
Citation: Sang, A.W.Y.; Yang, Z.; Yi, L.;

Moo, C.G.; Mohan, R.E.; Le, A.V.

Inter-Reconfigurable Robot Path

Planner for Double-Pass Complete

Coverage Problem. Mathematics 2024,

12, 902. https://doi.org/10.3390/

math12060902

Academic Editor: Daniel-Ioan Curiac

Received: 17 February 2024

Revised: 14 March 2024

Accepted: 15 March 2024

Published: 19 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Inter-Reconfigurable Robot Path Planner for Double-Pass
Complete Coverage Problem
Ash Wan Yaw Sang 1 , Zhenyuan Yang 1 , Lim Yi 1 , Chee Gen Moo 1 , Rajesh Elara Mohan 1 , Anh Vu Le 2,*

1 ROAR Lab, Engineering Product Development, Singapore University of Technology and Design,
Singapore 487372, Singapore; ash_wan@mymail.sutd.edu.sg (A.W.Y.S.);
zhenyuan_yang@mymail.sutd.edu.sg (Z.Y.); yi_lim@mymail.sutd.edu.sg (L.Y.);
cheegen_moo@sutd.edu.sg (C.G.M.); rajeshelara@sutd.edu.sg (R.E.M.)

2 Communication and Signal Processing Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

* Correspondence: leanhvu@tdtu.edu.vn

Abstract: Recent advancements in autonomous mobile robots have led to significant progress in
area coverage tasks. However, challenges persist in optimizing the efficiency and computational
complexity of complete coverage path planner (CCPP) algorithms for multi-robot systems, particu-
larly in scenarios requiring revisiting or a double pass in specific locations, such as cleaning robots
addressing spilled consumables. This paper presents an innovative approach to tackling the double-
pass complete coverage problem using an autonomous inter-reconfigurable robot path planner. Our
solution leverages a modified Glasius bio-inspired neural network (GBNN) to facilitate double-pass
coverage through inter-reconfiguration between two robots. We compare our proposed algorithm
with traditional multi-robot path planning in a centralized system, demonstrating a reduction in
algorithm iterations and computation time. Our experimental results underscore the efficacy of the
proposed solution in enhancing the efficiency of area coverage tasks. Furthermore, we discuss the
implementation details and limitations of our study, providing insights for future research directions
in autonomous robotics.

Keywords: inter-reconfigurable robot; complete coverage path planner; Glasius bio-inspired neural
network; double-pass coverage; multi-robot path planning

MSC: 68T40; 68T07; 65K10

1. Introduction

Robot path planners enable robots to negotiate spaces and adapt to environmental
changes based on their objectives. When multiple robots work in the same environment,
decision making is needed for robots to work together. Some examples of path planners are
seen in individual robots [1,2], robot teams [3,4], reconfigurable robots [5,6], and swarms [7,8].

One class of robots, reconfigurable robots, is able to perform reconfiguration to tackle
challenges that autonomous mobile robots are unable to. Reconfiguration can be classified
into intra-, inter-, and nested reconfiguration [9]. Intra-reconfigurable robots are able to
change their morphologies to tackle challenges such as accessing tight spaces in complete
coverage path planning (CCPP). However, these intra-reconfigurable robots are constrained
to their joint limits [10] and configuration states [11]. Decision making has to be embedded
into the intra-reconfigurable robot path planners [12,13] to account for the robot’s joint
limits and configuration states. Inter-reconfigurable robots are able to extend their physical
limits by combining with another inter-reconfigurable robot. Combining multiple units
of an inter-reconfigurable robot [5] extends the robot’s physical capabilities, such as an
increased payload. However, little or no work has been carried out for path planning for
inter-reconfigurable robots.
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Path planners were developed to tackle several problems, such as the traveling sales-
man problem. Early developers of inter-reconfigurable robots have proposed several
autonomous functions using the optimized ant colony algorithm [14], reinforcement lean-
ing [15], distributed hedonic coalition formation [16] and many other sampling-based
methods [17–20]. These works have similar computation complexities compared to robot
swarms [21] and multi-robot systems [22]. Reconfigurable robots with centralized planners
have suffered from inter-reconfiguration.

