
Citation: Sabbry, N.H.; Levina, A.B.

An Optimized Point Multiplication

Strategy in Elliptic Curve

Cryptography for Resource-

Constrained Devices. Mathematics

2024, 12, 881. https://doi.org/

10.3390/math12060881

Academic Editor: Gintautas

Dzemyda

Received: 17 February 2024

Revised: 12 March 2024

Accepted: 13 March 2024

Published: 17 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Optimized Point Multiplication Strategy in Elliptic Curve
Cryptography for Resource-Constrained Devices
Nawras H. Sabbry and Alla B. Levina *

Faculty of Computer Technologies and Informatics, ETU “LETI” University, St. Petersburg 197022, Russia;
nawrashussein@mail.ru
* Correspondence: ablevina@etu.ru

Abstract: Elliptic curve cryptography (ECC) is widely acknowledged as a method for implementing
public key cryptography on devices with limited resources thanks to its use of small keys. A
crucial and complex operation in ECC calculations is scalar point multiplication. To improve its
execution time and computational complexity in low-power devices, such as embedded systems,
several algorithms have been suggested for scalar point multiplication, with each featuring different
techniques and mathematical formulas. In this research, we focused on combining some techniques
to produce a scalar point multiplication algorithm for elliptic curves over finite fields. The employed
methodology involved mathematical analysis to investigate commonly used point multiplication
methods. The aim was to propose an efficient algorithm that combined the best computational
techniques, resulting in lower computational requirements. The findings show that the proposed
method can overcome certain implementation issues found in other multiplication algorithms. In
certain scenarios, the proposed method offers a more efficient approach by reducing the number of
point doubling and point addition operations on elliptic curves using the inverse of the targeted point.

Keywords: elliptic curve; point multiplication; resource-constrained devices; left-to-right scalar
multiplication algorithms; Montgomery ladder

MSC: 11T71; 94A60

1. Introduction

Cryptography is a robust and effective means for upholding data confidentiality.
To render information secure, cryptographic systems leverage intricate mathematical al-
gorithms that frequently necessitate extensive computational resources. However, this
computational intensity presents challenges for systems with limited resources. Encryp-
tion methods include symmetric cryptography, which relies on a single shared secret key,
and asymmetric cryptography, which involves a public and a secret key. The latter method
offers the advantage of public key exchange, with security being contingent on the com-
plexity of deducing the secret key from publicly exchanged information. Elliptic curve
cryptography (ECC) represents a novel addition to the three well-established families of
public key algorithms, which are as follows:

1. Integer factorization schemes (e.g., the RSA (Rivest–Shamir–Adleman) algorithm);
2. Discrete logarithms (e.g., Diffie‚ÄìHellman, ElGamal, and DSA);
3. Elliptic curve schemes (e.g., [1], which was proposed by Miller [2] and Koblitz [3]

in 1986).

ECC is used in many standards, including NIST (National Institute of Standards and
Technology) [4], ANSI (American National Standards Institute) [5], and IEEE (Institute of
Electrical and Electronics Engineers) [6].

ECC utilizes short keys for the same level of security as other asymmetric systems that
use longer keys because of its specific mathematical functions [7]. This makes it suitable

Mathematics 2024, 12, 881. https://doi.org/10.3390/math12060881 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060881
https://doi.org/10.3390/math12060881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0003-2429-5122
https://orcid.org/0000-0003-4421-2411
https://doi.org/10.3390/math12060881
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060881?type=check_update&version=3


Mathematics 2024, 12, 881 2 of 16

for electronic devices with limited computational power and memory, such as embedded
systems. Although recent improvements have reduced computational complexity, ECC
remains an intricate methodology and requires further enhancements. The key process for
encryption, decryption, digital signatures, and key exchange in ECC involves scalar point
multiplication. The overall speed of any ECC operation relies on the speed of scalar point
multiplication and the hardware properties of the device or embedded system in use.

Embedded systems are standalone devices designed for particular functions with
restricted size and resources.

In this work, we combine left-to-right scalar multiplication algorithms, concepts
derived from the Montgomery ladder, and inverse point techniques to offer a fast solution
for resource-constrained systems, taking into consideration the need to overcome certain
implementation issues associated with the Montgomery ladder multiplication algorithm.

Our low-cost point multiplication algorithm is considered a more efficient solution
because it reduces the number of required arithmetic operations and, thus, its computational
complexity and requires fewer resources than other methods.

This paper is organized as follows. In Section 2, we provide a literature review.
In Section 3, we explore prominent methods utilized to multiply points on elliptical curves
and present the results of conducted analyses to understand their respective advantages
and disadvantages. In Section 4, we present the proposed method, which combines left-to-
right scalar multiplication algorithms and the Montgomery ladder. Finally, in Section 5, we
present the conclusions.

2. Literature Review

Point multiplication plays a crucial role in ECC as it involves multiplying a point on
an elliptic curve by a scalar value. This task is central to various ECC operations, such as
key exchange, digital signatures, and encryption. In this literature review, we explore the
different methodologies and approaches for point multiplication in ECC.

