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Abstract: Digital radio frequency memory (DRFM) has emerged as an advanced technique to achieve
a range of jamming signals, due to its capability to intercept waveforms within a short time. multiple-
input multiple-output (MIMO) radars can transmit agile orthogonal waveform sets for different
pulses to combat DRFM-based jamming, where any two groups of waveform sets are also orthogonal.
In this article, a group orthogonal waveform optimal design model is formulated in order to combat
DRFM-based jamming by flexibly designing waveforms for MIMO radars. Aiming at balancing the
intra- and intergroup orthogonal performances, the objective function is defined as the weighted sum
of the intra- and intergroup orthogonal performance metrics. To solve the formulated model, in this
article, a group orthogonal waveform design algorithm is proposed. Based on a primal-dual-type
method and proper relaxations, the proposed algorithm transforms the original problem into a
series of simple subproblems. Numerical results demonstrate that the obtained group orthogonal
waveforms have the ability to flexibly suppress DRFM-based deceptive jamming, which is not
achievable using p-majorization–minimization (p-MM) and primal-dual, two of the most advanced
orthogonal waveform design algorithms.

Keywords: waveform design; optimization; MIMO radar; group orthogonal; phase-coded; radar
countermeasures

MSC: 90C26

1. Introduction

Waveform diversity and multiantenna technologies are utilized in multiple-input
multiple-output (MIMO) radars to improve their angular resolution, antijamming ability,
and other target detection abilities [1–4]. By transmitting orthogonal waveform sets, an
MIMO radar can separate the received waveforms transmitted by different antennas.
Generally, an MIMO radar uses a matched filter bank to process the echoes. Thus, the
cross-correlation functions among the orthogonal waveforms should be as low as possible.
Meanwhile, in order to achieve a good pulse compression performance, the autocorrelation
functions’ side-lobes should also be as low as possible.

Designing multiple different phase-coding sequences with a low cross-correlation
is one of the most common ways to realize an orthogonal waveform set [5–7]. With
a large number of transmitted waveforms, a phase-coded waveform set is difficult to
intercept by traditional jammers [8]. Integrated side-lobe level (ISL) and peak side-
lobe level (PSL) are two commonly used metrics for orthogonal MIMO radar phase-
coded waveform sets [9–11]. Aiming to minimize the ISL, multicyclic-algorithm-new
(multi-CAN [12]), majorization–minimization correlation (MM-Corr [13]), ISL-New [14],
alternating-direction-method-of-multipliers (ADMM [15]), etc., algorithms have been pro-
posed, although they cannot minimize the PSL. PSL minimization is more complex and
harder than ISL minimization. Thus far, some researchers have proposed effective PSL
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optimization algorithms [16–20], with the method based on primal-dual achieving the
best performance [18]. Particularly, the p-MM algorithm can obtain almost the same PSL
metrics as primal-dual, with much lower ISL metrics [19]. All the abovementioned ISL
and PSL optimization algorithms lead to a single set of orthogonal waveforms. With a
well-designed orthogonal phase-coded waveform set, the MIMO radar achieves a high
waveform diversity gain and a low probability of intercept.

With the advent of digital radio frequency memory (DRFM) [21,22], more advanced
jamming technologies have been rapidly developed. DRFM-based jammers pose a great
threat to MIMO radar, and can perform read and copy functions and diverse parameter
modulations (like delay, Doppler, etc.) within a short time. Therefore, DRFM-based
jammers may seriously affect the operational capabilities of MIMO radars in the future.

The transmitting agile waveform is an effective way to combat modern DRFM-based
jamming [23,24]. Although DRFM-based jammers have a strong ability to intercept wave-
forms, they must delay at least one pulse repetition time (PRT) to complete jamming signal
generation. If the correlation between adjacent pulses is low, it is difficult for the DRFM-
based jammers to interfere with the waveforms. From the perspective of orthogonality,
MIMO radars should transmit an orthogonal waveform set within each pulse. In different
pulse intervals, the waveform sets should also be orthogonal to each other. Thus, even
though the jammers have intercepted the waveforms in the previous pulse, they cannot
interfere with the subsequent pulses. Therefore, in this article, the MIMO radar antijam-
ming agile waveform is modeled as multiple groups of orthogonal waveform sets. The
abovementioned PSL and ISL optimization algorithms can be used to design all groups
of waveforms directly. However, they cannot finely control the intra- and intergroup
orthogonal performance.