For area coverage in large spaces, multiple autonomous mobile robots are used to
perform area coverage successfully. As the environment gets extremely large, the compu-
tational requirements to generate CCPP for an increasing number of autonomous mobile
robots performing in polynomial time change [23]. Despite the increasing number of au-
tonomous mobile robots, the computation time can be reduced by inter-reconfiguration. In
addition, area coverage efficiency is not compromised as the combined robots are able to
cover more space, as seen in Figure 1a,b.

Figure 1. (a) A dual-robot system with its zig-zag algorithm paths. (b) The path can converge
into a single path line. (c) How a single robot covers a double-pass area. (d) How a combined
inter-reconfigurable robot covers a double-pass area.

For the generalized CCPP problem, a bio-inspired neural network (BNN) algorithm
was proposed to handle the CCPP problem of multiple robots [24]. This algorithm allows
multiple robots to avoid obstacles, escape deadlocks, and achieve complete coverage.
However, for the BNN, the work efficiency is quite low, as the amount of calculation
is extremely large. The Glasius bio-inspired neural network (GBNN) algorithm is an
improved BNN algorithm [25]. It is a rule-based neural network that does not require
pretraining or training for its function.

In the context of a real-world problem, a rising key point in CCPP [26–28] requires
double-pass complete coverage (DPCC). For example, in a restaurant, most parts of a
typical dining floor only require standard cleaning, while some areas might require more
attention [29]. In another example, during an inspection task, faulty facility features may
be misclassified [30,31], and repeated coverage behaviors can reduce the chance of false
positives. To tackle the key points mentioned above, CCPP requires a double pass in the
areas that require additional attention after the first coverage. As seen in Figure 1c,d, a
single robot takes three steps to double pass an area, while an inter-reconfigurable robot
only takes two steps. Using an inter-reconfigurable robot is a more efficient way to tackle
the DPCC problem, but this is not addressed in the current state of the art.

This paper proposes a GBNN-based inter-reconfigurable robot path planner for DPCC
between two robots. The proposed path planner enables decision making when two
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inter-reconfigurable robots combine or split during the DPCC task. The summarized
contributions are as follows:

• A proposed path planner for dual inter-reconfigurable robots tackling the DPCC
problem using a modified GBNN algorithm;

• The proposed algorithm reduces the computation time compared with state-of-the-art
CCPP;

• Demonstration of the proposed algorithm with two inter-reconfigurable robots.

The structure of this paper is as follows. Section 2 describes the proposed path
planner for DPCC for inter-reconfigurable robots. Sections 3 and 4 describe the simulations
and implementation performed to evaluate the performance of the proposed algorithm
compared with a state-of-the-art multi-robot CCPP algorithm. Section 5 concludes with the
contributions and describes future works.

2. Double-Pass Coverage for Inter-Reconfigurable Robots

In the GBNN algorithm, the next waypoint in CCPP trajectory is determined by the
highest neural activity, and each robot assumes one grid in the bio-inspired neural (BNN)
network. However, in the proposed algorithm, the robot in the combined state assumes
that there are two grids in the neural network, resulting in modifications to the calculation
of the next waypoint position, which is based on two possible positions. The entirety
of Section 2 serves as a detailed introduction to the modified algorithm, supplemented
with explanations of the rationale behind the changes and their implications for achieving
double-pass coverage with inter-reconfigurable robots. An overview of the proposed
algorithm is presented in a flowchart, shown in Figure 2. The proposed solution includes
an additional level of neural activity to represent areas with double-pass requirements,
described in Section 2.1. The proposed path planner decides the inter-reconfiguration state
of the robot based on the condition, as described in Section 2.2, and generates neighbors
and the next waypoint, as described in Sections 2.3 and 2.4, respectively.

Figure 2. An overview of the algorithm flowchart. The flowchart presents the main flow of the
algorithm, key decision-making junctions, and essential functions for the proposed solution.

2.1. Modified Neural Activity Graph

for the above-mentioned changes, Figure 3 illustrates the difference between the typical
representation of a GBNN [25] and the proposed modified GBNN. For the modified GBNN,
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the neural activity is −1, 1, and 2 when the vertex is marked as obstructed, uncovered, or
double pass, respectively.

Figure 3. (a) GBNN [25]. (b) Modified neural activity graph.

