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Abstract: This work focuses on making Bayesian inferences for the two-parameter Birnbaum–
Saunders (BS) distribution in the presence of right-censored data. A flexible Gibbs sampler is
employed to handle the censored BS data in this Bayesian work that relies on Jeffrey’s and Achcar’s
reference priors. A comprehensive simulation study is conducted to compare estimates under various
parameter settings, sample sizes, and levels of censoring. Further comparisons are drawn with
real-world examples involving Type-II, progressively Type-II, and randomly right-censored data. The
study concludes that the suggested Gibbs sampler enhances the accuracy of Bayesian inferences, and
both the amount of censoring and the sample size are identified as influential factors in such analyses.
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1. Introduction

The Birnbaum–Saunders (BS) distribution is a two-parameter lifetime distribution that
was originally introduced by [1] to model the failure time due to the growth of a dominant
crack that is subjected to cyclic stress, which causes a failure upon reaching the threshold
level. The BS distribution has gone through various developments and generalizations and
is found to be suitable for life testing applications. The distribution was originally derived to
model the fatigue life of metals that are subject to periodic stress; this is sometimes referred
to as the fatigue life distribution. Interestingly, it can also be obtained by using a monotone
transformation on the standard normal distribution [2]. Moreover, as [3] indicated, the BS
distribution can be viewed as an equal mixture of an inverse Gaussian (IG) distribution
and its reciprocal. These relations are useful in deriving important properties of the BS
distribution based on well-known properties of the normal and IG distributions. Ref. [4]
showed that the BS distribution can be used as an approximation of the IG distribution. In
practice, both the BS and IG distributions are often considered very competitive lifetime
models for right-skewed data [5,6].

The distribution function of the BS failure time T with parameters α and β, denoted by
T ∼ BS(α, β), is given by

FT(t) = Φ

[
1
α

(√
t
β
−
√

β

t

)]
, (1)

where 0 < t < ∞, and α > 0, β > 0 are the shape and scale parameters, respectively.
Here, Φ(·) represents the distribution function of the standard normal distribution. Since
FT(β) = Φ(0) = 0.5, the scale parameter β is the median of the BS distribution. The
probability density function (pdf) of the BS(α, β) is given by

fT(t) =
1

2
√

2παβ

[(
β

t

)1/2
+

(
β

t

)3/2
]

exp
[
− 1

2α2

(
t
β
+

β

t
− 2
)]

(2)
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It can be easily shown that E(T) = β(1 + α2/2) and Var(T) = (αβ)2(1 + 5α2/4).
Interestingly, Ref. [7] indicates that T−1 ∼ BS(α, β−1), and therefore the reciprocal variable
T−1 also belongs to the same family.

The parameter estimation for the BS distribution, including the maximum likelihood
estimation (MLE), is largely discussed in its literature. For complete data, Ref. [8] derived
the MLE’s of the BS parameters. Ref. [9] introduced modified moment estimators (MMEs),
a bias reduction method and a Jackknife technique to reduce the bias of both MMEs and
MLEs. Ref. [10] introduced alternative estimators with a smaller bias compared to that
for Ref. [9]. Point and interval estimations of the BS parameters under Type-II censoring
are discussed in [11]. Ref. [12] suggested a modified censored moment estimation method
to estimate its parameters under random censoring. Ref. [13] suggested using a fiducial
inference on BS parameters for right-censored data.

Bayesian approaches have also been used to make inferences on the BS parameters.
Ref. [14] used both Jeffrey’s prior and a reference prior to derive marginal posteriors using
Laplace’s approximation; while [15] employed only the reference priors and considered an
approximate Bayesian approach using Lindley’s method. Ref. [16] justified that Jeffrey’s
reference prior results in an improper posterior for the scale parameter and suggested
employing the reference priors that incorporate some partial information. In this situation,
they suggested applying the slice sampling method to obtain a proper posterior for the case
of censored data. A work by [17] adopted inverse-gamma priors for the shape and scale
parameters and proposed an efficient sampling algorithm using the generalized ratio-of-
uniforms method to compute Bayesian estimates. Ref. [18] also adapted the inverse-gamma
priors for both the BS parameters and applied Markov Chain Monte Carlo (MCMC)-based
conditional and joint sampling methods to handle censored data.

The censored data appear in life-time experiments due to various reasons; the nature
of censoring plays a vital role in its analysis. In this study, we focus on the right-censored
data that occurs when the test start time of each unit is known, but the test end time is
unknown. This includes the random right, Type-II, and progressively Type-II censoring
schemes. The progressively Type-II censoring scheme allows one to remove a pre-specified
number of uncensored units from the remaining experimental units at the observed failure
times [19]. As such, it is a more general form of Type-II censoring, where censoring takes
place progressively in r stages. In this scheme, a total of n units are placed on a life-test,
only r are completely observed until failure and the rest of n − r units are rightly censored.
However, at the time of the first failure, say t(1), R1 of the n− 1 surviving units are randomly
withdrawn from the experiment; at the time of the next failure, say t(2), R2 of the n − 2− R1
surviving units are censored, and so on. At the time of the last (rth) failure, say t(r), all the
remaining Rr = n − r − ∑r−1

j=1 Rj surviving units are censored. Therefore, in progressively
Type-II censoring experiments with pre-specified r and {R1, R2, ..., Rr}, the data will take
the form {(t(1), R1), (t(2), R2), ..., (t(r), Rr)}.

