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Abstract: We study the Cauchy problem for differential–difference parabolic equations with potentials
undergoing translations with respect to the spatial-independent variable. Such equations are used for
the modeling of various phenomena not covered by the classical theory of differential equations (such
as nonlinear optics, nonclassical diffusion, multilayer plates and envelopes, and others). From the
viewpoint of the pure theory, they are important due to crucially new effects not arising in the case of
differential equations and due to the fact that a number of classical methods, tools, and approaches
turn out to be inapplicable in the nonlocal theory. The qualitative novelty of our investigation is that
the initial-value function is assumed to be summable. Earlier, only the case of bounded (essentially
bounded) initial-value functions was investigated. For the prototype problem (the spatial variable
is single and the nonlocal term of the equation is single), we construct the integral representation
of a solution and show its smoothness in the open half-plane. Further, we find a condition binding
the coefficient at the nonlocal potential and the length of its translation such that this condition
guarantees the uniform decay (weighted decay) of the constructed solution under the unbounded
growth of time. The rate of this decay (weighted decay) is estimated as well.

Keywords: differential–difference operators; parabolic equations; Cauchy problem; summable
initial value functions; long-time behavior

MSC: 35R10; 35K15

1. Introduction

It is well known that, for classical differential parabolic equations, qualitative properties
of solutions of the Cauchy problem substantially depend on the class of the initial-value
functions of the problem. If the initial-value function is bounded (essentially bounded), then
the famous Repnikov–Ei’delman stabilization condition is valid (see [1]), i.e., depending
on the limit properties of the means of the initial-value function, the solution either has a
limit as t → ∞ (and this limit is the same for each value of x) or does not have it at all. If
the initial-value function is integrable (summable), then the case qualitatively changes: the
said limit always exists, is equal to zero, and is achieved uniformly with respect to x.

This fundamental difference in qualitative properties of solutions is reasonable if we
take into account the physics interpretation: only bounded solutions are admitted for the
former class of problems (i. e., for problems with u0 ∈ L∞(Rn)), and only the latter class of
problems (i. e., problems with u0 ∈ L1(Rn)) admits finite-energy (nontrivial) solutions.

In this paper, the above phenomenon is studied for differential–difference equations,
i. e., equations with translation operators acting (apart from differential operators) on the
desired function. Such equations form a special (though quite important) subclass of the
class of functional differential equations, i. e., equations with arbitrary non-differential
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operators acting (apart from differential ones) on the desired function. Those non-diffe-
rential operators might be integrodifferential ones (see, e. g., [2–8] and references therein),
operators of contractions and extensions of the independent variables (see, e.g., [9–13] and
references therein), or others (see, e.g., [14,15] and references therein). Although those
operators are, in general, bounded (unlike differential ones), they cannot be treated as small
perturbations or subordinate terms of the equation: they are nonlocal terms, and, as we see
in various investigations, the presence of such terms implies the presence of qualitatively
new properties of the solutions.

Many researchers all over the world have been dealing with this generalization of
classical differential equations (within the contemporary mathematical paradigm, one
primarily has to mention the pioneering paper: [16]). The unfailing worldwide interest to
this area is mainly caused by the following two circumstances. From the purely theoretical
viewpoint, the nonlocal nature of differential–difference (and, more generally, functional
differential) operators force researchers to develop new tools, methods, and approaches
because the standard (although very rich) technique used for differential equations is fre-
quently found to be inapplicable in the functional differential case (in particular, this refers
to all maximum-principle methods). On the other hand, functional differential equations
arise in various applications not covered by classical differential equations. For instance,
parabolic differential–difference equations with potentials undergoing translations, studied
in the present paper, arise in models of nonlinear optics (see, e. g., [17–20]).

For the general theory, both aspects are comprehensively covered in [21–24] (also see
references therein). The Cauchy problem for parabolic differential–difference equations
with bounded initial-value functions is studied in [25]. The case of summable initial-value
functions was not studied earlier (up to the knowledge of the authors). The aim of the
present paper is to start its investigation.