M. Rashid, M. Imran, and A. Sajid [8] (2020) presented an advanced hardware de-
sign aimed at improving elliptic curve point multiplication efficiency over two binary
fields, GF(2163) and GF(2571), in cryptographic scenarios. They proposed an innovative
approach focused on reducing the computational time required for point multiplication by
employing two modular multipliers, two squarer units, and an adder unit in the data path.
Additionally, the authors restructured the point addition and point doubling instructions
for point multiplication computation within the Montgomery algorithm. The findings indi-
cated a significant reduction in latency and the overall number of clock cycles needed for
point multiplication computation compared with existing cutting-edge solutions. Notably,
the proposed architecture demonstrated latency reductions of 60%, 74%, and 15% over
GF(2571) and 66% and 65% over GF(2163) compared to previous methods. In the study,
the authors also shared the implementation outcomes after place-and-route processes for
GF(2163) and GF(2571) on a Xilinx Virtex-7 FPGA development board. It is worth mention-
ing that, for shorter key lengths, an alternative solution highlighted in a related work [9]
delivers an improved latency performance compared with the newly proposed architecture.
Conversely, the latter may demand a greater allocation of hardware resources than other
existing methods.

Sasmita Padhy, T.N. Shankar, and Sachikanta Dash (2022) [10] compared the perfor-
mance of fast point multiplication algorithms in terms of computation and execution time
to determine the quickest solution for elliptic curve cryptosystems. The authors focused
on evaluating different techniques, such as addition and subtraction, mutual opposite
form (MOF), and complementary recoding, for fast scalar multiplication schemes. They
emphasized the importance of rapid point multiplication in reducing idle hardware uti-
lization time and minimizing time complexity in elliptic curve operations, especially for
applications on mobile devices. The results of the above study provided insights into the
comparative performance of different fast point multiplication algorithms, such as double-
and-add, MOF, and complementary recoding, to determine the most suitable and efficient



Mathematics 2024, 12, 881 3 of 16

approach for implementing point multiplication in elliptic curve operations. The authors
concluded with a comparative analysis of the algorithms, highlighting the strengths and
weaknesses of each method in terms of computational efficiency and speed.

M.S. Hossain, Y. Kong, E. Saeedi, and N.C. Vayalil [11] (2017) explored the challenges
encountered when creating an efficient hardware setup for an ECC processor (ECP) cater-
ing to contemporary security needs. In their study, they introduced innovative solutions
centered on a unique elliptic curve scalar multiplication (ECSM) architecture, leveraging
point doubling and point addition (PDPA) hardware configured in Jacobian coordinates.
Additionally, the authors proposed an architecture facilitating Jacobian-to-affine coordinate
conversion, featuring serial-in parallel-out (SIPO) and parallel-in serial-out (PISO) mecha-
nisms at the top level to connect the input/output ports of an ECP, given the constraints
posed by the limited pins on the FPGA (Field Programmable Gate Arrays). Findings
from the ASIC (Application specific integrated circuits ) and FPGA implementations of
the developed ECP operating in Jacobian coordinates demonstrated their superiority as
the fastest hardware implementations, showcasing delay values of 0.22 µs and 0.28 µs,
respectively. Notably, the design was enhanced through strategies such as optimizing the
PDBL (Point Doubling) and PADD (Point Adding) architectures, parallelizing operations,
and implementing pre-computations to increase performance.

In their work, Asher Sajid, Muhammad Rashid, Malik Imran, and Atif Raza Jafri
(2021) [12] presented a comprehensive study on optimizing point multiplication in elliptic
curves, specifically focusing on binary Edwards curves (BECs). The study involved a de-
tailed investigation into developing a low-complexity architecture for point multiplication,
which aimed to enhance performance and security in ECC. In the study, the authors delved
into the mathematical background of BECs over GF(2m), highlighting the unified point
addition and point doubling laws of these curves and the Montgomery Ladder algorithm
for point multiplication. By proposing a novel low-complexity architecture for point multi-
plication in BECs, the researchers aimed to achieve efficient and secure operations in ECC.
The results of the study demonstrated that the proposed low-complexity architecture for
point multiplication in BECs shows promising outcomes in terms of improved performance
attributes, such as low latency and low complexity. Additionally, the architecture exhibited
resistance against side-channel attacks, enhancing the overall security of the elliptic curve
operations. In conclusion, the findings of the above study offer valuable insights into
the optimization of point multiplication in elliptic curves, particularly in the context of
BECs. The research outcomes underscore the importance of developing efficient hardware
implementations for enhancing the speed, security, and overall performance of elliptic
curve cryptographic systems.

In a study by Yue Hao, Shun‚Äôan Zhong, Mingzhi Ma, Rongkun Jiang, Shihan Huang,
Jingqi Zhang, and Weijiang Wang (2022) [13], a novel lightweight architecture for ECSM
over prime fields was comprehensively examined. The authors addressed the challenge of
optimizing point multiplication in elliptic curves, focusing on improving efficiency and
reducing resource consumption in small mobile devices. The authors highlighted the limita-
tions of previous designs, in which speed was prioritized at the expense of circuit area and
power consumption. The study involved a meticulous search for an optimal ECSM architec-
ture, resulting in the development of a novel design that significantly improved efficiency
and resource utilization. The proposed architecture is based on the Montgomery ladder
algorithm with (X,Y)-only common Z-coordinate arithmetic, executed in Jacobian coordi-
nates. Notably, the design achieves a balance between speed, area, and power consumption,
making it suitable for small mobile devices. The results of the study demonstrated the
effectiveness of the proposed architecture, which was implemented on FPGAs without
using DSPs (Digital Signal Processor) or BRAMs (Block RAMs), ensuring higher portability.
The architecture utilized 6.4 k∼6.5 k slices in Kintex-7, Virtex-7, and ZYNQ FPGAs and
achieved impressive ECSM for a field size of 256 bits in 1.73 ms, 1.70 ms, and 1.80 ms,
respectively.



Mathematics 2024, 12, 881 4 of 16

Overall, these research studies have contributed to simplifying point multiplication in
ECC, making it more feasible to implement this method on resource-constrained devices.
Efficient point multiplication is vital for secure communication in devices with computa-
tional power, memory, and energy constraints, such as IoT devices, embedded systems,
and mobile devices. By reducing computational complexity, these advancements in ECC
enable fast and secure communication without compromising security.