In this work, we focus on estimating both BS parameters in the presence of right-
censored units as well as the average remaining test time T̄ of the censored units. For
instance, let us consider n non-repairable units and assume we observe failures in r
progressively censored stages with censored times y′ = (t(1), t(2), ..., t(r)). If the exper-
iment were to continue so that all (n − r) -censored values could be observed, then we let
ỹ′

i = (t(i:1), t(i:2), ..., t(i:Ri)
) be the set of true observed values of the censored values at the

ith progressive stage. Then, the remaining total test time for these Ri censored elements
is ỹ′

i1 − t(i)1
′1, where 1 is a column vector of 1’s of length Ri. As such, the estimated and

average remaining test time for all the censored units from all r progressive stages is

T̄ =
1

n − r

r

∑
i=1

(
ỹ′

i1 − t(i)1
′1
)

. (3)

The rest of the article is organized as follows: In Section 2, we discuss the parameter
estimation of the BS distribution using both the maximum likelihood method and the
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Bayesian method. Section 3 covers the Gibbs sampling procedure for handling censored
data. In Section 4, we conduct a Monte–Carlo simulation study to compare the performance
of the aforementioned methods. Illustrative examples are included in Section 5, and we
conclude with remarks and recommendations in Section 6.

2. BS Parameter Estimation

In this section, we focus on the Bayesian parameter estimation with two different
prior specifications: Jeffrey’s and Achcar’s priors for the BS parameters α and β. We
discuss some of the practical challenges of these procedures while summarizing their
methodological foundations.

On the other hand, the MLE of BS parameters, α and β, were heavily discussed in
the literature; see [2,8] for details. Consider an experiment with n random failure times
T = {t1, t2, ..., tn} that follow the BS distribution. Then, its log-likelihood function, without
the additive constant, becomes

l(α, β|T) = −n ln(αβ) +
n

∑
i=1

ln

[(
β

ti

)1/2
+

(
β

ti

)3/2
]
− 1

2α2

n

∑
i=1

(
ti
β
+

β

ti
− 2
)

. (4)

By differentiating Equation (4) with respect to α and solving it for zero, one can obtain

α2 =

[
s
β
+

β

q
− 2
]

, (5)

where s = ∑n
i=1 ti/n and q =

[
∑n

i=1 t−1
i /n

]−1
are the sample arithmetic and harmonic

means of the observed data. Next, when differentiating Equation (4) with respect to β and
substituting α2 from Equation (5), the following can be obtained to determine the MLE of β.

β2 − β(2q + K(β)) + q(s + K(β)) = 0, (6)

where K(β) =
[
∑n

i=1(β + ti)
−1/n

]−1. The MLE β̂ of β is the unique positive root of
Equation (6), in which q < β̂ < s. With this estimate, the MLE of α becomes

α̂ =
[

s
β̂
+ β̂

q − 2
]1/2

.

2.1. Bayesian Inference

Here, we consider the Bayesian work that was originally suggested by [14] by employ-
ing non-informative priors that include Jeffrey’s and Achcar’s reference priors. Jeffrey’s
prior density for α and β is given by

π(α, β) ∝
√

det I(α, β),

where I(α, β) =

( 2n
α2 0

0 n[1+αg(α)/
√

2π]
α2β2

)
is the Fisher information matrix of the BS distribu-

tion, g(α) = α
√

π/2−π exp{2/α2}[1−Φ(2/α)], and Φ is the standard normal distribution
function.

Using the Laplace approximation, it can be shown that Jeffrey’s prior takes the follow-
ing form

π(α, β) ∝
1

αβ
H(α2), α > 0, β > 0,

where H(α2) =
(

1
α2 +

1
4

)
.

Assuming independence between α and β, [14] suggested a reference prior that takes
the following form
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π(α, β) ∝
1

αβ
, α > 0, β > 0.

In our discussion, we called this Achcar’s reference prior.

2.2. Posterior Inference

For Jeffrey’s prior, the joint posterior distribution of α and β becomes [14]

π(α, β|T) ∝
∏n

i=1(β + ti) exp{−Q(β)/α2}
αn+1β(n/2)+1H(α2)

, (7)

where Q(β) = ns
2β + nβ

2q − n.
Then, using the Laplace approximation (see Appendix A), the approximate marginal

posterior distributions of α and β for Jeffrey’s prior can be written as

π(α|T) ∝ α−(n+1)(4 + α2)1/2 exp
{
− n

α2 (
√

s/q − 1)
}

, α > 0, (8)

and

π(β|T) ∝
∏n

i=1(β + ti){4 + [2n/(n + 2)][s/(2β) + β/(2q)− 1]}1/2

β(n/2)+1{s/(2β) + β/(2q)− 1}(n+1)/2
, β > 0, (9)

respectively.
Then, for Achcar’s reference prior, the joint posterior becomes the same as

Equation (7) except where H(α2) = 1 and the approximate marginal posterior distributions
of α and β become

π(α|T) ∝ α−n exp
{
− n

α2 (
√

s/q − 1)
}

, α > 0, (10)

and

π(β|T) ∝
∏n

i=1(β + ti)

β(n/2)+1{s/(2β) + β/(2q)− 1}n/2 , β > 0, (11)

respectively.
As both Jeffrey- and Achcar-based posteriors do not have closed-form distributions,

the Bayes estimates of α and β cannot be obtained in an explicit form. However, [14]
proposed that the mode of the corresponding posteriors may be used as the Bayes estimates for
α and β.

The work by [16] has shown that the above Achcar’s reference prior based posterior
given in Equation (11) becomes improper when β → ∞. In practice, both posteriors given
in Equations (9) and (11) are numerically intractable for larger β and n values due to the
increments of the products in their numerators. However, as FT(t, α, β) = FT(t/β, α, 1),
the parameter β in the BS distribution is solely a scale parameter which represents the
median. Therefore, we suggest a simple and computationally efficient scaler transformation
tnew = t/β̂ to reduce this inflation and to avoid the situation that β → ∞. As a result, the
median of the transformed data and the posteriors of β will be centered around one.

3. Application of Gibbs Sampler

In this section, we introduce a Gibbs sampling procedure that can be used to estimate
the parameters of the BS distribution in the presence of censored data. The procedure uses
Markov Chain Monte Carlo (MCMC) techniques to generate data samples that replace the
censored portion of the data set.

