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Abstract: The suboptimal procedure under consideration, based on the MDR-EFE algorithm, provides
sequential selection of relevant (in a sense) factors affecting the studied, in general, non-binary random
response. The model is not assumed linear, the joint distribution of the factors vector and response is
unknown. A set of relevant factors has specified cardinality. It is proved that under certain conditions
the mentioned forward selection procedure gives a random set of factors that asymptotically (with
probability tending to one as the number of observations grows to infinity) coincides with the “oracle”
one. The latter means that the random set, obtained with this algorithm, approximates the features
collection that would be identified, if the joint distribution of the features vector and response were
known. For this purpose the statistical estimators of the prediction error functional of the studied
response are proposed. They involve a new version of regularization. This permits to guarantee not
only the central limit theorem for normalized estimators, but also to find the convergence rate of their
first two moments to the corresponding moments of the limiting Gaussian variable.
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1. Introduction

This paper is dedicated to the eminent scientist Professor A.S. Holevo, academician of
the Russian Academy of Sciences, on occasion of his remarkable birthday.

The classical problem of regression analysis consists in the search for deterministic
function f , which, in a certain sense, “well” approximates the observed random variable
(response) Y by the value f (X), where X = (X1, . . . , Xp) is a vector of factors influencing the
behavior of Y. This approach was initiated by the works of A.-M. Legendre and K. Gauss.
At that time it found application in the processing of astronomical observations. Nowadays
one widely uses the methods involving the appropriate choice of unknown real coefficients
β1, . . . , βp for a linear model of the form Y = ∑

p
i=1 βiXi + ε, where ε describes a random

error. Clearly, X0 = 1 can be included in the collection of factors, then Y=β0 +∑
p
i=1βiXi + ε.

For example, books [1,2] are devoted to regression. The close tasks also arise in observations
classification, see, e.g., [3].

Since the end of the 20th century, stochastic models have been studied where the
random response Y depended only on some subset of the factors in the set of X1, . . . , Xp. So,
in article [4], the LASSO method (Least Absolute Shrinkage and Selection Operator) was
introduced, using the idea of regularization (going back to A.N.Tikhonov), which allowed
to find factors included with non-zero coefficients in a “sparse” linear model. Somewhat
earlier, this approach was used by several authors for the treatment of geophysical data.
Generalizations of the mentioned method are considered in monograph [5]. We emphasize
that the idea of identifying some of the factors having a principle (in a certain sense) impact

Mathematics 2024, 12, 831. https://doi.org/10.3390/math12060831 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060831
https://doi.org/10.3390/math12060831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0240-3375
https://doi.org/10.3390/math12060831
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060831?type=check_update&version=3


Mathematics 2024, 12, 831 2 of 25

on a response is also intensely developing within the framework of nonlinear models. Such
direction of modern mathematical statistics is called Feature Selection (FS), i.e., the choice
of features (variables, factors). In this regard, we refer, e.g., to monographs [6–9] and also
to reviews [10–14]. In [10] the authors consider filter, wrapper and embedded methods of
FS. They concentrate on feature elimination and also demonstrate the application of FS
technique on standard datasets. In [11] the modern mainstream dimensionality reduction
methods are analyzed including ones for small samples and those based on deep learning.
In [12] FS machinery is considered based on filtering methods for detecting the cyber attacks.
Survey [13] is devoted to FS methods in machine learning (the structured information is
contained in 20 tables). The authors of [14] concentrate on applications of FS to stock
market prediction and applications of FS in the analysis of credit risks are considered, e.g.,
in [15]. Beyond financial mathematics the choice of relevant factors is very important in
medicine and biology. For instance, in the field of genetic data analysis there is an extensive
research area called GWAS (Genome-Wide Association Studies) aimed at studying the
relationships between phenotypes and genotypes, see, e.g., [16,17]. The authors of [18]
provide the survey of starting methods used by genetic algorithms. Review [19] is devoted
to the FS methods for predicting the risk of diseases. Thus, research in the field of FS is not
only of theoretical interest, but also admits various applications.

Note that there are a number of complementary methods for identifying relevant
factors. Much attention is paid to those employing the basic concepts of information theory
such as entropy, mutual information, conditional mutual information, interaction infor-
mation, various divergences, etc. Here statistical estimation of information characteristics
plays an important role. One can mention, e.g., works [20,21]. In this article, the accent is
made on identifying a set of relevant factors in the framework of a certain stochastic model,
when the quality of the response approximation is evaluated by means of some metric.

Recall that J.B. Herrick in 1910 described the Sickle cell anemia (HbS). Later it was
discovered that all clinical manifestations of the presence of HbS are the consequences of
the single change in the B-globin gene. This famous example shows that even the search
of a single feature having impact on a disease is reasonable. Nowadays the researchers
concentrate on complex diseases provoked by several disorders of the human genome.
Even identification of two SNPs (single nucleotide polymorphisms) having impact on a
certain disease is of interest, see, e.g., [22].

Now we turn to the description of the studied mathematical model. All the considered
random variables are defined on a probability space (Ω,F ,P). Let a random variable Y
map Ω to some finite set Y. We assume that, for k ∈ T := {1, . . . , p}, a random variable
Xk : Ω → Mk, where Mk is an arbitrary finite set. Then the vector X = (X1, . . . , Xp) takes
the values in X = M1 × . . .× Mp. For a set S = {i1, . . . , ir}, where 1 ≤ i1 < . . . < ir ≤ p, we
put XS := (Xi1 , . . . , Xir ). Similarly, for x ∈ X, xS denotes a vector (xi1 , . . . , xir ). A collection
of indices S ⊂ T (the symbol ⊂ is everywhere understood as a non-strict inclusion) is called
relevant if the following relation holds for any x ∈ X and y ∈ Y:

P(Y = y|X = x) = P(Y = y|XS = xS), (1)

whenever P(Y = y|X = x) ̸= 0. In this case, the set of factors XS is called relevant as well.
If (1) takes place for some S = S0 then it will be obviously valid for any S containing S0.
Therefore, the natural desire is to identify a set S that satisfies (1) and has cardinality r < p
(if such a set other than T exists). Note that there are different definitions of the relevant
factors collection, see, e.g., [23,24] and the references therein.

It is assumed that a collection of relevant factors has r elements (1 ≤ r < p), however,
the set S itself, which appears in (1), is unknown and should be identified. We label this
assumption as (A). There is no restriction that S satisfying (1) and containing r elements
is unique. Usually the joint distribution of (X, Y) is also unknown. Therefore, a statistical
estimator of S is constructed based on the first N observations ξN := (ξ(1), . . . , ξ(N)) of
a sequence ξ(1), ξ(2), . . ., consisting of i.i.d. random vectors, where, for k ∈ N, ξ(k) :=
(X(k), Y(k)) has the same distribution as the vector (X, Y).
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In 2001, the authors of [25] proposed a method for identifying relevant factors, called
MDR (Multifactor Dimensionality Reduction). According to article [26], more than 800 pub-
lications were devoted to the development of this method and its applications in the period
from 2001 to 2014. Research in this direction has continued over the last decade, see,
e.g., [27–29]. In [30], for the binary response Y, a modification of the MDR method was
introduced, namely, MDR-EFE (Error Function Estimation), based on statistical estimates of
the error functional of the response prediction using the K-fold cross-validation procedure,
see also [31]. Later this method was extended in [32] to study the non-binary response.

Recall how the MDR-EFE method is employed. Let a non-random function f : X → Y
be used to predict the response Y by the values of the factors vector X. Further we exclude
considering the trivial case when Y = y0 with probability one for some y0 ∈ Y (hence, X
and Y are independent). The prediction quality is determined by applying the following
error functional

Err( f ) := E|Y − f (X)|ψ(Y), (2)

where a penalty function ψ : Y → R+. The functional Err takes finite values for the discrete
X and Y under consideration. The function ψ allows to take into account the importance of
approximating a particular value of Y using f (X).

In biomedical research, one often considers the binary response Y characterizing
the patient’s state of health, say, the value Y = 1 corresponds to illness, and Y = −1
means that the patient is healthy. In many situations it is more important to consider the
disease detection, so the value of 1 is attributed more weight. Of interest is the situation
when Y = {−1, 0, 1}. Then the value 0 describes some intermediate state of uncertainty
(“gray zone”). Following [32], we will consider a more general scheme when the set
Y := {−m, . . . , 0, . . . , m} for some m ∈ N. Lemma 1 in [32] describes for such model all
optimal functions fopt that deliver a minimum to the error functional (2). Note that we can
suppose that the set of values of Y is strictly contained in {−m, . . . , m}, i.e., some values are
accepted with zero probability. For such y, we assume that ψ(y) = 0. Thus, it is possible to
study Y taking values in an arbitrary finite subset of Z. In order to simplify the notation,
we further consider P(Y = y) > 0 for all y ∈ Y = {−m, . . . , m}.