In order to balance the intra- and intergroup orthogonal performances, in this article,
an optimization model for designing group orthogonal waveforms is proposed, which is
able to maximize the waveform diversity gain when diverse DRFM-based jamming signals
are encountered. The proposed model can overcome the shortcomings of existing methods.
Considering that target detection is based on correlation peak detection, in the proposed
model, the objective function is formulated considering the following two aspects. The
first is to minimize the cross-correlation peak and autocorrelation side-lobe peaks within
each group of orthogonal waveforms, which can be evaluated by the traditional PSL metric.
The second is to minimize the cross-correlation peak among different groups of orthogonal
waveforms, which can be evaluated by the peak cross-correlation level (PCL) metric. The
objective function of the proposed model is the weighted sum of the PSL and PCL metrics.
These metrics evaluate the MIMO waveform diversity gain and jamming suppression
performance, respectively.

In order to solve the proposed optimization model, in this article, a group orthogonal
waveform optimal design algorithm is proposed. Minimizing the correlation function peak
in the proposed model is difficult. Based on some relaxations, ref. [18] divided the origin
PSL minimization problem into a series of convex subproblems. Inspired by the relaxation
approach in [18], in this article, the intra- and intergroup correlation functions are processed
separately and the proposed optimization model is transformed into a series of solvable
subproblems. Finally, the proposed algorithm generates solutions to each subproblem. The
numerical results show that the proposed algorithm can effectively design multiple groups
of orthogonal waveform sets. The cross-correlation functions between the waveform sets
are also low. The antijamming simulation results demonstrate that the designed group
orthogonal waveforms can balance the DRFM-based deceptive jamming suppression and
range compression performances of MIMO radar by adjusting the weighting factors.

2. Problem Formulation

The optimization variables in group orthogonal waveform design are G groups of
waveforms, with each group consisting of M waveforms. Considering phase-coded wave-
form design, group orthogonal waveforms with intra- and intergroup orthogonality can
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be realized by assigning different waveforms with different phase-coded sequences. Since
the pulse length, chip length, carrier frequency, and other radar system parameters have
little effect on the correlation function side-lobe level, in this article, the group orthogonal
waveforms {xi}GM

i=1 are modeled as

xi[n] = exp(jφi,n), i = 1, 2, . . . , GM, n = 1, 2, . . . , N (1)

where N is the sequence length. The phase value continuously satisfies φi,n ∈ [−π, π). The
correlation functions of {xi}GM

i=1 are defined as

rij[k] = ∑N
n=1 xi[n + k]xj[n],k = −N + 1, . . . , N − 1 (2)

where rij[k] is the auto- or cross-correlation function and (·) represents the complex con-
jugate. The set of the indexes of intra- and intergroup correlation functions is defined as
{i, j, k|i, j = 1, 2, . . . , GM, k = −N + 1, . . . , N − 1}.

To evaluate the group orthogonal waveforms’ correlation properties, we consider the
intra- and intergroup correlation functions separately. We use the traditional peak side-lobe
level (PSL) metric [9–11] to evaluate the waveforms within each group. The PSL metric for
the g-th group is defined as

PSLg ≜
1

N2 max
(i,j,k)∈Kg

∣∣rij[k]
∣∣2, g = 1, 2, . . . , G (3)

Kg = {i, j, k|i, j ∈ [M(g − 1) + 1, Mg], i ̸= j or k ̸= 0} (4)

where set Kg contains the correlation function indexes within the g-th group of waveforms,
except for the indexes of the autocorrelation peak values that are equal to N. Because
there are only cross-correlation functions between different groups of waveforms, the
following peak cross-correlation level (PCL) is defined to evaluate the intergroup cross-
correlation peak.

PCL ≜
1

N2 max
(i,j,k)∈G

∣∣rij[k]
∣∣2 (5)

G =
{

i, j, k
∣∣∣(i, j, k) /∈ ∪G

g=1Kg, i ̸= j
}

(6)

The set G in Equation (6) contains all the indexes of intergroup cross-correlation
functions.

The object of group orthogonal waveform design is to minimize the PSL1, PSL2,. . .,
PSLG and PCL metrics, which are functions of the optimization variables {xi}GM

i=1 . Thus,
the optimization model can be expressed as

min f({xi}GM
i=1 ) = (PSL1, PSL2, · · · , PSLG, PCL)

s.t. |xi[n]| = 1, i = 1, 2, . . . , GM, n = 1, 2, . . . , N
(7)

where f represents the objective function vector, which contains the convolution and max(·)
operations. In addition, the waveforms {xi}GM

i=1 have constant modulus constraints. The
optimization model (7) is a complex minimax problem with nonconvex constraints. In
order to simplify problem (7), we introduce the variables ε1, ε2,. . ., εG and γ to constrain the
PSL1, PSL2,. . ., PSLG and PCL metrics values, respectively. Meanwhile, in order to balance
the intra- and intergroup orthogonal performances, we introduce a weighting factor w,
thereby transforming the original problem into the following single-objective problem.
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min w ·
(

∑G
g=1 ε2

g/G
)
+ (1 − w) · γ2

s.t. εg ≥
∣∣rij[k]