Here, we propose using Bayesian inference for BS parameters α and β, employing
marginal posteriors obtained using both Jeffrey’s and Achcar’s priors via the Gibbs sampler.
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Moreover, upon sampling from a BS distribution for unknown realizations of censored
units, the remaining average lifetime is also estimated.

The Gibbs sampler requires suitable initial values for α and β to achieve its convergence.
Often the MLE’s from the observed data given censoring are preferred for this purpose.
Ignoring the additive constant, the BS log-likelihood function for the progressively Type-II-
censored data of the form {(t(1), R1), (t(2), R2), ..., (t(r), Rr)} can be written as

l(α, β|T) =
r

∑
i=1

{
ln f (t(i); α, β) + Ri ln (Φ(−g(t(i); α, β)))

}
, (12)

where f (·) is the pdf of the BS distribution given in Equation (2), and g(t; α, β) = 1
α

(√
t
β −

√
β
t

)
.

The MLEs of the BS parameters cannot be obtained in the closed form for this censoring
scheme. Using the property that the BS distribution can be written as an equal mixture of
an IG distribution and its reciprocal [20] outlined an EM algorithm to obtained its MLEs. In
this work, we use a computational tool introduced in [21] that is freely available in [22],
which can be used to obtain MLEs of the BS parameters with all major censoring schemes.

Below, we outline the major steps of the Gibbs sampler, which employs progressively
Type-II-censored BS data.

1. Calculate the MLE α̂MLE and β̂MLE from the available right-censored data. Set

α̂MLE = α
(0)
1 and β̂MLE = β

(0)
1 .

2. Generate Ri random variates from a uniform distribution bounded by the BS CDF
(FT) value of the respective censored observation and one. Then, use the inverse CDF
(F−1

T ) value of the newly sampled random variate to replace the censored value. For
instance, for the jth censored observation in (t(i), Ri),

• Generate: u(j:i) ∼ U
[

FT

(
t(i)
)

, 1
]
, where FT

(
t(i)
)
= Φ

[
1

α
(0)
1

(√
t(i)
β
(0)
1

−
√

β
(0)
1

t(i)

)]
.

• Then, set: t(0)
(j:i) = F−1

T

(
u(j:i); α

(0)
1 , β

(0)
1

)
.

3. Repeat Step 2 for all censored units in all r censored stages. The censored data will

be replaced by the the newly simulated data t(0)
(j:i) (> t(i)), ∀j = 1, 2, ..., Ri for each

i = 1, 2, ..., r and will be combined with the observed failure times t(1), t(2), ..., t(r) to
form an updated and complete sample of size n.

4. Using the updated sample in Step 3, sample α
(1)
1 and β

(1)
1 from their respective

posterior distributions.
5. Repeat Steps 2–4 starting with the newly sampled parameters, α

(1)
1 and β

(1)
1 . This

procedure will continue for k total iterations and conclude with the results for α
(k)
1 and

β
(k)
1 . A new set of simulated BS observations should be picked in the same manner as

in Step 3 using the α
(k)
1 and β

(k)
1 as newly updated parameters.

6. At the conclusion of Step 5, the average remaining life of censored units defined in

Equation (3) shall be calculated using the newly sampled data and is designated as T̄(k)
1 .

7. Repeat the above process in Step 2–6 a large number of times, say m total replications.
This will result:

(α
(k)
1 , α

(k)
2 , ..., α

(k)
m ), (β

(k)
1 , β

(k)
2 , ..., β

(k)
m ), (T̄(k)

1 , T̄(k)
2 , ..., T̄(k)

m ).

In the Gibbs sampler, we guarantee the convergence of the sampled data using both
numerical and graphical summaries. This includes monitoring the scalar summary ψ and
the scale reduction statistic R̂ defined in [23]. As suggested in [24], we confirm that this
scale reduction statistic is well below 1.1 and the trace plots behave appropriately to ensure
the convergence of the Gibbs samples in all situations considered. After confirming the
convergence, we report both point and interval estimates. This includes mean and its stand
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error estimates as well as the 95% equal-tailed credible intervals for all the parameters
including T̄. Moreover, we use the Kernel density estimation procedure to make visual
comparisons between estimation methods. A sample R code to exhibit this algorithm is
included in the Supplementary Materials.

4. Monte–Carlo Simulation

We conduct a simulation study to compare the performance of the discussed Bayesian
estimates. The data are generated from the BS(α, β) distribution with four different sample
sizes n = 10, 20, 30, 50 and four different Type-II right-censoring percentages (CEP) at
10%(10%)40%. Without a loss of generality, we kept the scale parameter β fixed at 1.0 while
varying the shape parameter α = 0.10, 0.30, 0.50, 1.00, 2.00. In each experimental condition,
we repeatedly generated 2000 BS data sets and applied the proposed Gibbs sampler.

We noticed that the Gibbs sampler converges in k = 3000 iterations for both Bayesian
priors, and the scale reduction factor R̂ for both parameters is less than 1.1. After assessing
the convergence, we replicate the Gibbs sampler m = 1000 times to obtain the point and
95% equal-tailed credible intervals for α, β, and T̄ for each generated data set. Then for each
parameter, the overall average of the posterior mean estimates (PE), its standard error (SE),
and the coverage probability (CP) for 1000 randomly generated BS samples are acquired. To
compare posterior point estimates, we refer to an observed bias as the difference between
the true BS parameter and its PE. These results are shown in Tables 1–4.