It is proved that in the framework of model (1) the relation fopt = f S is valid, where,
for x ∈ X and U ⊂ T, f U(x) = f (xU) and a function f is constructed in a due way. At the
same time, for any U ⊂ T such that ♯U = ♯S (♯ denotes the cardinality of a finite set) and S
appearing in (1), the following inequality is true:

Err( f S) ≤ Err( f U). (3)

For U ⊂ T, the function f U is introduced further. It depends on the joint distribu-
tion of (X, Y) which is usually unknown. Thus we use observations ξN = {(X(j), Y(j)),
j = 1, . . . , N} for statistical estimates of the functional Err( f U), where U ⊂ T, and then
select as an estimator of S the set U on which the minimum of the corresponding statistical
estimate is attained. This approach is described in the next section of the article.

We underline that consideration of all subsets (of the set T) having the cardinality r in
the mentioned comparison procedure (involving regularized estimators, as explained in
Section 2) for statistical estimates of the error functional is practically unfeasible, when p is
large and r is moderately large. Therefore, a number of suboptimal methods of sequential
feature selection have emerged. Such methods are used in various approaches to identify
sets of relevant factors.

Mainly, one aims either to sequentially add indexes at each step of the algorithm for
constructing a statistical estimator of a set S appearing in (1), or to sequentially exclude
features from the general set T. In [33], algorithms of forward selection, i.e., sequential
addition of indexes to the initial set, based on information theory, are considered. The
authors of [33] show that the various algorithms employed can be interpreted as procedures
based on proper approximations of the certain objective function. In [34] the principle
attention is paid to simple models describing the phenomenon of epistasis observed in
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genetics, when individual factors do not affect the response, and some combinations
of them lead to essential effects (in statistics one says “synergy interaction” of factors).
Besides we also demonstrated that a number of well-known algorithms, for instance,
mRMR (Minimum Redundancy Maximum Relevance) using mutual information and/or
interaction information with a sequential procedure for selecting relevant factors can lead
to the identification of the desired set with probability which is negligibly small. In [35] a
variant is proposed for sequential (forward) application of the MDR-EFE method within
the binary response model involving the naive Bayesian classifier scheme. The latter means
that, for any y ∈ {−1, 1} and all x ∈ X, the following relation holds:

P(X = x|Y = y) =
p

∏
k=1

P(Xk = xk|Y = y). (4)

In other words, the factors X1, . . . , Xp are conditionally independent for a given
response Y. In [35] the joint distribution of X and Y was assumed known.

The principle goal of our work is to derive, for a non-binary, in general, random
response, the probability that a sequential selection of features based on the (forward) appli-
cation of the MDR-EFE method, without assuming the validity of (4), leads to identifying a
suboptimal set that would be constructed by means of the same method from observations
with a known joint distribution of the response and the vector of factors.

This result builds on the central limit theorem (CLT) for statistical estimates of the
prediction error functional for a possibly non-binary response, proved in [32], which extends
the CLT for the binary response model studied by the author previously. In addition, for
the purposes of this work, we found the convergence rate of the first two moments of the
considered statistics to the corresponding moments of the limiting Gaussian variable as the
number of observations tends to infinity.

The article has the following structure. Section 2 describes statistical estimates of
the error functional (for a response prediction) based on the MDR-EFE method. We also
introduce the regularized versions of these estimators. In Section 3, the convergence
rate of the first two moments of the regularized estimators of the error functional to the
corresponding moments of the limiting Gaussian variable is established. Section 4 contains
the main result related to the forward selection of relevant factors. The concluding remarks
are given in Section 5. The proof of elementary Lemma 2 is provided in Appendix A for
completeness of exposition.

2. Error Functional Estimators

Consider, in general, a non-binary response, i.e., let Y := {−m, . . . , 0, . . . , m} for some
m ∈ N. In the framework of the introduced discrete model, Lemma 1 of [32] gives a
complete description of the class of optimal functions fopt providing the minimum error
Err( f ), determined by (2), in the class of all functions f : X → Y. To define such a function
(included in the optimal class) for x ∈ X, we deal with a vector w(x) having components

wy(x) := ψ(y)P(Y = y, X = x), y ∈ Y.

It can be easily seen that

Err( f ) = ∑
y,z∈Y

|y − z|ψ(y)P(Y = y, f (X) = z) = ∑
z∈Y

∑
x∈Az

w⊤(x)q(z), (5)

where Az := {x ∈ X : f (x) = z}, q(z) is a column of (2m + 1)× (2m + 1) matrix Q having
elements qy,z := |y − z| (the element q−m,−m is located in the upper left corner of the matrix
Q), ⊤ stands for the transposition of column vectors. In other words, one employs in (5)
the scalar product of the vectors w(x) and q(z). Thus, search for an optimal function fopt
means finding the partition of X into such sets Az, z ∈ Y, that provide the minimum value
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of the right-hand side of (5). Note also that, according to Formula (13) of [32], the error of
response prediction can be written as follows:

Err( f ) =
2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)P(Y = y, | f (X)− y| > i). (6)

Let, for y ∈ Y, the vector ∆(y) have the first m + y components equal to 1, and the
remaining m − y + 1 components equal to (−1). For any x ∈ X, we introduce a vector L(x)
with 2m components having the form

Ly(x) := w⊤(x)∆(y), y ∈ Y, y > −m. (7)

According to formula (11) of [32] one infers that

fopt(x) = y ⇐⇒


L−m+1(x) ≥ 0, y = −m,
Ly+1(x) ≥ 0, Ly(x) < 0, y ̸= ±m,
Lm(x) < 0, y = m.

(8)

The joint distribution of (X, Y) is, in general, unknown. Therefore, the optimal function
fopt cannot be found in practice, so an algorithm is used to predict it, i.e., to approximate
by means of specified statistical estimators. The response prediction algorithm is defined
as a function f̂PA = f̂PA(x, ξ(W)) given for x ∈ X and a set of observations

ξ(W) := {ξ(j) = (X(j), Y(j)), j ∈ W}, W ⊂ N, ♯W < ∞. (9)

The function f̂PA takes values in the set Y. It is assumed that the value of f̂PA(x, ξ(W))
becomes close, in a certain sense, to f (x) for x in a specified subset of the set X when W is
sufficiently “massive”. More precisely, we consider a family of functions f̂PA that depend
on sets ξ(W) of different cardinalities, but we will not complicate the notation. Consider
M = {x ∈ X : P(X = x) > 0}. For x ∈ X, U ⊂ T and y ∈ Y, introduce a vector wU(x)
with components

wU
y (x) :=

{
ψ(y)P(Y = y, XU = xU), x ∈ M,
0, x /∈ M.

Set
LU

y (x) := (wU(x))⊤∆(y), y ∈ Y, y > −m. (10)

For U ⊂ T, let f U be defined by means of a counterpart of formula (8), where LU
y (x) is

now written instead of Ly(x). Then, according to Section 5 of [32] (the notation α is used
there instead of U), in the framework of model (1), the optimal function fopt = f S, where S
appears in (1) and ♯S = r. Therefore relation (3) is valid for f U corresponding to any U ⊂ T
with ♯U = r (the assumption (A) holds).

To introduce an algorithm for predicting the function f U , we employ statistical es-
timators of the penalty function ψ, as well as the values LU

y (x), where x ∈ X, y ∈ Y,
y > −m. Consider

ψ(y) := 1/P(Y = y), where P(Y = y) > 0, y ∈ Y. (11)

In the case of a binary response, such a choice of the penalty function was proposed
in [36], the justification for this choice is given in [31], see also Section 4 in [32]. For the
specified function ψ(y) and observations ξ(W), where the finite set W ⊂ N, we use

ψ̂(y, ξ(W)) :=

{
1

P̂(y,ξ(W))
, P̂(y, ξ(W)) ̸= 0,

0, P̂(y, ξ(W)) = 0,
(12)
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where the frequency estimator of a probability P(Y = y) has the form

P̂(y, ξ(W)) :=
1
♯W ∑

j∈W
I{Y(j) = y}, y ∈ N. (13)

It is not difficult to see that the strong law of large numbers for arrays of random
variables (see, e.g., [37]) entails for finite sets WN ⊂ N, such that ♯WN → ∞, the relation

ψ̂(y, ξ(WN)) → ψ(y) a.s., N → ∞. (14)

Let the prediction algorithm f̂ U
PA (x, ξ(WN)) of a function f U(x) be constructed by

means of formula (8) analogue, where, for x ∈ X, y ∈ Y, y > −m, and WN ⊂ {1, . . . , N},
one uses now statistical estimators L̂U,WN

y (x) of functions LU
y (x) introduced in (10). Namely,

let us define the following random variables:

ŵU,WN
y (x) := ψ̂(y, ξ(WN))

1
♯WN

∑
j∈WN

I{Y(j) = y, X(j)
U = xU}, y ∈ Y,

where ψ̂(y, ξ(WN)) is an estimator of ψ(y) appearing in (12). For x ∈ X, y ∈ Y, y > −m, set

L̂U,WN
y (x) := ŵU,WN

y (x)⊤∆(y).