Each vertex in the graph represents a neuron in the GBNN [25]. The change in neuron
activity with respect to time in each vertex is described as follows:

ni(t + 1) =


f (

m
∑

j=1
wijn+

j + ci), ni ̸= 2

2
(1)

where n+
j is the jth neighboring neuron with a non-negative neural activity value, as

seen in Figure 4, such that n+
j = max(n+

j , 0). When the neural activity equals two, the
neural activity maintains consistency at two and continues to represent the double pass.
Meanwhile, wij represents the coefficient relationship between the ith and its neighboring
neurons as follows:

wij =

{
exp(−q(i− j)2) , 0 < i− j ≤ R
0 , i− j > R

. (2)

The variable R represents the receptive field of all neurons on the grid, as seen in
Figure 4. The variable q is a positive constant. The value of q is not a fixed value and can
be tuned based on the experimental trials. Then, we set q to be a positive constant. It is
noted that the value of q is 2.0 in the simulation. The equation presents how neighboring
neural activities affect a node’s neural activity level as the first term of (1). On the other
hand, (3) presents the value of the second term ci.

ci =


+E , i = Uncovered
−E , i = Obstacle

0 , i = Covered

(3)

where the variable E is recommended to be a large positive constant. The value of E is also
not a fixed value and can be tuned. In the simulation, we set the value of E to be 100 based
on the experimental trials. In (1), the function will create a local propagation of neural
activities’ influence. On a global scale, the local propagation will create a gradient of neural
activity across the grid:
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f (x) =


−1 , x < 0
ax , 0 ≤ x < 1 , where a > 0
1 , x > 1

(4)

where a is a small positive constant and (4) limits the neural activities of the non-double-
pass area in the range from −1 to +1. We set the value of a to 0.01 in the simulation based
on the experimental trials.

Figure 4. The ith neuron surrounded by the jth neuron in the receptive field R = 2.

In each algorithmic iteration, the algorithm updates the neural activities of all neurons.
The proposed algorithm uses the properties of the GBNN to generate paths for two inter-
reconfigurable robots. Before the generation of the robot paths, the inter-reconfiguration
state needs to be determined through the inter-reconfiguration conditions, which are
described next.

2.2. Inter-Reconfiguration Conditions

At the start of each iteration, the algorithm will first have to decide whether the
robots are independent in a multi-robot or fused state. A proposed example of the inter-
reconfiguration decision between two inter-reconfigurable robots, R1 and R2, is shown in
Algorithm 1. The input and output, R1 and R2, respectively, are described by a simple array
(Ri ∋ Pose, Con f ig), where Pose contains the pose information and Con f ig represents the
index of the paired robot in the fused state or is zero when in the multi-robot state.

Algorithm 1 Inter-reconfiguration decision making.
Input: (R1 ∋ Pose, Con f ig), (R2 ∋ Pose, Con f ig), Path
Output: R1, R2

1: Trace = set(Pathn−10, Pathn−9, ..., Pathn)
2: for i in range o f 2 do
3: C1 ← If R1 is 1 grid length f rom R2
4: C2 ← If current Phase is Phase 1
5: C3 ← If len(Trace) < 3
6: if (C1 AND C2 AND C3) == TRUE then
7: R1[Con f ig], R2[Con f ig] = 2, 1
8: end if
9: end for

10: return R1, R2

Algorithm 1 is a rule-based algorithm that combines robots mainly based on proximity,
the phase of the DPCC problem, and a deadlock check, as seen in C1, C2, and C3 in lines
3–5 of Algorithm 1, respectively. The proximity criterion C1 combines the robots only when
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close and does not require the robots to navigate to each other to combine, ensuring that
the computational utilization is minimal.

The operation phase, as seen in Figure 2, is visualized by the graph presented in
Figure 5, where two sets of color maps on each node represent the proposed algorithm’s
phase 1 and 2 for tackling the DPCC problem. Phase 1 is defined when a double-pass
coverage area is present and is otherwise set to transit to phase 2 based on other criteria.
The purpose of phase 1 is to enable inter-reconfiguration into the fused state during the
early stage of DPCC, where a fused inter-reconfigurable robot is assumed to have higher
coverage efficiency. In phase 2, the remnants of the DPCC uncovered nodes are usually
dispersed, and the inter-reconfigurable robot is split to divide and cover the area in the
multi-robot state.

Figure 5. (a) GBNN [25]. (b) Proposed GBNN. (c) Phase 2. In the proposed algorithm, neural activity
is −1, 1, or 2 when the vertex is marked as obstructed, uncovered, or double pass, respectively.