Table 1. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 10).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.100 0.025 0.939 0.108 0.027 0.957 1.003 0.034 0.927 1.001 0.031 0.952 0.063 0.019 0.940 0.071 0.021 0.942
20 0.101 0.029 0.942 0.110 0.030 0.949 1.002 0.033 0.932 1.001 0.032 0.955 0.072 0.024 0.936 0.080 0.027 0.940
30 0.101 0.031 0.934 0.113 0.035 0.956 1.002 0.033 0.916 1.006 0.034 0.951 0.078 0.028 0.925 0.091 0.033 0.954
40 0.099 0.035 0.922 0.112 0.036 0.965 1.002 0.037 0.920 1.007 0.038 0.945 0.085 0.034 0.921 0.101 0.039 0.951

0.3 10 0.299 0.074 0.933 0.316 0.075 0.953 1.013 0.099 0.933 1.008 0.097 0.949 0.256 0.091 0.946 0.280 0.096 0.941
20 0.293 0.079 0.932 0.319 0.082 0.960 1.008 0.099 0.931 1.014 0.100 0.947 0.265 0.102 0.928 0.301 0.108 0.943
30 0.289 0.083 0.933 0.317 0.088 0.959 1.007 0.101 0.928 1.020 0.104 0.944 0.277 0.110 0.944 0.319 0.122 0.948
40 0.289 0.091 0.918 0.320 0.094 0.952 1.013 0.110 0.922 1.026 0.117 0.938 0.297 0.125 0.923 0.346 0.137 0.944

0.5 10 0.489 0.115 0.938 0.517 0.123 0.945 1.032 0.159 0.941 1.026 0.166 0.936 0.543 0.218 0.940 0.592 0.244 0.951
20 0.487 0.124 0.937 0.523 0.121 0.962 1.033 0.162 0.938 1.038 0.171 0.949 0.559 0.236 0.938 0.617 0.234 0.960
30 0.475 0.125 0.949 0.515 0.128 0.960 1.025 0.172 0.927 1.046 0.168 0.950 0.552 0.235 0.942 0.629 0.247 0.945
40 0.466 0.141 0.930 0.509 0.132 0.973 1.018 0.175 0.920 1.039 0.187 0.951 0.562 0.266 0.934 0.638 0.266 0.961

1 10 1.002 0.261 0.939 1.056 0.260 0.953 1.088 0.306 0.936 1.085 0.297 0.959 1.849 1.058 0.938 1.929 1.021 0.946
20 1.002 0.289 0.924 1.073 0.291 0.947 1.085 0.307 0.943 1.104 0.304 0.961 1.899 1.188 0.948 2.072 1.180 0.940
30 1.000 0.315 0.929 1.062 0.314 0.953 1.089 0.319 0.931 1.108 0.320 0.951 1.917 1.235 0.928 2.053 1.238 0.939
40 0.983 0.337 0.930 1.079 0.344 0.957 1.067 0.318 0.922 1.116 0.328 0.956 1.873 1.246 0.929 2.141 1.339 0.961

2 10 1.961 0.465 0.946 2.013 0.473 0.948 1.111 0.416 0.954 1.109 0.420 0.965 6.634 4.577 0.918 6.923 4.658 0.917
20 1.944 0.519 0.924 2.014 0.512 0.938 1.098 0.420 0.945 1.103 0.419 0.962 6.186 4.583 0.904 6.172 4.344 0.923
30 1.868 0.545 0.927 1.943 0.541 0.938 1.065 0.425 0.949 1.103 0.433 0.957 5.193 3.955 0.921 5.529 4.439 0.922
40 1.755 0.588 0.904 1.898 0.522 0.957 1.022 0.434 0.912 1.059 0.437 0.954 4.437 3.616 0.876 4.833 3.530 0.934

As shown in Table 1, for n = 10, Jeffrey’s method slightly underestimates the true α
value, and the size of the bias increases with the amount of the censoring percentage. The
difference is more apparent for higher α values. Achcar’s method slightly overestimates
the true value of the α regardless of the censoring percentage, except for high censoring
α = 2 cases. The standard errors of the α estimates are somewhat similar for both methods.
Interestingly, Achcar’s prior maintains the coverage probability at the nominal 95% level
while Jeffrey’s prior becomes slightly liberal, as its coverage probability is around 93%. The
β estimates for both the methods are somewhat consistent for all α values. The coverage
probability comparison for the β estimates is quite similar to that of the α.
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For the average remaining time, Achcar’s estimates provide somewhat higher esti-
mates than Jeffrey’s estimates. Again, the differences are greater for larger α values than for
the smaller αs. As far as the standard error is concerned, both methods are equally good
and proportional to the true α value. The coverage probability comparison is quite similar
to that of the α and β comparisons.

Based on the estimates shown in Table 2, when n = 20, the comparisons we made
earlier are still valid for all estimates, but the differences between estimates and the effects
of high censoring are not as pronounced as in n = 10 cases, and their standard errors are
also now lower. When the sample size increases to n = 30 and 50 (see Tables 3 and 4), both
the methods provide better results with increasing precision. The differences between the
point estimates for lower α values are further narrowing and the coverage probabilities of
all estimates approach the nominal 95% level, showing greater precision in the interval
estimations for large samples.

Table 2. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 20).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.099 0.018 0.939 0.103 0.018 0.943 0.999 0.022 0.943 1.002 0.023 0.944 0.059 0.013 0.947 0.062 0.013 0.938
20 0.100 0.019 0.936 0.104 0.020 0.951 1.000 0.023 0.940 1.002 0.024 0.944 0.066 0.015 0.937 0.071 0.016 0.951
30 0.099 0.022 0.933 0.104 0.022 0.963 0.999 0.024 0.945 1.001 0.024 0.937 0.073 0.018 0.929 0.078 0.019 0.950
40 0.100 0.024 0.936 0.105 0.025 0.957 1.000 0.025 0.934 1.003 0.026 0.945 0.081 0.022 0.929 0.087 0.023 0.946