∣∣2/N2, ∀(i, j, k) ∈ Kg, g = 1, 2, . . . , G
γ ≥

∣∣rij[k]
∣∣2/N2, ∀(i, j, k) ∈ G

rij(k) = ∑n xi[n + k]xj[n], ∀(i, j, k)
|xi[n]| = 1, ∀(i, n)

(8)

Note that the convolution operations and constant modulus constraints in problem (8)
are not conducive to solving this problem. Inspired by ref. [18], we introduced the auxiliary
variables {hi}GM

i=1 and ρij(k) to decompose the complex nonlinear convolutions. Then, the
correlation function constraints are replaced by the following linear equality constraints:{

ρij(k) = ∑n xi[n + k]hj[n], ∀(i, j, k)
hH

i xi = N, ∥hi∥2
2 ≤ N, ∀i

(9)

In Equation (9), if hi = xi holds for all i = 1, 2,. . ., GM, then ρij(k) is equal to the
correlation functions rij(k). This equivalent constraint condition in Equation (9) is correct
according to the proposition below.

Proposition 1. The constraints hH
i xi = N, ∥hi∥2

2 ≤ N are equivalent to the constraint hi =xi for
all i = 1, 2,. . ., GM.

Proof of Proposition 1. According to the Cauchy–Schwartz inequality,

hH
i xi = N =

∣∣∣hH
i xi

∣∣∣ ≤ ∥hi∥2∥xi∥2 =
√

N∥hi∥2 (10)

If ∥hi∥2 ≤
√

N holds, then inequality (10) implies ∥hi∥2 =
√

N. Using the equality
condition of the Cauchy–Schwartz inequality, we obtain

xi = κhi, κ ∈ C (11)

According to Equation (11) and hH
i xi = N, it is not difficult to find κ = 1. Thus, hi = xi

is obtained and the proof is complete. □
By introducing the variables {hi}GM

i=1 and ρij(k), the nonlinear constraints are relaxed
to linear convex constraints. However, the constant modulus constraints of {xi}GM

i=1 in
problem (8) are still coupled with its other constraints, which leads to difficulties in solving
for {xi}GM

i=1 . Therefore, we introduce the variables {yi}
GM
i=1 to simplify the subproblem

regarding {xi}GM
i=1 . The following conditions are added to ensure the obtained waveforms

have a constant modulus.

xi[n] = yi[n], |yi[n]| = 1, ∀(i, n) (12)

Then, the constant modulus constraints are transferred to the subproblem regarding
{yi}

GM
i=1 , which is easy to solve, even with constant modulus constraints. The subproblem

regarding {xi}GM
i=1 becomes an unconstrained convex problem.

After introducing series auxiliary variables into the optimization model (8), we formu-
late the following group orthogonal waveform optimal design model:
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min w ·
(

∑G
g=1 ε2

g/G
)
+ (1 − w) · γ2

s.t.
∣∣ρij(k)

∣∣ ≤ εg, ∀(i, j, k) ∈ Kg, g = 1, 2, . . . , G∣∣ρij(k)
∣∣ ≤ γ, ∀(i, j, k) ∈ G

ρij(k) = ∑n xi[n + k]hj[n], ∀(i, j, k)
hH

i xi = N, ∥hi∥2
2 ≤ N, ∀i

xi[n] = yi[n], |yi[n]| = 1, ∀(i, n)

(13)

The weighting factor w can balance the intra- and intergroup correlation peak values.
The optimization variables include {xi}GM

i=1 , {yi}
GM
i=1 , {hi}GM

i=1 , ρij(k), γ, and εg, g = 1, 2,. . ., G.
Although the dimensions of the optimization variables increase, the intractable nonlinear
and nonconvex constraints in the optimization model (8) are relaxed into a series of linear
and convex constraints.

3. Proposed Group Orthogonal Waveform Design Algorithm

Based on the characteristics of the objective function and the constraints in the opti-
mization model (13), we formulated an augmented Lagrange function [25] and transformed
problem (13) into the following constrained minimization problem:

min L
(
ε1, . . . , εG, γ,

{
ρij(k)

}
, {xi},{yi}, {hi}, {λi},

{
αijk

}
, {βin}

)
s.t.

