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Abstract: Estimating loss reserves is a crucial activity for non-life insurance companies. It involves
adjusting the expected evolution of claims over different periods of active policies and their fluc-
tuations. The chain-ladder (CL) technique is recognized as one of the most effective methods for
calculating claim reserves in this context. It has become a benchmark within the insurance sector
for predicting loss reserves and has been adapted to estimate variability margins. This variability
has been addressed through both stochastic and possibilistic analyses. This study adopts the latter
approach, proposing the use of the CL framework combined with intuitionistic fuzzy numbers (IFNs).
While modeling with fuzzy numbers (FNs) introduces only epistemic uncertainty, employing IFNs
allows for the representation of bipolar data regarding the feasible and infeasible values of loss
reserves. In short, this paper presents an extension of the chain-ladder technique that estimates the
parameters governing claim development through intuitionistic fuzzy regression, such as symmetric
triangular IFNs. Additionally, it compares the results obtained with this method with those derived
from the stochastic chain ladder by England and Verrall.

Keywords: loss reserving; chain ladder; probability–possibility transformation; intuitionistic fuzzy
numbers; symmetric triangular intuitionistic fuzzy numbers; intuitionistic fuzzy regression
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1. Introduction

The estimation of loss reserves is a fundamental process in the management of insur-
ance companies. It consists of setting a prudent value on claims not yet made on active
policies, which will ultimately impact the financial statements and the required capital
to continue with the current insurance portfolio [1]. Thus, a prudent estimation of these
provisions, which ultimately requires the application of so-called actuarial judgement,
needs to use a value of maximum reliability but, at the same time, estimate the possible
variability around that expected value [2]. The final estimated value for reserves, although
it should tend to overestimate them and cover possible unfavorable deviations from their
expected value, should not be excessive [3].

Within claim-reserving methods, the actuarial literature often distinguishes between
deterministic and stochastic methods. While the former provides a point value of reserves
that can be considered the “expected” or maximum confidence value, stochastic methods
allow the variability around that reasonable value to be measured [2]. To this commonly
accepted typology, we can add fuzzy methods [4].

Among the various applications that fuzzy set theory (FST) has had in insurance math-
ematics, we can outline the modeling of uncertain and vague parameters with possibility
distributions [5,6]. In these applications, fuzzy modeling allows the quantification of epis-
temic uncertainty, that is, a measure of the reliability with which a certain variable A takes
a specific value x [7]. In the context of determining loss reserves, this vagueness may be
induced, first, by the imprecision of some of the data available to the insurance company [8].
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An additional source to consider is the scarcity of the sample used for reserve calculation;
since it is not advisable to use data too far from the present, it can bias estimates due to
factors such as changes in judicial practices and public awareness of liability issues [9].

The literature on the variability of loss reserves starts from a scheme used in practice
that allows loss reserves to be obtained as a point value. A very common scheme for
calculating the value of reliable mathematical reserves is the chain-ladder (CL) method, or
variants of this method, such as the London CL or the Bornhuetter–Ferguson methods [10].
The chain-ladder method has been the subject of adaptations that allow modeling of the
variability of reserves stochastically [11,12] but also with possibility distributions [13–15].

As shown in Table 1, among the most commonly used schemes for quantifying loss re-
serves, in addition to the CL method, we can highlight the geometric separation method [16]
and methods that model incremental claims in a two-way manner, such as in [17]. The
methodology for adjusting the parameters governing the evolution of claims over time can
be performed heuristically [4,14,15,18] or with fuzzy regression methods that apply both
the principle of minimum fuzziness [19,20] and the fuzzy least-squares approach [21,22].

Table 1. A revision of contributions to claim reserve modeling with fuzzy mathematics.

Method to Fit Fuzzy Parameters Note Extensions Taylor’s Separation Method Two-Way Methods

Heuristically [4,14,15,18] --- ---

FR-MFP [3,13] [23,24] [19,20,25]

FR-FLS [26] [21] [22]

Note: FR-MFP stands for fuzzy regression with the minimum fuzziness principle, and FR-FLS stands for fuzzy
least squares.

All of the methods reviewed in Table 1 model the uncertainty of parameters with
type-one fuzzy numbers, i.e., simple fuzzy numbers (FNs), that is, through possibility
distributions that allow introducing epistemic uncertainty about the real value of the
parameters [27]. However, FNs do not allow the introduction of negative information
about these parameters that the evaluator might have, i.e., about what the parameters
“are not”. This paper extends fuzzy loss reserving to the use of bipolar information, i.e.,
imprecise estimations about the values that the parameters of interest can take and about
those they cannot take. Bipolarity does not introduce additional uncertainty but provides
new information [28].

Our paper uses the chain-ladder scheme to capture the dynamics of claiming processes
and the concept of intuitionistic fuzzy numbers (IFNs) that model uncertain quantities [29]
within Atanassov’s theory of intuitionistic fuzzy sets [30,31]. Thus, this work expands the
practical applications of IFNs, which are relatively scarce in finance and insurance. Among
such applications, we can highlight the following:

1. Capital budgeting [32–35];
2. Option pricing [36–38];
3. Productivity measurements [39–41];
4. Actuarial field: while Uzhga-Rebrov and Grabusts [42] use intuitionistic fuzzy values

to address environmental risk analysis, Andrés-Sánchez [43] does so to price the life
contingencies of people with impaired life expectancies.

This paper falls within the fourth domain, specifically in the field of claim reserving.
In this regard, our aim is threefold. First, we demonstrate that the estimation of stochastic
loss reserves can be interpreted as estimates made through possibility distributions with
type-one fuzzy numbers. Subsequently, we introduce intuitionistic fuzzy regression in
claim-reserving calculations. Although fuzzy regression has been applied in several areas
of actuarial analysis, such as mortality adjustment [44,45], the use of intuitionistic fuzzy
regression in actuarial science is nonexistent. We do so by employing the intuitionistic
fuzzy regression method [46], which extends the possibilistic regression models [47–49].
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Similarly, we compare the results of the proposed method to those obtained with the
stochastic chain-ladder (SCL) method [12].

2. Intuitionistic Fuzzy Numbers
2.1. Fuzzy Numbers and Intuitionistic Fuzzy Numbers

Definition 1. A fuzzy set (FS) in a referential set X,
..
A, is defined as follows [50]:

..
A = {⟨x, µA(x)⟩, x ∈ X}, (1)

where µA : X −→ [0, 1] is the membership function of
..
A.

Definition 2. The fuzzy set
..
A can be represented through level sets or α-cuts, Aα [50]:

Aα = {x|µA(x) ≥ α, 0 < α ≤ 1}. (2)

Definition 3. A fuzzy number (FN),
..
A, is a fuzzy subset of the real line [51] such that

i. is normal, i.e., ∃x|µA(x) = 1 ;
ii. is convex, i.e.,∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1, (1 − λ)x2) ≥ min(µA(x1), µA(x2)).

Remark 1. As a consequence, the α-cuts of
..
A and Aα are confidence intervals:

Aα = {x|µA(x) ≥ α, 0 < α ≤ 1} =
[
Aα, Aα

]
, (3)

where Aα is an increasing function of α and Aα is a decreasing function.

Remark 2. The membership function of
..
A, µA(x) is also called the possibility distribution function.

Fuzzy set theory commonly relies on fuzzy numbers (FNs) to represent imprecise
quantities [51]. Specifically, triangular fuzzy numbers are very common in practical appli-
cations because the grading of the membership level is linear. This approach is reasonable
because it applies the principle of parsimony when dealing with vague information [52].

Definition 4. A symmetric triangular fuzzy number (STFN) is a particular case in which a
triangular fuzzy number (TFN) can be represented by the couple

..
A = (A, rA), rA ≥ 0. Then, the

membership function is

µA(x) =


1 − |x−A|

rA
|x − A| < rA

1 x = A
0 otherwise

, (4)

with the following being its α-cut representation:

Aα =
[
Aα, Aα

]
= [A − rA(1 − α), A + rA(1 − α)], 0 ≤ α ≤ 1. (5)

Within TFNs, shapes are of special interest when the available information about the
reference variable is scarce and can be summarized in a center and plausible deviations
from it [53,54]. Symmetric triangular fuzzy numbers (STFNs) allow for a good balance
between comprehensiveness in capturing the available information and the use of the
parsimony principle [54]. In insurance modeling, the usefulness of STFNs has been shown
in several papers [13,14,55].
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Definition 5. Let us take a continuous random variable A and a family of confidence intervals Aα,
such that P(x ∈ Aα) ≥ 1 − α and P(·) is a probability measure. Therefore, an equivalent fuzzy
quantity

..
A has the following α-cut, Aα [56]:

Aα =
[
Aα, Aα

]
=
[{

x|F(A ≤ x) =
α

2

}
,
{

x|F(A ≤ x) = 1 − α

2

}]
, (6)

where F(·) is the distribution function.

