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Abstract: Federated learning is a distributed learning method used to solve data silos and privacy
protection in machine learning, aiming to train global models together via multiple clients without
sharing data. However, federated learning itself introduces certain security threats, which pose
significant challenges in its practical applications. This article focuses on the common security risks of
data poisoning during the training phase of federated learning clients. First, the definition of federated
learning, attack types, data poisoning methods, privacy protection technology and data security
situational awareness are summarized. Secondly, the system architecture fragility, communication
efficiency shortcomings, computing resource consumption and situation prediction robustness of
federated learning are analyzed, and related issues that affect the detection of data poisoning attacks
are pointed out. Thirdly, a review is provided from the aspects of building a trusted federation,
optimizing communication efficiency, improving computing power technology and personalized the
federation. Finally, the research hotspots of the federated learning data poisoning attack situation
prediction are prospected.
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1. Introduction

In recent years, rapid development in machine learning has led to significant achieve-
ments in computer vision [1], natural language understanding [2], and large language
models [3,4] in the artificial intelligence community. Machine learning involves training
models with extensive data. However, as information techniques become more prevalent,
incidents of personal data leakage have become increasingly common, raising people’s
awareness of data security and privacy protection. Consequently, many countries have
introduced laws and regulations to safeguard data privacy. To achieve a balance between
privacy protection and data silos, federated learning has emerged as a promising solu-
tion. It aims to train a centralized federated model using decentralized data sources while
ensuring the privacy of the original data throughout the training process [5].

According to relevant research efforts [6], although federated learning solves the
privacy computing and data island problems in traditional machine learning, there are
still many security threats due to the existence of malicious participants. It is of great
significance to study various attacks against federated learning systems, discover the
vulnerabilities of federated learning, and promote the research of related defense methods
to build a more secure federated learning system [7].

At present, existing research efforts on federated learning security attacks mainly focus
on model poisoning attacks [8–10]. The attacker corrupts the global model by constructing
malicious model updates. However, model poisoning requires the attacker to control single
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or multiple parties. With the expansion of federated learning deployment applications,
the number of compromised participants has gradually decreased, and the application
space for model poisoning has become increasingly narrow. Data poisoning attacks [11–13]
mean that the attacker adds a small number of carefully designed poisoning samples to the
training data set of the model, and uses the training or fine-tuning process to poison the local
model, thereby affecting the training and performance of the global model. In practical
applications, data poisoning attacks have lower requirements on the attacker’s ability
and knowledge and a wider range of implementation scenarios than model poisoning.
Moreover, data poisoning attacks are harder to detect in large-scale training data sets.
However, the current research on data poisoning is still relatively superficial and only stays
at the stage of simply verifying the feasibility of the attack.

In response to poisoning attacks, a series of defenses have been proposed, which can
be summarized into two categories: passive defenses and active defenses [14]. Passive
defenses mainly start from the aggregation server side, design relevant aggregation model
strategies, and eliminate poisoning models, thereby improving the global model perfor-
mance [15]. The active defenses eliminate the impact of the poisoning model on the global
model by detecting the performance of the local model and eliminating the poisoning
model [13]. At present, active defenses is the trend and main direction of studying feder-
ated learning poisoning attack detection solutions. It can put potential risks in front and
achieve the goal of timely stop loss.

Currently, academic circles have conducted the relevant research on detecting and
mitigating data poisoning attacks in federated learning. Steinhardt et al. [16] proposed a
data cleaning method, that is, cleaning the training set, filtering and eliminating poisoning
data, to achieve a defense against poisoning attacks. However, such a method cannot work
in the form of a local model poisoning attack where the adversary directly tamperes with
the model parameters [17]. Feng et al. [18] proposed a data poisoning defense strategy
based on a logistic regression classifier, which removes samples whose abnormality ex-
ceeds the threshold by detecting outliers. However, this method assumes that the server
can know the proportion of poisoning samples in the training data in advance, which
cannot be implemented in actual applications of federated learning. Zhao et al. [19] first
proposed a method of using Generative Adversarial Network (GAN) [20] to generate
detection samples. However, because only accuracy is used as the detection indicator, this
solution cannot accurately detect targeted attacks. Jagielski et al. [21] proposed a detection
method in which the server collects some local training samples and trains the comparison
model, and iteratively estimates the residual values of the comparison model and the local
model.This method can effectively resist poisoning attacks on training data; however, when
the local training set contains many malicious samples, the detection effect of this method
is poor. At the same time, this method requires users to upload private training data when
constructing the training set used, which violates the original intention of not leaving the
local training data in federated learning. At the same time, Li et al. [22] proposed the
reasons that limit the large-scale application of the federated learning technology in the
real world, namely expensive communication, system heterogeneity, data privacy issues
and algorithm complexity.

How to dynamically perceive data poisoning attacks in federated learning and imple-
ment a defense at the lowest cost is important research content. Data security situational
awareness is a method that assesses data security risks and situations by monitoring and
analyzing data traffic, user behaviors, security events and other information in the network
in real time. It can help organizations discover data security threats and vulnerabilities in a
timely manner and take appropriate measures to protect data security. The defense idea of
federated learning is basically the same as the data security situational awareness method,
and both build analysis models based on behavior and data flow. This article takes the
federated learning data poisoning attack situation prediction as the theme, puts forward
improvement suggestions around problems and difficulties, and provides a reference for
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improving the ability of federated learning to prevent data poisoning attacks. The main
contributions of this article are as follows:

1. From the perspective of technical principles, the types of data poisoning based on
federated learning are summarized, and the advantages and disadvantages of various
technologies are analyzed in detail.