3. Scalar Point Multiplication

An elliptic curve, E, over a field, K, denoted as E/K, is defined by the following
equation [14]:

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where coefficients a1, a2, a3, a4, and a6, which belong to K, are chosen such that for every
point (x, y) on E, the partial derivatives never simultaneously equal zero.

This equation can be simplified as follows:

y2 = x3 + ax + b

where coefficients a and b belong to K and the non-zero condition for 4a3 + 27b2 ̸= 0 holds,
specifically in fields of characteristic greater than 3.

The collection of points on E/K forms an abelian group. Explicit formulas have been
developed to calculate the sum of two points, and various coordinate systems have been
proposed to expedite this computation.

The scalar multiplication of curve point P by scalar k results in another point,
T = kP = P + P + . . . + P (k times). This process, known as point multiplication, is
crucial to generating the public key from the secret key in ECC, where k is an integer that
represents the secret key, while the public key, T, represents a point on the curve with
coordinates T = (xT , yT).

For scalar multiplication, two essential operations are required: point doubling
(P + P = 2P) and point addition (P + Q), which are performed as described below.

Let P (x1, y1) and Q (x2, y2) denote two points on an elliptic curve. Then, we have the
following:

x3 = s2 − x1 − x2(mod p)

y3 = s(x1 − x3)− y1(mod p)

These operations are fundamental in ECC and serve various encryption and secu-
rity purposes.

In the above, the following rule applies:
s = y2−y1

x2−x1
; if p ̸= Q (point addition)

s = 3x1
2

2y1
; if p=Q (point doubling)

Therefore, point doubling involves approximately six multiplications, four addi-
tions/subtractions, and one division (inversion). On the other hand, point addition involves
approximately two multiplications, six additions/subtractions, and one division.

For the sender and the receiver, knowing the order (#E) of the elliptic curve is crucial
for secure communication for several reasons, as reported below.

• Key generation. In ECC cryptosystems, the secret key (scalar “k”) is randomly selected
from the range (1, #E −1). Having knowledge of the curve’s order is essential to
ensuring that valid and secure keys are generated, adhering to the curve’s properties.

• Security. Without knowing the curve’s order, it becomes challenging to assess the
security level of the encryption scheme and its vulnerability to attacks.

• Compatibility. To securely communicate, both the sender and the receiver need to
agree on a specific elliptic curve and its parameters, including its order (#E).



Mathematics 2024, 12, 881 5 of 16

• Scalar multiplication. The order of the elliptic curve dictates the maximum value that
can be assigned to the scalar (k). Without awareness of the curve’s order, performing
scalar multiplication accurately becomes challenging.

3.1. Left-to-Right Method (Binary Method)

In elliptic curve point multiplication, the double-and-add method is a popular algo-
rithm by virtue of its simplicity and reduced computational complexity compared with
alternative approaches. The algorithm consists of doubling the point and adding it to itself
repeatedly based on the binary representation of the scalar multiplier.

The diagram in Figure 1 (where the x-axis represents the value of the secret key k
and the y-axis represents the number of calculations required to find kP) showcases the
simplicity of calculating T = kP, when provided with k and P, utilizing the binary method.
It also highlights the challenge of calculating k, when given P and T = kP, using the brute
force method. During this process, the step for computing kP remains constant, even as k
increases significantly.

Figure 1. Change in k over required steps for computing kP [15].

The double-and-add method is also memory-efficient, as it requires only one copy of
the point to be stored in the memory, which makes ECC suitable for various applications
where computational efficiency is important, such as in constrained environments with
limited computational resources. Algorithm 1 presents the pseudocode detailing the
implementation of the left-to-right method.

Algorithm 1 Algorithm for point multiplication using the left-to-right approach [16]

Input: Binary representation of the scalar k and point P.
Output: T = kP
Initialization: T = ∞
1 FOR i = l − 1 DOWNTO 0

T = T +T (mod n) (Doubling)
IF ki = 1

T = T + P (mod n) (Adding)
2 RETURN (T)

In the above algorithm, l represents the total number of bits in the binary representation
of k.



Mathematics 2024, 12, 881 6 of 16

The time complexity of an algorithm is determined by the number of operations
executed during its runtime. Point addition occurs when ki = 1 and the expected number
of set bits (hamming weight) in the binary form of k is half of its bit length, denoted by
l/2. Subsequently, a doubling operation is executed l times for each value of i. Thus,
the anticipated time complexity is based on l/2 additions (A) plus l doublings (D) and is
expressed as (l/2) A + D.

To exemplify this procedure, let us examine a scenario where scalar multiplication
amounts to 26P. This can be depicted in binary format as outlined below:

26P = (110102) P = (d4d3d2d1d0)2P.

The described algorithm analyzes the binary digits of the scalar. It initiates the ex-
amination from the most significant bit, denoted by k4, and progresses toward the least
significant bit, represented by k0.

Iteration Action Description

1 P = 12 P Initial setting, bit processed: k4 = 1

2 P+P = 2P = 102 P DOUBLE, bit processed: k3
2P+P = 3P = 102 P+12 P = 112 P ADD, since k3 = 1

3 3P+3P = 6P = 2(112 P) = 1102 P DOUBLE, bit processed: k2
no ADD, since k2 = 0

4 6P+6P = 12P = 2(1102 P) = 11002 P DOUBLE, bit processed: k1
12P+P = 13P = 11002 P+12P = 11012P ADD, since k1 = 1

5 13P+13P = 26P = 2(11012P) = 110102P DOUBLE, bit processed: k0
no ADD, since k0 = 0

In summary, two addition and four doubling operations are required.
The double-and-add method lacks constant-time behavior, as the execution time may

vary based on the value of the scalar being used, which introduces potential vulnerabilities
related to side-channel attacks [17].