Remark 3. Consequently, the possibility distribution function of
..
A equivalent to A is µA(x) =

sup{α|xϵAα}.

It should be emphasized that the interpretation of probabilistic confidence intervals as
α-level sets of possibility distributions has been widely argued in the literature [53,54,56–61].
Buckley [58] justified the transformation of a set of probabilistic confidence intervals into
fuzzy numbers with the fact that in subsequent calculations, more information is used than
simple point estimates or confidence intervals.

Definition 6. The intuitionistic fuzzy set (IFS)
∼
A defined in a referential set X is

∼
A = {⟨x, µA(x), vA(x)⟩, x ∈ X}, (7)

where µA : X −→ [0, 1] measures the membership of x in
∼
A and vA : X −→ [0, 1] is nonmem-

bership. These functions must accomplish 0 ≤ µA(x) + vA(x) ≤ 1.

Remark 4. The degree of hesitancy, hA(x), of
∼
A is hA(x) = 1 − µA(x)− vA(x).

Remark 5. An IFS generalizes the concept of an FS such that if hA(x) = 0 ∀x,
∼
A is a conventional

FS
..
A.

Definition 7. An IFN can be expressed using ⟨α, β⟩-levels or ⟨α, β⟩-cuts, as A⟨α,β⟩:

A⟨α,β⟩ = {x|µA(x) ≥ α, vA(x) ≤ β, 0 ≤ α + β ≤ 1, α, β ∈ [0, 1]}. (8)

Remark 6. A⟨α,β⟩ can be decoupled into two level sets [62], such as Aα = { x|µ A(x) ≥ α} and
A∗

β = {x|vA(x) ≤ β}, in such a way that

A⟨α,β⟩ =
〈

Aα = { x|µ A(x) ≥ α} , A∗
β = {x|vA(x) ≤ β}, 0 ≤ α + β ≤ 1, α, β ∈ [0, 1]

〉
. (9)

Definition 8. An intuitionistic fuzzy number (IFN) is an IFS defined on real numbers, such that

i. is normal, i.e., ∃x|µA(x) = 1 ⇒ vA(x) = hA(x) = 0 ;
ii. µA(x) is convex, ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1, (1 − λ)x2) ≥ min(µA(x1), µA(x2));
iii. vA(x) is concave, ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, vA(λx1, (1 − λ)x2) ≤ max(vA(x1), vA(x2)).

Remark 7. The ⟨α, β⟩-cuts of
∼
A and A⟨α,β⟩ can be decoupled as follows: Aα = { x|µ A(x) ≥ α} =[

Aα, Aα

]
and A∗

β = {vA(x) ≤ β} =
[

A∗
β, A∗

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1).

Remark 8. Thus, from Remark 7, an ⟨α, β⟩-level of A⟨α,β⟩ can be represented as

A⟨α,β⟩ =
〈

Aα =
[
Aα, Aα

]
, A∗

β =
[

A∗
β, A∗

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
, (10)
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where Aα and A*
β increase with their arguments, α and β, respectively. Similarly, Aα and A*

β are
decreasing with respect to these arguments.

Remark 9. In an IFN, µA(x) can be interpreted as the lower possibility distribution function of the
quantity of interest A, and µA∗(x) = 1 − vA(x) is the upper distribution function of that quantity.

The functions µA∗(x) and µA(x) can be interpreted as bipolar possibility distribution
measurements, in such a way that µA∗(x) accounts for the potential possibility and µA(x)
quantifies the real possibility of A being x [28].

Definition 9. A symmetric triangular intuitionistic fuzzy number (STIFN) is a particular case

of a triangular intuitionistic fuzzy number (TIFN) that can be denoted as
∼
A =

(
A, rA, r∗A

)
, with

membership and nonmembership functions:

µA(x) =


1 − |x−A|

rA
|x − A| < rA

1 x = A
0 otherwise

, (11)

and

υA(x) =


|x−A|

r∗A
|x − A| < rA

0 x = A
1 otherwise

, (12)

where rA ≤ r∗A. Figure 1 depicts the shape of an STIFN and the relationship between the embed-
ded functions µA(x) (the actual possibility distribution function), vA(x), µA∗(x) (the potential
possibility distribution function), and hA(x).

Figure 1. Triangular intuitionistic fuzzy numbers.

Remark 10. The level sets A⟨α,β⟩ of a TIFN can be decoupled into

Aα =
[
Aα, Aα

]
= [A − rA(1 − α), A + rA(1 − α)], (13)

A∗
β =

[
A∗

β, A∗
β

]
= [A − r∗Aβ, A + r∗Aβ]. (14)

Thus, STIFNs are an extension of STFNs such that if rA = r∗A, we deal with conven-
tional TFNs [63]. Thus, the use of symmetrical TFNs based on the principle of parsimony
to justify their use can be extended to the use of STIFNs.
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2.2. Intuitionistic Fuzzy Number Arithmetic

The fuzzy loss-reserving methods in Table 1 calculate provisions based on the assump-
tion that the parameters governing the claiming process are determined by fuzzy numbers.
Performing arithmetic operations with FNs requires the application of Zadeh’s extension
principle, which can be implemented through α-cuts [64].

Zadeh’s extension principle and its compatibility with α-cuts arithmetic can be ex-
tended to the evaluation of functions defined in real numbers when the parameters are
IFNs instead of FNs [65]. This paper considers the case of continuous and differentiable
functions y = f (x1, x2, . . . , xn), such that the values of the input variables are given as the

means of IFNs
∼
A(i), i = 1, 2, . . . , n. This generates an IFN

∼
B,

∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
.

Thus, the membership and nonmembership functions of
∼
B are as follows:

µB(y) = max
y= f (x1,x2,...,xn)

min
{

µA(1)
(x1), µA(2)

(x2), . . . , µA(n)
(xn)

}
, (15)

vB(y) = min
y= f (x1,x2,...,xn)

max
{

vA(1)
(x1), vA(2)

(x2), . . . , vA(n)
(xn)

}
. (16)

Therefore, if
∼
A(i), i = 1, 2, . . . , n are FNs, it is only necessary to obtain µB(y) using the

usual max/min principle. However, we can fit
∼
B thoughout B⟨α,β⟩ from A(i)⟨α,β⟩ by calculating

B⟨α,β⟩ = f
(

A(1)⟨α,β⟩, A(2)⟨α,β⟩, . . . , A(n)⟨α,β⟩

)
. Thus, given that f is continuous, the ⟨α, β⟩-cuts of

∼
B are defined as B⟨α,β⟩ =

〈
Bα =

[
Bα, Bα

]
, B*

β =
[
B*

β, B*
β

]
, 0 ≤ α + β ≤ 1,α, β ∈ [0, 1]

〉
, where

Bα = inf
{

y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, Bα = sup

{
y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, (17)

B*
β = inf

{
y
∣∣∣∣y = f (x1, . . . , xn), xi ∈ A*

(i)β

}
, B*

β = sup
{

y
∣∣∣∣y = f (x1, . . . , xn), xi ∈ A*

(i)β

}
. (18)

Following [66], when f monotonically increases with respect to xi, i = 1, 2, . . . m and
monotonically decreases in xi, i = m + 1, m + 2, . . . , n, m ≤ n, Bα =

[
Bα, Bα

]
is as follows:

Bα = f
(

A(1)
α
, A(2)

α
, . . . , A(m)

α
, A(m+1)α

, . . . , A(n)α

)
and

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)

α
, . . . , A(n)

α

)
.

(19)

By analogy, the β-cut representation of B∗
β =

[
B*

β, B*
β

]
is

B*
β = f

(
A*
(1)

β
, A*

(2)
β
, . . . , A*

(m)
β
, A*

(m+1)β
, . . . , A*

(n)β

)
and

B*
β = f

(
A*
(1)β

, A*
(2)β

, . . . , A*
(m)β

, A*
(m+1)

β
, . . . , A*

(n)
β

)
.