∣∣ρij(k)
∣∣ ≤ εg, ∀(i, j, k) ∈ Kg, g = 1, 2, . . . , G∣∣ρij(k)
∣∣ ≤ γ, ∀(i, j, k) ∈ G

∥hi∥2
2 ≤ N, ∀i

|yi[n]| = 1, ∀(i, n)

(14)

The augmented Lagrange function L can be expressed as follows:

L = w ·
(

∑G
g=1 ε2

g/G
)
+ (1 − w) · γ2 + Re

[
∑i λi

(
hH

i xi − N
)]

+Re
[

∑(i,j,k)∈(∪G
g=1Kg)∪G αijk

(
ρij(k)− ∑n xi[n + k]hj[n]

)]
+Re

[
∑i,n βin(xi[n]− yi[n])

]
+ θ1

2

(
∑i

∣∣∣hH
i xi − N

∣∣∣2)
+ θ2

2

(
∑(i,j,k)∈(∪G

g=1Kg)∪G

∣∣∣ρij(k)− ∑n xi[n + k]hj[n]
∣∣∣2)

+ θ3
2

(
∑i,n|xi[n]− yi[n]|2

)
(15)

where Re[·] represents the real part of a complex number. θ1, θ2, and θ3 are penalty pa-
rameters. {λi}, {αijk}, and {βin} are Lagrangian multipliers, also dual variables. To solve
problem (14), we propose a group orthogonal waveform design algorithm based on a
primal-dual type method. The proposed algorithm decomposes problem (14) into a se-
ries of simple subproblems. By sequentially updating the optimization variables and
dual variables, the proposed algorithm minimizes the augmented Lagrange function L in
Equation (15) after several iterations. According to optimization model (13), the variables{

x(l)i

}GM

i=1
, {yi}

GM
i=1 , and

{
h(l)

i

}GM

i=1
converge to the same point. The convergence condi-

tion is ∑i ∥h(l)
i − x(l)i ∥

2

2/∑i ∥x(l)i ∥
2

2 < η. Algorithm 1 summarizes the proposed algorithm.
The subproblems of the proposed group orthogonal waveform design algorithm can be
expressed as follows:

P1 :


ε1, · · · , εG, γ, ρij(k)

}(l+1)
= arg min L

|ρij(k)|≤εg , ∀(i,j,k)∈Kg , g=1,2,...,G

|ρij(k)|≤γ, ∀(i,j,k)∈G

 ε1, · · · , εG, γ, ρij(k){
xi, yi, hi, λi, αijk, βin

}(l)

 (16)
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P2 :

{hi}(l+1) = argmin
∥hi∥2

2≤N,∀i

L

 {
ε1, · · · , εG, γ, ρij(k)

}(l+1),

{hi},
{

xi, yi, λi, αijk, βin

}(l)

 (17)

P3 :
{
{xi}(l+1) = argminL(. . . , {xi}, . . .) (18)

P4 :

{
{yi}

(l+1) = argmin
|yi [n]|=1,∀(i,n)

L(. . . , {yi}, . . .) (19)


λ
(l+1)
i = λ

(l)
i + cθ1

(
(h(l+1)

i )
H

x(l+1)
i − N

)
α
(l+1)
ijk = α

(l)
ijk + cθ2

(
ρ
(l+1)
ij (k)− ∑n x(l+1)

i [n + k]h
(l+1)
j [n]

)
β
(l+1)
in = β

(l)
in + cθ3

(
x(l+1)

i [n]− y(l+1)
i [n]

) (20)

Parameter c in Equation (20) is the step length. Superscript (l) represents the values
of the variables at the l-th iteration. Except for subproblem P1, subproblems P2, P3,
and P4 are actually the same as the primal-dual algorithm [18], and can be solved using
similar methods to primal-dual. In the remainder of this section, methods to solve these
subproblems are introduced.

Algorithm 1 Group Orthogonal Waveform Design Algorithm

Initialization

Randomly select
{

x(0)i

}GM

i=1
(constant modulus is not required).

Set constant modulus
{

y(0)i

}GM

i=1
using the phases of

{
x(0)i

}GM

i=1
.

Randomly select {λi}, {αijk}, {βin} and
{

h(0)
i

}GM

i=1
, set l = 0.

Repeat

Compute
{

ε1, · · · , εG, γ, ρij(k)
}(l+1)

by solving subproblem (16).

Compute {hi}(l+1) by solving subproblem (17).
Compute {xi}(l+1) by solving subproblem (18).
Compute {yi}

(l+1) by solving subproblem (19).

Compute λ
(l+1)
i , α

(l+1)
ijk , β

(l+1)
in using (20), l = l + 1.

Until ∑i ∥h(l)
i − x(l)i ∥

2

2/∑i ∥x(l)i ∥
2

2 < η.