3.2. Windowed Method

The windowed method is a computational approach that consists of pre-generating a
set of points on a given elliptic curve. This strategy aims to optimize the multiplication of
points by a scalar. By allowing for the segmentation of the scalar into smaller components,
this method enhances computational efficiency.

In this approach, a designated window size, w, is selected. The procedure involves
calculating all potential values of kP, which amounts to 2w combinations. Here, k is set to
vary from 0 to 2w − 1. This preparatory computation is executed in advance, as described
by Hankerson et al. in their work on elliptic curves [18].

With these pre-computed values, the algorithm proceeds to calculate the result using
a different representation for k, namely, k = k0 + 2wk1 + 22wk2 + . . . + 2mwkm. Algorithm 2
presents the pseudocode detailing the implementation of the windowed method.

Algorithm 2 Windowed method algorithm for point multiplication [18]

T← 0
for i from m to 0 do

T← point-double-repeat (T, w)
if ki > 0 then

T← point-add (T, kiP) # using pre-computed value of ki
return T



Mathematics 2024, 12, 881 7 of 16

This algorithm demonstrates a complexity level akin to the double-and-add technique.
However, it is preferable as it decreases the frequency of point addition operations, which
are known, on average, to be slower than doubling operations.

The window method generally requires extra memory because it involves pre-computing
a table of points on the curve [19]. The amount of memory needed depends on the chosen
window size for the algorithm. Using a larger window size can reduce the number of times
the table needs to be looked up during point multiplication; however, it also increases
the amount of memory required, with the latter representing a significant challenge for
resource-constrained devices.

3.3. Sliding-Window Method

This approach aims to strike a balance between point addition and doubling operations
by utilizing a strategy similar to the window method. A table is built specifically for points
kP, where k is between 2w−1 and 2w − 1. This process focuses on computing values where
the window’s most significant bit is active [18].

The algorithm resembles the conventional double-and-add approach in representing k
as a sum, where k is depicted as k = k0 + 2k1 + 22k2 + . . . + 2mkm. Algorithm 3 presents
the pseudocode detailing the implementation of the sliding-Window method.

Algorithm 3 Sliding window method algorithm for point multiplication [18]

T← 0
for i from m down to 0 do

if ki = 0 then
T← point-double(T)

else
t← extract j (up to w− 1) additional bits from k (including ki)
i← i− j
if j < w then

Perform double-and-add using t
return T

else
T← point-double-repeat (T, w)
T← point-add (T, tP)

return T

This algorithm offers an advantage in terms of its pre-computation stage, which is
approximately half as complex as that of the standard window method.

The memory requirements for the sliding-window method are contingent upon the
selected window size in the algorithm. Consequently, this technique necessitates additional
memory to store the pre-computed table of points, which facilitates the acceleration of
point multiplication operations.

3.4. W-Ary Non-Adjacent Form Method

This approach focuses on leveraging the property where subtracting points is as
straightforward as adding points to reduce both operations compared with the sliding-
window technique. By employing this method, the aim is to decrease the total number of
point additions or subtractions compared with the sliding-window approach. To accom-
plish this, it is essential to calculate the non-adjacent form (NAF) of multiplier k by utilizing
the Algorithm 4 which provided in [18], and as shown below:



Mathematics 2024, 12, 881 8 of 16

Algorithm 4 W-Ary Non-Adjacent Form method algorithm for point multiplication

i← 0
while (d > 0) do

if (d mod 2) = 1 then
ki ← k mods 2w

k← k −ki
else

ki = 0
k← k/2
i← i + 1

return (ki−1, ki−2,. . . , k0)

The signed modulo function “mods” is delineated as follows:
if (k mod 2w) >= 2w−1

return (k mod 2w)−2w

else
return k mod 2w

The calculation produces the NAF that is crucial to facilitating the multiplication proce-
dure. In order to implement this technique, it is important to compute points {1, 3, 5,. . . , 2w−1−1}
P and their corresponding negatives in advance. Then, the Algorithm 5 calculates the mul-
tiplication of kP as follows:

Algorithm 5 kP algorithm for point multiplication
T← 0
for j← i− 1 down to 0 do

T← point-double(T)
if (dj != 0)

T← point-add (T, kjP)
return T

The NAF window technique guarantees an average density of approximately 1/(w + 1)
point additions per step, making it marginally more effective than the unsigned win-
dow method.

The above-mentioned researchers demonstrated that by utilizing a FLUSH + RELOAD
side-channel attack on OpenSSL, it is possible to uncover the complete secret key. This
security vulnerability arises when cache-timing techniques are employed, even with 200 sig-
nature operations, which is a relatively low amount [18].

In light of the preceding elucidation, the w-ary NAF (wNAF) method necessitates the
storage of specific points determined by a selected window size (w). This window size
determines how many points should be calculated and preserved in the memory. The larger
the window size is, the more points are stored, leading to increased memory consumption.

3.5. Montgomery Ladder Method

The Montgomery ladder method consists of the multiplication of points using a
consistent number of operations. This can be advantageous when there is a chance for an
attacker to perform side-channel attacks involving timing, power consumption, or branch
measurements. Algorithm 6 presents the pseudocode detailing the implementation of the
Montgomery Ladder method:

This algorithm functions similarly to the double-and-add method, with a notable
variation [18]: it executes an equal number of point addition and doubling operations,
regardless of the multiplicand value, k. This characteristic ensures that the algorithm does
not inadvertently disclose any information through branching or power usage.