(20)

The linear combination of STIFNs is also an STIFN. Therefore, from the STIFNs
∼
A(i) =

(
A(i), rA(i)

, r∗A(i)

)
,
∼
B = (B, rB, r∗B ), where [46]

B =
n

∑
i=1

λi A(i), rB =
n

∑
i=1

|λi|·rA(i)
, r∗B =

n

∑
i=1

|λi|·r∗A(i)
. (21)

The evaluation of nonlinear functions using STIFNs does not produce a new STIFN.
Despite this limitation, we feel that maintaining a linear shape is relevant. Following the
argument in [67] justifying the use of approximating linear fuzzy numbers, complicated
forms of IFNs may cause drawbacks in processing imprecise information modeled by these
fuzzy structures, and the interpretation of the results becomes more difficult. The same
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argument, based on the parsimony principle, can be used to maintain the symmetrical
structure of the input data.

Thus, we evaluate the approximation to
∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
with an STIFN

∼
BT =

(
B, rB, r*

B
)

when the inputs are
∼
A(i) =

(
A(i), rA(i)

, r*
A(i)

)
, i = 1, 2, . . . , n. To do this, we

rely on the results of [51] to approximate an LR fuzzy number to the result of a nonlinear
function of LR fuzzy numbers, which is based on the linear approximation of α-cuts
with a Taylor expansion. In the field of FNs, this methodology produces an STFN that
approximates the functions of STFNs, as shown in several actuarial applications [13–15,55].

The extremes of the α-cuts Bα =
[
Bα, Bα

]
in (19) are approximated by means of a Taylor

expansion to the first grade from α = 1 to any α ∈ [0, 1]. To do this, we use the gradient
∇ f (A) =

(
∂ f
∂x1

(A), ∂ f
∂x2

(A), . . . , ∂ f
∂xn

(A)
)

, such that A = (A1, A2, . . . , An). Therefore, Bα can
be developed as follows:

Bα ≈ BT
α = f (A) +

(
∑m

i=1
∂ f
∂xi

(A)·rA(i)

)
(α − 1)−

(
∑n

i=m+1
∂ f
∂xi

(A)·rA(i)

)
(α − 1)

= f (A)−
(

n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·rA(i)

)
(1 − α).

(22)

Analogously, we develop Bα as follows:

Bα ≈ BT
α = f (A)−

(
m
∑

i=1

∂ f
∂xi

(A)·rA(i)

)
(α − 1) +

(
n
∑

i=m+1

∂ f
∂xi

(A)·rA(i)

)
(α − 1)

= f (A) +

(
n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·rA(i)

)
(1 − α).

(23)

Similarly, B∗
β =

[
B*

β, B*
β

]
, whose exact values are given in (20), can also be deter-

mined via Taylor expansion to the first grade from β = 0 to β ∈ (0, 1]. Therefore, for B*
β,

we state

B*
β ≈ BT*

β = f (A)−
(

m
∑

i=1

∂ f
∂xi

(A)·r∗A(i)

)
β +

(
n
∑

i=m+1

∂ f
∂xi

(A)·r∗A(i)

)
β

= f (A)−
(

n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·r∗A(i)

)
β.

(24)

In the same manner, we expand B*
β as follows:

B*
β ≈ BT*

β = f (A) +

(
m
∑

i=1

∂ f
∂xi

(A)·r∗A(i)

)
β −

(
n
∑

i=m+1

∂ f
∂xi

(A)·r∗A(i)

)
β

= f (A) +

(
n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·r∗A(i)

)
β.

(25)

Consequently, from (22), (23), (24), and (25), we find that

B = f (A), rB =
n

∑
i=1

∣∣∣∣ ∂ f
∂xi

(A)

∣∣∣∣·rA(i)
, r∗B =

n

∑
i=1

∣∣∣∣ ∂ f
∂xi

(A)

∣∣∣∣·r∗A(i)
. (26)

Analogous to [68], we evaluate the relative error measurement in the bounds of B⟨α,β⟩,
whose exact value can be calculated with (19)–(20), by those of its symmetrical triangular
approximation, BT

⟨α,β⟩, which must be stated by applying (26) in (11) and (12). Thus, the

deviations in Bα =
[
Bα, Bα

]
are

εα =

∣∣Bα − BT
α

∣∣
Bα

, εα =

∣∣∣Bα − BT
α

∣∣∣
Bα

, (27)
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and for B*
β =

[
B*

β, B*
β

]
,

ε*
β =

∣∣∣B*
β − BT*

β

∣∣∣
B*

β
, ε*

β =

∣∣∣B*
β − BT*

β

∣∣∣
B*

β

. (28)

2.3. Intuitionistic Linear Regression with the Minimum Fuzziness Principle and Symmetric Coefficients

Within the fuzzy field, there are a large number of regression methodologies that can be
divided into two main groups. In the first type, we can group those based on the minimum
fuzziness principle (MFP), and the second includes those based on the minimization of the
distance between observations and predictions, such as models that can be labeled fuzzy
least-squares models [69].

This dichotomy between the minimum fuzziness principle and distance minimization
is also observed in intuitionistic fuzzy regression models. For example, [46] extended the
minimum fuzziness principle to an intuitionistic regression setting, and [70] developed a
least-squares intuitionistic fuzzy regression methodology. Our paper uses the first approach.
Therefore, our model is based on fuzzy regression models with symmetric parameters.

Let us suppose that the equation to be fitted has a dependent factor dependent
on m real-value explanatory variables xi , i = 0, 1, 2, . . ., m, where x0 = 1 and xiϵR,

i = 1, 2, . . ., n. The outcome is then a linear function of intuitionistic coefficients
∼
A(i) =(

A(i), rA(i)
, r∗A(i)

)
, i = 0, 1, . . . , m and, thus, an STIFN

∼
Y =

(
Y, rY, r∗Y

)
. This is obtained

from (21), as follows:

Y =
m

∑
j=0

A(i)xi, rY =
n

∑
i=0

rA(i)
|xi|, r∗Y =

n

∑
i=0

r∗A(i)
|xi|. (29)

Moreover, both the observations of the input variables and the output variable are
crisp, which is a common hypothesis in intuitionistic fuzzy regression models. Thus, for
the jth observation, the outcome is the crisp number yj, generated by the crisp income

(1, x1j, x2j, . . . , xij, . . . , xim). Therefore, yj is a possible value of a TIFN
∼
Yj =

(
Yj, rYj , r∗Yj

)
,

whose membership function µYj

(
yj
)

and nonmembership function νYj

(
yj
)

in (11)–(12) are
determined from (29)

Yj =
m

∑
i=0

A(i)xij, rYj =
m

∑
i=0

rA(i)

∣∣xij
∣∣, r∗Yj

=
m

∑
i=0

r∗A(i)

∣∣xij
∣∣. (30)

The objective is to fit for
∼
A(i), i = 0, 1, 2, . . . , m, an STIFN estimate

∼
a(i) =

(
a(i), ra(i) , r∗a(i)

)
,

i = 0, 1, 2, . . . , m that simultaneously maximizes the membership of the observations in
the fitted system and minimizes the uncertainty of that system. Therefore, to find

∼
a (i), the

following multiple-objective programming problem must be implemented:

minimize
A(i),rA(i)

r∗A(i)
,i=0,1,...,n

(
−α, β, z1 =

n

∑
j=1

rYj , z2 =
n

∑
j=1

r∗Yj

)
,

which is subject to

µYj

(
yj
)
≥ α, νYj

(
yj
)
≤ β, j = 1, 2, . . . , n, rA(i)

, r∗A(i)
≥ 0, i = 0, 1, . . . , m. (31)

0 ≤ α + β ≤ 1, α, β ∈ [0, 1].

To solve (31), we implement the following steps:
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Step 1: We state a minimum reachable value α = g and β = 1 − g − h. Like in
possibilistic regression models, g ∈ [0, 1) scales the total fuzziness of the estimated system.
If g = 0, the uncertainty of the system is minimal; conversely, the inclusiveness of the
observations may be low. On the other hand, a higher g causes all observations to be
included with greater intensity, and the predictions of the fitted system are less specific [49].