Replace the value Ly(x) in (8) by L̂U,WN
y (x). Then one can claim that

f̂ U
PA (x, ξ(WN)) = y ⇐⇒


L̂U,WN

y (x) ≥ 0, y = −m,
L̂U,WN

y+1 (x) ≥ 0, L̂U,WN
y (x) < 0, y ̸= ±m,

L̂U,WN
y (x) < 0, y = m.

(15)

For K ∈ N, K > 1, we take a partition of a set {1, . . . , N} into subsets

Dk(N) := {(k − 1)[N/K] + 1, . . . , k[N/K]I{k < K}+ NI{K = N}}, (16)

here k = 1, . . . , K, [a] is an integer part of a number a ∈ R, I{A} is an indicator of a set A.
These sets are applied in the K-fold cross-validation procedure increasing the stability of
statistical inference (cross-validation procedure is studied, e.g., in [38]). Following [32],
the estimator of the functional Err( f U), i.e., a statistical estimator of the prediction error
functional for a function f U and observations ξN := ξ({1, . . . , N}), involving the K-fold
cross-validation procedure, is given by the formula:

ÊrrK,N( f U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

1
K

K

∑
k=1

ψ̂(y, ξ(Dk(N)))

× 1
♯Dk(N) ∑

j∈Dk(N)

I{Y(j) = y, | f̂ U
PA(X(j), ξ(Dk(N)))− y| > i}, (17)

where Dk(N) := {1, . . . , N} \ Dk(N) and ψ̂(y, ξ(Dk(N))) are evaluated according to (12)
for WN = Dk(N), k = 1, . . . , K. The estimator (17) is a natural statistical analogue of
the error functional (2) written in the form (6) when one employs the K-cross-validation
procedure. Namely, instead of ψ(y) we apply its statistical estimator of the type (12) and
instead of f we use its approximation by means of prediction algorithm based on the part
Dk(N) of observations. To obtain the statistical estimators of the probability appearing in
Formula (6) we write the corresponding average of indicator functions. One employs also
the averaging over different parts of observations.
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By Theorem 2 of [32], if S = {i1, . . . , ir} is a set of relevant factors, i.e., (1) holds, then,
for each ε > 0 and any set U = {m1, . . . , mr} ⊂ T, the following inequality takes place
almost sure for all N large enough:

ÊrrK,N( f S) ≤ ÊrrK,N( f U) + ε. (18)

Thus, it is natural to consider all subsets U = {m1, . . . , mr} ⊂ T and choose as a
statistical estimator of a relevant collection of indices (i1, . . . , ir) a set U on which the
minimum of ÊrrK,N( f U) is attained. Here we also note that, for the study of asymptotic
properties of the error functional, the regularization of the prediction algorithm by means of
a sequence of positive numbers (εN)N∈N such that εN → 0, as N → ∞, plays an important
role. Namely, for WN ⊂ {1, . . . , N}, we define

f̂ U
PA,εN

(x, ξ(WN)) = y ⇐⇒


L̂U,WN

y (x) + εN ≥ 0, y = −m,
L̂U,WN

y+1 (x) + εN ≥ 0, L̂U,WN
y (x) + εN < 0, y ̸= ±m,

L̂U,WN
y (x) + εN < 0, y = m.

(19)

As in article [32], we assume that

εN → 0+,
√

NεN → ∞, N → ∞. (20)

Now we introduce a statistical estimator ÊrrK,N,εN ( f U) using an analogue of For-
mula (17), where one employs f̂ U

PA,εN
instead of f̂ U

PA. For the regularized statistical estima-

tors, as mentioned in [32], the analogue of Formula (18) holds. In [32], for estimators f̂ U
PA,εN

constructed when condition (20) is met, the CLT is established. In the next section we apply
a slightly different regularization for the error functional estimates, which will permit us to
specify the convergence rate of the first two moments of these estimators to corresponding
moments of the limiting Gaussian variable. This result is not only of independent interest,
but is also applied in Section 4.

3. Asymptotic Behavior of the First Two Moments of Statistical Estimators of the
Error Functional

As noted in Section 2, we will use the penalty function (11). Therefore, for WN = Dk(N),
as a strongly consistent estimator ψ̂(y, Dk(N)) of ψ(y) we will employ the variable ap-
pearing in (12), denoted below as ψ̂N,k(y), where y ∈ Y, k = 1, . . . , K, N ∈ N. Recall that
the estimator ÊrrK,N( f U) is defined by formula (2). If the regularized version f̂PA,εN is
substituted into this estimator instead of f̂ U

PA, where x ∈ X and N ∈ N, then the notation
ÊrrK,N,εN ( f U) is used. We will apply the following Corollary 3 of [32] established in the
framework of a model satisfying (1).

Theorem 1 ([32]). Let U be an arbitrary subset of T having the cardinality r, the function f U be
defined after formula (10), f̂ U

PA,εN
appear in (19) for observations ξN , and the sequence (εN)N∈N

satisfy condition (20). Then

√
N
(
ÊrrK,N,εN ( f U)− Err( f U)

) D→ Z ∼ N(0, σ2(U)), N → ∞, (21)

and in this case σ2(U) is the variance of a random variable

V(U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

I{Y = y}
P(Y = y)

(I{| f U(X)− y| > i}−P(| f U(X)− y| > i|Y = y)). (22)

It is known that the convergence in distribution of random variables, in general, does
not ensure the convergence of their moments even when the moments exist. We will
manage to establish the convergence rate of the first two moments of the error functional
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statistical estimators to the corresponding moments of the limit random variable. For this
purpose we slightly strength the condition of estimates regularization. We require that a
sequence (εN)N∈N satisfies the following condition:

εN → 0+,
εN

√
N√

log 1
εN

→ ∞, N → ∞. (23)

Clearly, (23) implies the validity of (20). Relation (23) holds if one takes εN = N−δ,
N ∈ N, where δ ∈ (0, 1/2).

Lemma 1. Let condition (23) be met. Then, for every K ∈ N, K > 1, and any U ⊂ T, the statistical
estimators ÊrrK,N,εN ( f U) satisfy the following relation:

N E(ÊrrK,N,εN ( f U)− Err( f U))2 → σ2(U), N → ∞, (24)

where σ2(U) = varV(U) and V(U) is introduced in formula (22).

Proof of Lemma 1. Let us fix an arbitrary set U ⊂ T. For each N ∈ N one has

ZN :=
√

N
(
ÊrrK,N,εN ( f U)− Err( f U)

)
=

√
N(ÊrrK,N,εN ( f U)− T̂N( f U)) (25)

+
√

N(T̂N( f U)− TN( f U)) +
√

N(TN( f U)− Err( f U)),

where

TN( f U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

1
K

K

∑
k=1

ψ(y)
♯Dk(N) ∑

j∈Dk(N)

I{Y(j) = y, | f U(X(j))− y| > i}, (26)

T̂N( f U) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

1
K

K

∑
k=1

ψ̂N,k(y)
♯Dk(N) ∑

j∈Dk(N)

I{Y(j) = y, | f U(X(j))− y| > i}, (27)

ψ̂N,k(y) are defined by means of (12) for WN = Dk(N), k = 1, . . . , K, N ∈ N. The proof is
divided into several steps.

Step 1 . At first we consider

RN :=
√

N(ÊrrK,N,εN ( f U)− T̂N( f U)), N ∈ N.

To simplify the notation, we do not write that RN also depends on K, ξN and εN . Our
aim is to show that if (23) holds then

ER2
N → 0 as N → ∞. (28)

In the light of formula (71) of [32], under condition (20) the following relation is valid:

RN
P→ 0, N → ∞. (29)

Taking into account (29), by Theorem 5.4 of [39], relation (28) holds if (and only if) the
sequence (R2

N)N∈N is uniformly integrable. Due to theorem by De La Vallé - Poussin (see,
e.g., Theorem 1.3.4 of [40]) it is sufficient to verify that

sup
N∈N

E(R4
N) < ∞.
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For x ∈ X, y ∈ Y, i ∈ Z+, k = 1, . . . , K and N ∈ N we introduce the following random
variables:

F(i)
N,k(x, y) = I{| f̂ U

PA,εN
(x, ξ(DN,k))− y| > i} − I{| f U(x)− y| > i}, (30)

Sk(i, y) :=
1

♯Dk(N) ∑
j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y), (31)

where, for W ⊂ N, ξ(W) is defined by Formula (9). Write RN = UN,1 + UN,2, here

UN,1 :=
√

N

 1
K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)Sk(i, y)

,

UN,2 :=
√

N

 1
K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))Sk(i, y)

.

