.22 82.65 87.26 89.90 84.76

XGBoost 78.56 82.52 87.29 90.87 83.98

Built-in category
processing

LightGBM 78.87 82.60 87.29 90.48 84.32
CatBoost 78.24 82.24 87.09 90.69 87.37

CatBoost(text) 84.06 86.79 90.25 92.56 88.06
GA-CatBoost 85.50 87.77 90.91 92.59 89.29

GA-CatBoost-weight 85.59 87.87 90.99 92.68 89.35

4.3. Comparison between Training Models with Different Fitness Evaluations

After obtaining the optimal feature subset through RFE feature selection, we evaluated
the impact of different fitness functions on the model results, as GA requires specifying a
specific fitness function. We introduced the optimal fitness function into CatBoost. Table 3
displays the model performance with different fitness functions.

Table 3. Experimental results of GA-CatBoost with different fitness functions.

Training Model AUC Accuracy F1 Sensitivity Precision

GA-CatBoost-Accuracy 84.92 87.39 90.65 92.59 88.80
GA-CatBoost-Sensitivity 84.92 87.39 90.65 92.59 88.80
GA-CatBoost-Precision 84.91 87.38 90.65 92.59 88.78

GA-CatBoost-F1 84.92 87.39 90.65 92.59 88.80
GA-CatBoost-AUC 84.91 87.38 90.65 92.59 88.78

We can observe that the model performance is very similar under different fitness
functions, with GA-CatBoost showing the best performance in accuracy, sensitivity, and
F1 score functions. However, we are more focused on the performance of sensitivity, as
from the definition of sensitivity, we understand that sensitivity refers to the proportion
of correctly predicting positive samples among all actual positive samples, indicating the
model’s ability to identify all terrorist attacks with casualties. In the context of terrorist
attacks, the model may accidentally predict events with no casualties as events with casual-
ties, as decision-makers may prepare for the worst-case scenario by allocating sufficient
resources. However, even if a terrorist attack with casualties is not accurately predicted,
it could lead to severe consequences due to insufficient preparedness for terrorist attacks.
Therefore, in this study, we selected sensitivity as the fitness function for GA.

4.4. Comparison between Different Hyperparameter Tuning Methods

In this section, we analyzed the model performance comparison of our hyperpa-
rameter optimization method with other commonly used hyperparameter optimization
methods. Table 4 lists the comparison of the results of CatBoost after parameter tuning
using manual hyperparameter adjustment, grid search algorithm, random search algo-
rithm, Bayesian hyperparameter optimization algorithm, and genetic hyperparameter
optimization algorithm.
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Table 4. Results of different hyperparameter tuning methods.

Training Model AUC Accuracy F1 Sensitivity Precision

Manual 78.52 82.22 87.00 90.04 84.16
Grid search 84.64 87.13 90.46 92.38 88.62

Random search 81.82 84.93 88.91 91.49 86.48
Bayesian 83.81 86.51 90.03 92.19 87.96

Genetic algorithm 84.92 87.39 90.65 92.59 88.80

Through comparison, we can draw the following conclusions. Firstly, manual hyper-
parameter optimization methods not only incur significant human costs but also make
it difficult to manually grasp the regularities of hyperparameters, hence resulting in the
poorest model performance. Secondly, the grid search algorithm outperforms the random
search algorithm and the Bayesian hyperparameter optimization algorithm. This is be-
cause the grid search algorithm traverses candidate hyperparameter combinations in a
polling manner, which allows for testing the performance of more hyperparameter combi-
nations. However, the computation cost increases with the number of hyperparameters.
Therefore, the efficiency of the grid search algorithm is lower compared to the random
search algorithm and the Bayesian hyperparameter optimization algorithm. Additionally,
when the search iterations of the random search algorithm and Bayesian hyperparameter
optimization algorithm are sufficiently large, the performance results of these two opti-
mization algorithms tend to approach the results of the grid search algorithm. Lastly, the
results of genetic hyperparameter optimization algorithm are superior to other hyperpa-
rameter optimization algorithms, indicating that the genetic algorithm is a more effective
hyperparameter optimization algorithm, particularly for CatBoost.

5. Conclusions

Rapid and effective assessment of the potential severe consequences of terrorist attacks
can provide valuable information support for decision-makers to formulate emergency
measures and counter-terrorism plans. This paper proposes a terrorist attack casualty
prediction algorithm named GA-CatBoost-Weight based on CatBoost, aiming to predict
whether a terrorist attack will cause harm to innocent civilians.

In the proposed algorithm, to address the data imbalance issue of traditional data
sampling methods in handling textual information, the performance of the model is further
improved on balanced data basis through the inherent functions and superior feature anal-
ysis capabilities of CatBoost. Additionally, genetic algorithm is utilized to optimize various
parameters of CatBoost. The algorithm is evaluated on a terrorist attack dataset, demonstrat-
ing superior performance compared to several commonly used machine learning methods.

Using machine learning methods to predict the consequences of terrorist attacks can
effectively reduce the harm caused by attacks. This study is the first to use the CatBoost
algorithm for predicting terrorist attacks, which holds multiple significances. Firstly,
CatBoost can directly handle textual information without the need for intermediate steps
such as text vectorization, preserving semantic information of the text and reducing time
complexity. Secondly, traditional data sampling struggles to handle data imbalance issues
with textual features directly, while CatBoost can address sample balance for various modal
data through its inherent hyperparameters. Lastly, CatBoost can achieve superior model
performance with a small number of iterations, paving the way for new research avenues.
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