2. Integral Representations of Solutions

In the sequel, ∥ · ∥ denotes the norm in L1(−∞,+∞).
Let a and h be real constants.
On the half-plane (−∞,+∞)× (0,+∞), define the function

E(x, t) =
+∞∫

−∞

e−t(ξ2−a cos hξ) cos(xξ − at sin hξ)dξ. (1)

From Section 1.1 in [25], it is known that function (1) (the Poissonian kernel) is infinitely
differentiable in the whole half-plane and satisfies (in the classical sense) the equation

∂u
∂t

=
∂2u
∂x2 + au(x − h, t). (2)

For completeness, we provide the procedure to obtain the Poissonian kernel.
Formally applying the Fourier transformation with respect to the variable x to

Equation (2), we obtain the equation

dû
dt

=
(
−ξ2 + ae−ihξ

)
û.

Note that we obtain an ordinary differential equation depending on parameter ξ instead of
the partial differential–difference equation. The obtained first-order equation is linear and its
coefficients are constants. Thus, denoting u(x, 0) by u0(x), one can easily solve the obtained
Cauchy problem:

û(ξ, t) = û0(ξ)e(a cos hξ−ia sin hξ−ξ2)t = e(a cos hξ−ia sin hξ−ξ2)t 1√
2π

+∞∫
−∞

u0(y)e−iyξ dy.
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Therefore, to find u(x, t), we have to apply (formally) the inverse Fourier transformation to
the last relation:

u(x, t) =
+∞∫

−∞

e(a cos hξ−ia sin hξ−ξ2)t 1√
2π

+∞∫
−∞

u0(y)e−iyξ dyeixξdξ

=
1√
2π

+∞∫
−∞

+∞∫
−∞

u0(y)e(a cos hξ−ia sin hξ−ξ2)t+i(x−y)ξ dydξ

=
1√
2π

+∞∫
−∞

u0(y)
+∞∫

−∞

e(a cos hξ−ia sin hξ−ξ2)t+i(x−y)ξ dξdy

=
1√
2π

+∞∫
−∞

u0(x − y)
+∞∫

−∞

e(a cos hξ−ia sin hξ−ξ2)t+iyξdξdy

=
1√
2π

+∞∫
−∞

u0(x − y)
+∞∫

−∞

e(a cos hξ−ξ2)t[ cos(yξ − at sin hξ)− i sin(yξ − at sin hξ)
]
dξdy

=

√
2
π

+∞∫
0

u0(x − y)
+∞∫

−∞

e(a cos hξ−ξ2)t cos(yξ − at sin hξ)dξdy,

which yields the convolution (up to a constant factor) of function (1) with the initial-value
function.

Note that all the above operations (such as the change in the order of the integration
or the elimination of the odd part of the integrand) are to be justified. Instead, we directly
investigate the obtained convolution.
In [25], this is carried out for u0 from L∞. Here, we have to perform that for u0 from L1.

Thus, let u0 ∈ L1(−∞,+∞).
Since the Poissonian kernel satisfies the estimate

|E(x, t)| ≤
+∞∫

−∞

e(a cos hξ−ξ2)tdξ =

+∞∫
−∞

eat cos hξ e−tξ2
dξ ≤ e|a|t

+∞∫
−∞

e−tξ2
dξ

=
e|a|t√

t

+∞∫
−∞

e−η2
dη =

e|a|t
√

π√
t

,

(3)

it follows that the convolution

u(x, t) :=
1
π

+∞∫
−∞

E(x − ξ, t)u0(ξ)dξ (4)

is well defined for each (x, t) from (−∞,+∞)× (0,+∞) and satisfies the estimate

|u(x, t)| ≤ e|a|t
√

π
√

t

+∞∫
−∞

|u0(ξ)|dξ =
e|a|t√

πt
∥u0∥.

Formally differentiate function (4) with respect to the variable x twice inside the integral:

∂2E
∂x2 = − 1

π

+∞∫
−∞

ξ2e−t(ξ2−a cos hξ) cos(xξ − at sin hξ)dξ.
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Therefore, ∣∣∣∣∂2E
∂x2

∣∣∣∣ ≤ 1
π

+∞∫
−∞

ξ2eat cos hξ e−tξ2
dξ ≤ 2e|a|t

π

+∞∫
0

ξ2e−tξ2
dξ.