2. Regarding the prediction of federated learning data poisoning attack situations, chal-
lenges such as system architecture vulnerability, communication efficiency shortcom-
ings, computing resource consumption, and prediction robustness are raised.

3. Suggestions are put forward to build a federated learning data poisoning attack situa-
tion prediction system to help organizations discover and respond to data poisoning
threats in a timely manner.

2. Related Work
2.1. Federated Learning

Federated Learning is a distributed machine learning framework proposed by Google’s
McMahan et al. [23] in 2017 and implemented in the language prediction model on smart-
phones, achieving the goal of not leaking user personal data. A unified machine learning
model is trained using data sets distributed across multiple mobile phones. The user’s
mobile phone downloads the prediction model from the server, performs training and
fine-tuning based on local user data, and uploads the fine-tuned model parameters to
continuously optimize the global model of the server. In addition, federated learning is
also widely used in fields such as finance, medical care, and the Internet of Things [24].
WeBank Yang et al. [25] and others expanded the federated learning model proposed by
Google and extended it to various privacy protection learning scenarios.

The architecture of the federated learning system includes two types of roles: multiple
participants and an aggregation server. Each participant has a complete data set of data
features, and there is no intersection or a small intersection between data samples. They
can join together to train a unified global model with better performance parameters.
The training process of this system usually includes the following steps: Model initialization:
the aggregation server generates an initial global model.

Model broadcast: the aggregation server shares the initial global model to all participants.
Model training: Based on the shared global model, participants use local data sets to

train local models.
Collect parameters: Participants upload updated model parameters.
Model aggregation: The server aggregates the model parameters of each participant.
Update global model: The server broadcasts the aggregation.
The model parameters are continuously iterated in steps (2–6) until the global model loss

function converges [24,26], thus completing the entire training process, as shown in Figure 1.

Figure 1. Federated learning model training process [25,27].
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2.2. Federated Learning Attack Types

In federated learning scenarios, including the two processes of model training and
model inference, the attacker’s main goal is usually to destroy the training model or
infer private information. Model training uses distributed computing methods, which
brings great challenges to the security of the entire system. The academic community has
conducted extensive research. According to different attack purposes, they can be divided
into poisoning attacks and inference attacks. Poisoning attacks performed by malicious
actors aim to affect the global model by controlling the local model behavior. Malicious
actors can implement poisoning attacks targeting the training phase by controlling local
model parameters and local training data. Poisoning attacks can be divided into data
poisoning attacks [11–13] and model poisoning attacks [8–10]. Data poisoning attacks
mainly focus on label reversal attacks and backdoor attacks. The purpose of inference
attacks is to infer other information in the federated learning system through attack methods
such as adversarial samples. This part is beyond the scope of this article.

Currently, the research on federated learning system attacks mainly focuses on the
training phase. Malicious participants attack the federated learning system during the train-
ing phase, causing the global model failure and privacy leakage of participants. The fed-
erated learning model mainly faces security risk issues such as data poisoning, model
poisoning and backdoor attacks during the training phase, as shown in Figure 2.

Figure 2. Security attacks faced during the training phase of the federated learning model [21].

The data poisoning attack (DPA) was first proposed by Biggio et al. [11]. In a fed-
erated learning scenario, attackers can implement data poisoning attacks by controlling
participants or modifying participants’ training data sets (such as adding forged data or
modifying existing data, etc.), thereby reducing the accuracy of the model. However, aggre-
gation algorithms weaken the impact of data poisoning on the global model. Depending
on the attacker’s purpose, data poisoning can be divided into two types: targeted and
non-targeted. A non-targeted attack [27] is one in which the attacker aims to induce the
model to produce as many incorrect predictions as possible, regardless of the category of
data in which the errors occur, that is, a purely destructive behavior. A targeted attack
means that the attacker intends to change the model’s classification results of certain known
test samples without pursuing the impact on the test results of other samples. Table 1
shows the effects of untargeted data poisoning attacks and targeted data poisoning attacks.

The model poisoning attack (MPA) refers to an attacker modifying the weight param-
eters of the model during the model update stage, which impacts the performance and
reliability of the model [8–10]. As the aggregation server cannot verify the authenticity of
model updates uploaded by participants, it creates opportunities for attackers to carry out
model poisoning attacks. A malicious party can construct arbitrary model updates and
send them to the server, thereby compromising the aggregated global model.
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Table 1. Analysis of the Effect of Federated Learning Data Poisoning Attack [26].

Literature Attack Type Attack Methodology
Attack

Evaluation
Index

DataSet Training Settings/
(Number–Items) Result%

[28] Untargeted
poisoning

Utilizing the projected stochastic
gradient ascent algorithm to
maximize the experience loss of
the target node

Model error
rate EndAD 6:*:no-iid

Base: 6.88 ±
0.52

Result: 28.588
± 3.74

[11] Untargeted
poisoning

Predict changes in the SVM
decision function caused by
malicious input and use this
ability to construct
malicious data

Model error
rate MNIST *:*:* Base: 2–5

Result: 15–20

[13] Targeted
poisoning

Aim for successful poisoning in
the final rounds and choose the
right tag to flip

Maximum
recall loss

CIFAR-
10 50:*:iid

Base: 0
Result: 2:1.42;

20:25.4

[29] Targeted
poisoning

Utilize GAN technology to
generate data and implement
label flipping

Poisoning task
accuracy rate MNIST 10:*:no-iid

Base: 0
Result:

20:60±;
40:80±; 60:85±

Note: In the “Training Settings column”, use the format x:y:z, x represents the participant, y represents the amount
of data each participant has, z represents the division of the dataset (iid or no-iid), and “*” indicates unknown.