In the deadlock check, if there are only two unique waypoints in the past 10 iterations,
then it is considered a deadlock, as seen in lines 1 and 5 of Algorithm 1. After deciding
the inter-reconfiguration state, generation of the current position neighbors within the
receptive field is required to select the next waypoint.

2.3. Neighbor Generation for Inter-Reconfigurable Robots

In the multi-robot state, neighbor generation follows Figure 4, where up to eight
neighbors are generated. The fused state of the two inter-reconfigurable robots consists of
the R1 and R2 positions. The fused state neighbor generator will search for two non-obstacle
occupancies as a possible neighbor pair. To generate the list of neighbor pairs for the fused
state, the current position of R1, represented by the red triangle in Figure 6, will search
for the position of its neighbors pt1 in its receptive field where R = 2, similar to Figure 4.
The current position of R2, pt2, is transformed based on pt1, as seen in Figure 6, based on
the transformation rules described by Algorithm 2, where Tx and Ty represent the x and y
translation transforms, respectively.

The transform model in Algorithm 2 is a chain of conditions. If the selected neigh-
bor neuron of the current position of R1 is diagonal, then the condition from line 4,
“dtx × dty is not 0, is TRUE”. It computes the R2 position transform from R1 with the
logic given in lines 6–10 of Algorithm 2. Otherwise, it will move with a pure translation
action (Tx, Ty = dtx, dty). As seen in Figure 6, the fused state of R1 and R2 can generate
up to eight possible neighbor pairs as the possible next waypoint for R1 and R2. The next
waypoint is selected from the generated neighbor position.
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Figure 6. Eight possible neighbor pairs for an inter-reconfigurable robot in the fused state, containing
the possible positions for R1 and R2.

Algorithm 2 R2 Transform from R1.
Input: pt1, pt2, neighbors, grid
Output: trans f orm

1: dtx ← pt1x − pt2x
2: dty← pt1y − pt2y
3: Tx, Ty ← 0, 0
4: if dtx× dty not 0 then
5: Tx, Ty ← 0, 0
6: if dtx is 2 grids length away then
7: Tx ← int((dtx)/|dtx)× 2|
8: else if dty is 2 grids lengthaway then
9: Ty ← int((dty)/|dty)× 2|

10: end if
11: else if dtx + dty is not 0 then
12: Tx, Ty← dtx, dty
13: end if
14: return Tx, Ty

2.4. Next Waypoint Selection for Inter-Reconfigurable Robots

Upon generation of neighbors, the next waypoint selection is generated depending
on the inter-reconfigurable robot state. Based on the inter-reconfiguration state, the next
waypoint, wpi+1, for the inter-reconfigurable robot is as follows:

wpi+1 =

{
max(nk), multi-robot state
max(nk,1 + nk,2) , fused state

(5)

where k represents the elements in the neighbors, generated as represented by the yellow
arrows in Section 2.3. In the multi-robot state, the next position is k with the highest neural
activity seen in lines 8 and 11 of Algorithm 3. In the fused state, the next neighbor pair is
the k neighbor pair with the highest neural activity sum for R1 and R2, as seen in lines 4–6
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and 11 of Algorithm 3. Here, wp is an array, and in the multi-robot state, it outputs a single
position for the robot Ri and, in the fused state, two positions for both R1 and R2.

Algorithm 3 Waypoint selection.
Input: neighbors, grid
Output: wp

1: Initialise cost = [ ];
2: for k in neighbors do
3: x1, y1← int(j[0]x), int(k[0]y)
4: if Robots are Combined then
5: x2, y2← int(k[1]x), int(k[1]y)
6: cost.append(grid[x1, y1] + grid[x2, y2])
7: else
8: cost.append(grid[x1, y1])
9: end if

10: end for
11: wp← neighbors(MAX.GetIndex(N_cost))
12: return wp

The proposed algorithm continues iteration until the complete area coverage path is
output. Next, the simulation is described.

3. Simulation

The proposed algorithm was compared against the original GBNN [25] for two robots
to evaluate the computation time performance. This section briefly describes the simulation
set-up, results, and discussion.