The substitution

tξ2 =: η, ξ =

√
η

t
, dξ =

dη

2
√

tη

reduces the last integral to the form

1√
t

+∞∫
0

η

t
e−η2 dη

2
√

η
=

1

2t
3
2

+∞∫
0

√
ηe−η2

dη,

which yields the final estimate ∣∣∣∣∂2E
∂x2

∣∣∣∣ ≤ const
e|a|t

t
3
2

, (5)

i.e., the integral obtained by means of the above formal differentiation absolutely converges
for each positive t. Hence, this formal differentiation is legible.

Combining estimates (3) and (5) and taking into account that function (1) satisfies
Equation (2) in (−∞,+∞)× (0,+∞), we conclude that∣∣∣∣∂E∂t

∣∣∣∣ ≤ e|a|t
(

const

t
3
2

+ |a|const√
t

)
(6)

and, therefore, function (4) can be differentiated with respect to t and twice differentiated
with respect to x inside the integral. Hence, function (4) satisfies (in the classical sense)
Equation (2) for each positive t and each real x.

Thus, the following assertion is valid.

Theorem 1. Function (4) satisfies the Cauchy problem for Equation (2) with the initial-value
function u0 in the sense of generalized functions and satisfies Equation (2) in the half-plane
(−∞,+∞)× (0,+∞) in the classical sense.

Remark 1. Here, the fulfillment of the initial-value condition

u∣∣∣
t=0

= u0(x), x ∈ (−∞,+∞), (7)

is treated in the Gelfand–Shilov sense (see Section 10 in [26]): the distribution u(x, t) of the
variable x, depending on the positive parameter t, tends to the distribution u0(x) of the variable
x in the topology of distributions of the variable x as the parameter t tends to zero from the right
(see, e. g., [27]). The fact that Condition (7) is satisfied in this case, it is known that it follows from
Section 10, Theorem 1 in [26], and the construction of the function E(x, t) (see Section 1.1 in [25]).
The only novelty of Theorem 1 is the higher smoothness of the solution outside the initial-value
hyperplane.

3. Decay Rates for Solutions

Estimates (3), (5), and (6) are sufficient to prove the solvability of problems (2) and (7)
and to construct integral representations of its solutions. However, they are too rough to
investigate their long-time behavior. To obtain more precise estimates, impose the following
additional restriction:

|a|h2 ≤ 2. (8)
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Assuming that Condition (8) is satisfied, consider the function f (ξ) := ξ2 − a cos hξ. Its
derivative is equal to

2ξ + ah sin hξ = 2ξ

(
1 +

ah
2

sin hξ

ξ

)
= 2ξ

(
1 +

ah2

2
sin hξ

hξ

)
.

Hence, f ′(ξ) ≥ 0 on (0,+∞), i. e., f is a nondecreasing function on [0,+∞). Therefore,
f (ξ) ≥ f (0) = −a on the whole R1 (the evenness of the function f is taken into account).

Thus, under Condition (8), the following estimate is valid: ξ2 − a cos hξ ≥ −a, i. e.,

−t(ξ2 − a cos hξ) ≤ at. (9)

3.1. Negative Coefficients at Potentials

Under Condition (8), consider the case where a < 0 .

Then,
∣∣∣E(x, t)

∣∣∣ is estimated from above by 2
+∞∫
0

e−t(ξ2−a cos hξ)dξ. Represent the last

integral as the following sum:

√
−2a∫

0

e−t(ξ2−a cos hξ)dξ +

+∞∫
√
−2a

e−t(ξ2−a cos hξ)dξ

≤

√
−2a∫

0

eatdξ +

+∞∫
√
−2a

e−t(ξ2−a cos hξ)dξ =
√

2|a|e−|a|t +

+∞∫
√

2|a|

e−t(ξ2+|a| cos hξ)dξ

≤
√

2|a|e−|a|t +

+∞∫
√

2|a|

e−t(ξ2−|a|)dξ.

On the integration interval of the last integral, we have the inequality ξ2 ≥ 2|a|, i. e.,

|a| ≤ ξ2

2
, which means that ξ2 − |a| ≥ ξ2

2
. Hence, the integral itself does not exceed

+∞∫
√

2|a|

e−
t
2 ξ2

dξ ≤
+∞∫
0

e−
t
2 ξ2

dξ =
1
2

√
2π

t
=

√
π

2t
,

i. e., we have the estimate ∣∣∣E(x, t)
∣∣∣ ≤ √

−2aeat +

√
π

2t
.