A backdoor attack (BA) involves injecting a backdoor into the target model. By activat-
ing a preset trigger, an attacker can make the model output specific labels when processing
data with triggers, without affecting the inference results of normal data. In federated
learning, attackers can contaminate the training set and upload malicious model updates
to insert backdoors. Consequently, backdoor attacks in federated learning can be executed
through data poisoning or model poisoning. It is important to note that triggers in back-
door attacks are primarily embedded through data poisoning attacks and model poisoning
attacks. Therefore, privacy protection methods employed to defend against poisoning
attacks can also be utilized to safeguard private information from backdoor attacks [30,31].

2.3. Data Poisoning Attack Methods

Data poisoning attacks can be divided into methods such as label flipping, target
optimization, gradient optimization, and clean labeling based on technical implementa-
tion methods.

Label flipping [11–13] data poisoning by directly modifying the label information
of the training data of the target category, while the characteristics of the data remain
unchanged. Attackers can poison data by modifying data and data labels. Fung et al. [32]
train a softmax classifier across ten honest clients, each holding a single digit partition of
the original ten-digit MNIST dataset. Attackers achieve data poisoning attack goals by
manipulating data labels, such as deliberately labeling the number 1 as a 7. Figure 3 shows
how to control the data labeling process.

Optimization-based data poisoning will aim to solve a series of max/min prob-
lems [12,13,33]. In data poisoning, there is usually a target problem of making the most
effective poisoning sample. This problem can be used to calculate the optimal set of data
points for label poisoning, and can also be used to find the most efficient data modification
scheme. Obviously, the performance of the attack mainly depends on the construction and
solution strategy of the optimization problem.

Gradient-based data poisoning [34] makes the poisoned samples move in the direction
of the gradient against the objective function L, thereby achieving the maximum poisoning
effect. Figure 4 [11] is the result of a poisoning experiment using two numbers extracted
from the MNIST handwritten digit data set and a poisoning ratio of 30%. After the
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attack, the overall accuracy of the model dropped significantly, the classification error rate
increased by 10–30%, and the error rate increased with the number of iterative trainings.

Figure 3. Federated learning with and without colluding sybils mounting a sybil-based poisoning
attack. In the attack (b), two sybils poison the model by computing over images of 1 s with the
(incorrect) class label 7 [32].

Figure 4. Modifications to the initial (mislabeled) attack point performed by the proposed attack
strategy, for the three considered two-class problems from the MNIST dataset. The increase in
validation and testing errors across different iterations is also reported [11].

Data poisoning with clean labels [35–37] will cause the label of the poisoned image
to be consistent with the visual sense, but the test image will be misclassified. The attack
accuracy of this method is very high, and the infection rate is also very low. Only a very
small amount of pictures need to be poisoned to significantly increase the attack success
rate. Traditional label flip poisoning is easy to detect, for example: base image (dog) +
perturbation = poisoned image, but the poisoned image still looks like a dog to the human
eye. If the poisoned image is tagged as a fish, it will be easily discovered by data cleaners.
In the clean label data poisoning attack, the label of the poisoned image is consistent with
the visual sense. Even if the dog image is added with noise, the poisoned image obtained
can still be labeled as a dog.
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2.4. Federated Learning Privacy Protection Technology

Currently, federated learning utilizes perturbation technology and encryption tech-
nology to safeguard privacy. Perturbation technology, specifically differential privacy
technology, is employed to offer enhanced privacy protection. Encryption technology,
on the other hand, utilizes techniques such as secure multi-party computation and homo-
morphic encryption to achieve privacy preservation. These techniques have been widely
utilized for privacy protection in traditional machine learning.

Differential privacy (DP) is an output privacy protection model initially proposed by
Dwork et al. [38] in 2006. It quantifies and restricts the leakage of personal information.
The fundamental concept of differential privacy is to prevent attackers from extracting
individual information from the dataset by obfuscating query results. This makes it impos-
sible for attackers to discern an individual’s sensitivity from the query results. In essence,
the output of the function remains unaffected by any specific record in the dataset. Hence,
differential privacy is effective in countering membership inference attacks. Compared to
encryption-based technology, differential privacy technology reduces the communication
overhead and enhances the transmission efficiency.

Homomorphic encryption (HE) is a technology proposed by Rivest et al. [39] that
performs algebraic operations on data to obtain encrypted results. By decrypting this result,
the obtained outcome is consistent with performing the same operation on the original
plaintext. This technology is significant as it addresses the confidentiality issue when
entrusting data and operations to a third party. It finds extensive application in various
cloud computing scenarios.

Secure multi-party computation (SMPC) was formally introduced in 1982 by Yao
Qizhi et al. [40], a Turing Award winner and academician of the Chinese Academy of
Sciences. Its purpose is to collectively compute the results of a function using private
inputs from each party, without revealing these inputs to others. A secure multi-party
computation ensures that participants can obtain accurate calculation results while keeping
their private inputs confidential.

2.5. Data Security Situational Awareness

Situational awareness [41] originated from the U.S. military’s research in military
confrontation. It involves extracting elements within a specific time and space range,
understanding their meaning, and predicting their potential effects. Situational awareness
can be observed as a cognitive process [42] that utilizes past experience and knowledge to
identify, analyze, and comprehend the current system situation. In the military domain [43],
it enables us to understand both ourselves and the enemy, thereby increasing our chances of
survival in numerous battles. As can be observed in Figure 5 [44], the perception is a kind
of cognitive mapping. The so-called cognitive mapping means that decision makers use
related technologies such as data fusion, risk assessment, and visualization to denoise and
integrate information in different formats obtained from different locations to obtain more
accurate and comprehensive information. Subsequently, the decision-maker continuously
extracts semantics from this information and identifies the elements that need attention
and their intentions. Decision makers can effectively assess their impact on the system in
real time.