3.1. Simulation Set-Up

The simulation was performed on a MacBook Pro M1 with 8 CPU cores. The integrated
development environment used to run the simulation was Spyder 4.1.5. As there was no
fair comparison between the proposed algorithm and the state-of-the-art solutions, a GBNN
would be used as a part of the comparative study. In the proposed algorithm and GBNN
[25], the initialized parameters were 100, 1.4, 2.0, 0.7, and 0.01 for E, r, q, and a, respectively.
In all simulations, the two inter-reconfigurable robots, R1 and R2, were initiated in the top
left, as seen in Figure 7.

Figure 7. Simulation test environments. The robots are shown in their respective initial positions for
all simulations: (a) scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.

Each generated simulation would be evaluated based on the computation iterations,
the percentage of iterations generated in the fused state in the overall path plan, and the
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time taken per computation iteration in the fused and split configurations (refer to Table 1).
Simulations 1 and 2 would be performed to evaluate the proposed algorithm, and they are
described next.

Table 1. Operating definitions of terms used in Section 3.

Construct Operating Definition

Path Length Total number of waypoints for one robot

Iteration Generation of a waypoint in the fused or multi-robot state

Iteration Win Rate Percentage of simulations conducted where computation time of the
proposed algorithm is less than that of the GBNN

Fused Ratio Percentage of simulation, in terms of path length, where the robots are
combined

Fused Iteration Generation of a waypoint in the fused state

Split Iteration Generation of a waypoint in the multi-robot state for the proposed
algorithm or GBNN

3.2. Simulation Results
3.2.1. Simulation 1

Five double-pass areas were randomly generated in four environments, as seen in
Figure 7. In each environment, the simulation was iterated 1000 times, and its average win
rate of the proposed algorithm against the state-of-the-art GBNN, in terms of iterations and
time per fused iteration and split iteration, is shown in Table 2. Env a, b, c, and d in Table 2
represent the environments in Figure 7a–d, respectively. Refer to Table 1 for the operating
definition of win rate.

Table 2. Simulation 1 results.

Env Iteration Win Fused Ratio Time, Fused Time, Split
Rate (%) (%) Iteration (ms) Iteration (ms)

a 74.2 33.890 0.0785 0.0568

b 62.5 33.796 0.0912 0.0659

c 66.3 32.911 0.0826 0.0609

d 62.3 28.443 0.0928 0.0667

3.2.2. Simulation 2

We varied the percentage of the double-pass area in Figure 7a to analyze the relation-
ship between the number of iterations from the state-of-the-art GBNN and the proposed
algorithm. The fused ratio is shown and summarized in Table 3.

Table 3. Simulation 2 results.

Double Proposed Algorithm State of the Art Fused Ratio
Pass Number of Iterations Number of Iterations (%)

0% 140 198 35.7

10% 183 206 21.9

20% 193 160 28.5

30% 150 152 33.3

3.3. Simulation Discussion

Simulation 1’s results show that the proposed algorithm for inter-reconfigurable robots
required fewer iterations than the multi-robots in the GBNN [25] algorithm in a double-pass
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problem. The performance improved from 62.3% to 74.2% of the algorithm’s running time
in the 1000 simulations performed in all tested environments. The iterations are provided
to gauge time, as the time performances varied across different machines. Although the
fused iteration took a slightly longer duration to compute than the split iteration, the
outcome of the fused iteration was double that of the split iteration. Each fused iteration
produced one waypoint for each robot (i.e., R1 and R2), while one split iteration generated
one waypoint for one robot (i.e., Ri). From the results, the average time was approximately
0.0785–0.0928 ms for a fused iteration. On the other hand, it took 0.0568–0.0659 ms per
split iteration, which was equivalent to 0.1136–0.1318 ms for two waypoints for both R1
and R2. This shows that the proposed algorithm in the fused state was able to improve the
computation time to generate waypoints for R1 and R2 18.3–40.4% faster than the state-of-
the-art multi-robot GBNN. It is noted that in the proposed algorithm multi-robot state, the
algorithm was the same as the multi-robot GBNN and had a similar computation time.

In simulation 2, as seen in Table 3, there were no clear effects for how the number of
double passes affected the performance of the coverage algorithms. However, as seen in
simulation 1, the environment heavily affected the algorithm. This section has shown the
proposed algorithm’s ability to tackle the DPCC problem using two inter-reconfigurable robots
and demonstrated a reduction in computation time compared with the multi-robot GBNN.