3.1. Solving Subproblem P1

According to the augmented Lagrange function (15), subproblem (16) can be separated
into two independent parts as follows:

min
|ρij(k)|≤εg

wε2
g/G + ∑

(i,j,k)∈Kg

[
aijk

∣∣ρij(k)
∣∣2 + Re

(
bijkρij(k)

)]
g = 1, 2, . . . , G

(21)

min
|ρij(k)|≤γ

(1 − w)γ2 + ∑
(i,j,k)∈G

[
aijk

∣∣ρij(k)
∣∣2 + Re

(
bijkρij(k)

)]
(22)

where aijk = θ2/2, bijk = α
(l)
ijk − θ2 · ∑n x(l)i [n + k]h

(l)
j [n]. Considering problem (21), when

εg is fixed, the optimal solution of ρij(k) for every index (i,j,k) can be expressed as

ρ∗ijk(εg) =

 −bijk/
(

2aijk

)
,
∣∣∣bijk/

(
2aijk

)∣∣∣ ≤ εg

−
(

bijk/
∣∣∣bijk

∣∣∣)εg, others
(23)
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where ρ∗ijk(εg) is a function of εg. According to Equation (23), problem (21) is equivalent to

min
εg≥0

f (εg) ≜ wε2
g/G + ∑

(i,j,k)∈Kg

f ∗ijk(εg), g = 1, 2, . . . , G (24)

where
f ∗ijk(εg) = aijk

∣∣∣ρ∗ijk(εg)
∣∣∣2 + Re

(
bijkρ∗ijk(εg)

)
=

 −
∣∣∣bijk

∣∣∣2/
(

4aijk

)
,
∣∣∣bijk/

(
2aijk

)∣∣∣ ≤ εg

aijkε2
g −

∣∣∣bijk

∣∣∣εg, others

(25)

Because f (εg) ≤ f (−εg), the condition εg ≥ 0 can be ignored. The optimal ε∗g value
can be determined by solving the following equation:

∇ f (εg) = 2wεg + ∑
(i,j,k)∈Kg

min
{

2aijkεg −
∣∣∣bijk

∣∣∣, 0
}
= 0 (26)

Because aijk = θ2/2 > 0, ∇ f (εg) is a monotonically increasing function of εg. The

optimal ε
(l+1)
g = ε∗g value can be obtained efficiently via the bisection method. Similarly,

the optimal solution γ(l+1) = γ∗ of problem (22) can be obtained by solving the following
equation:

2(1 − w)γ + ∑
(i,j,k)∈G

min
{

2aijkγ −
∣∣∣bijk

∣∣∣, 0
}
= 0 (27)

3.2. Solving Subproblem P2

According to Equation (15), subproblem (17) is separable for each hi, i = 1, 2,..., GM.
The minimization problem can be expressed as follows:

min∥hi∥2
2<N f (hi) ≜ hH

i Aihi + Re
(

tH
i hi

)
(28)

where
Ai = (θ2/2) · ∑j,k x(l)j,(−k)x

(l)H
j,(−k) (29)

ti = λ
(l)
i x(l)i − θ1Nx(l)i − ∑j,k

(
α
(l)
jik + θ2ρ

(l+1)
ji (k)

)
x(l)j,(−k) (30)

where xj,k represents the aperiodic delayed copy of the discrete signal xj. For k ≥ 0, xj,k =

(xj[k + 1], xj[k + 2], · · · , xj[N], 01×k)
T; for k ≤ 0, xj,k = (01×|k|, xj[1], xj[2], · · · , xj[N − |k|])T.

The augmented Lagrange function of problem (28) can be expressed as follows:

Li(hi, λ) = hH
i Aihi + Re

(
tH
i hi

)
+ λ

(
∥hi∥2

2 − N
)

(31)

The Karush–Kuhn–Tucker (KKT) conditions for problem (28) are as follows:{
∥h∗

i ∥
2
2 ≤ N, 2Aih

∗
i + ti + 2λ∗h∗

i = 0
λ∗ ≥ 0, λ∗

(
∥h∗

i ∥
2
2 − N

)
= 0

(32)

Obviously, when λ∗ = 0, KKT condition (32) is equivalent to

∥h∗
i ∥

2
2 ≤ N, h∗

i = −A−1
i ti/2 (33)

If condition (33) is true, then h(l+1)
i = h∗

i ; otherwise, the optimal solution should
found under the condition of λ∗ > 0.
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When λ∗ > 0, condition (32) is equivalent to

∥h∗
i ∥

2
2 = N, h∗

i = −(Ai + 2λ∗I)−1ti/2 (34)

In order to solve Equation (34), the value of λ* should be determined. According to
Equation (31), for any fixed value of λ > 0, the optimal v(λ) with minimal Li(v(λ), λ) is
below.

v(λ) = −(Ai + 2λI)−1ti/2 (35)

If 0 < λ′ < λ, then {
Li(v(λ), λ) ≤ Li(v(λ′), λ)
Li(v(λ′), λ′) ≤ Li(v(λ), λ′)

(36)

According to function (31), and after summing the two inequalities in (36), then(
λ′ − λ

)
∥v(λ′)∥2

2 ≤
(
λ′ − λ

)
∥v(λ)∥2

2 (37)

Therefore, ∥v(λ)∥2
2 is a monotone decreasing function of λ. Solving the KKT conditions

when λ∗ > 0 is equivalent to finding the zero of function ∥v(λ)∥2
2 − N, which can be

achieved via the bisection method.

