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Abstract: In this paper, a Toeplitz construction method based on eigenvalues and eigenvectors is pro-
posed to combine with traditional denoising algorithms, including fractional low-order moment (FLOM),
phased fractional low-order moment (PFLOM), and correntropy-based correlation (CRCO) methods.
It can improve the direction of arrival (DOA) estimation of signals in impulsive noise. Firstly, the
algorithm performs eigenvalue decomposition on the received covariance matrix to obtain eigenvectors
and eigenvalues, and then the Toeplitz matrix is created according to the eigenvectors corresponding to
its eigenvalues. Secondly, the spatial averaging method is used to obtain an unbiased estimate of the
Toeplitz matrix, which is then weighted and added based on the corresponding eigenvalues. Next, the
noise subspace of the Toeplitz matrix is reconstructed to obtain the one that has less angle information.
Finally, the DOA of the coherent signal is estimated using the Multiple Signal Classification (MUSIC)
algorithm. The improved method based on the Toeplitz matrix can not only suppress the effect of
impulsive noise but can also solve the problem of aperture loss due to its decoherence. A series of
simulations have shown that they have better performances than other algorithms.

Keywords: coherent signal; eigenvalue; eigenvector; Toeplitz matrix; DOA estimation; impulsive noise

MSC: 94-10

1. Introduction

The direction of arrival (DOA) estimation is an important research direction. The
angle information of the target is one of the important parameters that are required by
modern communications. DOA information is widely used in radar, sonar, wireless com-
munications, and other fields [1–4]. Therefore, algorithm research on DOA estimation has
received widespread attention. Subspace-based DOA estimation methods, such as the
Multiple Signal Classification (MUSIC) algorithm [5,6] and Estimating Signal Parameters
Via Rotational Invariance Techniques (ESPRIT) algorithm [7–9], provide high resolution for
estimating uncorrelated signals. Then, some algorithms [10–12] about compressive sensing
are proposed to ensure greater accuracy with a lower number of antennas. However, in the
case of coherent signals and impulsive noise, the estimation accuracy of these algorithms
decreases due to the rank deficiency of the covariance matrix and noise interference. Hence,
addressing the estimation algorithms of the covariance matrix under coherent signals with
complex noise has emerged as a contemporary research focus.

For the DOA estimation in the presence of impulsive noise, Tsung-Hsien Liu and
Jerry M. Mendel introduced a method [13] employing the fractional low-order moment
(FLOM) for signal processing in the context of impulsive noise, aiming to mitigate the
impact of impulsive noise. However, it is important to note that this approach is not
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suitable for DOA estimation when coherent signals are involved. Moreover, the method
requires prior information on the characteristic parameters of impulsive noise, which has
certain limitations. To address this issue, a novel correntropy-based correlation (CRCO)
method [14] is proposed. This approach effectively enhances the accuracy of DOA estima-
tion under impulsive noise, simultaneously demonstrating promising results in Gaussian
noise scenarios. However, in practical scenarios, signals often exhibit coherence owing to
reflection phenomena, and the methods mentioned above have difficulty in distinguishing
such coherent signals.

For the estimation of coherent signals, researchers have proposed many methods.
These are mainly divided into two categories, one of which realizes the decoherence of the
signal by constructing the Toeplitz matrix [15–17], and the other uses the spatial smoothing
method (SS) [18–21]. The Toeplitz matrix is constructed by considering the uniform linear
array (ULA) as a symmetric matrix [15], which imposes specific requirements on the number
of array elements. In ref. [13], a coprime array is employed to construct a low-rank Toeplitz
matrix, aiming to enhance the DOA estimation performance for coherent signals. However,
it introduces specific requirements for the distribution of array elements. Moreover, the two
methods described above do not take the influence of noise into account. A novel method
based on correntropy-based generalized covariance (CEGC) is proposed to construct a
Toeplitz matrix [17]. However, it does not take full advantage of the properties of the
reception correlation matrix itself because the generation of a Toeplitz matrix involves the
diagonal summation of all elements across the matrix, followed by average summation.
This process has a partial loss of angular information during the procedure of averaging
summation. In addition, the SS method partitions the uniform linear array into multiple
overlapping subarrays containing the same number of array elements. The covariance
matrix of each subarray is then accumulated and averaged, ultimately resulting in the
matrix of the recovered rank. It is widely used and combined with traditional denoising
algorithms for the DOA estimation of coherent signals in impulsive noise. But the SS
algorithm diminishes the effective aperture of the receiving array, which affects the number
of received sources and the resolution of the received signal. Li et al. combined SS with
FLOM to solve the DOA estimation problem of coherent signals under impulsive noise
despite lacking good estimation accuracy [18]. In response to this, Li and Lin applied SS
to the phased fractional low-order moment (PFLOM) to improve the efficiency of DOA
estimation [19]. Nevertheless, it also experienced aperture loss, which greatly limited the
estimation performance.