0.3 10 0.302 0.054 0.944 0.310 0.054 0.950 1.004 0.066 0.939 1.007 0.068 0.949 0.245 0.066 0.954 0.257 0.068 0.954
20 0.303 0.059 0.937 0.313 0.060 0.954 1.006 0.070 0.938 1.005 0.069 0.948 0.263 0.075 0.944 0.277 0.078 0.953
30 0.299 0.062 0.946 0.308 0.064 0.948 1.006 0.071 0.938 1.010 0.076 0.934 0.274 0.081 0.944 0.288 0.086 0.949
40 0.299 0.069 0.945 0.322 0.070 0.953 1.002 0.076 0.935 1.015 0.080 0.949 0.291 0.093 0.935 0.325 0.099 0.957

0.5 10 0.504 0.089 0.938 0.522 0.088 0.959 1.016 0.116 0.935 1.018 0.113 0.948 0.540 0.170 0.961 0.571 0.170 0.959
20 0.499 0.096 0.937 0.513 0.093 0.953 1.019 0.114 0.954 1.020 0.115 0.939 0.548 0.179 0.945 0.573 0.179 0.959
30 0.494 0.100 0.940 0.509 0.096 0.961 1.019 0.122 0.937 1.020 0.124 0.939 0.556 0.192 0.937 0.582 0.189 0.952
40 0.501 0.110 0.941 0.519 0.111 0.951 1.017 0.125 0.952 1.029 0.136 0.945 0.586 0.212 0.945 0.625 0.222 0.962

1 10 0.998 0.177 0.947 1.029 0.182 0.947 1.049 0.218 0.942 1.050 0.220 0.951 1.841 0.745 0.948 1.956 0.798 0.954
20 1.003 0.200 0.939 1.038 0.208 0.939 1.052 0.220 0.950 1.073 0.236 0.955 1.847 0.844 0.938 2.002 0.963 0.948
30 1.004 0.218 0.942 1.051 0.234 0.943 1.051 0.230 0.945 1.070 0.255 0.951 1.843 0.917 0.945 2.054 1.129 0.957
40 1.008 0.248 0.952 1.063 0.265 0.941 1.070 0.259 0.953 1.093 0.264 0.958 1.933 1.138 0.951 2.155 1.236 0.946

2 10 2.021 0.364 0.935 2.055 0.361 0.942 1.103 0.328 0.952 1.106 0.329 0.957 7.592 3.552 0.945 7.841 3.705 0.955
20 1.988 0.395 0.928 2.025 0.374 0.951 1.103 0.360 0.934 1.118 0.365 0.943 7.070 3.777 0.944 7.367 3.807 0.951
30 1.972 0.425 0.953 2.032 0.412 0.957 1.101 0.358 0.955 1.122 0.369 0.959 6.813 3.815 0.949 7.250 3.888 0.946
40 1.997 0.458 0.950 2.046 0.443 0.966 1.106 0.381 0.953 1.136 0.376 0.963 6.844 4.108 0.957 7.219 3.982 0.963

Table 3. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 30).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.099 0.014 0.943 0.101 0.014 0.956 1.000 0.018 0.946 0.999 0.019 0.938 0.058 0.010 0.949 0.060 0.010 0.954
20 0.101 0.015 0.952 0.102 0.015 0.948 1.000 0.019 0.947 1.001 0.019 0.936 0.066 0.012 0.950 0.068 0.012 0.951
30 0.100 0.017 0.937 0.103 0.018 0.939 1.001 0.020 0.938 1.000 0.020 0.955 0.073 0.015 0.953 0.076 0.015 0.949
40 0.100 0.020 0.933 0.103 0.019 0.955 1.000 0.021 0.932 1.001 0.020 0.958 0.080 0.018 0.925 0.083 0.017 0.963

0.3 10 0.301 0.043 0.948 0.306 0.042 0.956 1.006 0.056 0.940 1.003 0.055 0.943 0.239 0.052 0.943 0.245 0.052 0.940
20 0.298 0.046 0.941 0.308 0.047 0.957 1.001 0.056 0.940 1.005 0.057 0.957 0.251 0.057 0.940 0.265 0.059 0.956
30 0.300 0.051 0.926 0.309 0.053 0.952 1.003 0.060 0.944 1.004 0.060 0.948 0.269 0.066 0.945 0.282 0.068 0.960
40 0.295 0.057 0.933 0.311 0.058 0.949 1.002 0.061 0.938 1.006 0.062 0.959 0.281 0.075 0.934 0.302 0.081 0.947
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Table 3. Cont.

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.5 10 0.502 0.069 0.956 0.506 0.075 0.938 1.013 0.093 0.946 1.010 0.096 0.934 0.526 0.128 0.948 0.533 0.142 0.935
20 0.502 0.075 0.952 0.513 0.084 0.932 1.010 0.093 0.951 1.013 0.095 0.948 0.537 0.140 0.952 0.560 0.159 0.932
30 0.500 0.086 0.935 0.518 0.086 0.947 1.012 0.098 0.938 1.017 0.098 0.956 0.552 0.162 0.948 0.583 0.165 0.954
40 0.502 0.094 0.946 0.517 0.092 0.962 1.015 0.106 0.937 1.015 0.104 0.955 0.574 0.177 0.925 0.599 0.179 0.962

1 10 0.994 0.145 0.945 1.024 0.149 0.956 1.038 0.175 0.952 1.042 0.180 0.937 1.785 0.593 0.942 1.895 0.660 0.936
20 1.004 0.162 0.935 1.030 0.161 0.948 1.028 0.181 0.943 1.037 0.181 0.954 1.755 0.650 0.951 1.850 0.668 0.946
30 1.002 0.179 0.946 1.024 0.186 0.938 1.040 0.205 0.937 1.053 0.200 0.945 1.755 0.763 0.945 1.840 0.781 0.953
40 1.005 0.210 0.938 1.043 0.211 0.951 1.049 0.216 0.945 1.075 0.232 0.944 1.799 0.921 0.940 1.954 0.973 0.949

2 10 2.010 0.301 0.933 2.027 0.295 0.941 1.074 0.286 0.939 1.075 0.267 0.958 7.219 2.993 0.946 7.284 2.882 0.949
20 2.008 0.324 0.945 2.024 0.336 0.929 1.078 0.299 0.937 1.066 0.295 0.943 6.914 3.202 0.948 6.970 3.344 0.937
30 2.028 0.373 0.947 2.052 0.374 0.946 1.114 0.339 0.934 1.117 0.325 0.953 7.069 3.779 0.951 7.232 3.739 0.936
40 1.996 0.411 0.943 2.053 0.409 0.953 1.101 0.347 0.959 1.148 0.355 0.962 6.656 3.848 0.941 7.221 4.098 0.955

Table 4. Mean and standard error of the point estimates and probability coverages of 95% credible
intervals based on Monte–Carlo simulation (n = 50).