3.3. Solving Subproblem P3

According to Equation (15), subproblem (18) can be separated into the following
unconstrained convex problem for each xi, i = 1, 2,. . ., GM:

minxi f (hi) ≜ xH
i Cixi + Re

(
dH

i xi

)
(38)

where
Ci = (θ2/2) · ∑j,k h(l+1)

j,k h(l+1)H
j,k + (θ3/2)I (39)

di = λ
(l)
i h(l+1)

i +β
(l)
i − θ1Nh(l+1)

i − ∑j,k

(
α
(l)
ijk + θ2ρ

(l+1)
ij (k)

)
h(l+1)

j,k − θ3y(l)
i (40)

where hj,k represents the periodic delayed copy of hj, similar to xj,k in Equations (29)
and (30). It is easy to determine that Ci in Equation (39) is an N × N positive definite
matrix. Therefore, subproblem (38) is an unconstrained quadratic optimization problem,
the optimal solution of which is x(l+1)

i = x∗i = −C−1
i di/2, which can be found efficiently

via conjugate gradient methods.

3.4. Solving Subproblem P4

According to Equation (15), subproblem (19) can be separated for each yi[n], i = 1, 2,. . ., GM,
n = 1, 2,. . ., N, as follows:

min|yi [n]|=1Re[uinyi[n]] (41)

where
uin = −β

(l)
in − θ3x(l+1)

i [n] (42)

Define uin = |uin| · exp(jϕin). Then, the solution of subproblem (41) can be expressed
as y(l+1)

i [n] = y∗i [n] = exp(j · (π − ϕin)).

4. Numerical Results

In order to demonstrate the effectiveness of Algorithm 1, in this section, a series of
numerical simulations is shown. The parameters are initialized as c = 0.5, θ1 = θ2 = 10.
The parameter is set as θ3 = max

{
10, min

{
2(l + 1), 105}}, where l is the current iteration.

The parameter of the convergence condition is η = 0.5 × 10−3. All experiments were
implemented in MATLAB 2020a on a PC with one Intel Core i7-7700 CPU and 16 GB RAM.
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All the obtained correlation function values and PSL and PCL metrics in dB were calculated
as 10log10(|rij(k)|2/N2).

4.1. Effect of Weighting Factor w

Figure 1 shows the convergence curves of the variables γ and εg, g = 1, 2,. . ., G with
different parameters. The computational complexity per iteration of the proposed algorithm
is O(MGN2 + M2G2N log N). The algorithm running time with M = 2, G = 2, and N = 256
is around 700 s on average. The convergence curves of the variables γ and εg are not
monotonically decreasing because the proposed algorithm minimizes the augmented
Lagrange function L in Equation (15). When the convergence condition is satisfied, the

variables
{

x(l)i

}GM

i=1
and

{
h(l)

i

}GM

i=1
are almost the same, and the correlation function rij(k)

satisfies rij(k) = ρij(k). Thus, PCL, PSL1, PSL2,. . ., PSLG are minimized effectively with the
help of the auxiliary variables.
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Figure 1. The convergence curves of γ and εg, g = 1,2,. . .,G. (a) w = 0.1, M = 2, G = 2, N = 256;
(b) w = 0.7, M = 8, G = 8, N = 256.

Figure 2a shows the PSL1, PSL2, and PCL values obtained with different values of w,
with fixed parameters of M = 2, G = 2, and N = 256. Figure 2b shows similar results with
M = 8, G = 8, and N = 256. The maximum and minimum values of PSL1, PSL2,. . ., PSLG
are shown, denoted by PSLmax and PSLmin, respectively. It can be seen that the smaller
the value of w, the lower the obtained intragroup PSL values and the higher the obtained
intergroup PCL value. The results in Figure 2 demonstrate that the proposed algorithm
is able to adjust the weighting factor w to balance the intra- and intergroup correlation
performances, which is suitable for different MIMO radar applications.
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4.2. Obtained Correlation Functions