In this article, a Toeplitz algorithm based on eigenvalues and eigenvectors is presented
to solve the issues mentioned above. First, the algorithm performs eigenvalue decomposi-
tion on the received covariance matrix to obtain eigenvectors and eigenvalues. The Toeplitz
matrix is subsequently built based on the eigenvectors and eigenvalues. In addition, an
unbiased estimate of the Toeplitz matrix is attained using the spatial averaging method,
which is then weighted and added according to the corresponding eigenvalues. Then,
the noise subspace of the Toeplitz matrix is reconstructed to obtain a new noise subspace.
Finally, the DOA of the coherent signal is estimated using the MUSIC algorithm. The
proposed algorithm has the following advantages: (1) It provides a perspective to construct
the Toeplitz matrix with eigenvectors and eigenvalues. (2) The DOA estimated range and
accuracy of applicable denoising algorithms, such as FLOM, PFLOM, and CRCO, can be
increased by employing this method. (3) The constructed Toeplitz matrix only requires a
uniform linear array, which is beneficial to practical applications.

2. Signal Model
2.1. Received Signal Model

A uniform line array is used, assuming that there are M array elements arranged
at equal intervals, where the spacing of the array elements is λ/2. There are D (D < M)
coherent signals sk(t) incident in the array in the form of plane waves, whose wavelengths
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are λ and angles of incidence are θ1, θ2, θ3, . . ., θD, respectively. Then, at the moment t, the
signal xm(t) received at the mth array element is given by the following:

xm(t) =
D

∑
k=1

am(θk)sk(t) + nm(t) (1)

where am(θk) represents the orientation vector of the kth signal on the mth array element.
The vector form of Equation (1) is given as follows:

X(t) = AS(t) + N(t) (2)

where X(t) is the M × 1 dimensional received data vector, A is the M × D dimensional
array of guide vectors, S(t) is the D × 1 dimensional signal vector, and N(t) is the M × 1
dimensional noise vector.

2.2. Coherent Signal Model

The correlation coefficient is commonly employed to characterize the association
between signals. A higher correlation coefficient indicates a more substantiated correla-
tion between the two signals. For two correlated signals, si(t) and sj(t), their correlation
coefficients zij are defined as follows:

zij =
E
[
si(t)s∗j (t)

]
√

E
[
|si(t)|2

]
E
[∣∣sj(t)

∣∣2] ,
∣∣zij

∣∣ ≤ 1 (3)

The correlation of the signals is defined as follows:
zij = 0,

0 <
∣∣zij

∣∣ < 1,∣∣zij
∣∣ = 1,

uncorrelated
correlate
coherent

(4)

The coherent signals are modeled as follows:

X(t) = AS(t) + N(t)

= A


1
β1
...
βD−1

s0(t) + N(t)

= ACs0(t) + N(t)

(5)

where C is a column vector of D × 1 dimensions composed of complex constants, and s0(t)
follows a normal distribution, which is independent of the noise N(t).

2.3. Impulsive Noise Model

The noise encountered in practical radar applications often has certain impulsive
characteristics, such as cosmic noise and atmospheric noise. At this time, the Gaussian dis-
tribution is no longer suitable for describing its distribution characteristics. In recent years,
a large number of studies [22] have shown that the symmetrical alpha distribution (SαS)
can be used to describe the distribution characteristics of impulsive noise. Its eigenfunction
can be expressed as follows:

φ(t) =
{

exp{−σα|t|α[1 − iβ(sign(t)) tan(πα/2)]iµt}, α ̸= 1
exp{−σ|t|[1 + iβ(sign(t))2/π log|t|]iµt}, α = 1

(6)
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sign(t) =


1, t > 0
0, t = 0
−1, t < 0

(7)

where the parameter α is a characteristic parameter, indicating the shock characteristics of
the noise. β is the symmetric parameter, which is used to confirm the degree of symmetrical
inclination. β = 0 represents a symmetrical distribution, abbreviated as SαS. σ denotes the
dispersion coefficient, which is used to describe the degree of dispersion of the sample. µ is the
orientation parameter, representing the mean when 0 < α< 1 and the median when 1 < α < 2. It
should be noted that when α = 2, the SαS distribution transitions into a Gaussian distribution.
Figure 1 shows the corresponding probability density function (PDF) for different α.
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According to Figure 1, it can be shown that as the α value decreases, the peak of the
PDF curve becomes sharper, the tail is thicker, and the impulsive characteristics of the
corresponding distribution become more pronounced.