3.2. Positive Coefficients at Potentials

Under Condition (8), consider the case where a > 0 .
The estimated integral is represented by the sum

√
2a∫

0

e−t(ξ2−a cos hξ)dξ +

+∞∫
√

2a

e−t(ξ2−a cos hξ)dξ

≤

√
2a∫

0

eatdξ +

+∞∫
√

2a

e−t(ξ2−a cos hξ)dξ =
√

2aeat +

+∞∫
√

2a

e−t(ξ2−a cos hξ)dξ

≤
√

2aeat +

+∞∫
√

2a

e−t(ξ2−a)dξ.
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In the same way as in the previous case, we prove that ξ2 − |a| ≥ ξ2

2
on the integration

interval of the last integral and, therefore, the integral itself does not exceed

+∞∫
√

2a

e−
t
2 ξ2

dξ ≤
+∞∫
0

e−
t
2 ξ2

dξ =
1
2

√
2π

t
=

√
π

2t
,

i. e., the weight estimate

e−(a+δ)t
∣∣∣E(x, t)

∣∣∣ ≤ √
2ae−δt +

√
π

2t
e−(a+δ)t

holds for each positive δ.

This yields the following assertion.

Theorem 2. Let Condition (8) be fulfilled. Then, solution (4) tends to zero as t → ∞ uniformly
with respect to x from (−∞,+∞), provided that a < 0 and tends to zero with the weight e−(a+δ)t

as t → ∞ uniformly with respect to x from (−∞,+∞), provided that a > 0. The rate of the decay
is estimated by the inequalities

|u(x, t)| ≤ const∥u0∥√
t

and
e−(a+δ)t|u(x, t)| ≤ const∥u0∥e−δt for each positive δ,

respectively.

4. Decay Rates for Derivatives of Solutions

Now, under Condition (8), we estimate the partial derivative of the solution with
respect to the spatial variable. The value of the coefficient at the potential is assumed to
be negative.

Taking into account that

∂E(x, t)
∂x

= −
+∞∫

−∞

ξe−t(ξ2−a cos hξ) sin (xξ − at sin hξ)dξ,

and using the same decomposition scheme for the integral as in Section 3, we conclude that

∣∣∣∣∂E(x, t)
∂x

∣∣∣∣ ≤ +∞∫
−∞

|ξ|e−t(ξ2−a cos hξ)dξ = 2
+∞∫
0

ξe−t(ξ2−a cos hξ)dξ

= 2

√
−2a∫

0

ξe−t(ξ2−a cos hξ)dξ + 2
+∞∫

√
−2a

ξe−t(ξ2−a cos hξ)dξ

≤ 2

√
2|a|∫

0

ξe−|a|tdξ + 2
+∞∫
0

ξe−
t
2 ξ2

dξ = 2|a|e−|a|t − 2
t

+∞∫
0

e−
t
2 ξ2

d
(
− t

2
ξ2
)

= −2aeat − 2
t

lim
b→+∞

e−
t
2 ξ2
∣∣∣∣b
0
= −2aeat +

2
t

.
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Then, for the function u(x, t), we obtain the same decay rate:

∣∣∣∣∂u(x, t)
∂x

∣∣∣∣ ≤ 1
π

∣∣∣∣∂E(x, t)
∂x

∣∣∣∣ +∞∫
−∞

|u0(ξ)|dξ ≤ ∥u0∥
π

(
−2aeat +

2
t

)
.