α̂ β̂ ˆ̄T

Param CEP% Jeffrey’s Achcar’s Jeffrey’s Achcar’s Jeffrey’s Achcar’s

α PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP PE SE CP

0.1 10 0.100 0.011 0.950 0.101 0.011 0.949 1.000 0.014 0.945 0.999 0.014 0.958 0.057 0.007 0.950 0.058 0.008 0.944
20 0.100 0.012 0.935 0.101 0.012 0.941 0.999 0.014 0.942 1.000 0.015 0.943 0.065 0.009 0.947 0.066 0.009 0.945
30 0.100 0.013 0.934 0.102 0.013 0.953 1.000 0.015 0.940 1.000 0.016 0.936 0.072 0.011 0.935 0.073 0.011 0.932
40 0.099 0.014 0.945 0.102 0.015 0.945 1.000 0.016 0.939 1.000 0.016 0.952 0.078 0.013 0.944 0.081 0.013 0.938

0.3 10 0.302 0.033 0.946 0.304 0.033 0.948 1.003 0.042 0.945 1.003 0.042 0.949 0.236 0.039 0.950 0.239 0.039 0.935
20 0.299 0.035 0.952 0.306 0.034 0.954 1.003 0.045 0.928 1.000 0.042 0.949 0.249 0.043 0.945 0.256 0.042 0.952
30 0.298 0.039 0.942 0.305 0.041 0.949 1.002 0.046 0.941 1.002 0.044 0.951 0.263 0.049 0.946 0.272 0.051 0.942
40 0.301 0.045 0.930 0.306 0.045 0.945 1.004 0.049 0.944 1.002 0.049 0.947 0.282 0.059 0.946 0.289 0.060 0.939

0.5 10 0.500 0.056 0.943 0.506 0.055 0.946 1.004 0.071 0.937 1.007 0.069 0.959 0.511 0.103 0.954 0.522 0.103 0.933
20 0.502 0.057 0.967 0.504 0.059 0.950 1.004 0.072 0.939 1.007 0.074 0.942 0.527 0.107 0.949 0.532 0.111 0.944
30 0.500 0.067 0.944 0.507 0.067 0.942 1.007 0.076 0.945 1.014 0.075 0.946 0.540 0.125 0.963 0.554 0.126 0.947
40 0.502 0.076 0.942 0.511 0.071 0.959 1.011 0.082 0.948 1.009 0.085 0.942 0.561 0.143 0.951 0.574 0.139 0.947

1 10 0.994 0.106 0.955 1.011 0.109 0.954 1.021 0.130 0.952 1.020 0.129 0.960 1.730 0.422 0.943 1.780 0.439 0.947
20 1.006 0.118 0.963 1.016 0.120 0.953 1.013 0.137 0.946 1.022 0.144 0.939 1.699 0.460 0.934 1.744 0.484 0.934
30 1.003 0.138 0.940 1.018 0.141 0.942 1.023 0.148 0.952 1.030 0.158 0.941 1.669 0.533 0.950 1.729 0.580 0.947
40 1.008 0.169 0.919 1.017 0.159 0.944 1.035 0.169 0.941 1.043 0.171 0.942 1.694 0.684 0.941 1.724 0.644 0.957

2 10 1.992 0.227 0.936 2.017 0.231 0.945 1.033 0.207 0.948 1.050 0.218 0.949 6.746 2.200 0.943 7.021 2.326 0.947
20 2.005 0.251 0.945 2.030 0.252 0.956 1.054 0.227 0.954 1.069 0.237 0.953 6.582 2.434 0.939 6.816 2.534 0.962
30 2.008 0.299 0.939 2.031 0.301 0.937 1.070 0.262 0.953 1.074 0.286 0.938 6.447 3.002 0.953 6.594 3.095 0.938
40 2.016 0.337 0.945 2.079 0.359 0.927 1.087 0.311 0.936 1.121 0.312 0.937 6.377 3.361 0.936 6.976 3.685 0.941

5. Illustrative Examples

In this section, we consider three examples to illustrate the Gibbs sampler procedure
described in Section 3. These examples exhibit the parameter estimation in randomly right,
Type-II, and progressively Type-II-censored data.

Example 01 (Cancer Patients Data): This data set was originally presented in [25] and
consists of lifetimes (in months) of 20 cancer patients who received a new treatment. The
complete lifetime of only 17 cancer patients was recorded and the rest of the three patients
were right-censored and denoted by “+” in the following data set.

3 5 6 7 8 9 10 10+ 12 15
15+ 18 19 20 22 25 28 30 40 45+

The Kolmogorov–Smirnov goodness-of-fit test indicates that these data adequately
follow a BS distribution, and its MLEs are α̂MLE = 0.805 and β̂MLE = 14.899. For these
data, T̄ represents the average remaining lifetime for each of three patients censored during
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the experiment until they die. With only three observations out of 20 being censored, the
number of iteration k = 2000 was found to be sufficient to ensure the convergence, and
m = 10,000 Gibbs sample chains were used for the parameter estimation. The resulting
estimates are shown in Table 5.

In addition, in the lower portion of Table 5, we report both point and interval estimates
obtained in [25] Bayesian work (A-M 2010) and also the [18]’s Bayesian and MLE results
(S-N MLE and S-N Bayesian), where they applied a generalized Birnbaum–Saunders
distribution for the same data.