3. FLOM, PFLOM and CRCO Algorithm

Since the SαS distribution only has limited low-order moments, the traditional algo-
rithm using second-order moments is no longer applicable. Therefore, according to ref. [13],
a FLOM matrix is constructed, which is specifically defined as follows:

ΓFLOM(i, k) = E{xi(t)
∣∣∣xk(t)

∣∣∣2−px∗k (t)}, 1 < p < α ≤ 2 (8)

where xi(t), xk(t) are the outputs of any array element. Moreover, ref. [19] introduces a
phased FLOM matrix to solve this problem, and when α < 1, it can also reduce the impulsive
noise very well.

ΓPFLOM(i, k) = E{xi(t)|xi(t)|a−1x∗k (t)|xk(t)|a−1}, 1 < a <
α

2
(9)

where * represents the complex conjugate.
In addition, ref. [14] presents a CRCO-based matrix to solve the DOA estimation under

the SαS distribution. The specific matrix is as follows.

ΓCRCO(i, k) = E{exp(− (xi(t)− µxk(t))
2

2σ2 )xi(t)xk(t)} (10)

where µ is given a positive parameter to ensure the corretropy-based autocorrelation is finite.
σ is the kernel size that controls the bandwidth of the Correntropy-induced metric (CIM) “mix
norm” [23], µ = 0.5, σ = 1.4σ0, σ0 is the estimated variance of the signal with no noise.



Mathematics 2024, 12, 832 5 of 14

4. Proposed Method

Firstly, we performed eigenvalue decomposition on the matrix Г constructed in Section 3.

Γ = QΣQH (11)

where Q and Σ are defined as follows:

Q = [u1, u2, . . . , u(M−1), uM] (12)

un = [u1n, u2n, . . . , u(M−1)n, uMn]
T (13)

Σ = diag{λ1, λ2, . . . , λ(M−1), λM} (14)

and where λ1,..., λM are sorted in descending order.
Secondly, given that the eigenvalues encapsulate the angle information of the incident

signal, some eigenvalues are extracted, and their corresponding eigenvectors are employed
to construct the Toeplitz matrix. The specific steps are as follows:

• Create the following coherence function:{
cn(k − 1) = u1nukn

∗

cn(−k + 1) = uknu1n
∗ , k = 1, 2, . . . , M (15)

• Build the Toeplitz matrix with the following coherence function:

Cn =

 cn(0) . . . cn(M − 1)
...

. . .
...

cn(−M + 1) · · · cn(0)

 (16)

• The unbiased estimate of Cn is calculated by applying forward and backward-averaging
terms.

C′
n = Cn + JCH

n J (17)

J is shown in Equation (18):

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 (18)

• Introduce penalty variable

Since the angle information of the signal contained in each feature vector has a different
proportion, the penalty quantities are introduced to generate the following matrix:

Y =
P
∑

n=1
σnC’

n

σn = | λn
P
∑

i=1
λi

| (19)

where P is a constant parameter that is positively correlated with the number of signals.
Finally, the noise subspace is extracted from the matrix Y, and the MUSIC algorithm is

performed to obtain the DOA. The methods are as follows:

(1) Perform singular value decomposition on Y to create the noise subspace W1
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[U,S,V] = svd[Y] (20)

where W1 = U(:,D + 1:M), S1 = S, perform the following processing on S1 to form a
rank-deficient receiving covariance matrix.

S1(M − n, M − n) = 0, n = 0, 1, 2, · · · , D − 1 (21)

(2) The related methods are used to produce a new covariance matrix Y1 and then attain
the noise subspace W2.

Y1=US1V* (22)

Then, singular value decomposition on Y1 is performed.

[U1,S’
1,V1] = svd[Y1] (23)

W2 = U1(:, D + 1 : M) (24)

(3) The weighted average of the noise subspaces obtained in the first and second time is
used to obtain a new noise subspace Un, and a spectral peak search is carried out.