Now note that, for any real numbers a1, . . . , av, every v ∈ N and an arbitrary γ > 1,
the Hölder inequality implies that(

v

∑
r=1

|ar|
)γ

≤ vγ−1
v

∑
r=1

|ar|γ. (32)

Evidently, (32) is true for γ = 1 as well. Consequently, we get

R4
N ≤ 8(U4

N,1 + U4
N,2), N ∈ N. (33)

Clearly, for all x ∈ X, y ∈ Y, WN ⊂ {1, . . . , N} and N ∈ N, one has

L̂U,WN
y,εN (x) := L̂U,WN

y (x) + εN = LU
y (x) + (ŵU,WN

y (x)− wy(x))⊤∆(y) + εN , (34)

where the functions appearing in (34) were introduced in Section 2. For any x ∈ X and
y ∈ Y, the inequalities LU

y (x) ≥ 0, LU
y+1(x) < 0 are satisfied if and only if, for arbitrary

δN(x, y; U) > 0 such that δN(x, y; U) → 0, as N → ∞, and all sufficiently large N ∈ N,
the following inequalities are valid: LU

y (x) + δN(x, y; U) > 0, LU
y+1(x) + δN(x, y; U) < 0

(the analogous statement is true for inequalities corresponding to coordinates y = m and
y = −m in Formula (19)). Obviously,

|(ŵU,WN
y (x)− wy(x))⊤∆(y)|

≤ |ψ̂(y, ξ(WN))− ψ(y)|+ ψ(y)

∣∣∣∣∣ 1
♯WN

∑
q∈WN

I{X(q)
U = xU , Y(q) = y} − P(XU = xU , Y = y)

∣∣∣∣∣,
where ψ̂(y, ξ(WN)) is defined in (12). One has

∑
xU

(
1

♯WN
∑

q∈WN

I{X(q)
U = xU , Y(q) = y} − P(XU = xU , Y = y)

)

=
1

♯WN
∑

q∈WN

I{Y(q) = y} − P(Y = y)

= P̂(y, ξ(WN))− P(Y = y). (35)
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For x ∈ X, y ∈ Y, WN ⊂ {1, . . . , N} and N ∈ N, consider the following event

AWN (x, y) =

{∣∣∣∣∣ 1
♯WN

∑
q∈WN

I{X(q)
U = xU , Y(q) = y} − P(XU = xU , Y = y)

∣∣∣∣∣ ≤ p2
0εN

8♯X

}
, (36)

where p0 = miny∈Y P(Y = y) (we assumed that P(Y = y) > 0 for y ∈ Y). More precisely
one can write AWN (x, y) = AWN (x, y, U; {(X(q), Y(q)), q ∈ WN}). We will not include a set
U in the list of arguments since this set is fixed. Then, for ω ∈ AWN (x, y), in view of (35),
we get ∣∣∣P̂(y, ξ(WN))− P(Y = y)

∣∣∣ ≤ p2
0εN

8
. (37)

Then by virtue of (37), for any y ∈ Y and all N large enough, i.e., for N ≥ N0(Y, (εN)N∈N),
one has

P̂(y, ξ(WN)) ≥ P(Y = y)−
p2

0εN

8
≥ P(Y = y)− εN

8
>

P(Y = y)
2

> 0,

and hence the following relation holds

|ψ̂(y, ξ(WN))− ψ(y)| = |P̂(y, ξ(WN))− P(Y = y)|
P̂(y, ξ(WN))P(Y = y)

≤
p2

0εN
8

P(Y=y)2

2

≤ εN
4

. (38)

Thus if ω ∈ AWN (x, y), where x ∈ X and y ∈ Y, then according to (36) and (38), for all
N large enough, we can write

|(ŵU,WN
y (x)− wy(x))⊤∆(y)| ≤ εN

4
+

(
1
p0

)
p2

0εN

8♯X ≤ εN
2

.

Taking into account that the sets X and Y have finite cardinalities, we ascertain that,
for any x ∈ X, y ∈ Y and all N large enough, for ω ∈ AWN (x, y), one has

f̂ U,WN
PA,εN

(x) = f U(x). (39)

Consequently, for any x ∈ X, y ∈ Y, i = 0, 1, . . . , 2m − 1, ω ∈ AWN (x, y), where
WN = Dk(N), k = 1, . . . , K, for all N large enough (i.e., N ≥ N1), the following inequality
holds:

F(i)
N,k(x, y)I{ADk(N)(x, y)} = 0. (40)

Applying (32) we come to the inequality

|UN,1|4 ≤ N2 (2m)6

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)4

 1
♯Dk(N) ∑

j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y)

4

.

Let Σ̃ denote the summation over all xj ∈ X for j ∈ Dk(N). For N ≥ N1 one has

E

 ∑
j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y)

4

= E

Σ̃

 ∑
j∈Dk(N)

I{Y(j) = y}F(i)
N,k(xj, y)

4

I

 ⋂
j∈Dk(N)

{X(j) = xj}
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= E

Σ̃

 ∑
j∈Dk(N)

I{Y(j) = y}F(i)
N,k(xj, y)I{ADk(N)(xj, y)}

4

I

 ⋂
j∈Dk(N)

{X(j) = xj}




= E

 ∑
j∈Dk(N)

I{Y(j) = y}F(i)
N,k(X(j), y)I{ADk(N)(X(j), y)}

4

≤ E

 ∑
j∈Dk(N)

I{ADk(N)(X(j), y)}

4

,

here we employ (40) and take into account that |F(i)
N,k(x, y)| ≤ 1. We see that

|UN,1|4 ≤ N2 (2m)6

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

ψ(y)4

(♯Dk(N))4

(
∑

j∈Dk(N)

I{ADN(k)(X(j), y)}
)4

. (41)

For WN ⊂ {1, . . . , N}, y ∈ Y and j = 1, . . . , N, introduce the functions

gWN (X(j), y) = I{AWN (X(j), y)} = I{AWN (X(j), y; {(X(q), Y(q)), q ∈ WN})}.

It is known (see, e.g., formula (15) in Chap. VI of [41]) that if a bounded Borel function
g : Rn ×Rm → R, ξ and ζ are independent random vectors taking values in Rn and Rm,
respectively, then

E(g(ξ, ζ)|ζ = z) = Eg(ξ, z), z ∈ Rn.

Due to independence of (X(j), Y(j)), j ∈ N, we can apply the lemma on grouping
random vectors (see, e.g., [42], p. 28) to get the relation

E
((

∑
j∈Dk(N)

gDk(N)(X(j), y; (X(q), Y(q)), q ∈ Dk(N)))
)4∣∣∣(X(q), Y(q)) = (xq, yq), q ∈ Dk(N))

)

= E
(

∑
j∈Dk(N)

gDk(N)(X(j), y; (xq, yq)), q ∈ DN(k)))
)4

.

By the Rosenthal inequality (see, e.g., Theorem 2.9 of [43]), for independent centered
random variables Z1, . . . , Zv, having E|Zj|t < ∞ for some t ∈ [2, ∞) and each j = 1, . . . , v,
one has

E
∣∣∣ v

∑
j=1

Zj

∣∣∣t ≤ C(t)
( v

∑
j=1

E|Zj|t +
( v

∑
j=1

EZ2
j

) t
2
)

, (42)

where C(t) > 0 depends on t but does not depend on v and distributions of variables Zj,
j = 1, . . . , v.

Set η
(j)
N,k := gDk(N)(X(j), y; {(xq, yq)), q ∈ DN(k)}), j ∈ N. Note that 0 ≤ η

(j)
N,k ≤ 1 for

all j ∈ DN(k). Then according to (42) we come to the inequality

E

 ∑
j∈Dk(N)

(η
(j)
N,k − Eη

(j)
N,k)

4

≤ C(♯Dk(N))2,

where k = 1, . . . , K and C = 2C(4). Hence, applying (32) for γ = 4 and v = 2, one has

E

 ∑
j∈Dk(N)

η
(j)
N,k

4

≤ 8

C(♯Dk(N))2 +

 ∑
j∈Dk(N)

Eη
(j)
N,k

4
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≤ 8C(♯Dk(N))2 + 8(♯Dk(N))4 max
j∈Dk(N)

(Eη
(j)
N,k)

4.

Evidently, we can write

E(η
(j)
N,k) = P(ADk(N)(X(j), y; {(xq, yq)), q ∈ Dk(N)}).