Table 5. Parameter estimates on cancer data.

Parameter α β T̄

PE 95% CI Width PE 95% CI Width PE 95% CI

Jeffrey’s 0.849 (0.603, 1.211) 0.608 15.335 (10.481, 22.127) 11.646 18.560 (3.113, 53.284)
Achcar’s 0.874 (0.614, 1.284) 0.670 15.393 (10.376, 22.648) 12.272 19.393 (3.076, 59.307)

S-N MLE (2017) 0.974 (0.127, 1.821) 1.693 15.629 (9.614, 21.644) 12.030
S-N Bayesian (2017) 0.962 (0.604, 1.510) 0.907 15.411 (10.489, 21.696) 11.207

A-M (2010) 0.885 (0.610, 1.295) 0.685 16.030 (10.930, 24.360) 13.430

We note that both the initial MLEs, α̂MLE = 0.805 and β̂MLE = 14.899, fall well within
all the corresponding 95% credible interval bounds (see Table 5). Both Jeffre’s and Achcar’s
estimates compare favorably to one another. Lengths of the credible intervals are somewhat
narrower for α when compared to the [18,25] results. The estimated average remaining
lifetime for the censored patients ranges from 18 to 20 months after their observation period
was completed.

Example 02 (Fatigue Life): This example consists of the fatigue life of 6061-T6 aluminum
coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second, with
a maximum stress per cycle of 31,000 psi reported in [8]. We reconfirmed that these data
can be adequately modeled using the BS distribution, and the MLEs for complete data are
α̂ = 0.170 and β̂ = 131.819.

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212

We applied the Type-II right-censoring scheme with censoring percentages (CEP) at
10%(10%)60% for these data, and the estimated MLEs at different censoring levels are
shown in Table 6. Due to the relatively larger β and sample size, first, we transform
these data using the scale transformation t/β̂ suggested in Section 2.2 and adjust the
MLEs accordingly to be used in the Gibbs sampler. We observed that the Gibbs sampler
adequately converged with k = 2000 iterations and obtained m = 10,000 Gibbs sample
chains to obtain estimates.

Also, Figure 1 shows the kernel density estimates of the parameters for Jeffrey’s and
Achcar’s priors at 10%, 30%, and 60% censoring levels. The plots seem adequate and both
methods seem to provide very similar estimates. However, as [26] indicated, the Gibbs
output may not detect improper posteriors; the scale transformation we suggested should
have scaled-down β to prevent such possible divergences.

The resulting point estimates along with the widths of the 95% credible intervals for
both the priors are reported in Table 7. Interestingly, both α̂ and β̂ estimates for both the
methods for lower to mid-censoring percentages 10%, 20%, and 30% are very close to
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their uncensored MLEs for complete data (α̂ = 0.170 and β̂ = 131.819). However, when
censoring percentage increases, both α̂ and β̂ overestimate the true values. As expected, the
average remaining time T̄ is also increased with respect to the censoring percentages. It
is also noted that all six T̄ estimates overestimated the true average remaining time; the
increments are proportional to the true values for increasing the censoring percentages
reported in Table 6.

Table 6. Initial Parameter estimates on Type-II-censored fatigue life data.

CEP 0.1 0.2 0.3 0.4 0.5 0.6

α̂
(0)
MLE

0.169 0.174 0.172 0.182 0.184 0.210

β̂
(0)
MLE

131.489 131.900 131.804 132.940 133.225 137.270
True T̄ 10.20 11.55 15.00 14.85 17.28 16.25
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Figure 1. Kernel density estimates of Achcar’s and Jeffrey’s priors for censored fatigue life data. Top
panel, middle, and bottom panels are for 10%, 30%, and 60% censoring schemes, respectively.
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Table 7. Point estimates (α̂, β̂, and T̄) and widths of the corresponding credible intervals for different
censoring percentages.

Jeffrey’s Achcar’s

DOC% Param PE Width PE Width

10 α 0.169 0.051 0.170 0.051
β 131.582 8.926 131.501 8.796
T̄ 14.348 17.628 14.519 18.105

20 α 0.174 0.058 0.175 0.058
β 131.900 9.386 131.994 9.356
T̄ 16.318 15.297 16.421 15.277

30 α 0.172 0.063 0.174 0.063
β 131.830 9.601 131.883 9.876
T̄ 17.759 14.654 17.951 14.705

40 α 0.182 0.072 0.184 0.074
β 132.993 10.921 133.101 11.091
T̄ 20.405 16.228 20.691 16.533

50 α 0.185 0.082 0.187 0.082
β 133.276 12.267 133.469 12.271
T̄ 22.541 17.959 22.881 18.037

60 α 0.211 0.106 0.214 0.108
β 137.281 15.897 137.569 16.052
T̄ 28.768 23.985 29.227 24.213

Example 03 (Ball Bearings’ Data): This data set was originally presented in [27] and
provides the fatigue life in hours of ten ball bearings of a certain type:

152.7 172.0 172.5 173.3 193.0 204.7 216.5 234.9 262.6 422.6

Ref. [9] used the full data set and fitted BS distribution and reported that unbiased
MLEs of α and β are 0.314 and 211.528, respectively. Ref. [20] used these data to generate
three different progressively Type-II-censored samples and estimated BS parameters. We
use somewhat similar progressively Type-II-censored samples, as shown below.

• Scheme I: n = 10, m = 6, R1 = 4, R2 = · · · = R6 = 0;
• Scheme II: n = 10, m = 6, R1 = 0, R2 = 2, R3 = R4 = R5 = 0, R6 = 2.

The resulting parameter estimates, along with their 95% credible intervals, are reported
in Table 8. Due to censoring in this small dataset, both Bayesian priors underestimate the
unbiased MLEs. However, the credible intervals adequately capture these values. Achcar’s
estimates become slightly better, as they are closer to the unbiased MLEs obtained from the
complete data. This example indicates that the suggested method can be used effectively
even for small datasets, yielding decent results.