Mathematics 2024, 12, 881 9 of 16

Algorithm 6 the Montgomery Ladder method algorithm for point multiplication

R0 ← O
R1 ← P
for i from m down to 0 do

if ki = 0 then
R1 ← Adding (R0, R1)
R0 ← Doubling (R0)

else
R0 ← Adding (R0, R1)
R1 ← Doubling (R1)

assert R1 == Adding (R0, P) // invariant property to maintain correctness
return R0

According to some studies, such as [20], the Montgomery ladder method can achieve
comparable or better performance than the binary and NAF methods in point multiplication
in ECC, especially for large scalars and large fields.

To understand the pitfall of implementing this method, let us see its implementation
in Montgomery curve 25519 utilizing its pseudocode [21] (Algorithm 7).

Algorithm 7 The algorithm using the Montgomery ladder for x-coordinate-based scalar
multiplication on E is as follows: y2 = x3 + 486662x2 + x

Input: A 255-bit scalar s and the x-coordinate xP of some point P
Output: (X[s]P , Z[s]P) fulfilling x[s]P = X[s]P/Z[s]P
X1 ← 1; Z1 ← 0; X2 ← xP ; Z2 ← 1
p← 0
for i← 254 downto 0 do

b←bit i of s
c← b ⊕ p
p← b
(X1, X2)←cswap(X1, X2, c)
(Z1, Z2)←cswap(Z1, Z2, c)
(X1, Z1, X2, Z2)←LADDERSTEP(xP , X1, Z1, X2, Z2)

end for
return (X1, Z1)

Note that the CSWAP function mentioned in the pseudocode is implemented utilizing
the following pseudocode [22]:

Swap← Scalar scanned bit
S = Swap · (X2 − X3)
X2 = X2 − S
X3 = X3 + S
Return (X2, X3)
Therefore, the values of X2 and X3 are swapped when the scanned binary bit of

the scalar is equal to 1 and not swapped when it is equal to 0. Note the following two
probabilities of implementing the code of the CSWAP function:

Swap← Scalar scanned bit = 0 Swap← Scalar scanned bit = 1
S = 0 · (X2 − X3) = 0 S = 1 · (X2 − X3) = X2 − X3
X2 = X2 − S = X2 − 0 = X2 X2 = X2 − S = X2 − X2 + X3 = X3
X3 = X3 + S = X3 + 0 = X3 X3 = X3 + S = X3 + X2 − X3 = X2
Return(X2, X3) Return(X2, X3)

Although this method successfully equalizes the number of operations for adding and
doubling points in each cycle, it does not equalize the execution time of the multiplication



Mathematics 2024, 12, 881 10 of 16

and doubling procedures because if the current bit in the binary representation of a scalar
is zero, executing this code is faster than executing it with a bit equal to 1.

This poses a security risk to the system that can be utilized by attackers using side-
channel timing attacks because there is a time variation in the code’s execution.

4. Combination of Left-to-Right Scalar Multiplication Algorithms and the
Montgomery Ladder

The double-and-add (left-to-right) method is acknowledged for its simplicity and
reduced computational complexity compared with alternative approaches; additionally, it
requires less memory. In this study, we propose a novel method for point multiplication
in elliptic curves. Furthermore, in certain scenarios, the proposed approach also involves
calculating the inverse of the targeted point because of its shortened computational pro-
cess. The subsequent discussion provides a detailed explanation of how the suggested
approach functions.

The steps for the proposed method is reported below.
Given elliptic curve Ep (a, b) with order #E, we calculate the point P = kG, where k

represents the scalar value and G represents the base point (generator point), by following
the steps below.

First case: If k ≤ #E
2 , then kG is found by combining the left-to-right method and the

Montgomery ladder method as follows.

1. Convert scalar k into its binary representation.
2. Iterate through the binary representation of k starting from the leftmost bit to the

rightmost bit:
For the first bit iteration (leftmost bit), Q = G

3. For the subsequent bit iterations,
Q = double the point Q
P = Q + G
If the current bit is 1, then:

Q = P
else:

P = Q #The swap yields no benefits, except for achieving equal execution
times.

4. If there are remaining bits in the binary representation, continue from step 3 until each
bit is processed.

5. Return Q.

Second case: If k > #E
2 , then kG is found by combining the left-to-right method and

the Montgomery ladder method and by finding the inverse of the point kG through the
steps below.

First step: Find point xG (the inverse point of kG) as follows.

1. Find the x value by subtracting the order of the elliptical curve (#E) from the scalar (k):

x = #E − k.

2. Convert the x value into its binary representation.
3. Iterate through the binary representation of x starting from the leftmost bit to the

rightmost bit. For the first bit iteration (leftmost bit), Q = G.
4. For the subsequent bit iterations,

Q = double the point Q
P = Q + G
If the current bit is 1, then:

Q = P
else:

P = Q #The swap yields no benefits except for achieving equal execution
times.



Mathematics 2024, 12, 881 11 of 16

5. If there are remaining bits in the binary representation, continue from step 4 until each
bit is processed.

6. Return Q, which is equal to xG, which represents the inverse point of kG.

Second step: Find the X- and Y-coordinates of point kG as follows.

1. The X-coordinate of kG is the same as the X-coordinate of xG, which means that there
is no need for more calculations.

2. The Y-coordinate of kG is equal to the result of subtracting the Y-coordinate of the
inverse point xG from the prime number of the elliptical equation:

kG (Y-coordinate) = Prime number (p) − xG (Y-coordinate).