Thus,

lim
t→+∞

∂u(x, t)
∂x

= 0.

uniformly with respect to x ∈ R with the decay rate of t−1.
Passing to the second partial derivative of u with respect to x, we note that

∂2E(x, t)
∂x2 =

+∞∫
−∞

ξ2e−t(ξ2−a cos hξ) cos (xξ − at sin hξ)dξ

and, therefore,

∣∣∣∣∂2E(x, t)
∂x2

∣∣∣∣ ≤ +∞∫
−∞

ξ2e−t(ξ2−a cos hξ)dξ = 2
+∞∫
0

ξ2e−t(ξ2−a cos hξ)dξ

= 2

√
−2a∫

0

ξ2e−t(ξ2−a cos hξ)dξ + 2
+∞∫

√
−2a

ξ2e−t(ξ2−a cos hξ)dξ

≤ 2

√
2|a|∫

0

ξ2e−|a|tdξ + 2
+∞∫
0

ξ2e−
t
2 ξ2

dξ

=
2
3
(2|a|)3/2e−|a|t + 2

(
2
t

)3/2 +∞∫
0

u2e−u2
du =

2
3
(−2a)3/2eat +

C2

t3/2 .

Then, we have the inequality∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣ ≤ ∥u0∥
π

[
2
3
(−2a)3/2eat +

C2

t3/2

]
.

Thus,

lim
t→+∞

∂2u(x, t)
∂x2 = 0.

uniformly with respect to x from (−∞,+∞) with the decay rate of t−3/2.
Passing to the partial derivative of an arbitrary order m, we see that

∂mE(x, t)
∂xm =

+∞∫
−∞

(−ξ)me−t(ξ2−a cos hξ) cos
(

xξ − at sin hξ +
πm

2

)
dξ
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and, therefore,

∣∣∣∣∂mE(x, t)
∂xm

∣∣∣∣ ≤ +∞∫
−∞

|(−ξ)m|e−t(ξ2−a cos hξ)dξ = 2
+∞∫
0

ξme−t(ξ2−a cos hξ)dξ

≤ 2
m + 1

(2|a|)(m+1)/2e−|a|t + 2
(

2
t

)(m+1)/2 +∞∫
0

sme−s2
ds

=
2

m + 1
(−2a)(m+1)/2eat +

Cm

t(m+1)/2
.

Then, we have ∣∣∣∣∂mu(x, t)
∂xm

∣∣∣∣ ≤ ∥u0∥
π

(
2

m + 1
(−2a)(m+1)/2eat +

Cm

t(m+1)/2

)
and, consequently,

lim
t→+∞

∂mu(x, t)
∂xm = 0

uniformly with respect to x from (−∞,+∞) with the decay rate of t−(m+1)/2. Differentiate
the obtained expression with respect to t:

∂m+1E(x, t)
∂xm∂t

=

+∞∫
−∞

(−ξ)ma sin hξe−t(ξ2−a cos hξ) sin
(

xξ − at sin hξ +
πm

2

)
dξ

−
+∞∫

−∞

(−ξ)m(ξ2 − a cos hξ)e−t(ξ2−a cos hξ) cos
(

xξ − at sin hξ +
πm

2

)
dξ

=

+∞∫
−∞

(−1)m+1ξm+2e−t(ξ2−a cos hξ) cos
(

xξ − at sin hξ +
πm

2

)
dξ

+a
+∞∫

−∞

(−ξ)me−t(ξ2−a cos hξ) cos
(
(x − h)ξ − at sin hξ +

πm
2

)
dξ.

Therefore,

∣∣∣∣∂m+1E(x, t)
∂xm∂t

∣∣∣∣ ≤ +∞∫
−∞

|ξm+2|e−t(ξ2−a cos hξ)dξ + |a|
+∞∫

−∞

|ξm|e−t(ξ2−a cos hξ)dξ

= 2
+∞∫
0

ξm+2e−t(ξ2−a cos hξ)dξ + |a|
+∞∫
0

ξme−t(ξ2−a cos hξ)dξ

≤ 2
m + 3

(−2a)(m+3)/2eat +
Cm+2

t(m+3)/2
− a
[

2
m + 1

(−2a)(m+1)/2eat +
Cm

t(m+1)/2

]
≤ C̃eat + C̃1

1
t(m+3)/2

+ C̃0
1

t(m+1)/2
.

We see that no additional differentiation with respect to t changes the least power with
respect to t, relating to the decay rate as t → +∞.
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Then, the partial derivative of order m + n of the function E(x, t) is estimated as
follows: ∣∣∣∣∂m+nE(x, t)

∂xm∂tn

∣∣∣∣ ≤ C̃eat + C̃n
1

t(m+2n+1)/2
+ C̃n−1

1
t(m+2n−1)/2

· · ·+ C̃0
1

t(m+1)/2
= C̃eat +

n

∑
k=0

C̃k
1

t(m+2k+1)/2
.