The value of h ∈ [0, 1 − g) reflects the level of hesitancy in the system. For h = 0, the
actual and potential possibility of a particular value are identical; therefore, we have a
conventional possibilistic regression. At this step, we decouple (31) as follows:

minimize
A(i),rA(i)

,i=0,1,...,n
z1 =

n

∑
j=1

rYj ,

subject to
µYj

(
yj
)
≥g, j = 1, 2, . . ., n, rA(i)

≥ 0, i = 0, 1, . . . , m, (32)

and

minimize
A(i),r∗A(i)

,i=0,1,...,n
z2 =

n

∑
j=1

r∗Yj
,

subject to
νYj

(
yj
)
≤ 1 − g − h, = 1, 2, . . ., n, r∗A(i)

≥ 0, i = 0, 1, . . . , m. (33)

Step 2: We initially state for (32)–(33) that g = h = 0. This implies the minimum
fuzziness level and no hesitancy. Thus, we adjust a possibilistic regression model and
rA(i)

= r∗A(i)
. This leads us to obtain the estimates of A(i) and rA(i)

, which we denote as a(0)
(i)

and r(0)a(i) , respectively, where i = 0, 1, . . ., m. Thus, we must solve the following:

minimize
A(i),rA(i)

,i=0,1,...,n
z1 = z2 =

m

∑
i=0

rA(i)

n

∑
j=1

∣∣xij
∣∣ ,

subject to

m

∑
i=0

A(i)xij −
m

∑
i=0

rA(i)

∣∣xij
∣∣ ≤ yj ≤

m

∑
i=0

A(i)xij +
m

∑
i=0

rA(i)

∣∣xij
∣∣, j = 1, 2, . . . , n (34)

A(i), rA(i)
≥ 0, i = 0, 1, . . . , m.

Step 3: To fit the centers in (34), a(0)
(i) for A(i) and r(0)a(i) for rA(i)

i = 0, 1, . . ., m, the
literature proposes two alternatives:

• Alternative 1. The values of a(0)
(i) and r(0)a(i) are those that are solved in a unique step (34).

In this case, the centers a(0)
(i) are those that are obtained in a quantile regression at the

median, identical to [71].
• Alternative 2. The value a(0)

(i) in the first step is obtained by using ordinary least
squares [72]. However, there is no reason why any other method, such as the maximum
likelihood or weighted least-squares methods, cannot be used. In the second step,
r(0)a(i) is obtained by solving (34) and taking into account that this linear programming

problem is as follows, after independently stating a(0)
(i) :

minimize
rA(i)

,i=0,1,...,n
z1 = z2 =

m

∑
i=0

rA(i)

n

∑
j=1

∣∣xij
∣∣ ,
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subject to

−
n

∑
i=0

rA(i)

∣∣xij
∣∣ ≤ yj −

n

∑
i=0

a(0)
(i) xij ≤

n

∑
i=0

rA(i)

∣∣xij
∣∣, j = 1, 2, . . . , n (35)

rA(i)
≥ 0, i = 0, 1, . . . , m.

Step 4: We establish the optimal value of g based on this criterion. This value optimizes
what these authors refer to as the credibility of the system [73]. To achieve this, we define

the estimation of
∼
Yj, obtained from the parameters adjusted in Step 1 and Step 3 as

∼
y
(0)
j =(

y(0)j , r(0)yj , r(0)yj

)
, i.e.,

∼
y
(0)
j is an STFN where y(0)j = ∑m

i=0 a(i)xij, and r(0)yj = ∑m
i=0 r(0)a(i)

∣∣xij
∣∣. So,

g =

{
1
2

(
1 − γ(0)

δ(0)

)
γ(0) < δ(0)

0 otherwise
, (36)

where γ(0) = ∑n
j=1

µ
y(0)j

(yj)

r(0)yj

, δ(0) = ∑n
j=1

1−µ
y(0)j

(yj)

r(0)yj

and then we state that

ra(i) =
r(0)a(i)

1 − g
. (37)

Step 5: We subsequently proceed to obtain the estimates of r∗a(i) . To achieve this, the
decision maker must determine the degree of hesitancy in the system, where hϵ[0, 1 − g).
In the case where h = 0, there is no hesitancy; if h → 1 − g , the level of hesitancy tends to
be at its maximum. Thus,

r∗a(i) =
r(0)a(i)

1 − g − h
. (38)

3. An Intuitionistic Chain Ladder for Claim Reserving
3.1. Claim Reserving with the Chain-Ladder Method and Stochastic Variability and a
Probability–Possibility Transformation

The historical data illustrating the evolution of claims are typically presented in a
run-off triangle format, similar to Table 2 [10]. In this table, Ci,j represents the accumulated
claim cost of insurance contracts originating in the ith development period (i = 0, 1, . . ., n)
during the jth claiming period (j = 0, 1, . . ., n). Therefore, the accumulated claims Ci,j, i = 1,
2, . . ., n; j = n − i + 1, n − i + 2, . . ., n are unknown and must be fitted.

Table 2. Run-off triangle of accumulated claims.

Development/Payment Period
i|j 0 1 . . . j = n − i . . . n − 1 n

Occurrence/Origin Period

0 C0,0 C0,1 . . . C0,j . . . C0,n−1 C0,n
1 C1,0 C1,1 . . . C1,j . . . C1,n−1
...

...
...

...
...

...
i Ci,0 Ci,1 . . . Ci,n−i . . .
...

...
...

...
n − 1 Cn−1,0 Cn−1,1 . . .

n Cn,0 . . .

An alternative way to present historical data consists of the run-off triangle of incre-
mental claims, in a way similar to Table 3. Table 3 can be obtained from Table 2 by taking
into account that Si,j = Ci,j − Ci,j−1, i = 0, 1, 2, . . ., n − 1, j = 1, 2, . . ., n − i, and Si,0 = Ci,0.
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Therefore, the incremental claims Si,j, i = 1, 2, . . ., n; j = n − i + 1, n − i + 2, . . ., n are
unknown and must be fitted.

Table 3. Run-off triangle of incremental claims.

Development/Payment Period

0 1 . . . j = n − i . . . n − 1 n

Occurrence/Origin Period

0 S0,0 S0,1 . . . S0,j . . . S0,n−1 S0,n
1 S1,0 S1,1 . . . S1,j . . . S1,n−1
...

...
...

...
...

...
i Si,0 Si,1 . . . Si,n−i . . .
...

...
...

...
n − 1 Sn−1,0 Sn−1,1 . . .

n Sn,0 . . .

The triangle of accumulated claims (Table 2) is the input of several common methods
to fit claim reserves, such as the chain-ladder method or the Bornhuetter–Ferguson method.
The key concept of the CL method is the so-called link ratio between development year j
and j + 1, Fj, which allows us to obtain the cumulative claims of the (j + 1)th development
period from those of the jth period:

Ci,j+1 = Fj·Ci,j =⇒ Fj =
Ci,j+1

Ci,j
, (39)

where the available observations of Fj are as follows:

fi,j =
Ci,j+1

Ci,j
, i = 0, 1, . . . , n − j − 1 (40)

To obtain an average value of Fj, f j, we consider the widely used CL, which provides
an unbiased estimator of Fj [11]. Thus, the average development factor for the jth year is

f j =
∑

n−j−1
i=0 Ci,j+1

∑
n−j−1
i=0 Ci,j

. (41)

The terminal value of accumulated claims for the ith origin year Ci,n, i = 1, 2, . . ., n is
approximated by ci.n, as follows:

ci.n = Ci,n−i

n−1

∏
j=n−i

f j, (42)

and ci.n is an increasing function of development factors, since the partial derivative ∂ci.n
∂ f j

is

∂ci.n
∂ f j

= Ci,n−i

n−1

∏
k=n−i

k ̸=j

fk. (43)

Thus, the reserves are linked with the origin year i = 1, 2, . . ., n, ROi:

ROi = ci.n − Ci,n−i = Ci,n−i

(
n−1

∏
j=n−i

f j − 1

)
. (44)
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So, the overall provisions, R, are

R =
n

∑
i=1

ROi. (45)

The classical chain-ladder method is deterministic. However, this methodology is
flexible enough to generate stochastic estimates of fluctuations by applying the SCL method,
which is implemented in the following six steps:

1. Obtain the estimates of the observations Ci,j, ci,j, i = 0, 1, . . ., n; j < n − i by using f j
backwards from Ci,n−i.

2. Calculate an estimate of observed incremental claims (Table 2) by stating si,j = ci,j −
ci,j−1, in the case of si,0 = ci,0.

3. Calculate the descaled Pearson residuals due to fitting the real incremental claims in
Table 2, Si,j, with si,j:

mi,j =
Si,j − si,j
√si,j

, i = 0, 1, . . . , n; j ≤ n − i.

4. Resample mi,j, i = 0, 1, . . ., n; j ≤ n − i. Therefore, we find mb
i,j, i = 0, 1, . . ., n; j ≤ n − i.

5. Calculate the incremental claims sb
i,j = si,j +

√si,jmb
i,j

, i = 0, 1, . . ., n; j ≤ n − i. This
implies adjusting a new Table 3.