Un =
1
2
(W1 + W2) (25)

Since the signal subspace is orthogonal to the noise subspace, the spatial spectrum
function is created as follows:

Pmusic(θ) =
1

a(θ)HUnUn
Ha(θ)

(26)

The spectral peak is then searched to obtain the incident angle.

5. Experimental Analysis

The decoherence algorithm currently widely used in coherent signals with impulsive
noise is the spatial smoothing algorithm. In this section, the proposed algorithm is com-
bined with the FLOM, PFLOM, and CRCO algorithms (FLOM-Toeplitz, PFLOM-Toeplitz,
CRCO-Toeplitz). In order to prove its effectiveness, it is compared with FLOM-SS [18],
PFLOM-SS [19], and CRCO-SS [24].

Since the variance of impulsive noise, which conforms to the SαS distribution, is
unbounded, the generalized signal-to-noise ratio (GSNR) is used to define the ratio of
signal power to noise power.

GSNR = 10 log(
E{

∣∣s(t)∣∣2}
σα

) (27)

In order to better evaluate the accuracy of the DOA estimation, the root mean square
error (RMSE) is defined as follows:

θR =

√√√√ 1
N

N

∑
i=1

(θ̂i − θi)
2

(28)

where N is the number of independent experiments, and θ̂i is the estimated angle for the
ith experiment.

The simulation parameters of both the signal and the impulsive noise are shown in Table 1.
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Table 1. Parameter setting.

Symbol Meaning Value

D Number of signals 3
M Number of array elements 12
L Number of sub-array elements 10
θ Incident angle {60◦,30◦,0◦}
β Symmetry parameters 0
µ Orientation parameters 0
σ Dispersion parameter 1
p FLOM constant 1.2
a PFLOM constant 0.5
N Number of experiments 100
P Constant parameter 3

Some variables are assigned when used.

5.1. Comparison of Spatial Spectra

In order to better assess the performance of the above algorithm, a simulation ex-
periment on spatial spectra was conducted for the incident process of the coherent signal
with impulsive noise. In this simulation, GSNR = 15, K = 200 (where K represents the
number of snapshots) and α = 0.9. The results are shown in Figures 2–4. Compared with
the spatial spectrum generated by the SS algorithm, the side lobe heights of the spatial
spectrum produced by the presented algorithm can be reduced and have a sharper main
lobe. Therefore, we can arrive at the conclusion that the proposed algorithm has a better
performance than the SS algorithm.
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5.2. Performance Analysis

This section evaluates the function of the algorithm mentioned above in terms of the
snapshot number K, GSNR, and feature vectors and compares the results to show the superi-
ority of the Toeplitz algorithm. In these simulations, GSNR = 20, K = 200, and α = 1.6. One of
them can be changed while keeping the others unchanged to compare their effectiveness. The
results of the algorithm applied to FLOM are shown in Figure 5. The pink curve denotes the
proposed algorithm, while the orange curve represents the existing algorithm.
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Figure 5. Performance comparison between FLOM-SS and FLOM-Toeplitz. (a) Estimated success
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As illustrated in Figure 5, the estimated success rate of the FLOM-Toeplitz algorithm
was greater than that of FLOM-SS under different snapshot numbers, impact characteristics,
and GSNR. It can be seen that as the impact characteristics of noise decrease, the estimated
success rate of this algorithm gradually increases. When α > 1.2, the estimated success rate
reaches 100%, while the success rate of FLOM-SS is only 60%. In addition, regardless of
the low number of snapshots or the high number of snapshots, the estimated success rate
is greater than that of FLOM-SS. Moreover, with different GSNR, the RSME of the FLOM-
Toeplitz algorithm is below 0.8◦, which is much lower than that of the FLOM-SS algorithm
and continues to decrease as GSNR increases. It can be observed that the algorithm is
adequately combined with FLOM for the DOA estimation of coherent signals in impact
noise. The result of the algorithm applied to PFLOM is shown in Figure 6.
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The existing algorithm is represented by the color orange, whereas the proposed
algorithm is denoted by the color blue in Figure 6. In Figure 6a, it can be seen that when
α < 1, the success rate is nearly 0% because the PFLOM constant a > α/2 does not satisfy the
requirement of Equation (7). When α > 1, the success rate of the PFLOM-Toeplitz algorithm
increases faster than that of PFLOM-SS. It is easy to know that the success rate of the
PFLOM-Toeplitz algorithm has been steadily higher than that of the PFLOM-SS algorithm
in Figure 6b. In addition, when GSNR is low, the RMSE of the PFLOM-Toeplitz algorithm
is lower than 0.6 (Figure 6c,d). At the same time, the RMSE of the PFLOM-SS algorithm is
nearly 1.0. Meanwhile, the success rate of the PFLOM-Toeplitz algorithm (above 70%) is
significantly higher than that of PFLOM-Toeplitz under a low GSNR. It is indicated that
this algorithm can be well combined with PFLOM for the DOA estimation of coherent
signals with impulsive noise.
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The result of the algorithm applied to CRCO is shown in Figure 7. The color blue
represents the proposed algorithm, while the color orange is used to denote the existing
algorithm. It can be clearly seen that the CRCO-SS and CRCO-Toeplitz algorithms both
have a good estimation for a large range of α (Figure 7a). In addition, the estimation
accuracy at low snapshots is effectively improved in Figure 7b. The success rate of the
CRCO-Toeplitz algorithm is above 90%, while that of the CRCO-SS algorithm is only
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about 70%. At the same time, RMSE is reduced over the entire range of GSNR (Figure 7c).
Furthermore, the success rate is also slightly improved in Figure 7d).
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5.3. Compared with the Exiting Algorithms