Let Mk = ♯Dk(N), where Mk = Mk(N), k = 1, . . . , K. Set ζq = I{X(q)
U = xU , Y(q) = y},

where q ∈ Dk(N), σ2
0 = var ζq. Clearly, ζq depends on xU , y and U. Random variables ζq

are identically distributed for q ∈ N. Therefore σ2
0 = σ2

0 (U, x, y), but does not depend on q.
If σ2

0 = 0, then the variables ζq are a.s. equal to some constant. According to (36), an event
ADk(N)(X(j), y; {(xq, yq)), q ∈ Dk(N)}) occurrence means that the variable which is equal
to zero a.s. turns greater than (p2

0εN)/(8♯X). Therefore, in the degenerate case one has

P(ADk(N)(X(j), y; (xq, yq)), q ∈ Dk(N))) = 0

and Eη
(j)
N,k = 0 for all j = 1, . . . , N. Consider now the case when σ2

0 > 0. Then we get

P(ADk(N)(X(j), y; {(xq, yq), q ∈ Dk(N)}) = P

(
∑q∈Dk(N)(ζq − Eζq)

σ0
√

Mk
>

p2
0
√

MkεN

8♯Xσ0

)
,

where p0 appeared in (36).
Now we employ the Berry-Esseen estimate of the convergence rate in CLT for i.i.d. random

variables. Let Z1, . . . , Zv be i.i.d. random variables such that EZ1 = 0, varZ1 = σ2 ∈ (0, ∞),
E|Z1|3 = ρ < ∞. We write F for the distribution function of Z1 and Fv stands for the
distribution function of (Z1 + . . . + Zv)/(σ

√
v). Then (see, e.g., Theorem 5.4 of [43]), for

any v ∈ N,

sup
u∈R

|Fv(u)− Φ(u)| ≤ C0ρ

σ3
√

v
,

where Φ(u) is the distribution function of a standard normal random variable, C0 is a
positive constant (C0 does not depend on distribution of Z1 and v). According to [44] one
has C0 ≤ 0, 4693. Consequently, taking Z ∼ N(0, 1), we have

P

(∣∣∣∣∣∑q∈Dk(N)(ζq − Eζq)

σ0
√

Mk

∣∣∣∣∣ > p2
0
√

MkεN

8♯Xσ0

)
≤ P

(
|Z| >

p2
0
√

MkεN

8♯Xσ0

)
+

2C0

σ3
0
√

Mk
(43)

since E|ζq − Eζq|3 ≤ 1 for q ∈ Dk(N), where ζq = I{X(q)
U = xU , Y(q) = y}.

It is well-known (see, e.g., formula (29) of Chap. II of [41]), that, for u > 0, the
following inequality is true:

P(|Z| ≥ u) ≤
√

2/π

u
exp

{
−u2

2

}
.

Therefore, by virtue of an inequality σ2
0 ≤ 1/4 (which is valid for the indicator variance)

and as
(K − 1)[N/K] ≤ Mk ≤ N, (44)

we can write under condition (23) that

P

(
|Z| >

p2
0
√

MkεN

8♯Xσ0

)
≤ 8♯X

√
2σ0

p2
0
√

πMkεN
exp

−1
2

(
p2

0
√

MkεN

8♯Xσ0

)2
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≤ 4
√

2♯X
p2

0
√

πMkεN
exp

− 1
32

(
p2

0
√

MkεN

♯X

)2


=
4
√

2♯X
p2

0
√

πMk
exp

− 1
32

(
p2

0
√

MkεN

♯X

)2

+ log
(

1
εN

) ≤ C1√
N

, N ∈ N,

and C1 does not depend on N.
Introduce

σ̃2 := min
U⊂T,x∈X,y∈Y

σ2
0 (U, x, y),

where one considers only strictly positive σ2
0 (U, x, y). Then obviously σ̃2 > 0, as there

exists only a finite collection of different variants. Thus in view of (44), for all x, y and U
under consideration, one has

2C0

σ̃3
√

Mk
≤ C2√

N
, N ∈ N,

where C0 appeared in (43) and C2 does not depend on N.
Therefore, if condition (23) is satisfied then, for all x ∈ X, y ∈ Y, k = 1, . . . , K and

j ∈ Dk(N), the following inequality holds:

Eη
(j)
N,k ≤

C3√
N

, N ∈ N, (45)

where C3 does not depend on x, y, k and N. Hence, in view of (44) we come to the relation

E

 ∑
j∈Dk(N)

gDk(N)(X(j), y; {(X(q), Y(q)), q ∈ Dk(N)})

4

≤
(

8C(♯Dk(N))2 + 8(♯Dk(N))4 C4
3

N2

)
∑

(xq ,yq)),q∈DN(k)

P((X(q), Y(q)) = (xq, yq)) ≤ C4N2,

where C4 does not depend on x, y, k and N. Thus according to (41), for all N large enough,
we have proved the inequality

EU4
N,1 ≤ C5, (46)

where C5 does not depend on N.
In a similar way (taking into account (42) and (45)), for i = 0, . . . , 2m − 1, y ∈ Y,

k = 1, . . . , K, and all N large enough, we get

ESk(i, y)8 ≤ C6(♯DN(k))−4, (47)

where Sk(i, y) is introduced in (31), and C6 does not depend on N.
We will employ an elementary result for the Bernoulli scheme. Let U1, U2, . . . , be a

sequence of i.i.d. random variables such that P(U1 = 1) = p and P(U1 = 0) = 1 − p, where
p ∈ (0, 1). Consider the following frequency estimator of a probability p:

p̂N :=
1
N

N

∑
j=1

I{Uj = 1}, N ∈ N.

Define

ψ̂N :=

{
1
p̂N

, p̂N ̸= 0,

0, p̂N = 0.
(48)
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Lemma 2. For the Bernoulli scheme introduced above and the estimators ψ̂N provided by formula
(48), for each t ∈ N, the following relation holds:

E

(
ψ̂N − 1

p

)t
= O

(
1
N

)
, N → ∞. (49)

More precisely, the absolute value of the function in the left-hand side of (49), for all N ∈ N, admits
a bound c/N where c = c(p, t) for p ∈ (0, 1) and t ∈ N.

For the sake of completeness the proof of this result is given in Appendix A.
Now we continue the proof corresponding to Step 1. For all considered k, i, y and any

N ∈ N, the Cauchy - Bunyakovsky - Schwarz inequality yields

E
(
(ψ̂N,k(y)− ψ(y))Sk(i, y)

)4 ≤
(
E(ψ̂N,k(y)− ψ(y))8 ESk(i, y))8

)1
2 .

Due to Lemma 2 one has E(ψ̂N,k(y) − ψ(y))8 = O
(

1
N

)
, N → ∞. Employing the

Minkowski inequality (to take into account the summation over i, y, k), for all N ∈ N, we
come to the bound

EU4
N,2 ≤ N2C7

((
1
N

)(
1

N4

)) 1
2
=

C7√
N

, (50)

where C7 does not depend on N.
Consequently, by virtue of (33), (46) and (50) the uniform integrability of a sequence

(R2
N)N∈N is established. Thus (28) is verified.

Step 2. Now we study the asymptotic behavior of the variables
√

N(T̂N( f U) −
TN( f U)), as N → ∞, where T̂N( f U) and TN( f U) are given by Formulas (26) and (27), re-
spectively. For j ∈ N, i = 0, . . . , 2m − 1, y ∈ Y, we set Z(j)

i (y) = I{Y(j) = y, | f (X(j))− y| > i}.
One has √

N(T̂N( f U)− TN( f U)) = WN,1 +WN,2,

where

WN,1 =

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))
♯Dk(N) ∑

j∈Dk(N)

(Z(j)
i (y)− EZ(j)

i (y)),

WN,2 =

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))
♯Dk(N) ∑

j∈Dk(N)

P(Y(j) = y, | f U(X(j))− y| > i)

=

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)− ψ(y))P(Y = y, | f U(X)− y| > i). (51)

The purpose of the second step is to prove that

EW2
N,1 → 0, N → ∞. (52)

For k = 1, . . . , K, i = 0, . . . , 2m − 1 and y ∈ Y introduce

Gk(i, y) =
1

♯Dk(N) ∑
j∈Dk(N)

(Z(j)
i (y)− EZ(j)

i (y)).

The Cauchy-Bunyakovsky-Schwarz inequality yields

E
(
(ψ̂N,k(y)− ψ(y))Gk(i, y)

)2 ≤
(
E(ψ̂N,k(y)− ψ(y))4

) 1
2
(
E(Gk(i, y))4

)1
2 .
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For each considered N, y, i and k, the variables {Z(j)
i (y), j ∈ Dk(N)} are independent

and |Z(j)
i (y)− EZ(j)

i (y)| ≤ 1, so by virtue of the Rosenthal inequality (42) we obtain

E

 ∑
j∈Dk(N)

(Z(j)
i (y)− EZ(j)

i (y))

4

= O(♯Dk(N)2).

Taking into account Lemma 2 for t = 4 and in view of (44), for each k = 1, . . . , K, we
get the relation

EW2
N,1 = O

(
N− 1

2

)
, N → ∞.