This yields the following estimate for the same derivative of the function u(x, t):∣∣∣∣∂m+nu(x, t)
∂xm∂tn

∣∣∣∣ ≤ ∥u0∥
π

(
C̃eat +

n

∑
k=0

C̃k
1

t(m+2k+1)/2

)
.

Theorem 3. Let Condition (8) be fulfilled. Then, the partial derivatives of solution (4) of order
(m + n) tend to zero as t → ∞ uniformly with respect to x from (−∞,+∞), provided that a < 0.
The rate of the decay is estimated by the inequalities∣∣∣∣∂m+nu(x, t)

∂xm∂tn

∣∣∣∣ ≤ ∥u0∥
π

(
C̃eat +

n

∑
k=0

C̃k
1

t(m+2k+1)/2

)
.

Remark 2. For the case where the coefficient at the potential is positive, weighted estimates for
derivatives of the solution, similar to the weighted estimates for the solution itself, obtained in
Section 3, can be obtained in the same way.

5. Discussion

The solvability of the problem is achieved for all values of a and h; Condition (8)
binding these two parameters is additional: it is imposed only to prove the decay (weighted
decay) of the solution. No analogs of this phenomenon occur in the classical case of differ-
ential equations. The said condition is caused by the nonlocal nature of the investigated
problem. Note that it means neither a smallness of the coefficient at the nonlocal term
nor a smallness of its translation. Actually, it imposes restrictions on the symbol of the
differential–difference operator contained in the investigated equation: since the symbol of
the differential–difference operator contained at the right-hand side of Equation (2) is equal
to −ξ2 + ae−ihξ , it follows that Condition (8) guarantees the boundedness of the real part of
that symbol by a strictly negative constant (in the case where the coefficient at the potential
is negative). This condition is imposed to satisfy estimate (9) used to prove the uniform
decay of the solution, and it is worthy to note that restrictions of this type are frequently
imposed on real parts of symbols in various investigations of differential–difference equa-
tions and operators (see [21–25] and references therein). No effects of this kind arise in the
classical case because symbols of differential operators have much simpler structure than
symbols of differential–difference operators.

The fact that the adding of potential-type terms to parabolic equations can fundamen-
tally change the nature of their solutions (including the long-time behavior) is known at
least from the pioneering work [28]. Further investigations (see, e. g., [29–31] and references
therein) demonstrated a great diversity of this phenomenon (depending on the nature,
properties, and behavior of the potential-type terms). The prototype case of nonlocal
potentials, investigated in the present paper, shows that the nonlocal nature of potentials
substantially extends the said diversity.

6. Conclusions

In this paper, we continue the investigation of the Cauchy problem for differential–
difference parabolic equations with nonlocal potentials, passing to the case of summable
initial-value functions (instead of bounded ones investigated earlier). The prototype case of
Equation (2) is considered. We show that the convolution of the initial-value function with
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function (1), which is the same Poissonian kernel as in the case of bounded initial-value
functions, satisfies the investigated problem in the sense of generalized functions and is a
classical (infinitely smooth) solution of Equation (2).

For Equation (2), we impose Condition (8). Under this condition, we prove the
following (uniform with respect to the spatial-independent variable) estimates of the
constructed solution and its derivatives:

• If the coefficient at the potential is negative, then

|u(x, t)| ≤
[√

−2a
π

eat +
1√
2πt

]
∥u0∥;

• If the coefficient at the potential is positive, then

e−(a+δ)t|u(x, t)| ≤
[√

2a
π

e−δt +
1√
2πt

e−(a+δ)t

]
∥u0∥

for each positive δ;
• If the coefficient at the potential is negative, then∣∣∣∣∂mu(x, t)

∂xm

∣∣∣∣ ≤ ∥u0∥
π

(
2

m + 1
(−2a)(m+1)/2eat +

Cm

t(m+1)/2

)
with the decay rate of 1

t(m+1)/2 ;
• If the coefficient at the potential is negative, then∣∣∣∣∂m+nu(x, t)

∂xm∂tn

∣∣∣∣ ≤ ∥u0∥
π

(
C̃eat +

n

∑
k=0

C̃k
1

t(m+2k+1)/2

)

with the decay rate of 1
t(m+1)/2 , which means that no differentiating with respect to t

changes the decay rate.