6. From Table 3, in the above step, we can resample the accumulated claims and con-
struct Table 2. This new table allows us to obtain the development factors (40) and
reserves (44) and (45). These six steps can be implemented B times in such a way that
predictions of claiming reserves can be obtained as confidence intervals.

Note that Steps 1–6 allow B simulations of loss reserves to be obtained for every origin
year RO(bi)

i , bi = 1, 2, . . ., B and the whole reserve R(b) and b = 1, 2, . . . , B. Without losing

generality, let us suppose that in all the cases, RO(bi)
i ≤ RO(bi+1)

i . Then, the reserve ROi is
contained with a probability 1 − α in the interval ROiα, such that

ROiα =
[

ROiα
, ROiα

]
=
[

RO(round[B· α
2 ])

i , RO(round[B·(1− α
2 )])

i

]
, (46)

which can be interpreted as the α-cuts of a possibilistic estimate of the reserves of the ith
year

..
ROi.
Therefore, we can estimate a confidence interval for the overall reserves in two ways.

A conservative estimate, R′
α, is R′

α = ∑n
i=1 ROiα, such that R′

α can be considered the α-cuts
of the possibility distribution

..
R′:

R′
α =

[
R′

α, R′α
]
=

[
n

∑
i=1

ROiα
,

n

∑
i=1

ROiα

]
(47)

A more specific approximation of the overall reserves implies inducing a confidence
interval with a probability level 1 − α, Rα from R(b) ≤ R(b+1), b = 1, 2, . . ., B by calculating
the following:

Rα =
[
Rα, Rα

]
=
[

R(round[B· α
2 ]), R(round[B·(1− α

2 )])
]
. (48)

Therefore, from the probabilistic confidence interval Rα, we can induce a possibility
distribution function

..
R by considering Definition 5.
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3.2. An Intuitionistic Fuzzy Chain-Ladder Method
3.2.1. Fitting Symmetrical Intuitionistic Triangular Fuzzy Development Factors

Let us express relation (39), in which, from a known accumulated claim amount in
the jth development period, we must obtain the accumulated quantity in the (j + 1)th
development period, which is uncertain because the development factor is an STIFN. So,

∼
Ci,j+1 =

∼
F(j)·Ci,j (49)

where
∼
Ci,j+1 =

(
Ci,j+1, rCi,j+1 , r*

Ci,j+1

)
and

∼
F(j) =

(
F(j), rF(j)

, r*
F(j)

)
. Therefore, from (21),

Ci,j+1 = F(j)·Ci,j, rCi,j+1 = Ci,j·rF(j)
and r*

Ci,j+1
= Ci,j·r*

F(j)
.

To fit
∼
F(j) by means of

∼
f (j) =

(
f(j), r f(j)

, r*
f(j)

)
, we consider the data in Table 2. The cou-

ples (y,x) are defined as
(
Ci,j+1, Ci,j

)
, i = 0, 1, . . . , n− j− 1. Therefore,

∼
f (j) =

(
f(j), r f(j)

, r*
f(j)

)
is first fitted, where f (0)

(j) = f(j) and r(0)f(j)
= r f(j)

= r*
f(j)

are the optimum values of the argu-

ments in the programming problem (32)–(33) for g = h = 0. Therefore, we must solve the
version of (34) for relation (49):

minimize
F(j),rF(j)

z1 = z2 = rF(j)

n−j−1

∑
i=0

Ci,j ,

which is subject to

F(j)Ci,j − Ci,jrF(j)
≤ Ci,j+1 ≤ F(j)Ci,j + Ci,jrF(j)

, i = 0, 1, . . . , n − j − 1. (50)

rF(j)
≥ 0.

By dividing the inclusion constraints in (50) by Ci,j, i = 0, 1, . . . , n − j − 1, the inde-

pendent terms turn into (40), fi,j =
Ci,j+1

Ci,j
. Likewise, the cost function of (50) has only one

argument. Therefore, the linear pro-gramming problem becomes

minimize
F(j),rF(j)

z1 = z2 = rF(j)
,

which is subject to

F(j) − rF(j)
≤ fi,j ≤ F(j) + rF(j)

, i = 0, 1, . . . , n − j − 1. (51)

rF(j)
≥ 0.

To solve (51), we can follow Alternatives 1 and 2 in Section 2.3. By using Alternative
1, the solution of that linear programming problem allows us to obtain f (0)

(j) as the result

of the quantile regression at the median and, simultaneously, r(0)f(j)
. Models (51) can be

implemented by Alternative 2 in Section 2.3 by prefixing f (0)
(j) with the CL formula (41). In

this case, the linear programming problem (51) becomes

minimize
rF(j)

z1 = z2 = rF(j)
,

which is subject to

−rF(j)
≤ fi,j − f (0)

(j) ≤ rF(j)
, i = 0, 1, . . . , n − j − 1. (52)

rF(j)
≥ 0,
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and so,
r(0)f(j)

= max
i=0,1,...,n−i−1

∣∣∣ fi,j − f (0)
(j)

∣∣∣. (53)

Then, the empirical estimates of
∼
F(j) =

(
F(j), rF(j)

, r*
F(j)

)
,
∼
f (j) =

(
f(j), r f(j)

, r*
f(j)

)
, j = 0, 1,

. . ., n − 1, are obtained as follows:

i. Considering that f(j) = f (0)
(j) ,

ii. r f(j)
is obtained by calculating g in Step 4 of Section 2.3 with (36) and (37).

iii. Finally, r∗f(j)
is adjusted in Step 5 of Section 2.3 by subjectively stating the degree of

system hesitancy, h, and using (38).

The structure of the data in Table 2 leads us to obtain the last development factor
∼
f (n−1)

with only the pair (C0,n, C0,n−1). Therefore, it is easy to verify that f(j) = f (0)
(j) =

C0,n
C0,n−1

,
but this approach also leads to the unrealistic conclusion that it is a certain parameter, i.e.,
r f(j)

= r∗f(j)
= 0. Mack [11], in his stochastic free-distribution modeling of reserves over the

CL model, addresses this issue based on the intuition that the absolute uncertainty of the
development factors tends to decrease over time, as does the expected value of these factors.
Thus, the standard deviation of the development factor Fn−1 is estimated as the minimum
of the standard deviation of Fn−3 and Fn−2 and the ratio between the variance of Fn−3 and
the standard deviation of Fn−2. Taking this idea into consideration and considering that k
times the standard deviation of random quantities can be interpreted as the radius of an

equivalent STFN [54,56],
∼
f (n−1) =

(
f(n−1), r f(n−1)

, r∗f(n−1)

)
, where

f(n−1) =
C0,n

C0,n−1
, (54)

and

r f(n−1)
= min

{
r f(n−3)

2

r f(n−2)

,r f(n−3)
, r f(n−2)

}
, r∗f(n−1)

= min

 r∗f(n−3)

2

r∗f(n−2)

, r∗f(n−3)
, r∗f(n−2)

. (55)

3.2.2. Fitting Reserves with Symmetric Triangular Intuitionistic Fuzzy Development Factors

To state the reserves, we must estimate the terminal value of the claims in every origin
year i = 1, 2, . . ., n,

∼
c i,n, which can be expressed through its ⟨α, β⟩-cuts as follows:

ci,n⟨α,β⟩ =

〈
ci,nα =

[
ci,nα

, ci,nα

]
, c*

i,nβ
=

[
c*

i,nβ
, c*

i,nβ

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
. (56)

Specifically, ci,n⟨α,β⟩ is obtained from Ci,n−i and the ⟨α, β⟩-cuts of
∼
f (j), f(j)⟨α,β⟩, j = n −

i, n − i + 1, . . ., n − 1 by adapting (42) to an intuitionistic setting:

ci,n⟨α,β⟩ = Ci,n−i

n−1

∏
j=n−i

f(j)⟨α,β⟩, (57)

and thus, ci,nα =
[
ci,nα

, ci,nα

]
is obtained considering that (42) is an increasing function of

development factors:

ci,nα =

[
Ci,n−i

n−1
∏

j=n−i
f(j)

α
, Ci,n−i

n−1
∏

j=n−i
f(j)α

]

=

[
Ci,n−i

n−1
∏

j=n−i

(
f(j) − r f(j)

(1 − α )
)