Table 8. Parameter estimates on Type-II progressively censored ball bearings’ data.

Parameter α β T̄

PE 95% CI PE 95% CI PE 95% CI

Scheme–I
Jeffrey’s 0.182 (0.107, 0.327) 201.939 (175.660, 236.367) 57.921 (21.599, 116.568)
Achcar’s 0.199 (0.113, 0.368) 201.993 (174.342, 236.251) 60.627 (21.944, 126.152)

Scheme–II

Jeffrey’s 0.173 (0.095, 0.337) 201.058 (178.361, 233.527) 36.467 (9.779, 94.211)
Achcar’s 0.195 (0.102, 0.400) 201.686 (177.561, 235.060) 41.159 (10.182, 109.039)
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6. Conclusions

This study reveals that the suggested Gibbs sampler performs reasonably well with
both Bayesian priors. Achcar’s priors appear to provide better coverage probability than
Jeffrey’s prior in the considered cases of this simulation study. Additionally, Achcar’s priors
tend to slightly overestimate the true parameter value, while Jeffrey’s tends to underesti-
mate it. The amount of censoring and sample size has an impact on the performance of both
methods, and therefore, one should be aware of this limitation in practice. With an increase
in sample size, all methods perform better, although the amount of censoring seems to
slightly affect the estimates. Care must be taken regarding the size of the β parameter and
the sample size when applying non-informative priors. The suggested scale transformation
may need to be adopted to guarantee proper posteriors when using Achcar’s reference
prior. Also, because the marginal posterior distributions relied on the Laplace approxima-
tion, there may be limitations on estimating the average lifetime because the BS density
T ∼ BS(α̂, β̂) is an approximation to its true underlying distribution. However, this study
reveals that the Gibbs sampler is capable enough to provide accurate remaining average
lifetime estimates.

The simulation results indicate that the method considered shows some improvements
with regards to point estimates and coverage probabilities when compared to [15] Bayesian
results. In particular, our algorithm shows no substantial effect on the coverage probability
by the amount of censoring. Also, the posterior distributions discussed here have tractable
closed forms that require no partial or hyper-prior information. Also, our results are
consistent with regards to the bias and coverage probability for all parameter combinations
we considered; this shows a clear improvement when compared to the simulation results
shown in [18].

With the Gibbs sampler, there is less restriction on the type of prior distribution
that can be chosen. However, caution must be exercised in programming to ensure the
well-behaved nature of both prior and posterior distributions. If posterior distributions,
whether conditional or otherwise, cannot be precisely determined, asymptotic distributions
may be employed. The Gibbs sampler procedures offer a high degree of flexibility in
implementation, allowing the adjustment of the number of iterations based on the trade-off
between the speed and desired accuracy. Undoubtedly, the Gibbs sampler finds its place in
developing complex models, particularly when dealing with censored data. Its computation
involves a series of calculations that are easy to understand, and its implementation is
relatively straightforward.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math12060874/s1. Supplementary File: “R code for Fatigue Life data
Analysis.R”.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article and supplementary materials.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The Laplace’s method for integrals provides an approximate to the integral of the form

I =
∫

f (θ) exp{−nh(θ)}dθ,

where −h is a smooth function of θ, having its maximum at θ̂. Then, the Laplace’s approxi-
mate for integral I becomes

Î ≈
√

2π

n
σ f (θ̂) exp{−nh(θ̂)},

https://www.mdpi.com/article/10.3390/math12060874/s1
https://www.mdpi.com/article/10.3390/math12060874/s1
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where σ = 1/
√

h′′(θ̂).
Now, as outlined in [14], assuming Jeffrey’s prior, the joint posterior distribution of α

and β becomes

π(α, β|T) ∝
∏n

i=1(β + ti) exp{−Q(β)/α2}
αn+1β(n/2)+1H(α2)

, (A1)

where Q(β) = ns
2β + nβ

2q − n and H(α2) =
(

1
α2 +

1
4

)
.

For Achcar’s prior π(α, β), H(α2) = 1 and the marginal posterior of α can be written
as

π(α|T) ∝
exp{n/α2}

αn+1

∫ ∞

0
f (β) exp{−nh(β)}dβ, (A2)

where f (β) = ∏n
i=1(β+ti)

β(n/2)+1 and h(β) = s
2βα2 + β

2qα2 . The maximum of the −h(β) occurs at

β̂ =
√

sq and therefore, h(β̂) =

√
s/q

α2 and h′′(β̂) = 1
α2q

√
sq .

Then, using the Laplace approximation, the integral I(α) =
∫ ∞

0 f (β) exp{−nh(β)}dβ
can be approximated by

Î(α) ≈
√

2π

n
α
√

q
√

sq
[

∏n
i=1(

√
sq + ti)

(sq)n/4+1/2

]
exp

{
−

n
√

s/q
α2

}
By neglecting all but α terms in Î(α), the approximate marginal posterior distribution

of α becomes
π(α|T) ∝ α−n exp

{
− n

α2 (
√

s/q − 1)
}

, α > 0, (A3)

To obtain the marginal posterior of the β, we integrate α in the joint posterior in
Equation (A1).

π(β|T) ∝
∏n

i=1(β + ti)

β(n/2)+1

∫ ∞

0

exp{−Q(β)/α2}
αn+1 dα, (A4)

∝
∏n

i=1(β + ti)

β(n/2)+1
Γ(n/2)

2[(Q(β)]n/2 , (A5)

∝
∏n

i=1(β + ti)

β(n/2)+1{s/(2β) + β/(2q)− 1}n/2 , β > 0 (A6)

Using similar arguments, Jeffrey’s prior-based marginal posteriors given in
Equations (8) and (9) can be obtained.
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