Figure 5. Situation awareness cognitive mapping process [44].

The objective of data security situational awareness [45] is to apply the theory and
methods of situational awareness to the field of data security. This enables data security
personnel to effectively monitor the security status of the entire data in a dynamically
changing environment and provide decision-making support for management. The key
to achieving data security situational awareness is by proactively monitoring security
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risks related to operations, accounts, hosts, and shares through database logs collected via
interfaces, Syslogs, deployment probes, etc. These logs can provide an early warning for
potential security threats, as shown in Figure 6.

Figure 6. Network situation awareness model [45].

3. The Challenge of Predicting Data Poisoning Attack Situation

The proposal of federated learning data poisoning attacks has attracted widespread
attention in related industries [46–48]. However, there are still many challenges that need
to be addressed in the situation prediction. The core issues include system architecture
fragility, communication efficiency shortcomings, computing resource consumption and
situation prediction robustness. These problems seriously restrict the further development
and application of federated learning.

3.1. System Architecture Vulnerability Issues

Participants in the federated learning model need to continuously communicate and
collaborate with the aggregation server. According to the research results, vulnerabilities
exist in aggregation servers, participants, and communication protocols [24]. This article
only focuses on aggregation servers and parties involved in data poisoning attacks.

(1) The aggregation server is the nerve center of the federated learning model. It is respon-
sible for initializing model parameters, aggregating model updates of participants
and distributing the global model. If the server is compromised, the attacker can
immediately disable the situation prediction ability and release malicious participants
at will, thereby conducting data poisoning attacks and affecting the quality of the
global model [49]. In addition, the aggregation server can utilize the maximum a
posteriori principle (MAP) technology of the model inversion attack (MIA) to re-
construct participants’ training data, sensitive attributes or input data, potentially
compromising their privacy [50]. Zhu et al. [51] introduced a label-only model reverse
attack method, which uses labels to estimate the true confidence. The attack process
is illustrated in Figure 7.

(2) Participants refer to the nerve endings of the federated learning model. Once a data
poisoning attack occurs, they can destroy the aggregated global model by uploading
updates to the model [11]. Currently, the participants in federated learning applica-
tions are mainly individual users. Compared with aggregation servers, individual
users have weaker security protection measures, and the cost of attack is relatively
low [52]. Attackers can easily join the federated learning training process by invading
ordinary users or registering new users. They can attack the global model by forg-
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ing local data or modifying model updates [25]. Wang et al. [46] proposed a data
poisoning attack framework for the federated learning autonomous driving steering
control (ATT-FLAV) based on the Bandit algorithm, which is used for dynamic data
poisoning attacks against nonlinear regression models, as shown in Figure 8. In addi-
tion, attackers can also join forces with other malicious parties to launch attacks to
enhance the attack effect. At the same time, individual users, as participants, also have
vulnerabilities and unavailability when deploying data poisoning attack situational
awareness probes. Therefore, participants can be said to be the most vulnerable link
in a federated learning system [53].

Figure 7. Overview of label-only attack method [51].

Figure 8. Framework of Data Poisoning Attack on Federated Learning for Autonomous Steering
Angle Control System. In the first step, malicious vehicles are subjected to a label-flipping data
poisoning attack that alters some of the training data labels (1). Once the label-flipping attack is
completed in the first step, the malicious vehicles use the poisoned training data to train their own
models, while honest vehicles train their models with normal data (2). After training, all client models
are uploaded to the server end and merged to create a new global model, which initializes client
models in the next round of federated learning, as depicted in the numbered Block (3) at the top [46].

3.2. Communication Efficiency Shortcomings

In federated learning, the aggregation server and remote participants need to fre-
quently communicate to interact with and update the model. Training involves multiple
devices, which may cause huge bandwidth pressure on the communication network [54].
However, if the aggregation server cannot detect malicious participants in time, it can
easily lead to global model contamination or privacy leakage issues. The training time
of the global model is mainly composed of the data processing time and communication
transmission time. As the computing power of the computer equipment increases, the data
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processing time gradually decreases, and the communication transmission efficiency of
federated learning becomes the main factor limiting the training speed [55]. In an Internet
environment, updating and uploading a large number of local models will cause excessive
communication overhead on the aggregation server and cannot meet normal application
requirements. Furthermore, adjacent model updates may contain many duplicate updates
or updates that are not related to the global model [56].

Anomaly detection is crucial for the safety of the training process and predicting
situations. Paudice et al. [57] suggested using data pre-filtering and outlier detection
to prevent poisoning attacks and mitigate their impact on the system. However, the
centralized anomaly detection that detects client data can pose significant privacy risks
and escalate computational communication expenses. In order to predict data poisoning
attacks in federated learning, monitoring modules must be installed in all participants, and
they must maintain a constant interaction with the aggregation server. This leads to an
increased communication overhead.

3.3. Computing Resource Consumption Problem

Existing federated learning defense mechanisms generally do not take into account
the problem of limited computing resources. Some validation mechanisms consume a lot
of resources to validate all updates, causing time delays and affecting the entire training
process. Anomaly detection is an important means to ensure the security of the training
process and achieve a situation prediction. Fang et al. [9] demonstrated the poisoning
of local models by launching a poisoning attack on the local model of the client, which
resulted in a significant increase in the test error rate of the global model. Regarding
the necessity of defense, Zhao et al. [19] deployed a generative adversarial network (GAN)
on the server side to generate client model parameters for auditing a data set, and used
the data set to check the accuracy of the participant model and determine whether there
was a poisoning attack. However, the above detection algorithm needs to consume a large
amount of computing resources of the aggregation server to review the local models of the
participants, which causes the participants to waste a lot of resources in federated learning.