Thus, the asymptotical properties of solutions fundamentally differ from the case
where the initial-value functions are bounded.

Author Contributions: Both authors equally contributed in all roles. All authors have read and
agreed to the published version of the manuscript.

Funding: G.L. Rossovskii was supported by the Ministry of Science and Higher Education of the
Russian Federation (megagrant agreement No. 075-15-2022-1115).

Data Availability Statement: The original contributions presented in the study are included in the
article.

Acknowledgments: The authors express their profound gratitude to A. L. Skubachevskii for his
valuable considerations and his permanent attention to this work.

Conflicts of Interest: The authors declares no conflicts of interest.

References
1. Repnikov, V.D.; Ei’delman, S.D. Necessary and sufficient conditions for the establishment of a solution of the Cauchy problem.

Sov. Math. Dokl. 1966, 7, 388–391.
2. Vlasov, V.V. On some classes of integro-differential equations on the half-line and related operator functions. Trans. Mosc. Math.

Soc. 2012, 2012, 121–138. [CrossRef]
3. Vlasov, V.V.; Rautian, N.A. Spectral analysis and correct solvability of abstract integrodifferential equations that arise in thermo-

physics and acoustics. J. Math. Sci. 2013, 190, 34–65. [CrossRef]
4. Vlasov, V.V.; Rautian, N.A. Properties of solutions of integro-differential equations arising in heat and mass transfer theory. Trans.

Mosc. Math. Soc. 2014, 2014, 185–204. [CrossRef]
5. Vlasov, V.V.; Rautian, N.A. Spectral analysis of linear models of viscoelasticity. J. Math. Sci. 2018, 230, 668–672. [CrossRef]

http://doi.org/10.1090/S0077-1554-2013-00197-1
http://dx.doi.org/10.1007/s10958-013-1245-5
http://dx.doi.org/10.1090/S0077-1554-2014-00231-4
http://dx.doi.org/10.1007/s10958-018-3766-4


Mathematics 2024, 12, 895 11 of 11

6. Vlasov, V.V.; Rautian, N.A. Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory. J.
Math. Sci. 2018, 233, 555–577. [CrossRef]

7. Vlasov, V.V.; Rautian, N.A. Spectral analysis and representation of solutions of integro-differential equations with fractional
exponential kernels. Trans. Mosc. Math. Soc. 2019, 80, 169–188. [CrossRef]

8. Vlasov, V.V.; Rautian, N.A. Well-posedness and spectral analysis of integrodifferential equations of hereditary mechanics. Comput.
Math. Math. Phys. 2020, 60, 1322–1330. [CrossRef]

9. Rossovskii, L.E. Boundary value problems for elliptic functional-differential equations with dilatations and compressions of the
arguments. Trans. Mosc. Math. Soc. 2001, 2001, 185–212.

10. Rossovskii, L.E. Elliptic functional differential equations with contractions and extensions of independent variables of the
unknown function. J. Math. Sci. 2017, 223, 351–493. [CrossRef]

11. Rossovskii, L.E. Elliptic functional differential equations with incommensurable contractions. Math. Model. Nat. Phenom. 2017, 12,
226–239. [CrossRef]

12. Rossovskii, L.E.; Tasevich, A.L. Unique solvability of a functional-differential equation with orthotropic contractions in weighted
spaces. Differ. Equ. 2017, 53, 1631–1644. [CrossRef]

13. Tasevich, A.L. Analysis of functional-differential equation with orthotropic contractions. Math. Model. Nat. Phenom. 2017, 12,
240–248. [CrossRef]

14. Cooke, K.; Rossovskii, L.E.; Skubachevskii, A.L. A boundary value problem for a functional-differential equation with a linearly
transformed argument. Differ. Equ. 1995, 31, 1294–1299.