In his subsection, plots of the intra- and intergroup correlation function curves are
detailed. The waveforms obtained by the proposed group orthogonal waveform algorithm
are compared to other advanced orthogonal waveforms under different parameters. In
Figure 3, random set represents the waveforms generated directly by random numbers.
Multi-CAN is one of the best ISL minimization algorithms, and the primal-dual and p-MM
algorithms are the current best PSL optimization algorithms. The up- and down-chirp
signals have the lowest cross-correlation function when M = 2. Therefore, by setting the
same time-bandwidth product equal to N = 256, the up- and down-chirp signals can be
compared to the intragroup orthogonal performance of the waveforms when M = 2.
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Figure 3. The correlation peak value obtained by the proposed algorithm when M = 2, G = 2, and N = 256:
(a) autocorrelation; (b) intragroup cross-correlation; (c) intergroup cross-correlation, and when M = 8,
G = 8, and N = 256: (d) autocorrelation; (e) intragroup cross-correlation; (f) intergroup cross-correlation.
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Figure 3a shows the autocorrelation function peak value of the GM waveforms when
M = 2, G = 2, and N = 256. Figure 3b shows the intragroup cross-correlation function
peak value, while Figure 3c shows the intergroup cross-correlation function peak value.
When w = 0.1, the intragroup correlation side-lobe peak value obtained by the proposed
algorithm is the lowest in comparison to other waveforms with relatively higher intergroup
cross-correlation function peak values. When w = 0.875, although the intragroup auto-
and cross-correlation functions of the waveforms obtained by the proposed algorithm are
relatively high, the intergroup cross-correlation functions are the lowest. The results when
w = 0.3 lie between those when w = 0.1 and w = 0.875. Figure 3d–f show the results when
M = 8, G = 8, and N = 256.

The results in Figure 3 demonstrate that, with typical parameter values, the proposed
group orthogonal waveform design algorithm is able to effectively balance the intra- and
intergroup correlation function performances. To briefly summarize, compared with
designing all the GM waveforms directly, as performed in the primal-dual algorithm, the
proposed group orthogonal waveform design algorithm is able to obtain lower intragroup
PSL metrics by sacrificing a small portion of the intergroup cross-correlation performance
and vice versa. Therefore, for antijamming agile waveform applications, the proposed
algorithm is more flexible. The proposed group orthogonal waveform design algorithm is
able to design multiple groups of orthogonal waveform sets at the same time.

4.3. Effect of M, N, G Parameters

In Figure 4a,b, the effect of the phase coding sequence length N on the results is
analyzed. In the simulations, the weighting factor w and the waveform parameters M = 2,
G = 2 were unchanged. The waveforms were obtained by the proposed algorithm with
N = 32, 64, 96, 128, 160, 192, 224, and 256. After calculating the PCL and intragroup PSL
metrics (the PSL metrics are denoted as PSL1 and PSL2 because G = 2), Figure 4a,b show the
obtained metric values when w = 0.3 and w = 0.875, respectively. The results demonstrate
that the larger the sequence length, the lower the obtained PCL and PSL values.
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Figure 4. The effect of parameters M, N, and G on the obtained metric values. (a) w = 0.3, M = 2,
G = 2; (b) w = 0.875, M = 2, G = 2; (c) w = 0.5, M = 8, N = 256; (d) w = 0.5, G = 8, N = 256.
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In Figure 4c,d, the effects of the number of groups G and the number of intragroup
waveforms M on the results are analyzed. Firstly, the weighting factor was set to w = 0.5
and the parameters were set to M = 8, N = 256. Then, the proposed algorithm was used
to obtain the waveforms at G = 2, 3, 4, 5, 6, 7, and 8. Finally, the PCL metric value was
calculated as well as the maximum and minimum values of PSL1, PSL2,. . ., PSLG. The
results are shown in Figure 4c. It can be seen that the PCL increases with an increase
in G, because the total number of waveforms, GM, increases. Meanwhile, the obtained
intragroup PSL values change little with an increase in G, because the number of intragroup
waveforms M = 8 remains unchanged. In Figure 4d, the parameter G = 8 is unchanged and
the proposed algorithm is initiated with M = 2, 3, 4, 5, 6, 7, and 8. It can be seen that the
intragroup PSL metric values increase with an increase in M. Overall, the PCL metric value
mainly depends on the total number of waveforms GM. The intragroup PSL metric values
mainly depend on the parameter M.

4.4. Antijamming Simulation

In this section, the jamming suppression performances of MIMO radar using the
different waveforms in Table 1 are analyzed. The transmitted phase-coded pulse signal
generated using the group orthogonal waveforms {xi}GM

i=1 can be expressed as follows:

xi(t) = exp(j2π
c
λ

t) ·
N−1

∑
n=0

pτ(t − nτ)xi[n], i = 1, 2, . . . , GM, pτ(t) =
{

1, 0 < t ≤ τ
0, others

(43)

where c is the speed of light, τ is the chip length, and λ is the carrier wavelength. There
are Nt transmitting elements and Nr receiving elements; the digital signal after matched
filtering can be expressed as y[n] = (y1[n], . . . , yNt Nr [n])