In both simulations, an additional condition was set to allow the robots to transit to
phase 2 if 60% area coverage was achieved. This is an empirically obtained number that
works best against the multi-robot GBNN, but the optimization of the transition point
between phases will not be part of the scope of this study.

4. Implementation

The proposed algorithm is applicable to any type of task that requires double-pass
complete coverage (DPCC), such as floor cleaning or inspection activities. Implementation
of the proposed algorithm to tackle the DPCC problem was conducted with an inter-
reconfigurable robot: Wasp [5].

4.1. Inter-Reconfigurable Robot Wasp

Wasp [5] is an inter-reconfigurable robot that can combine with another Wasp unit to
form a bigger form factor and cover a larger area than one standalone unit. The latching
module is on the left and right side of the robot chassis, and both Wasp units need to face
the same direction for robot-robot docking, as seen in Figure 8. Figure 8a shows two Wasp
units that are not oriented in the same direction to combine. The precondition of combining
two Wasp units is seen in Figure 8b, where both units are in the same orientation to combine
into the fused state as seen in Figure 8c.

Figure 8. Docking process of two Wasp units into a fused state.

4.2. Implementation of the Proposed Algorithm with Wasp

Figure 9 highlights the implementation of the proposed algorithm on two Wasp unites,
which shows the experimental image and its corresponding inflated cost map. In the
workspace set-up, the robot 1 cross on the floor seen in Figure 9 is an artificially inflated
obstacle [32]. The two units of the inter-reconfigurable robot Wasp started in the top-left
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corner of the workspace in a different orientation, as seen in iteration 0, and were initialized
in the multi-robot state. The robots moved holonomically from iteration 0 to iteration 1. In
iteration 1, the proposed algorithm met the inter-reconfiguration conditions to combine,
where the robots had to perform automatic docking. Wasp performs automatic docking
as seen in steps 1.1, 1.2, and 1.3 in Figure 8a–c, respectively. Then, the robot moved to the
next waypoint upon completing physical docking as an inter-reconfigured fused robot, as
seen in iterations 4 and 9. A double-pass zone was cleared with a horizontal move and
then vertical sequentially. In iteration 10, the fused robot rotated based on the path plan.
Finally, the robot moved through the narrow passage in iteration 16. At iteration 16, it
achieved 60% complete coverage, and the phase moved from phase 1 to phase 2, triggering
the inter-reconfiguration conditions and entering phase 2. The robots then cleared the
remaining uncovered spaces independently. The proposed algorithm took 31 iterations,
while the GBNN took 34 iterations.

Figure 9. Simulation test environment. The robots are shown in their respective initial positions for
all simulations.

4.3. Current Limitations of Proposed Algorithm

The proposed path planner has yet to consider the orientation of the robots. As seen in
Section 4.1, not all inter-reconfigurable robots are able to perform docking in all directions.
The proposed algorithm also requires an inflated cost map in implementation. When
moving toward iteration 16 in the implementation, as seen in Figure 9, the robot partially
crossed the artificially inflated obstacle area, where the lethal cost [33] was assumed to
be low. More importantly, the path planner does not violate the expectations of global
path planning and only selects obstacle-free areas as part of the path plan. The limitations
mentioned in this section introduce considerations for implementation. Local planners and
automatic docking systems should be considered to enable the utilization of the proposed
algorithm. For example, proper tuning of inflation is required during implementation of
the proposed algorithm. In this section, the implementation of the algorithm with two
inter-reconfigurable Wasp robot was demonstrated.
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5. Conclusions and Future Work

This work introduces a novel modified Glasius bio-inspired neural network (GBNN)
algorithm tailored to dual inter-reconfigurable robots to address the DPCC problem. The
proposed algorithm stands out as the first to incorporate inter-reconfiguration conditions
into decision-making processes between two inter-reconfigurable robots, generating com-
plete coverage paths with inter-reconfiguration states. The simulations demonstrated
the superior performance of the proposed algorithm, outperforming the GBNN by up to
74.2% in a given environment. Moreover, the proposed algorithm achieved significant
computational efficiency improvements, reducing computation by up to 40.4% per iteration
compared with traditional multi-robot iterations. Beyond its immediate applications, such
as enhanced payload capacity, future work will focus on refining inter-reconfiguration
models for various applications and supporting systems, including automatic docking and
local planning for inter-reconfigurable robots. Additionally, there is potential to extend this
research to explore similar approaches for multiple robots beyond two.
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