3.4. Situation Prediction Robustness Issues

Federated learning commonly suffers from heterogeneous data, heterogeneous models,
and insufficient generalization capabilities; this results in poor robustness in predicting
data poisoning attack situations.

(1) Data heterogeneity and model heterogeneity: In federated learning scenarios, the data
of the participants are usually heterogeneous, that is, they may come from differ-
ent data sources, with different data structures, data types and data distributions.
Wu et al. [58] summarized the challenges faced by federated learning into three aspects.
First, there is heterogeneity in the storage, computing and communication capabilities
of various participants. Secondly, the non-independent and identically distributed
local data of each participant raises the problem of data heterogeneity. Data hetero-
geneity may reduce the accuracy and generalization ability of the model. Finally,
the models required by each participant according to their application scenarios lead
to the problem of model heterogeneity. Model heterogeneity refers to the differences
in model structures, parameters, and hyperparameters used by different participants,
which affects the performance and effect of the model. Both data heterogeneity and
model heterogeneity may lead to the non-convergence of the global model [59], which
may have an impact on the situation prediction effect and performance of federated
learning data poisoning attacks.

(2) Insufficient generalization ability. The current research on defense mechanisms against
poisoning attacks in federated learning primarily focuses on the Byzantine robust
aggregation algorithm [60], which is designed based on a central server to identify
and eliminate potential poisoning participants. Other studies [61–64] utilize clustering
algorithms or weight functions implemented by the server to mitigate or remove po-
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tential poisoning participants who deviate from the majority of participants’ updates.
Another approach that is discussed in the literature [65] is the FoolsGold algorithm,
which assumes that malicious updates have lower randomness compared to normal
updates, providing defense against poisoning attacks where over half of the data from
poisoned participants exceeds half. While these methods offer some protection against
poisoning attacks, accurately assessing model updates submitted by participants is
challenging due to the absence of real data sets on the server. As a result, these
approaches may struggle to address poisoning attacks when the number of poisoned
participants surpasses that of normal participants, ultimately leading to a reduced
robustness in the situation prediction.

4. Countermeasures for Predicting Data Poisoning Attack Situation

By analyzing federated learning data poisoning attacks, we can conclude that the
main security threats to federated learning currently come from the participating parties.
However, due to the large number, wide range, strong heterogeneity, and difficulty of con-
trolling the participants, the existing research mainly focuses on improving the aggregation
algorithm of the server. Having a safe and reliable aggregation algorithm can ensure that
the global model in the system can converge correctly even if there are malicious nodes [24].

4.1. Build a Trusted Federated Learning System

Judging from the development trends in the past two years, the federated learning
research focuses on how to balance data privacy protection, model performance and
learning efficiency, which is the core issue of trustworthy federated learning [66]. Trusted
federated learning is an enhanced federated learning method.

(1) Optimize the federated learning model structure. To prevent data poisoning attacks,
some researchers have taken inspiration from the security measures of centralized
learning. They propose modifying the structure of the federated learning model to
increase the model’s robustness and decrease the damage caused by contaminated
data. In [67], a method of removing the aggregation server is proposed, and the
corresponding tasks are handed over to the participating nodes; the blockchain re-
places the removed aggregation server as a component of the model and information
source. In a decentralized federated learning system, participants communicate with
each other without the coordination of an aggregation server. Lu et al. [68] proposed
a decentralized federated learning (DFL) method to defend against gradient rever-
sal attacks, and demonstrated its security capabilities in a depth gradient leakage
(DLG) environment, as shown in Figure 9. Li et al. [69] performs a cluster analysis
on model parameters to distinguish good and bad models, and then detect potential
malicious participants. Such a defense idea can be applied to detect malicious ag-
gregation servers, and determine through a comparative analysis whether the global
model update issued by the aggregation server after each iteration is under attack.
Chang et al. [70] proposed a new federated learning framework called Cronus. This
framework replaces model parameters with data labels, solving security risks caused
by sharing parameters and enabling knowledge transfer.

(2) Improve the anomaly detection capabilities of participants. For data poisoning attacks,
there are differences between poisonous samples and normal samples. The most
intuitive situational awareness defense strategy is to detect and reject poisonous input
samples. Liu et al. [71] used an anomaly detection algorithm to detect toxic samples
and rejected their identification. Behavior-based defense ideas were proposed in
the literature [15,62,72,73]. This idea identifies potential malicious participants by
analyzing the behavioral characteristics of the models uploaded by participants, such
as the similarity between local updates and global updates and the error rate after
the aggregation of partial models. Udeshi et al. [74] proposed to build a trigger
interceptor using the dominant colors in the input image and use it to detect and block
the corresponding backdoor trigger. Kieu et al. [75] proposed a method for detecting
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anomalies in time series datasets based on recursive autoencoders that reduces the
impact of overfitting on outliers. To further achieve robust and efficient anomaly
detection in time series under unsupervised settings, a variational recurrent encoder
model [76] can separate anomalies from normal data without relying on anomaly
labels. Table 2 shows the federated learning data poisoning defense effect.

Figure 9. The case study of an image restoration attack on the fashion-MNIST dataset. The picture
above shows the image restoration result of DLG on CFL and DFL. Here, the attacker restores four
images of the target t-shirt, bag, sneaker, and sandal. In each subfigure, the first column represents the
original images, followed by the images restored by the DLG model as the number of DLG training
rounds increases. From figure (a), it can be found that the CFL method is vulnerable to an DLG attack,
where the training data are recovered clearly within 30 rounds. By comparison, the DFL method can
resist the image restoration attack by DLG much better. Figure (b) shows that the original image is
still not restored after 80 rounds with the DFL model. This case study demonstrates that our DFL
method achieves better privacy against DLG attacks [68].