To solve the DOA estimation of coherent signals, some related algorithms [17,25,26] based
on correntropy were proposed. In this section, the proposed algorithms were compared to the
algorithms proposed in the Ref. [17]. In this simulation, K = 200, α = 1.1, and GSNR = 10. The
results are shown in Figures 8 and 9.

In Figure 8, the pink curve denotes the proposed algorithm, while the orange curve
represents the existing algorithm. When GSNR < 0, the success rate of both algorithms is
nearly 0. It can be seen that the proposed algorithm’s success rate increases faster than the
compared algorithms after GSNR > 0. As soon as GSNR reaches 8 dB, the algorithms can
both estimate successfully. In Figure 9, the existing algorithm is represented by the color
blue, whereas the proposed algorithm is denoted by the color orange. When the impulse
character of noise is high, the success rate of the proposed algorithm is above 90%, while
the compared algorithms’ success rate is lower than 80%. In addition, with the increase in
the value of alpha, the success rate of both algorithms is nearly 100%.
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6. Discussions

From the experiments, it can be seen that, compared with the SS algorithm, the
proposed Toeplitz algorithm can be used to assist many denoising algorithms, such as
FLOM, PFLOM, and CRCO, with the better DOA estimation of coherent signals in the
background of impulsive noise. Moreover, the proposed algorithm has a higher accuracy
of DOA estimation in a low GSNR and alpha than the compared algorithm.

However, the number of eigenvalues selected in this article is based on the sign sources
whose number has been set. When the number of signal sources is not very large, three
eigenvalues and eigenvectors are enough to contain all the information of the signal. In
situations where there are a large number of signal sources, the proposed algorithm may
exhibit inferior accuracy in the DOA estimation. At this time, the proposed algorithms can
choose more than three eigenvalues and eigenvectors to construct the Toeplitz matrix.

7. Conclusions

In this paper, an algorithm based on the Toeplitz matrix, which is built by eigenvalues
and eigenvectors, is proposed for the improvement of DOA estimation in coherent signals
with impulsive noise. At first, the algorithm applies eigenvalue decomposition on the
covariance matrix to obtain the eigenvectors and eigenvalues. Then, the Toeplitz matrix
is created according to the eigenvectors corresponding to its eigenvalues. Moreover, the
spatial averaging method is used to obtain an unbiased estimate of the Toeplitz matrix,
which is then weighted and added according to the corresponding eigenvalues. Finally,
Toeplitz’s subspace is reconstructed, and the MUSIC algorithm is adopted to obtain the
DOA estimation. The performance of the proposed algorithm combined with FLOM,
PFLOM, and CRCO is verified by the simulation, which proves that it can greatly improve
the accuracy of the DOA estimation of coherent signals under impulsive noise.

Future work will focus on improving the accuracy and reliability of the DOA esti-
mation of coherent signals in impulsive noise. Meanwhile, the DOA estimation of an
unknown number of coherent sources on impulse is needed, which is a large challenge in
real applications. Furthermore, it was better to construct a function to connect the predicted
number of coherent sources with the value of the constant parameter P in this future study.
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