, Ci,n−i
n−1
∏

j=n−i

(
f(j) + r f(j)

(1 − α )
)]

.
(58)
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Similarly, c*
i,nβ

=

[
c*

i,nβ
, c*

i,nβ

]
is calculated as follows:

c*
i,nβ

=

[
Ci,n−i

n−1
∏

j=n−i
f ∗(j)

β
, Ci,n−i

n−1
∏

j=n−i
f ∗
(j)β

]

=

[
Ci,n−i

n−1
∏

j=n−i

(
f(j) − r∗f(j)

β
)

, Ci,n−i
n−1
∏

j=n−i

(
f(j) + r∗f(j)

β
)]

.
(59)

Note that
∼
c i,n is not an STIFN. However, by using derivatives (43) and (22)–(25), we

can approximate
∼
c i,n ≈ ∼

c
T
i,n =

(
ci,n, , rci,n , r∗ci,n

)
, where the center is

ci,n = Ci,n−i

n−1

∏
j=n−i

f(j), (60)

and the radii are

rci,n = Ci,n−i

n−1

∑
j=n−i

 n−1

∏
k=n−i

k ̸=j

fk

r f(j)
, r∗ci,n

= Ci,n−i

n−1

∑
j=n−i

 n−1

∏
k=n−i

k ̸=j

fk

r∗f(j)
. (61)

Therefore, by using (44), we can obtain the intuitionistic reserves for the ith origin year
∼

ROi

through ROi⟨α,β⟩ =
〈

ROiα =
[
ROiα, ROiα

]
, RO*

i β =
[
RO*

i β
, RO*

i β

]
, 0 ≤ α+ β ≤ 1, α, β ∈ (0, 1)

〉
by calculating:

ROi⟨α,β⟩ = ci,n⟨α,β⟩ − Ci,n−i. (62)

Then,

ROiα =

[
Ci,n−i

(
n−1
∏

j=n−i

(
f(j) − r f(j)

(1 − α )
)
− 1

)
, Ci,n−i

(
n−1
∏

j=n−i

(
f(j) + r f(j)

(1 − α )
)
− 1

)]
,

RO*
i β =

[
Ci,n−i

(
n−1
∏

j=n−i

(
f(j) − r∗f(j)

(1 − α )
)
− 1

)
, Ci,n−i

(
n−1
∏

j=n−i

(
f(j) + r∗f(j)

(1 − α )
)
− 1

)]
.

(63)

The intuitionistic fuzzy estimate of reserves of the ith year is not an STIFN. However,

an STIFN approximate
∼

ROi ≈
∼

RO
T

i =
(

ROi, rROi , r*
ROi

)
is obtained by the following:

∼
RO

T

i = cT
i,n − Ci,n−i =

(
ci,n − Ci,n−i, rci,n , r*

ci,n

)
, (64)

and so, considering (60) and (61),

ROi =
∼
c

T
i,n − Ci,n−i = Ci,n−i

(
n−1
∏

j=n−i
f j − 1

)

rROi = Ci,n−i
n−1
∑

j=n−i

 n−1
∏

k=n−i
k ̸=j

fk

r f(j)
, r∗ROi

= Ci,n−i
n−1
∑

j=n−i

 n−1
∏

k=n−i
k ̸=j

fk

r∗f(j)
.

(65)
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Similarly, an intuitionistic fuzzy estimate of the overall reserve
∼
R is obtained with

(45) through R⟨α,β⟩ =
〈

Rα =
[
Rα, Rα

]
, R∗

β =
[

R∗
β, R∗

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
. By

implementing R⟨α,β⟩ =
n
∑

i=1
ROi⟨α,β⟩. Then,

Rα =

[
n

∑
i=1

ROiα
,

n

∑
i=1

ROiα

]
, R∗

β =

[
n

∑
i=1

RO*
i β

,
n

∑
i=1

RO*
i β

]
. (66)

Therefore, an STIFN approximate to
∼
R ≈

∼
R

T
=
(

R, rR, r*
R
)

is obtained simply as
follows:

∼
R

T
=

n

∑
i=1

∼
RO

T

i =

(
n

∑
i=1

ROi,
n

∑
i=1

rROi ,
n

∑
i=1

r*
ROi

)
. (67)

4. Empirical Application
4.1. Estimating Loss Reserves with Deterministic and Stochastic Chain-Ladder Method

Below, we present an empirical application based on the run-off triangle of accumu-
lated claims shown in Table 4. These data were utilized in [74,75]. Table 4 also illustrates the
development factors found using (41). Thus, we observe that a crisp development factor f0
= 1.899 is estimated, indicating that the accumulated claims from development years zero
to one increase on average by 89.90% for all origin years. Similarly, we can interpret the
estimates of the development factors f1, f2, f3, and f4.

Table 5 presents the individual reserves obtained for each of the origin years i = 1, 2,
. . ., 5 and the total reserves with a deterministic CL. Thus, we can observe that as the origin
year increases, the reserve to be allocated increases, as claims from more development
years are pending. It can be noted that in both Tables 4 and 5, we obtain the expected
values of the link ratios and reserves, but we do not have any estimation of their variability.
This analysis is carried out in Tables 6 and 7, where reserves are estimated using the SCL
method, and the obtained possibilistic confidence intervals are interpreted as possibility
distributions, using Definition 5 of Section 2.

Table 6 displays a table of incremental claims analogous to Table 3 that is deduced
from Table 4. Table 4 also shows the theoretical table of incremental claims that are deduced
from the development factors of the chain-ladder method. The difference between the
observed and theoretical tables of incremental claims through descaled Pearson residuals
allows the implementation of the SCL method, described in Section 3.1, to fit the variability
of reserves by origin year and total reserves.

Table 7 presents the results obtained with B = 5000 bootstrapping resamples. The
confidence intervals were calculated with Equations (46)–(48). The upper endpoints of the
confidence intervals obtained for probability levels α = 0, 0.01, 0.05, and 0.1 are the 100%,
99.5%, 97.5%, and 95% estimated percentiles for the reserves, respectively. These quantiles
are commonly used to estimate extreme claim scenarios.

Within the total reserves, we distinguished two confidence intervals: R′
α (47) and Rα

(48). The former arises from adding the confidence intervals associated with the reserves
of each origin year. Thus, as shown in Table 7, for a confidence level of 100% (α = 0), we
obtained the overall reserves R′

0 = [63.68, 97.77] + [526.48, 628.62] + [1507.29, 1677.46] +
[2720.66, 2997.42] + [4641.72, 5105.40] = [9459.82, 10,506.67]. The most prudent reserve
value would be 10506.67 since it arises from the sum of the estimates of the value that
accumulates 100% probability of the reserves from each origin year. In contrast, Rα arises
from the application of (45) in each of the B = 5000 simulations, making it a narrower
confidence interval. Table 7 shows that R0 = [9533.03, 10,481.08], so the prudent value for
the reserve based on this confidence interval is 10,481.08.

Table 7 also shows that the reserves of each origin year, and the total reserves can be
estimated through a possibility distribution by gathering and fitting successive confidence
intervals (46)–(48) from α = ε (ε ≈ 0) to α = 1. By applying Definition 5 and Remark 3, we
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can adjust the reserves of the fifth period to a possibility distribution
..

RO5 whose core is
4826.23 and support [4641.72, 5105.40]. Likewise, Table 6 also shows that we can obtain a
possible estimate of overall reserves

..
R′ = ∑5

i=1

..
ROi whose center is 9899.31, supporting

[9459.82, 10,506.67].

Table 4. Run-off triangle of accumulated claims used in this paper.

i|j 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3403
1 1113 2103 2774 3422 3844
2 1265 2433 3233 3977
3 1490 2873 3883
4 1725 3261
5 1889

f j 1.899 1.329 1.232 1.120 1.020
Source: Faculty and Institute of Actuaries [74].

Table 5. Deterministic loss reserves obtained by using the chain-ladder method.

RO1 RO2 RO3 RO4 RO5 R

78.38 567.93 1584.67 2842.10 4826.23 9899.31

Table 6. Run-off triangles of observed incremental claims and theoretical incremental claims with
chain-ladder development factors (41).

Observed Incremental Claims Theoretical Incremental Claims

i|j 0 1 2 3 4 5 i|j 0 1 2 3 4 5

0 1001 854 568 565 347 68 0 957.27 861.02 598.44 561.04 357.24 68
1 1113 990 671 648 422 1 1103.37 992.43 689.78 646.66 411.76
2 1265 1168 800 744 2 1278.49 1149.95 799.26 749.30
3 1490 1383 1010 3 1538.06 1383.41 961.53
4 1725 1536 4 1716.81 1544.19
5 1889 5 1889

Source: Own elaboration from the Faculty and Institute of Actuaries [74].