Therefore, the goal of the second step has been achieved.

Step 3. The implementation of steps 1 and 2 permits to reduce the study of the
asymptotic behavior (as N → ∞) of ZN given by Formula (25) to the study of variables

ηN :=
√

N(TN( f U)− Err( f U)) +WN,2, N ∈ N,

where WN,2 is defined by Formula (51).
The aim of the third step is to prove that E(ηN)

2 → σ2(U), as N → ∞, where σ2(U) is
the variance of the random variable V(U) appearing in Formula (22).

On this way, we will show that the sum of certain part of the terms in a specified
representation of the variables ηN does not affect (in the sense of L2(Ω,F ,P)) the limit
behavior of these variables for growing N. For y ∈ Y and WN ⊂ {1, . . . , N}, where N ∈ N,
we introduce the event

BWN (y) := {ω : P̂(y, ξ(WN)) ̸= 0}, (53)

where P̂(y, ξ(WN)) is defined according to (13). Then, in view of the independence of
observations ξ(1), ξ(2), . . . we have

P(BWN (y)) = P

 ⋂
j∈WN

{Y(j) ̸= y}

 = (1 − P(Y = y))♯WN .

If ω ∈ BWN (y) then |ψ̂(y, ξ(WN))− ψ(y)| = ψ(y). Set

HN :=

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

(ψ̂N,k(y)−ψ(y))I{BN,k(y)}P(Y=y, | f (X)− y|> i),

where BN,k(y) := BDk(N)(y) and an event BWN (y) is introduced by Formula (53). Then

E(WN,2 − HN)
2 = E

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

I{BN,k(y)}
P(Y = y)

P(Y = y, | f U(X)− y| > i)

2

≤ N(2m)4

p2
0

max
y∈Y

(1 − P(Y = y))[N/K] → 0, N → ∞,

since ♯Dk(N) ≥ [N/K] for N ∈ N, k = 1, . . . , K and because all P(Y = y) > 0 for each
y ∈ Y, [·] stands for an integer part of a number.

We verify that HN for large N is approximated in the space L2(Ω, F , P) by the
random variable

H̃N :=

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

I{BN,k(y)}
(
P(Y = y)− p̂N,k(y)

P(Y = y)2

)
P(Y = y, | f U(X)− y| > i),
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where p̂N,k(y) := P̂(y, ξ(Dk(N))) and P̂(y, ξ(WN)) was introduced by (13) for y ∈ Y and
WN ⊂ {1, . . . , N}. Evidently, 0 ≤ P(Y = y, | f U(X)− y| > i) ≤ 1 for all k, i, y and N under
consideration. Consequently, it follows that

∆N,k(i, y) :=
∣∣∣√NI{BN,k(y)}

(
1

p̂N,k(y)
− 1

P(Y = y)

)
P(Y = y, | f U(X)− y| > i)

−
√

NI{BN,k(y)}
(
P(Y = y)− p̂N,k(y)

P(Y = y)2

)
P(Y = y, | f U(X)− y| > i)

∣∣∣
≤

√
N
∣∣∣∣P(Y = y)− p̂N,k(y)

P(Y = y)

∣∣∣∣∣∣∣∣ψ̂N,k(y)−
1

P(Y = y)

∣∣∣∣
=

√
N

P(Y = y)
√
♯Dk(N)

∣∣∣∣ψ̂N,k(y)−
1

P(Y = y)

∣∣∣∣JN ,

where
JN :=

1√
♯Dk(N)

∑
j∈Dk(N)

(I{Y(j) = y} − P(Y(j) = y)).

For any considered k, i, y and N the Cauchy - Bunyakovsky - Schwarz inequality
implies that

E(∆N,k(i, y))2 ≤ N
(P(Y = y)2♯Dk(N)

(
EJ4

NE

(
ψ̂N,k(y)−

1
P(Y = y)

)4
) 1

2

.

The Rosenthal inequality (42) yields that EJ4
N ≤ 2C(4). By means of Lemma 2 (for

t = 4 and multipliers c(p, t) with p = P(Y = y)), for all considered i, y, k and any N ∈ N
we come to the bound

E(∆N,k(i, y))2 ≤ N
(P(Y = y)2♯Dk(N)

(2C(4)c(P(Y = y), 4))
1
2

√
N

.

Therefore, E(HN − H̃N)
2 → 0 as N → ∞.

Let us define the variable GN by formula similar to H̃N but without the multiplier
I{BN,k(y)}. In view of (44) it is easily seen that

E(H̃N − GN)
2 ≤ N(2m)4

p4
0

max
y∈Y

(1 − P(Y = y))[N/K]
(

1
4

)
max

k=1,...,K

1
♯Dk(N)

→ 0, N → ∞.

Thus E(ηN − QN)
2 → 0 as N → ∞, where

QN :=
√

N(TN( f U)− Err( f U)) + GN , N ∈ N.

Taking into account Formula (6) for the function f = f U , we come to the relation

QN =

√
N

K

K

∑
k=1

2m−1

∑
i=0

∑
i−m<|y|≤m

1
♯Dk(N) ∑

j∈Dk(N)

( I{Y(j) = y, | f U(X(j))− y| > i}
P(Y = y)

− P(Y = y, | f U(X)− y| > i)
P(Y = y)

+
(P(Y = y)− I{Y(j) = y})P(Y = y, | f U(X)− y| > i)

P(Y = y)2

)
=

√
N

K

K

∑
k=1

1
♯Dk(N) ∑

j∈Dk(N)

V(j), (54)
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where, for j ∈ N,

V(j) :=
2m−1

∑
i=0

∑
i−m<|y|≤m

I{Y(j)=y}
P(Y=y)

(
I{| f U(X(j))− y| > i)−P(| f U(X)− y| > i|Y = y)

)
. (55)

The variables {V(j), j ∈ N} are centered, i.i.d. and uniformly bounded for all j (clearly,
V(j) = V(j)(U)). For each j ∈ N, the distributions of V(j) and V(U) coincide, where V(U)
is introduced in (22). Thus, one has

varV(j) = varV(U) = σ2(U), j ∈ N. (56)

According to the lemma on grouping independent random variables, for each N ∈ N,
the variables ∑j∈Dk(N) V(j), k = 1, . . . , K, are independent. Since N/♯Dk(N) → K as
N → ∞, for k = 1, . . . , K, we come to the relation

E(Q2
N) = var QN =

N
K2

K

∑
k=1

1
(♯Dk(N))2 ∑

j∈Dk(N)

varV(j) = σ2(U)
1

K2

K

∑
k=1

N
♯Dk(N)

→ σ2(U),

as N → ∞. Hence Eη2
N → σ2(U), N → ∞. The goal of the third step has been achieved.

In view of the above approximations (in L2(Ω,F ,P)) of the initial random variables
ZN , introduced by (25), we conclude that EZ2

N → σ2(U), as N → ∞. Namely, we apply the
following elementary statement: if Eα2

N → 0 and Eβ2
N → σ2 then E(αN + βN)

2 → σ2, as
N → ∞. Therefore, (24) is established. The proof of Lemma 1 is complete.

Further we will also employ a result that immediately follows from Theorem 1.

Corollary 1. Let the conditions of Lemma 1 be satisfied. Then the following relations hold:

√
NE
(
ÊrrK,N,εN ( f U)− Err( f U)

)
→ 0, N → ∞, (57)

var (
√

NÊrrK,N,εN ( f U)) → σ2(U), N → ∞, (58)

where σ2(U) is a variance of the random variable V(U) introduced in (22).

Proof. Condition (23) implies (20). Thus, according to Theorem 1, we have

ZN
D→ Z ∼ N(0, σ2(U)), N → ∞, (59)

where ZN , N ∈ N, are defined in (25). Due to Lemma 1 one has the uniform integrability
of the sequence (Z)N∈N. Consequently, relation (59) implies (57), i.e., EZN → EZ = 0, as
N → ∞. Obviously,

var (
√

NÊrrK,N,εN ( f U))

= E
(√

N(ÊrrK,N,εN ( f U)− Err( f U)
)2

−
(√

NE(ÊrrK,N,εN ( f U)− Err( f U))
)2

.

Therefore, to obtain (58), it is sufficient to use Lemma 1 and take into account (57). The
proof is complete.