Table 2. Analysis of federated learning data poisoning defense effect [26].

Literature Attack
Type

Defensive
Thinking Defense Mode Defensive Indicators Defense Result

[62] Untargeted
poisoning

Behavior
based

Aggregating models using robust
distributed gradient descent algorithms Model error rate

Base: 10±
Attack: 60±
After: 10±

[15] Targeted
poisoning

Behavior
based

Aggregating models using robust
distributed gradient descent algorithms Model accuracy

Base: 94.3±
Attack: 77.3±
After: 90.7±

[69] Targeted
poisoning

Based on
clustering

Use clustering algorithms to identify
malicious models Model accuracy

Base: 78±
Attack: 76±; 74.5±
After: 78±; 77.5±

[72] Targeted
poisoning

Behavior
based

Determine the malicious model based on the
cosine similarity between the local model
and global model

Model error rate

Base: 2.80 ± 0.12
Attack: unknown
After: 2.99 ± 0.12±,
2.96 ± 0.15; 3.04 ± 0.14

[73] Targeted
poisoning

Behavior
based

Determine the malicious model based on the
cosine similarity between the local model
and global model and combined with the
reputation mechanism

Model accuracy
Base: unknown
Attack: unknown
After: 83.11; 81.23
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4.2. Strengthen Data Traffic Monitoring

When abnormal traffic and data leakage are detected in federated learning scenarios,
situational warnings and closed-loop disposals can be triggered promptly for real-time
monitoring and analysis of data traffic. The federated learning is affected by heterogeneous
equipment among participants and limited network bandwidth, causing computing and
communication efficiency to become the biggest challenges hindering its implementation.
The main factor affecting the efficiency of federated learning algorithms is the communica-
tion cost of passing parameters between the client and central service. The current research
mainly reduces the single communication cost and total communication times through
model compression, reducing the model update frequency and client selection method [77],
and thereby reducing the communication complexity of the algorithm.

(1) Based on model compression methods, model compression [78] refers to the method of
streamlining the model, which is carried out on the premise of ensuring the accuracy
of the model. After model compression, the amount of network parameters and
calculations are usually reduced. Model compression can decrease communication
overhead and optimize federated learning at the cost of model performance [77].
Xu et al. [79] proposed a federated ternary quantization algorithm, which optimizes
the learning model in the client through self-learning. This algorithm aims to solve the
problem of updating a large number of redundant parameters in the federated learning
process. The authors proved that the convergence of this algorithm is improved.
Shah et al. [80] consider the compression techniques of the server model to address
the downstream communication and compression techniques of the client model to
solve upstream communication, both of which play a crucial role in the development
and maintenance of sparsity across communication cycles and have proven to be
effective. On the basis of model compression, Caldas S et al. [81] proposed a federated
random deactivation (dropout) method to select a subset of the global model to update
parameters. Compared to existing work, communication between server and client is
reduced by 14× and client-to-server communication is reduced by 28× for EMNIST.
Figure 10 shows that for CIFAR-10, server-to-client communication is saved 10 times
and client-to-server communication is saved 21 times.

(2) Methods for reducing model update frequency primarily enhance performance by
increasing participant calculations and improving parallel computing capabilities.
The FedAvg algorithm proposed by Mcmahan et al. [23] combines a local stochas-
tic gradient descent with a server that performs model averaging. The client first
iterates local updates multiple times and then sends the local iteration results to the
server. This algorithm satisfies the independent and simultaneous data distribution.
Good training results can be achieved under distribution assumptions. However,
the FedAvg algorithm only has an obvious optimization effect when the data are
independent and identically distributed, and its performance is poor when the data
are not independently and identically distributed. The FedProx algorithm proposed
by Li et al. [82] can dynamically update the number of local calculations required by
different clients in each round. It does not require the participants to unify the number
of calculations in each update. Therefore, this algorithm is more suitable for non-IID
joints. Regarding modeling scenarios, Zhou et al. [83] started from the perspective of
the algorithm framework, parallelized communication and training, and proposed
the Overlap–FedAvg algorithm based on the set hierarchical computing strategy, data
compensation mechanism and Nesterov Accelerated Gradient algorithm.
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Figure 10. Effect of using both compression and Federated Dropout on CIFAR-10 and EMNIST [81].

This algorithm can be orthogonal to many other compression methods; in order
to maximize the use of the cluster, the experimental results are shown in Table 3. This
overlapping FedAvg framework is parallel and can greatly speed up the federated learning
process while maintaining almost the same final accuracy as FedAvg. It is particularly useful
for large models and can handle scenarios where the client’s network connection is slow
or unstable. Additionally, it is robust against imbalanced and non-IID data distributions
and can reduce the number of communication rounds needed to train deep networks on
dispersed data.

Table 3. Comparison of average wall-clock time of Overlap–FedAvg and FedAvg for one iteration [84].

Model Dataset Parameters FedAvg Overlap–FedAvg

MLP Mnist 199,210 31.2 28.85 (↓7.53%)
MnistNet Fmnist 1,199,882 32.96 28.31 (↓14.11%)
MnistNet Emnist 1,199,882 47.19 42.15 (↓10.68%)
CNNCifar Cifar10 878,538 48.07 45.33 (↓5.70%)

VGG Cifar10 2,440,394 64.4 49.33 (↓23.40%)
ResNet Cifar10 11,169,162 156.88 115.31 (↓26.50%)
ResNet Cifar100 11,169,162 156.02 115.3 (↓26.10%)

Transformer Wikitext-2 13,828,478 133.19 87.9 (↓34.0%)

(3) When dealing with a large number of clients, the federated learning algorithm’s com-
munication with each client can result in low algorithm efficiency based on client
selection methods [77]. The existing research addresses this problem by selecting
a certain number of clients among many clients and training them as representa-
tives to reduce the communication overhead and optimize the algorithm efficiency.
Huang et al. [85] dynamically select clients in each round based on multi-armed ban-
dits; Lai et al. [86] further implemented a federated learning client selection algorithm
based on the exploration–exploitation strategy.