Table 7. Estimates of reserves with bootstrapping confidence intervals and chain-ladder development
factors.

α RO1α RO2α RO3α RO4α

1 [78.38, 78.38] [567.93, 567.93] [1584.67, 1584.67] [2842.10, 2842.10]
0.25 [76.94, 79.83] [564.14, 571.63] [1577.02, 1592.89] [2830.92, 2852.36]
0.5 [75.08, 81.62] [560.41, 576.65] [1569.64, 1602.17] [2820.37, 2866.04]

0.75 [71.78, 87.40] [554.77, 583.26] [1558.79, 1613.60] [2804.07, 2883.77]
0.1 [69.09, 91.11] [548.46, 589.15] [1547.12, 1625.22] [2787.26, 2901.24]

0.05 [68.06, 92.87] [544.98, 593.35] [1539.65, 1633.24] [2775.83, 2915.09]
0.01 [66.74, 94.64] [537.02, 602.96] [1522.32, 1651.93] [2751.60, 2942.85]

0 [63.68, 97.77] [526.48, 628.62] [1507.29, 1677.46] [2720.66, 2997.42]

α RO5α R’
α Rα

1 [4826.23, 4826.23] [9899.31, 9899.31] [9899.31, 9899.31]
0.25 [4808.51, 4838.96] [9857.53, 9935.67] [9866.55, 9930.80]
0.5 [4792.94, 4859.91] [9818.44, 9986.38] [9834.38, 9972.34]

0.75 [4768.92, 4887.95] [9758.33, 10,055.97] [9786.68, 10,028.49]
0.1 [4739.83, 4918.17] [9691.76, 10,124.88] [9733.84, 10,078.13]

0.05 [4721.56, 4937.74] [9650.07, 10,172.29] [9702.70, 10,107.32]
0.01 [4682.60, 4994.47] [9560.29, 10,286.87] [9644.19, 10,193.22]

0 [4641.72, 5105.40] [9459.82, 10,506.67] [9533.03, 10,481.08]
Note: (a) 1 − α represents the confidence level of the probabilistic confidence interval, which can be interpreted
as the α-cut of the equivalent fuzzy number; (b) R′

α is the overall reserve calculated by summing the confidence
intervals ∑5

i=1 ROiα and Rα, which are the confidence intervals of the reserves, by applying bootstrapping.
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4.2. Estimating Loss Reserves with a Symmetric Triangular Intuitionistic Fuzzy Chain Ladder

Next, we put into work the methodology developed in Section 3.2, which allows us to
estimate the claim reserves with STIFNs, with the data of the run-off triangle in Table 4.
We also compare the results obtained with those of the bootstrap estimates using the SCL
method in Table 6, which we reinterpret as α-cuts of possibility distributions. Therefore, to

obtain the estimates of
∼
F(0) =

(
F(0), rF(0) , r∗F(0)

)
and

∼
f (0) =

(
f(0), r f(0) , r∗f(0)

)
, we solve the

linear programming problem (51), whose constraints are built up with the link ratios of
each origin year i = 1, 2, . . ., 5, as shown in Table 8:

minimize
F(0),rF(0)

z1 = z2 = rF(0) ,

which is subject to
F(0) − rF(0) ≤ 1.853 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.889 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.923 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.928 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.890 ≤ F(0) + rF(0) ,

rF(0) ≥ 0.

Table 8. Run-off triangle of individual link ratios, fi,j, i = 0, 1, . . ., 4; j = 0, 1, . . ., n − i − 1.

i|j 0 1 2 3 4 5

0 1.853 1.306 1.233 1.116 1.020
1 1.889 1.319 1.234 1.123
2 1.923 1.329 1.230
3 1.928 1.352
4 1.890
5

Table 9 shows the STIFNs adjusted to development factors for j = 0, 1, 2, 3, 4. Thus,
if the estimate F(0) is not prefixed with (41), we obtain f (0)

(0) = 1.891 and r(0)f(0)
= 0.038, and

(36) and (37) allow us to obtain an optimum uncertainty level for membership functions of
development factor g = 0.14. Thus, from (38), r f(0) = 0.044. The degree of system hesitancy,
h, must be estimated subjectively by the decision maker. This may be linked, for example,
to the perceived reliability of the data or the predictability of the insurance environment.
The calculations in this numerical application are performed with h = 0.1, so we obtain
r∗f(0) = 0.049.

In Section 3.2, we also state that f (0)
(0) can be predefined with the deterministic CL

shown in Table 4. Therefore, f (0)
(0) = 1.899 , and by using (51), r(0)f(j)

= 0.046. Equations (36)

and (37) allow us to obtain an optimum uncertainty degree g = 0. Therefore, from (38)
r f(0) = 0.046 and by using the hesitancy level h = 0.1, r∗f(0) = 0.051.

Note that the spreads of
∼
f (4), r f(4) and r∗f(4) cannot be obtained from the sample in

Table 4 since only one individual link ratio exists. To fit these spreads, we use (55) and then
set the following:

r f(4) = min
{

0.00352

0.0067
; 0.0035; 0.0067

}
= 0.0035
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r∗f(4) = min
{

0.00422

0.0081
; 0.0042; 0.0081

}
= 0.0042.

Table 9. Symmetric triangular intuitionistic fuzzy number estimation of development factors with
h = 0.1.

Parameters of Intuitionistic Fuzzy Regression (Alternative 1)

j 0 1 2 3 4

f(j) 1.891 1.329 1.232 1.120 1.020

r(0)f(j)
0.038 0.023 0.002 0.004 ---

g 0.140 0.179 0.457 0.500 ---
r f(j)

0.044 0.028 0.003 0.007 0.003
r∗f(j)

0.049 0.031 0.004 0.009 0.004

Parameters of Intuitionistic Fuzzy Regression (Alternative 2)

j 0 1 2 3 4

f(j) 1.8995 1.3291 1.2321 1.1200 1.0204

r(0)f(j)
0.0463 0.0229 0.0020 0.0038 ---

g 0.0000 0.0000 0.4179 0.4274 ---
r f(j)

0.0463 0.0229 0.0035 0.0067 0.0035
r∗f(j)

0.0515 0.0255 0.0042 0.0081 0.0042

Table 10 shows the estimates of the overall loss reserves of the intuitionistic claim
reserves calculated with the two alternatives proposed in Section 3.2,

∼
R. Thus, first, we

compute the “exact” ⟨α, β⟩-cuts of both methods. This involves using (58) and (59) to

determine the terminal accumulated claims; (63) to find
∼

ROi; and i = 1, 2, . . ., 5 and (66)
to determine the total value. Table 10 also shows the STIFN approximation of the total

reserve,
∼
R

T
, which is obtained using the sequential use of (60), (61), (65), and (67). Table 10

also shows the errors calculated with (27) and (28). Their values suggest that the symmetric
triangular approximation is almost perfect. Note that the maximum error lies in the β-cuts
of the nonmembership function at β = 1 and does not exceed 0.15% in any case.

The results of Table 7, which come from bootstrapping resamples, can be interpreted
as α-level sets of possibility distributions. Therefore, they can be compared with fuzzy
intuitionistic estimates, which are constructed through two possibility distributions. In
other words, the probabilistic intervals obtained with bootstrapping and the ⟨α, β⟩-cuts can
be interpreted by the actuary in a similar manner. Thus, according to Table 7, the value
of reserves that includes 100% of their possible values could be given as 10,506.67 if we
sum the 100th percentile of the reserves associated with all origin years, and 10,481.08 if we
consider the 100th percentile of the bootstrap simulations of overall reserves. These results
are similar and comparable to those obtained with the membership function of the overall
reserves obtained in Table 10. We can observe in the α-cuts of the reserves, RT

α , that if they
are calculated with Alternative 1, their prudent estimate can range between 10,391.15 (at
the 0.25-cut) and 10,565.45 (at the 0-cut). The conclusions we can draw from the fit obtained
with Alternative 2 are similar, as the upper end of the 0-cut is 10,563.24 and that of the
0.25-cut is 10,397.25.