To address the problem discussed in Section 3.5, in the proposed method, we replaced
the CSWAP function with a conditional statement that does not involve any mathematical
operations; its purpose is solely to switch values based on a condition. This operation is
performed in both cases, whether the scanned bit of the scalar’s binary representation is 0
or 1. Therefore, it is symmetrical and does not introduce any differences in the process or
execution time of the code.

Furthermore, the suggested approach utilizes the symmetrical nature of elliptic curves
along the x-axis to offer a shortcut toward the intended point. This occurs specifically when
the scalar exceeds half of the curve’s order.

To gain a clearer understanding of the functioning and improved computational
complexity of the proposed method, let us explore a curve over a small field, denoted
by Z751. This particular example was selected for its simplicity, as it allows us to easily
understand the problem by working with small numbers that are straightforward to handle.

y2 ≡ (x3 − x + 188) mod 751

The following are given: Ep (a, b) = E751(−1, 188), a = −1, b = 188, p = 751, and genera-
tor point G = (0, 376).

The subsequent step involves calculating multiples of the generator point, G. These
multiples are denoted by kG, where k takes on values in the range 1 ≤ k ≤ 751. In order to
facilitate understanding, a brief list of the points on the curve is given in advance below,
enabling the reader to verify the upcoming calculations.

2G = (1,376), 3G = (750,375), 4G = (2,373), 5G = (188,657), 6G = (6,390), 7G = (667,571),
8G = (121,39), 9G = (582,736), 10G = (57,332), 11G = (331,367), 12G = (207,215), 13G = (285,96),
14G = (629,545), 15G = (39,349), 16G = (197,107), 17G = (556,631), 18G = (490,207), 19G= (237,23),
20G = (731,529), 21G = (531,194), 22G = (256,409), 23G = (742,74), 24G = (180,343), 25G = (139,413),
26G = (217,247), 27G = (510,429), . . . , 700G = (510,322), 701G = (217,504), 702G = (139,338),
703G = (180,408), 704G = (742,677), 705G = (256,342), 706G = (531,557), 707G = (731,222),
708G = (237,728), 709G = (490,544), 710G = (556,120), 711G = (197,644), 712G = (39,402),
713G = (629,206), 714G = (285,655), 715G = (207,536), 716G = (331,384), 717G = (57,419),
718G = (582,15), 719G = (121,712), 720G = (667,180), 721G = (6,361), 722G = (188,94),
723G = (2,378), 724G = (750,376), 725G = (1,375), 726G = (0,375), 727G = O = infinity.

To compute 700G, the proposed method consists of combining the left-to-right method
and the Montgomery ladder method, as well as determining the inverse of the kG point,
because scalar k > #E

2 . The steps below are followed to achieve this.

• Start by finding point xG (the inverse point of kG = 700G) by finding the x value as a
first step by using the equation x = #E − k = 727 − 700 = 27;

• Then, transfer or change (x = 27) into its binary representation (11011);
• Then, iterate through the binary representation of x starting from the leftmost bit to

the rightmost bit as outlined below.
Note that point Q = (510,429) represents the inverse point of point 700G. To find the X-
and Y-coordinates of point kG = 700G, we have to follow the steps below.

1. The X-coordinate of kG is the same as the X-coordinate of xG = 510;
2. The Y-coordinate of kG is equal to the result of the subtraction of the Y-coordinate

of point xG from the prime number of the following elliptical equation:



Mathematics 2024, 12, 881 12 of 16

kG (Y-Coordinate) = Prime number (p) − xG (Y-Coordinate). 700G (Y-Coordinate)
= Prime number (751) − x G (Y-Coordinate = 429) = 751 − 429 = 322.

Therefore, 700G = (510, 322).

Iteration Scanned Bit Action Description

1 1 Do nothing Q = G (initial value) = (0,376)
2 1 Double Q = 2Q = 2G = (1,376)

Add P = Q + G = 3G = (750,375)
Since Scanned bit = 1, then Q = P = 3G

3 0 Double Q = 2Q = 6G = (6,390)
Add P = Q + G = 7G = (667,571)

Since Scanned bit = 0, then P = Q
4 1 Double Q = 2Q = 12G = (207,215)

Add P = Q + G = 13G = (285,96)
Since Scanned bit = 1, then Q = P = 13G

5 1 Double Q = 2Q = 26G = (217,247)
Add P = Q + G = 27G = (510,429)

Since Scanned bit = 1, then Q = P = 27G
Return Q

Based on the information provided earlier and as illustrated in the table, the total
number of operations for the given scenario includes four point doubling operations, four
point addition operations, one comparison operation between two integers (k and #E/2),
and two subtraction operations between two integers.

In contrast, when employing the Montgomery ladder method with a binary representa-
tion of the scalar k = 700 (1010111100), the total number of operations required is nine point
doubling operations and nine point addition operations to solve for 700G in the same example.

This comparison showcases that the proposed method offers a more efficient approach,
as it allows one to reduce the number of PDPA operations from nine to four, along with
some arithmetic operations involving integers. Consequently, it has the potential to outper-
form the Montgomery ladder method in terms of decreasing multiplication and addition
operations on elliptic curves.

By utilizing this method, the process is significantly simplified. In the context of the
Weierstrass curve over affine coordinates, point doubling involves approximately six multi-
plications, four additions/subtractions, and one division (inversion), and point addition
involves approximately two multiplications, six additions/subtractions, and one division.

It should be noted that the numbers utilized in this example are small compared with
those employed in real encryption operations. Thus, the number of operations to be reduced
in practical applications is substantially greater than that demonstrated in this example.