4.3. Explore Collaborative Support to Ensure Computing Power

To mitigate the issue of compromised Federated Learning data poisoning detection
capabilities due to insufficient computational power, optimization techniques such as
Model Parallelism and Zero Redundancy Optimizers (ZeRO) [87] can be employed. These
distribute extensive model parameters across multiple GPUs. To alleviate the GPU burden,
techniques like tensor offloading and optimizer offloading [88] make use of cost-effective
CPU and memory resources. Under the premise of protecting the user privacy, these can
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reduce the computational/communication burden on resource-constrained end devices.
Integrating data parallelism and model parallelism in Edge Computing, Split Federated
Learning (SFL) is becoming a practical and popular method for distributed data model
training. To address the heterogeneity and node dynamism of federated learning systems,
an efficient SFL method (AdaSFL) was proposed in reference [89]. It integrates control over
the local update frequency and data batch size to enhance the model training efficiency.
Compared to baseline methods, AdaSFL can reduce the completion time by about 43% and
decrease the network traffic consumption by approximately 31% while achieving a similar
test accuracy, as shown is Figure 11.

Figure 11. Network traffic consumption of AdaSFL and the baselines when achieving different target
accuracies on the three datasets in experiments [89].

4.4. Improve the Robustness of Situational Awareness

The robustness of data poisoning attack situational awareness is based on a federated
learning-based framework. At present, there are many related research results in the aca-
demic community, mainly focusing on two aspects: personalized federation optimization
and the optimization of defense against data poisoning attacks.

(1) Regarding personalized federation optimization, reference [84,90] proposed an effec-
tive method to alleviate the heterogeneity of data and models through a personaliza-
tion at the device, data and model levels, and provide high-quality personalized mod-
els for each device, namely personalized federated learning. This method is widely
used in personalized smart medical care [91], smart home services [92], location-aware
recommendation services [93] and other scenarios, so personalized federated learning
has attracted much attention.

In terms of device heterogeneity, Xie et al. [94] proposed a new asynchronous federated
optimization algorithm (FedAsync), and proved the convergence of FedAsync through
a theoretical analysis and experimental verification. For strongly convex, non-strongly
convex problems, and restricted non-convex problems, this method can converge linearly to
the global optimal solution. Unlike FedAvg, delayed feedback updates are not deleted and
the central server can receive updates from client devices at any time. When the delay is
small, FedAsync converges much faster than FedAvg. When the delay is severe, FedAsync
still has a similar performance to FedAvg.

In terms of the model heterogeneity, Kulkarnit et al. [95] divide different personal-
ized federated learning methods into Adding User Context [96], Transfer Learning [97],
Multi-task Learning [98], Knowledge Distillation [99], Meta-Learning [100], Base + Person-
alization Layers [101] and Mixed global and local models [102]. Chen et al. [103] proposed
a framework called PFKD, which solves the problem of model heterogeneity through
knowledge distillation technology and solves the problem of data heterogeneity through
personalized algorithms to achieve more personalized federated learning. Dinh et al. [104]
proposed a personalized federated learning algorithm called pFedMe. This algorithm
introduces Moreau Envelopes as a client regularization loss function, which separates the
personalized model optimization from global model learning. This allows pFedMe to up-
date the global model in a similar order to FedAvg while also optimizing the personalized
model in parallel based on the local data distribution of each client. Through synthetic data
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set experiments, as shown in Figure 12, the pFedMe personalized model pFedMe-PM has
an accuracy rate higher than its global models pFedMe-GM, Per-FedAvg and FedAvg by
6.1%, 3.8% and 5.2% respectively.

Figure 12. Performance comparison of pFedMe, FedAvg and Per-FedAvg in µ-strongly convex and
nonconvex settings using Synthetic [104].

In terms of data heterogeneity, Shen et al. [105] proposed a new federated mutual
learning framework, allowing each client to train a personalized model that takes into ac-
count the data heterogeneity. When solving the problem of model heterogeneity, a memetic
model is introduced as an intermediary between the personalized model and the global
model, and the knowledge distillation technology of deep mutual learning is used to
transfer knowledge between the two heterogeneous models.

In terms of the comprehensive optimization, Wu et al. [58] proposed a collaborative
cloud edge framework, PerFit, for personalized federated learning. Intelligent IoT applica-
tions benefit from a personalized federated learning framework that resolves equipment
issues. By solving data and model heterogeneity issues, PerFit can be ideal for complex IoT
environments while ensuring user privacy by default for large-scale real-world deployments.

(2) Regarding the optimization of defense against poisoning attacks, the distributed
training structure of federated learning is vulnerable to poisoning attacks. Existing
methods mainly design security aggregation algorithms for the central server to
defend against poisoning attacks, but they require the central server to be trustwor-
thy and the number of poisoned participants to be lower than normal participants.
Liu et al. [60] proposed a poisoning attack defense method based on federated learn-
ing participants. The main idea is to regard participants as independent executors
of defense strategies under the framework of the FedAvg algorithm. During local
training, the participant uses a difference calculation function (such as mean square
error) to determine the difference loss weight between their local model and the global
model parameters. This difference loss weight and function is then integrated into the
training loss function. This allows for adaptive personalized training that uses the
difference between the global model and the participant’s local model.The federated
learning training accuracy of this algorithm is better than poisoning attack defense
methods such as Kurm, multi-Kurm, and DnC, as shown in Figure 13. When the
proportion of poisoned participants exceeds half, normal participants can still defend
against poisoning attacks.