15. Rossovskii, L.E.; Tovsultanov, A.A. Elliptic functional differential equation with affine transformations. J. Math. Anal. Appl. 2019,
480, 123403. [CrossRef]

16. Hartman, P.; Stampacchia, G. On some nonlinear elliptic differential functional equations, Acta Math. 1966, 115, 271–310.
[CrossRef]

17. Razgulin, A.V. Rotational multi-petal waves in optical system with 2-D feedback. Chaos Opt. Proc. SPIE 1993, 2039, 342–352.
18. Skubachevskiı̆, A.L. On the Hopf bifurcation for a quasilinear parabolic functional-differential equation. Differ. Equ. 1998, 34,

1395–1402.
19. Skubachevskiı̆, A.L. Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelec-

tronics. Nonlinear Anal. 1998, 32, 261–278. [CrossRef]
20. Varfolomeev, E.M. On some properties of elliptic and parabolic functional-differential equations that arise in nonlinear optics. J.

Math. Sci. 2008, 153, 649–682. [CrossRef]
21. Skubachevskiı̆, A.L. Nonclassical boundary-value problems. I. J. Math. Sci. 2008, 155, 199–334. [CrossRef]
22. Skubachevskiı̆, A.L. Nonclassical boundary-value problems. II. J. Math. Sci. 2010, 166, 377–561. [CrossRef]
23. Skubachevskiı̆, A.L. Elliptic Functional Differential Equations and Applications; Birkhäuser: Basel, Switzerland; Boston, MA, USA;

Berlin, Germany, 1997.
24. Skubachevskiı̆, A.L. Boundary-value problems for elliptic functional-differential equations and their applications. Russian Math.

Surveys 2016, 71, 801–906. [CrossRef]
25. Muravnik, A.B. Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the

Cauchy problem. J. Math. Sci. 2016, 216, 345–496. [CrossRef]
26. Gel’fand, I.M.; Shilov G.E. Generalized Functions. In Theory of Differential Equations; Academic Press: New York, NY, USA; San

Francisco, CA, USA; London, UK, 1967; Volume 3.
27. Shilov G.E. Generalized Functions and Partial Differential Equations; Gordon and Breach: New York, NY, USA; London, UK; Paris,

France, 1968.
28. Il’in, A.M.; Kalashnikov, A.S.; Oleı̆nik, O.A. Linear second-order equations of parabolic type. Russian Math. Surveys 1962, 17,

1–146. [CrossRef]
29. Denisov, V.N. Sufficient conditions for stabilization of solutions of the Cauchy problem for nondivergent parabolic equations

with lower-order coefficients. J. Math. Sci. 2010, 71, 46–57. [CrossRef]
30. Denisov, V.N. Stabilization of solutions of Cauchy problems for divergence-free parabolic equations with decreasing minor

coefficients. J. Math. Sci. 2014, 201, 581–594. [CrossRef]
31. Denisov, V.N. The stabilization rate of a solution to the Cauchy problem for a parabolic equation with lower order coefficient. J.

Math. Sci. 2015, 208, 91–99. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10958-018-3943-5
http://dx.doi.org/10.1090/mosc/298
http://dx.doi.org/10.1134/S0965542520080151
http://dx.doi.org/10.1007/s10958-017-3360-1
http://dx.doi.org/10.1051/mmnp/2017075
http://dx.doi.org/10.1134/S0012266117120102
http://dx.doi.org/10.1051/mmnp/2017076
http://dx.doi.org/10.1016/j.jmaa.2019.123403
http://dx.doi.org/10.1007/BF02392210
http://dx.doi.org/10.1016/S0362-546X(97)00476-8
http://dx.doi.org/10.1007/s10958-008-9141-0
http://dx.doi.org/10.1007/s10958-008-9218-9
http://dx.doi.org/10.1007/s10958-010-9873-5
http://dx.doi.org/10.1070/RM9739
http://dx.doi.org/10.1007/s10958-016-2904-0
http://dx.doi.org/10.1070/RM1962v017n03ABEH004115
http://dx.doi.org/10.1007/s10958-010-0125-5
http://dx.doi.org/10.1007/s10958-014-2013-x
http://dx.doi.org/10.1007/s10958-015-2426-1

	Introduction
	Integral Representations of Solutions
	Decay Rates for Solutions
	Negative Coefficients at Potentials
	Positive Coefficients at Potentials

	Decay Rates for Derivatives of Solutions
	Discussion
	Conclusions
	References