Figure 2 visualizes the operation of the proposed method geometrically on real numbers.

Figure 2. Shortcut multiplication method.



Mathematics 2024, 12, 881 13 of 16

As shown, the proposed method excludes the calculation of many points on the
curve and directly proceeds to the calculation of the inverse point, which shortens many
calculations and reduces computational complexity.

The proposed solution can be applied to various curves with different coordinate
systems (such as affine coordinates and Jacobean coordinates) as long as these curves are
symmetric about the x-axis, such as Secp256k1, NIST P-256, and X25519.

5. Results

Conventional ECC point multiplication and the proposed optimized point multiplica-
tion strategy introduced in this study were executed using the Python 3.12.0 programming
language, utilizing elliptic curve Secp256k1. Python was selected for its versatility in
handling complex numerical operations and its applicability to cryptographic research.

Table 1 captures the performance improvement achieved by using the optimized
method in the operation time for point multiplication over the elliptic curve, especially for
scalar values exceeding 50% of the curve’s order.

By employing the values depicted in Table 1 alongside an illustrative diagram, the re-
sulting chart, presented in Figure 3, offers a comparative examination of the operation time
for point multiplication on the Secp256k1 curve utilizing both the conventional and the
optimized ECC point multiplication methods.

In the figure, the x-axis represents the percentage of the curve’s order, ranging from
5% to nearly 100%, while the y-axis represents the time for each operation in seconds.

As shown in the diagram, both methods exhibit similar operation time results for
scalar values up to 50% of the curve’s order. Beyond this threshold, the optimized point
multiplication method demonstrates a significant reduction in operation time, indicating a
decrease in computational complexity for larger scalar values.

Table 1. Point multiplication time results on Secp256k1 curve.

Scalar % of Curve Order Conventional Method Time (s) Optimized Method Time (s)

5 0.014461755752563477 0.013983726501464844

10 0.022180795669555664 0.020344800567626953

15 0.022794485092163086 0.02213602409362793

20 0.02484750747680664 0.022983789443969727

25 0.025043725967407227 0.026155471801757812

30 0.026398658752441406 0.026781082153320312

35 0.026781082153320312 0.02710270881652832

40 0.028722763061523438 0.02863096046447754

45 0.02910900115966797 0.029391080856323242

50 0.029650211334228516 0.030028820037841797

55 0.030260801315307617 0.026938676834106445

60 0.03191685676574707 0.026717185974121094

65 0.03844857215881348 0.02414703369140625

70 0.04807019233703613 0.023786544799804688

75 0.04816699028015137 0.02182793617248535

80 0.049573421478271484 0.02121281623840332

85 0.05035853385925293 0.020491600036621094

90 0.05131077766418457 0.018212556838989258

95 0.05776810646057129 0.014655828475952148

99 0.0587618350982666 0.010605020405002140



Mathematics 2024, 12, 881 14 of 16

Figure 3. Comparative analysis of operation time results for point multiplication on Secp256k1 curve.

These results underscore the effectiveness of our proposed method in reducing the
computational complexity of point multiplication operations on an elliptic curve, par-
ticularly for higher scalar values. This optimization can have significant implications
for enhancing the efficiency and scalability of cryptographic operations based on elliptic
curves.

6. Conclusions

In this study, we explored various methods for multiplying points on elliptic curves,
showing the advantages and disadvantages of each. The left-to-right (double-and-add)
method is simple to implement but lacks protection against side-channel attacks. The win-
dow method improves performance by using pre-computed points but requires more
memory. The sliding-window method also utilizes pre-computed points and efficiently
handles multiple consecutive bits, but it requires even more memory than the left-to-right
method. The wNAF method reduces point additions but can be more complex to implement
correctly. The Montgomery ladder is suitable for both software and hardware implemen-
tations; however, it presents a time variation in the code execution, which can be utilized
by attackers in side-channel timing attacks, posing a security risk. The performance and
security of each method depend on their implementation details, the available hardware
resources, and the choice of elliptic curve parameters.

In contrast, the proposed method, in the worst-case scenario (the first case), has similar
point addition and point doubling operations to the Montgomery ladder method while
guaranteeing equal execution time in all stages of the code. The latter feature enables more
efficient implementation.

In the best-case scenario (the second case), the proposed method achieves improved
efficiency by finding the inverse of the point to be calculated. This approach requires
fewer operations to achieve the desired outcome, outperforming the Montgomery ladder
method in terms of reducing the number of point multiplication and addition operations
on elliptic curves.

Overall, under certain conditions, the proposed method has the advantage of main-
taining consistent execution time throughout the code. In other instances (i.e., best-case
scenarios), it also offers a more efficient approach, outperforming the Montgomery lad-



Mathematics 2024, 12, 881 15 of 16

der method by reducing the number of point multiplication and addition operations on
elliptic curves.

Author Contributions: Methodology, N.H.S.; Validation, A.B.L.; Formal analysis, N.H.S.; Inves-
tigation, N.H.S.; Resources, N.H.S.; Data curation, N.H.S.; Writing—original draft, N.H.S.; Writ-
ing—review and editing, A.B.L.; Supervision, A.B.L. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Science Foundation (project “Goszadanie”‚ No. 1023042800039-2-1.2.1, FSEE-2024-0003).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Paar, C.; Pelzl, J. Understanding Cryptography: A Textbook for Students and Practitioners; Springer Science & Business Media:

Berlin, Germany, 2009.
2. Miller, V.S. Use of elliptic curves in cryptography. In Advances in Cryptology; Exploratory Computer Science; Springer:

Berlin/Heidelberg, Germany, 1998.
3. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
4. CSRC; Elliptic Curve Cryptography (ECC). National Institute of Standards and Technology, Digital Signature Standard, FIPS

Publication, Gaithersburg, MD, USA, 2000. Available online: http://csrc.nist.gov/publications/PubsFIPS.html#fips186-3
(accessed on 12 March 2024).