The β-cuts of the nonmembership functions complement the information provided
by the α-cuts of the membership functions, introducing the existence of bipolarity. Thus,
in Table 10, Alternative 1 for estimating the development factors offers an upper bound
at the 0-cut for the loss reserves of RT0 = 10,565.45 and an upper limit of the 1-cut of the
nonmembership function, RT*

1 = 10,688.71. Thus, the use of IFNs in reserve estimation
allows us to first obtain an estimation of the most extreme possible scenario (10,565.45),
whose adjustment does not use subjective information at any time but rather uses only
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run-off triangle data. That is, the meaning of the estimation is analogous to that obtained
with stochastic simulation or what we would obtain with the use of possibilistic regression.
However, the use of IFNs also allows us to obtain an estimation of the scenario that we
could classify as potentially more extreme through the higher value of the 1-cut of the
nonmembership function. The quantification of this scenario requires the participation
of the decision maker, who must indicate a perceived degree of hesitancy, which in this
numerical application was h = 0.1.

Table 10. ⟨α, β⟩-cuts of the intuitionistic fuzzy estimates of overall reserves with the two methodolo-
gies proposed in this paper.

Alternative 1 Alternative 2

α β Rα Rα R∗
β R∗

β Rα Rα R∗
β R∗

β

1 0 9868.25 9868.25 9868.25 9868.25 9899.31 9899.31 9899.31 9899.31
0.75 0.25 9694.52 10,043.12 9663.92 10,074.16 9733.86 10,065.82 9708.72 10,091.30
0.5 0.5 9521.94 10,219.16 9461.17 10,281.66 9569.46 10,233.40 9519.52 10,284.69
0.25 0.75 9350.50 10,396.36 9260.00 10,490.77 9406.10 10,402.04 9331.70 10,479.50

0 1 9180.19 10,574.72 9060.38 10,701.50 9243.80 10,571.76 9145.26 10,675.72

∼
R

T
= (9868.25, 697.21, 820.46)

∼
R

T
= (9899.31, 663.93, 765.15)

α β RT
α RT

α RT*
β RT*

β RT
α RT

α RT*
β RT*

β

1 0 9868.25 9868.25 9868.25 9868.25 9899.31 9899.31 9899.31 9899.31
0.75 0.25 9693.94 10,042.55 9663.13 10,073.36 9733.33 10,065.29 9708.02 10,090.60
0.5 0.5 9519.64 10,216.85 9458.01 10,278.48 9567.35 10,231.27 9516.73 10,281.88
0.25 0.75 9345.34 10,391.15 9252.90 10,483.59 9401.36 10,397.25 9325.45 10,473.17

0 1 9171.04 10,565.45 9047.78 10,688.71 9235.38 10,563.24 9134.16 10,664.46

α β εα εα ε*
β ε*

β εα εα ε*
β ε*

β

1 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.75 0.25 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
0.5 0.5 0.02% 0.02% 0.03% 0.03% 0.02% 0.02% 0.03% 0.03%
0.25 0.75 0.06% 0.05% 0.08% 0.07% 0.05% 0.05% 0.07% 0.06%

0 1 0.10% 0.09% 0.14% 0.12% 0.09% 0.08% 0.12% 0.11%

Note: The errors ε*
β, εα, and ε*

β, ε*
β are obtained with (27) and (28).

Using other types of modeling for the underlying link ratios in the run-off triangle,
such as LR or adaptive functions, allows us to obtain the same <0,1>-cut and <1,0>-cut as
our method if the IFN estimates have the same centers and radii. However, the rest of the
⟨α, β⟩-cuts, which can be assimilated to structured simulations of the variables involved
in the analysis, would change, varying their amplitude. In the case of using adaptive
functions, the linear functions used in this paper can be considered as a baseline, with
an order of m = 1. From this baseline, m < 1 implies a dilation of the ⟨α, β⟩-levels, and
thus, they will incorporate more uncertainty. In contrast, m > 1 indicates a contraction
of the results compared to those obtained with STIFNs. Thus, the ⟨α, β⟩-cuts will have a
smaller width.

Table 11 shows the estimated reserves associated with the five origin years and the
overall reserves through the STIFNs. The use of this type of IFN can be very useful for
applying the actuarial judgement required to set a definite crisp value for the loss reserves.
In the case of total reserves, if we take Alternative 2 from Section 3.2 as a reference for
decision making, the most reliable value is 9899.31, which coincides with (40). Possible
deviations of up to 663.93 are estimated, and deviations exceeding 765.15 are considered
not possible. Regarding deviations between 663.93 and 765.15, there is hesitancy about
their feasibility. When considering only the data in the run-off triangle, the conclusion must
be that they are not possible. On the other hand, they are possible based on the degree of
hesitancy perceived by the decision maker.
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Table 11. Symmetrical triangular intuitionistic fuzzy estimates of reserves.

Alternative 1 Alternative 2
∼

RO
T

1
(78.38, 12.28, 15.05) (78.38, 13.34, 16.11)

∼
RO

T

2
(567.93, 43.40, 53.90) (567.93, 42.66, 51.62)

∼
RO

T

3
(1584.67, 66.38, 82.21) (1584.67, 66.72, 80.69)

∼
RO

T

3
(2842.10, 200.87, 236.11) (2842.10, 179.74, 207.03)

∼
RO

T

4
(4795.16, 374.28, 433.19) (4826.23, 361.47, 409.70)

∼
R (9868.25, 697.21, 820.46) (9899.31, 663.93, 765.15)

5. Conclusions and Further Research

The determination of insurance loss reserves must be prudent, necessitating the
quantification of their expected value and potential deviations from that value. To ascertain
the most plausible value, a statistical method such as the chain-ladder (CL) method is
utilized to estimate the expected claim evolution. Subsequently, it is necessary to estimate
possible deviations from these values with greater reliability. The contributions of this work
include providing tools for estimating and interpreting such values using fuzzy set theory
and intuitionistic fuzzy set theory.

The first contribution of this work is to show that the information obtained through
stochastic models such as bootstrapping and the use of conventional fuzzy numbers
are similar. In fact, we can reinterpret the value and variability of reserves obtained
with the stochastic CL (SCL) methodology with possibility distributions. Therefore, both
instruments capture epistemic uncertainty.

The second and main contribution of our work is the generalization of developments
in claim reserving with fuzzy numbers to the use of intuitionistic fuzzy numbers (IFNs).
This tool allows the introduction of bipolar information about possible reserve variability
into the estimation, i.e., both “positive” information about feasible parameter values and
negative information about those that cannot be taken in any case.

This work assumes that the parameters governing the evolution of claims are sym-
metrical and triangular IFNs (STIFNs). Special attention is given to the approximation of
each IFN to be of the same nature as the results that arise from its functional handling.
Linear shapes often provide effective resolution in practical applications of fuzzy set theory.
Moreover, symmetry often allows for a good balance between parsimony and comprehen-
siveness in capturing available information and facilitates interpretability of the results by
end-users who may not necessarily have knowledge of fuzzy logic. The value of loss re-
serves when the development factors are estimated using the STIFN technique can be easily
approximated through the most likely scenario, obtained with conventional chain-ladder
methodology, and by evaluating the deviations from this value with the gradient function
of the terminal value of claims from each origin year in the spreads of the membership and
nonmembership functions of the link ratios.

The results provided by the proposed method can be very useful in actuarial practice
since they can be interpreted very intuitively by the person responsible for establishing
reserves, as there is no need for knowledge of fuzzy set theory. While the center of
an STIFN quantifies, in a very synthetic way, the most reliable value of reserves, the
two spreads provide an approximation of the maximum deviations from this value, the
maximum achievable deviation, and the first not-achievable deviation. On the other hand,
representing reserves through ⟨α, β⟩-cuts allows for the structuring of simulations on their
appropriate value in multiple scenarios, which can be of great help to decision makers.

Certainly, the limitation of using STIFNs is that they do not account for asymmetry
in the link ratios, and similarly, they do not allow for the introduction of more refined
calibration of possibility distributions, such as adaptive membership functions. This latter
issue implies that introducing nuances, such as concentration and dilation, is not possible.
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However, the proposed scheme can be adapted to accommodate more sophisticated forms
of membership and nonmembership functions.

Our extension of intuitionistic regression can be applied in other financial and actu-
arial contexts where possibilistic regression has already been used, such as, for example,
estimating the implied moments of options [76,77]. A natural extension of this work would
involve introducing intuitionistic uncertainty into the analysis of non-life insurance claims,
expanding the results obtained with fuzzy numbers to calculate discounted reserves [78],
the discounted values of non-life insurance liabilities [79], or the terminal values of an
insurance company [80,81].
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