Note that (59) can be obtained directly under conditions of Lemma 1. For each N ∈ N
and any k = 1, . . . , K, according to Lindeberg’s theorem applied to arrays {V(j), j ∈ Dk(N)}
of centered i.i.d. uniformly bounded summands, where a sequence (V(j))j∈N is introduced
in (55), taking into account (56) one has

VN,k :=
1√

♯Dk(N)
∑

j∈Dk(N)

V(j) D→ Zk ∼ N(0, σ2(U)), N → ∞. (60)
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For every N ∈ N, the random variables VN,k, k = 1, . . . , K, are independent and
varVN,k = σ2(U). Since N/♯Dk(N) → K as N → ∞, for k = 1, . . . , K, by virtue of (60) we
come to relation

QN
D→ Z ∼ N(0, σ2(U)), N → ∞, (61)

where in view of (54) one has QN = 1
K ∑K

k=1

√
N

♯Dk(N)
VN,k, N ∈ N. Applying (61) and

Slutsky’s lemma, we arrive at (59).
Also note that relation (29) can be easily derived from (36) and (39) without employ-

ment of [32].

4. Forward Selection of Relevant Factors

Now we can turn to the sequential selection of factors based on MDR-EFE method.
At the first step one searches for j1 ∈ T a point where the function ÊrrK,N,εN ( f {i}) attains
the minimum over all i ∈ T. If there are several such points, then we take, e.g., one with
the smallest index value. Recall that according to (17) (more precisely, after regularization),
the random variable ÊrrK,N,εN ( f {i}) is in fact a function of f̂ {i}

PA , which is a forecast of
the function f {i}. Then this procedure is repeated, namely, if at (k − 1)-th step the set
Sk−1 := {j1, . . . , jk−1} is constructed, where k ∈ {2, . . . , r}, then jk ∈ T \ Sk−1 is selected
at step k in such a way that given j1, . . . , jk−1 the function ÊrrK,N,εN ( f {Sk−1,i}) takes the
minimum value over i ∈ T \ Sk−1 for i = jk. It is convenient to assume that an empty set is
taken at the zero step. Then at each next step one new element is added to the previously
constructed sets. If at some step there are several minimum points of the considered
function then we take only one of them, e.g., with the minimal index.

Thus, for each N ∈ N the random sets Sk(N) = Sk(N, ω) := {j1, . . . , jk} arise, where
k = 1, . . . , r and jm = jm(N, ω), m = 1, . . . , r. By construction one can write

jk(N, ω) ∈ Jk(N, ω) := arg min
i∈T\Sk−1(N,ω)

ÊrrK,N,εN ( f {Sk−1(N,ω),i}),

where S0 := ∅ and {∅, i} := {i}. In other words the choice jk(N, ω) at step k means that,
for i ∈ T \ Sk−1(N, ω),

ÊrrK,N,εN ( f Sk(N,ω)) ≤ ÊrrK,N,εN ( f {Sk−1(N,ω),i}), (62)

moreover, jk(N, ω) = min{i : i ∈ Jk(N, ω)}, k = 1, . . . , r. If the joint distribution of X and
Y is known, then instead of the described scheme for constructing random sets, Sk(N, ω)
we turn to considering the non-random “oracle” sets Tk = {i1, . . . , ik}, where k = 1, . . . , r,

ik ∈ arg min
i∈T\Tk−1

Err( f {Tk−1,i}), (63)

T0 := ∅, and the functional Err is introduced by formula (2). If there are several ik
satisfying (63) we take among them that one which has the minimal value.

For k ∈ {1, . . . , r} and i ∈ T \ Tk introduce

Ck,i := Err( f {Tk−1,i})− Err( f Tk ).

By construction of the sets Tk we have Ck,i ≥ 0, where k = 1, . . . , r and i ∈ T \ Tk. We
call a model, satisfying condition (1), regular whenever the following relation is true:

Ck,i > 0, k = 1, . . . , r, i ∈ T \ Tk. (64)



Mathematics 2024, 12, 831 19 of 25

In other words, for each k = 1, . . . , r, a point ik in (63) is determined uniquely. Further
we employ the penalty function introduced in (11). We also use its strongly consistent
estimate of type (48) with

p̂N :=
1

WN
∑

j∈WN

I{Y(j) = y}, (65)

WN ⊂ {1, . . . , N} and ♯WN → ∞ as N → ∞.

Theorem 2. Let the considered model (1) with a collection of relevant factors having cardinality
r < p, be regular, i.e., let (64) take place. Then, for the random sets Sr(N) introduced above, the
following relation is valid

P(Sr(N) = Tr) → 1, N → ∞, (66)

where Tr is defined by means of (63) for k = 1, . . . , r. In other words, with probability close to one,
the described procedure of forward selection based on statistical estimates of the error functional
leads to the “oracle” collection Tr, when N is large enough.

Proof. For a random set Sr(N, ω) = {j1(N, ω), . . . , jr(N, ω)}, where jk(N, ω) is an element
taken at k-th step, one has

P(ω : Sr(N, ω) = Tr) ≥ P(ω : j1(N, ω) = i1, . . . , jr(N, ω) = ir).

Note that

P(ω : j1(N, ω) = i1, . . . , jr(N, ω) = ir) ≥ P

(
r⋂

k=1

Ak(N)

)
,

where
Ak(N) :=

⋂
i∈T\Tk−1

{
ÊrrK,N,εN ( f Tk ) < ÊrrK,N,εN ( f {Tk−1,i})

}
,

k = 1, . . . , r. Thus, we obtain:

P

(
r⋂

k=1

Ak(N)

)
= 1 − P

(
r⋃

k=1

Ak(N)

)
≥ 1 −

r

∑
k=1

P
(

Ak(N)
)

≥ 1 −
r

∑
k=1

∑
i∈T\Tk−1

P
(

ÊrrK,N,εN ( f Tk ) ≥ ÊrrK,N,εN ( f {Tk−1,i})
)

, (67)

where, as usual, A := Ω \ A for A ⊂ Ω. Then, for k = 1, . . . , r, i ∈ T \ Tk−1 and N ∈ N,
we get

∆k,i(N) := ÊrrK,N,εN ( f Tk )− ÊrrK,N,εN ( f {Tk−1,i}) (68)

= (ÊrrK,N,εN ( f Tk )− EÊrrK,N,εN ( f Tk )) + (EÊrrK,N,εN ( f Tk )− Err( f Tk ))

+ (Err( f Tk )− Err( f {Tk−1,i})) + (Err( f {Tk−1,i})− EÊrrK,N,εN ( f {Tk−1,i}))

+ (EÊrrK,N,εN ( f {Tk−1,i})− ÊrrK,N,εN ( f {Tk−1,i})).

For U ⊂ T, set

ZN(U) := ÊrrK,N,εN ( f U)− EÊrrK,N,εN ( f U).

For any k = 1, . . . , K, i ∈ T \ Tk−1 and each δ ∈ (0, 1) in light of formula (57) of
Corollary 1, for all N large enough (N ≥ N2(δ, k, i)) it holds

P(∆k,i(N) ≥ 0) ≤ P(
√

N|ZN(Tk(N))|+
√

N|ZN({Tk−1(N), i})| ≥
√

NCk,i − δ)
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≤ P

(
√

N|ZN(Tk(N))| ≥
(1−δ)

√
NCk,i

2

)
+ P

(
|ZN({Tk−1(N), i})| ≥

(1−δ)
√

NCk,i

2

)
,

where Ck,i are introduced in (66), ∆k,i(N) is defined by (68).
Applying the Bienaymé - Chebyshev inequality and taking into account Formula (58)

of Corollary 1, for each U ⊂ T and any c > 0, we come, for a centered random variable
ZN(U), to the relation

P(
√

N|ZN(U)| ≥ c
√

N) ≤ Nvar ZN(U)

Nc2 ∼ varV(U)

Nc2 , N → ∞, (69)

where V(U) is determined by Formula (22). According to (64), for k ∈ {1, . . . , r} and
i ∈ T \ Tk, one has Ck,i > 0. Therefore, for all N large enough (N ≥ N3(δ, k, i)), the
following inequality takes place:

P(∆k,i(N) ≥ 0) ≤ 4(varV(Tk) + varV({Tk−1, i})
N(1 − δ)2C2

k,i
. (70)

For a fixed m ∈ N, one can change the summation order over i and y to write
Formula (22) as follows:

V(U) =
m

∑
y=−m

I{Y = y}
P(Y = y)

W(y, U),

where

W(y, U) = ∑
0≤i<|y|+m

(
I{| f U(X)− y| > i} − P(| f U(X)− y| > i|Y = y)

)
. (71)

Thus, for any U ⊂ T, one has

|V(U)| ≤ 2m
m

∑
y=−m

I{Y = y}
P(Y = y)

.

Consequently, we come to the inequality

varV(U) ≤ EV2(U) ≤ 4m2
m

∑
y=−m

1
P(Y = y)

=: a,

where a = a(m, (P(Y = y))y∈Y). We see that varV(Tk) + varV({Tk−1, i}) ≤ 2a for all
k ∈ {1, . . . , r}, i ∈ T \ Tk−1 and N ∈ N. For each δ ∈ (0, 1), any k ∈ {1, . . . , r}, i ∈ T \ Tk−1
and all N large enough, we get the following bound:

P(∆k,i(N) ≥ 0) ≤ 8a
N(1 − δ)2C2

k,i
.