In response to serious security challenges such as single points of failure and the lack of
privacy that centralized federated learning frameworks still face, Wang et al. [106] proposed
a personalized federation algorithm based on permissioned blockchain. By conducting
experiments on the MNIST data set, it is proven that high-precision protection against
poisoning attacks can be achieved and applied to edge computing scenarios. Bitoye [107]
et al. suggested that adding differential privacy and self-normalization layers to the local
model of each client is sufficient for federated learning without requiring any changes to
the communication protocol or optimization algorithm. Specifically, the differential privacy
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noise is first used to increase the randomness and uncertainty of the model and reduce the
impact of adversarial samples [108]; then, self-normalization technology is used to maintain
the stability and convergence of the model and improve the generalization ability of the
model. Finally, a simple and scalable defense solution is implemented, which effectively
improves the robustness of the model.

Figure 13. Liu et al. [60] examines the accuracy of some participants on the MNIST dataset, when
there are varying proportions of poisoned participants. It was found that when the proportion of
poisoned participants is 40%, the Krum, Multi-Krum, and DnC algorithms are comparable to the
algorithm proposed in this article. The accuracy of each participant model is more than 60%, resulting
in better results.

5. Future Research Directions

Through the above review, it is found that the implementation of industries such
as autonomous driving, smart medical care and location recommendation services has
raised new challenges for federated learning research. There are several factors that could
influence the prediction of federated learning data poisoning attacks. Additionally, these
factors may be correlated with one another. More research is needed to strike a balance
between federated learning and accurately predicting data poisoning attacks. To be more
specific, we can begin by focusing on the following areas.

(1) We can enhance the prediction capability of data poisoning attacks by utilizing gen-
erative artificial intelligence (Generative AI). Generative AI can generate synthetic
training data, strengthen attack detection models, simulate data distribution and
heterogeneous data, and evolve attack strategies. These capabilities have a potential
application value and can help improve the ability of federated learning to predict
data poisoning attacks. For example, using generative AI models such as GANs can
generate large amounts of synthetic training data, including both normal data and
malicious poisoning data. This helps train more robust federated learning models to
better identify and defend against real-world poisoning attacks. Generative AI can
also generate samples under different data distributions to simulate attack scenarios
in heterogeneous environments. This helps federated learning models better adapt to
data diversity and remain robust in the face of unknown attacks.

(2) We can utilize large language models to enhance our capabilities in predicting data
poisoning attacks. Large language models have demonstrated excellent performances
in the field of natural language processing (such as Generative Pre-trained Trans-
former). In recent years, this type of model has also been used in research fields such
as federated learning data poisoning attack pattern recognition, federated learning
participant trust assessment and secure communication protocol design; it aims to
improve its capabilities in data poisoning attack prediction and defense. For example,
large language models can analyze and understand communication and update pat-
terns in federated learning networks, training the model to identify the differences
between normal and abnormal updates. Utilizing the powerful word processing
capabilities of large language models, potential attack patterns can be discovered from
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model update logs submitted by participants, thereby identifying and preventing
data poisoning attacks in advance.

(3) Improve the prediction ability of data poisoning attacks through a graph neural
network. Graph neural networks have obvious advantages in processing complex
network structure data and have been widely used in many fields in recent years.
GNN has demonstrated potential in enhancing federated learning data poisoning
attack prediction capabilities. This can be achieved by identifying abnormal commu-
nication patterns, modeling participant networks, analyzing global/local structures,
and more. Currently, the project team is conducting research on federated learning
data poisoning attacks based on graph neural networks. Taking the graph neural
network analysis federated learning architecture as an example, GNN can not only
capture the local characteristics of each node, but also understands the global network
structure by aggregating the neighbor information. This capability allows GNN to
assess the security of the network as a whole, as well as reveal signs of data poisoning
attacks in detail.

6. Conclusioins

This article elaborates on the concepts of federated learning technology, attack types,
data poisoning methods, etc. Four major problems in federated learning were identified:
fragile system architecture, low communication efficiency, large consumption of computing
resources, and poor situation prediction robustness. Response strategies for each type of
problem were introduced.

In terms of building the trusted federated learning system, a comprehensive data
poisoning attack anomaly detection capability is established by deploying strategies or
optimization algorithms on several critical elements (e.g., aggregation servers, partici-
pants, model updates and model parameters). For the optimization of communication
efficiency, many technologies are developed, i.e., model compression, reducing model
update frequency and client selection, etc., or finding a balance between the three. The
use of optimization techniques such as computing power, model parallelism, and other
technologies is necessary to provide the computing power foundation required for each
node to deploy data poisoning attack predictions. For improving robustness, personalized
federated learning is used to perform personalized processing, in which strategies from the
device, data and model levels are attempted to alleviate heterogeneity problems. In addi-
tion, efforts are made to optimize algorithm accuracy and lightweightness. This method
will be simple, yet robust, and widely applicable in the real world.

Currently, the author’s team is working on efficient, verifiable and privacy-preserving
federated learning (Re_useVFL), which will support the verification of the integrity of
parameters, the correctness of cloud server aggregation results, and the consistency of
cloud server distribution results, which will boost the performance of the data poisoning
attack prediction.

Finally, this paper explains the main research directions for the data poisoning attack
prediction in federated learning, serving as a reference for the researching community.
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