5. Ansi, X. Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA); X9.62-1998;
American National Standards Institute: Washington, DC, USA, 1999.

6. IEEE Std 1363a–2004 (Amendment to IEEE Std 1363-2000); IEEE Standard Specifications for Public-Key Cryptography–Amendment
1: Additional Techniques. IEEE: Piscataway, NJ, USA, 2004; pp. 1–167. [CrossRef]

7. Mahto, D.; Khan, D.A.; Yadav, D.K. Security analysis of elliptic curve cryptography and RSA. In Proceedings of the World
Congress on Engineering, London, UK, 29 June–1 July 2016; Volume 1, pp. 419–422.

8. Rashid, M.; Imran, M.; Sajid, A. An efficient elliptic-curve point multiplication architecture for high-speed cryptographic
applications. Electronics 2020, 9, 2126. [CrossRef]

9. Imran, M.; Rashid, M.; Jafri, A.R.; Kashif, M. Throughput/area optimised pipelined architecture for elliptic curve crypto processor.
IET Comput. Digit. Tech. 2019, 13, 361–368. [CrossRef]

10. Padhy, S.; Shankar, T.; Dash, S. A Comparison among Fast Point Multiplication Algorithms in Elliptic Curve Cryptosystem. Res.
Sq. 2021. [CrossRef]

11. Hossain, M.S.; Kong, Y.; Saeedi, E.; Vayalil, N.C. High-performance elliptic curve cryptography processor over NIST prime fields.
IET Comput. Digit. Tech. 2017, 11, 33–42. [CrossRef]

12. Sajid, A.; Rashid, M.; Imran, M.; Jafri, A.R. A Low-Complexity Edward-Curve Point Multiplication Architecture. Electronics 2021,
10, 1080. [CrossRef]

13. Hao, Y.; Zhong, S.; Ma, M.; Jiang, R.; Huang, S.; Zhang, J.; Wang, W. Lightweight Architecture for Elliptic Curve Scalar
Multiplication over Prime Field. Electronics 2022, 11, 2234. [CrossRef]

14. Meloni, N. New point addition formulae for ECC applications. In Proceedings of the Arithmetic of Finite Fields: First International
Workshop, WAIFI 2007, Madrid, Spain, 21–22 June 2007; Proceedings 1; Springer: Berlin/Heidelberg, Germany, 2007; pp. 189–201.

15. Serengil, S.I. Double and Add Method for Calculating Points on Elliptic Curves. 2016. Available online: https://sefiks.com/2016
/03/27/double-and-add-method/ (accessed on 12 March 2024).

16. Pathak, H.; Sanghi, M. Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem. Int. J. Comput. Sci.
Eng. 2010, 2, 1024–1028.

17. Safieh, M.; Thiers, J.P.; Freudenberger, J. Side channel attack resistance of the elliptic curve point multiplication using Gaussian
integers. In Proceedings of the 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 26–27
May 2020; pp. 231–236.

18. Hankerson, D.; Menezes, A. Elliptic curve cryptography. In Encyclopedia of Cryptography, Security and Privacy; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 1–2.

19. Huang, X.; Shah, P. An Apparatus and Method Based on Dynamic Window Fuzzy Controller for Scalar Multiplication in Elliptic
Curve Cryptography on Wireless Sensor Platform. 2019. Available online: https://patents.google.com/patent/AU2013100351A4
/en (accessed on 12 March 2024).

20. Okeya, K.; Sakurai, K. Fast multi-scalar multiplication methods on elliptic curves with precomputation strategy using Montgomery
trick. In Proceedings of the Cryptographic Hardware and Embedded Systems-CHES 2002: 4th International Workshop, Redwood
Shores, CA, USA, 13–15 August 2002; Revised Papers 4; Springer: Berlin/Heidelberg, Germany, 2003; pp. 564–578.

http://doi.org/10.1090/S0025-5718-1987-0866109-5
http://csrc.nist.gov/publications/PubsFIPS.html#fips186-3
http://dx.doi.org/10.1109/IEEESTD.2004.94612.
http://dx.doi.org/10.3390/electronics9122126
http://dx.doi.org/10.1049/iet-cdt.2018.5056
http://dx.doi.org/10.21203/rs.3.rs-862241/v1
http://dx.doi.org/10.1049/iet-cdt.2016.0033
http://dx.doi.org/10.3390/electronics10091080
http://dx.doi.org/10.3390/electronics11142234
https://sefiks.com/2016/03/27/double-and-add-method/
https://sefiks.com/2016/03/27/double-and-add-method/
 https://patents.google.com/patent/AU2013100351A4/en
 https://patents.google.com/patent/AU2013100351A4/en


Mathematics 2024, 12, 881 16 of 16

21. Montgomery, P.L. Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 1987, 48, 243–264. [CrossRef]
22. Buchanan, B. Implementation of Elliptic Curve25519 in Cryptography. In Theorizing STEM Education in the 21st Century;

IntechOpen: London, UK, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1090/S0025-5718-1987-0866113-7

	Introduction
	Literature Review
	Scalar Point Multiplication
	Left-to-Right Method (Binary Method)
	Windowed Method
	Sliding-Window Method
	W-Ary Non-Adjacent Form Method
	Montgomery Ladder Method

	Combination of Left-to-Right Scalar Multiplication Algorithms and the Montgomery Ladder
	Results
	Conclusions
	References