Hence, for each δ ∈ (0, 1) and all N large enough, by virtue of (67) the following
inequality holds:

P(Sr(N) = Tr) ≥ 1 − 8ar
N(1 − δ)2C2

0

(
p + 1 − r + 1

2

)
, (72)

where C2
0 := mink=1,...,r, i∈T\Tk−1

C2
k,i > 0 according to (64). Thus relation (72) implies the

validity of (66).
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Now note that according to (69) the following relation is true:

P(
√

N|ZN(U)| ≥ c
√

N) = O
(

1
N

)
, N → ∞. (73)

The question arises whether this probability decreases like C/N where C is a positive
constant or more rapidly. The answer depends on the variance of the random variable
V(U) given by Formula (22). In view of (70) we will determine when the variable V(U)
is degenerate, i.e., equal to a constant a.s. This is also of independent interest for the CLT
established in Section 6 of [32] and given above as Theorem 1. The following result provides
a simple characterization of the V(U) degeneracy.

Lemma 3. For an arbitrary set U ⊂ T, the variance of the random variable V(U), appearing in
Formula (22), is zero if and only if, for every y ∈ Y, there is k0(y) ∈ {0, . . . , m + |y|} such that

P(| f U(X)− y| = k0(y), Y = y) = P(Y = y). (74)

Thus, for each y ∈ Y, on the set {Y = y} the random variable f U(X) does not necessarily take a
constant value. Moreover, the values of k0(y) need not coincide for different y.

Proof. For y = 0, . . . , m and a random variable W(y, U), introduced by Formula (71), one
can write

W(y, U) = ∑
0≤i<y+m

(
I{| f U(X)− y| > i} − P(| f U(X)− y| > i|Y = y)

)
= ∑

0≤i<y+m
∑

i<k≤m+y

(
I{| f U(X)− y| = k} − P(| f U(X)− y| = k|Y = y)

)

=
m+y

∑
k=1

k−1

∑
i=0

(
I{| f U(X)− y| = k} − P(| f U(X)− y| = k|Y = y)

)
=

m+y

∑
k=1

k(I{| f U(X)− y| = k} − P(| f U(X)− y| = k|Y = y))

=
m+y

∑
k=1

kI{| f U(X)− y| = k} − E(| f U(X)− y||Y = y).

In a similar way we consider y = −m, . . . ,−1. Thus, for all y ∈ Y, one gets

W(y, U) =
m+|y|

∑
k=1

kI{| f U(X)− y| = k} − E(| f U(X)− y||Y = y).

Recall that P(Y = y) > 0 for all y ∈ Y. If, for some y, k, j ∈ Y, k ̸= j, we have

P(| f U(X)− y| = k, Y = y) > 0, P(| f U(X)− y| = j, Y = y) > 0,

then on the events {| f U(X)− y| = k, Y = y} and {| f U(X)− y| = j, Y = y} the variable
W(y, U) takes different values. Therefore, V(U) takes different values on these events.
Hence varV(U) > 0, if (74) is not valid. Thus (74) is a necessary condition to guarantee
that varV(U) = 0. Suppose now that, (74) holds. In this case we get

E(| f U(X)− y||Y = y) = k0(y), y ∈ Y.

Clearly, k0(y) depends on U as well. We see that V(U) on each set {Y = y} takes
(up to the set of measure zero) the value 1

P(Y=y) (k0(y) − k0(y)) = 0, y ∈ Y. Therefore,
varV(U) = 0. Note that k0(y) need not coincide for different y ∈ Y. The proof is complete.
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5. Concluding Remarks

The established asymptotical result (Theorem 2) is rather qualitative in nature, since
relation (66) assumes increasing values of N. Relation (72) is more precise. However, (72)
demonstrates that, loosely speaking, one has to employ N >> rp. As previously, we assume
that assumption (A), introduced on page 2, is valid. Evidently, the sequential choice of
relevant variables based on statistical estimators of the error functional (of response approx-
imation), is attractive for implementation, although suboptimal. In this regard Theorem 2
shows that under certain conditions, forward (random) selection with a high probability
leads to the same collection of factors, which is provided by the sequential procedure with
known joint distribution of the vector of factors X and the response Y. In the future work,
it would be reasonable to supplement the theoretical results by computer simulations (see,
e.g., [45]).

Consideration of the proximity of the results of optimal and suboptimal procedures
requires a separate study. In addition, we note that within the framework of linear models,
estimates of the probability of correct identification of relevant factors are considered, e.g.,
in [46,47]. Theorem 2 does not assume the linearity of stochastic model. Presumably for
the first time, in our work a forward selection of relevant factors affecting the non-binary
random response is treated on the base of MDR-EFE method. It would be interesting to
extend the conditions allowing to establish relation (66). Moreover, stability problems of FS
deserve special attention, see, e.g., [48–50]. Algorithms stability for classification problems
in the framework of random trees is treated in [51].

Finally, we emphasize that the problem of statistical estimation of the cardinality of a
set of relevant factors appearing in definition (1) is very important and complex. Along
with dealing with the deterministic number of selected factors, there is a research approach
based on developing the rules for stopping the procedures used to identify the relevant set.
In this regard, we indicate, e.g., article [52], dedicated to information methods for selecting
relevant factors. The study of non-discrete stochastic models is also of undoubted interest,
see, e.g., [53].

Further it would be interesting to study other functionals than (2) to measure the
quality of a response approximation by means of functions defined on various collections
of factors. One can also consider a random number of observations. In this regard we refer,
e.g., to [27,54].
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Appendix A. Proof of Lemma 2

Proof. For any t ∈ N and p ∈ (0, 1), one has

E(ψ̂N)
t = Nt

N

∑
j=1

1
jt

(
N
j

)
pj(1 − p)N−j

=
Nt

pt(N + 1) . . . (N + t)

N

∑
j=1

(j + 1) . . . (j + t)
jt

(
N + t
j + t

)
pj+t(1 − p)(N+t)−(j+t)

=
1
pt (1 + ht(N))

N+t

∑
i=t+1

(
1 +

a1

i − t
+ . . . +

at

(i − t)t

)(
N + t

i

)
pi(1 − p)N+t−i,
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where ht(N) = O(1/N), as N → ∞, and a1, . . . , at ∈ N. We do not use the explicit formulas
a1 = t(t + 1)/2, . . . , at = t!. Note that

N+t

∑
i=t+1

(
N + t

i

)
pi(1 − p)N+t−i = 1 −

t

∑
i=0

(
N + t

i

)
pi(1 − p)N+t−i = 1 − gt(N),

where gt(N) := ∑t
i=0 gt,i(N) and, for i = t + 1, . . . , N + t, one has

0 ≤ gt,i(N) :=
(

N + t
i

)
pi(1 − p)N+t−i ≤ (N + t)t(1 − p)N = O(1/N), N → ∞.

For each k = 1, . . . , t, introduce

qt,k(N) :=
N+t

∑
i=t+1

1
(i − t)k

(
N + t

i

)
pi(1 − p)N+t−i

=
1

pk(N + t + 1) . . . (N + t + k)

N+t

∑
i=t+1

(i + 1) . . . (i + k)
(i − t)k

(
N+t+k

i + k

)
pi+k(1 − p)(N+t+k)−(i+k).

Obviously, one can write qt,k(N) = O
(

1/Nk
)

, as

(i + 1) . . . (i + k)(i − t)−k ≤ (1 + t + k)k ≤ (1 + 2t)t

for all i ≥ t + 1, k = 1, . . . , t, and since

N+t

∑
i=t+1

(
N+t+k

i + k

)
pi+k(1 − p)(N+t+k)−(i+k) ≤ 1.

Consequently, for any t ∈ N, we get

E(ψ̂N)
t =

1
pt (1 + ht(N))

(
1 − gt(N) +

t

∑
k=1

qt,k(N)

)
=

1
pt + Rt(N),

where Rt(N) = O(1/N), as N → ∞. Evidently, E(ψ̂N)
0 = 1 for N ∈ N. For each N ∈ N,

set R0(N) = 0. Thus, for t ∈ N, one has

E

(
ψ̂N − 1

p

)t
=

t

∑
v=0

(
t
v

)
E(ψ̂N)

v
(
−1
p

)t−v
=

t

∑
v=0

(
t
v

)(
1
pv + Rv(N))

)(
−1
p

)t−v
=O

(
1
N

)
,

because

t

∑
v=0

(
t
v

)(
1
p

)v(
−1
p

)t−v
=

(
1
p
− 1

p

)t
= 0,

t

∑
v=0

(
t
v

)(
1
p

)t−v
=

(
1 +

1
p

)t

and
max

v=0,...,t
|Rv(N)| = O(1/N), N → ∞.

The proof of Lemma 2 is complete.
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