T. Then, the digital beam forming
output is equal to

I(θ, n) =
[
ar(θ)⊗ aH

t (θ)
]H

y[n] (44)

where I is the angle–range image. at(θ) = (1, exp(−jαt), exp(−j2αt), . . . , exp(−j(Nt−1)αt))
T

is the transmit steering vector and ar(θ) = (1, exp(−jαr), exp(−j2αr), . . . , exp(−j(Nr −1)αr))
T

is the receive steering vector, with αt = 2π sin θdt/λ and αr = 2π sin θdr/λ. The uniform linear
array consists of Nt = 3 transmit elements spaced at dt = 16λ apart, and Nr = 16 receive elements
spaced at dr = 0.5λ apart. ⊗ represents the Kronecker product and θ represents the direction
of arrival. Figure 5 shows a block diagram of the processing in the simulation. The size of
range bins is 100 m. The range corresponding to the first bin is 50 km. The angles, ranges, and
signal-to-noise ratios of the four true targets are (−15◦, 400, 3 dB), (0◦, 400, 3 dB), (20◦, 400, 3 dB),
and (20◦, 50, 5 dB), respectively, where the range parameters’ units are range bins. DRFM-based
deceptive jamming causes two false targets, whose angles, ranges, and jamming-to-noise ratios
are (−15◦, 50, 5 dB) and (0◦, 50, 5 dB), respectively. The noise is Gaussian random white noise.

Table 1. Parameters and performance metrics of simulated waveforms.

Waveform Design Method Title 2 Title 3

Fixed waveform M = 3, N = 256 PSL = −23.22 dB

Multi-CAN [12] MG = 6, N = 256 PSL = −17.02 dB

Primal-dual [18] MG = 6, N = 256 PSL = −20.18 dB

p-MM [19] MG = 6, N = 256 PSL = −20.42 dB

Proposed method when w = 0.9 M = 3, G = 2, N = 256
PSL1 = −19.18 dB

PSL2 = −19.39 dB

PCL = −25.56 dB

Proposed method when w = 0.1 M = 3, G = 2, N = 256
PSL1 = −25.64 dB

PSL2 = −25.88 dB

PCL = −18.51 dB



Mathematics 2024, 12, 903 13 of 15

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 16 
 

 

4.4. Antijamming Simulation 
In this section, the jamming suppression performances of MIMO radar using the dif-

ferent waveforms in Table 1 are analyzed. The transmitted phase-coded pulse signal gen-
erated using the group orthogonal waveforms 1{ }GM

i i=x  can be expressed as follows: 

−

=

 < ≤
= ⋅ − = = 




1

0

1,   0c( ) exp(j2π ) ( ) [ ],  1,2,..., ,  ( )
0,   others

N

i τ i τ
n

t τ
x t t p t nτ x n i GM p t

λ
 (43) 

where c is the speed of light, τ is the chip length, and λ is the carrier wavelength. There 
are Nt transmitting elements and Nr receiving elements; the digital signal after matched 

filtering can be expressed as ( )=
T

1[ ],..., [ ][ ]
t rN Ny n y nny  . Then, the digital beam forming 

output is equal to 

 = ⊗ 
HH( , ) ( ) ( ) [ ]r tθ n θ θ nI a a y  (44) 

where I is the angle–range image. ( )= − − −
T( ) 1,exp( j ),exp( j2 ),...,exp( j( -1) )t t t t tθ α α N αa  is 

the transmit steering vector and ( )= − − −
T( ) 1,exp( j ),exp( j2 ),...,exp( j( -1) )r r r r rθ α α N αa   is 

the receive steering vector, with = t2π sintα θd λ  and = 2π sinr rα θd λ . The uniform 
linear array consists of Nt = 3 transmit elements spaced at dt = 16λ apart, and Nr = 16 receive 
elements spaced at dr = 0.5λ apart. ⊗  represents the Kronecker product and θ represents 
the direction of arrival. Figure 5 shows a block diagram of the processing in the simula-
tion. The size of range bins is 100 m. The range corresponding to the first bin is 50 km. The 
angles, ranges, and signal-to-noise ratios of the four true targets are (−15°, 400, 3 dB), (0°, 
400, 3 dB), (20°, 400, 3 dB), and (20°, 50, 5 dB), respectively, where the range parameters’ 
units are range bins. DRFM-based deceptive jamming causes two false targets, whose an-
gles, ranges, and jamming-to-noise ratios are (−15°, 50, 5 dB) and (0°, 50, 5 dB), respec-
tively. The noise is Gaussian random white noise. 

Nt
×
Nr

...

h1[n]=x1[N-n]

hNt[n]=xNt[N-n]

...

h1[n]=x1[N-n]

hNt[n]=xNt[N-n]

...

Matched Filters
Digital-Beam-Forming

Antenna 1

Antenna Nr

       ...

1DBF( )θ

2DBF( )θ

 
Figure 5. The block diagram of the matched filtering and digital beam forming processes. 

Table 1. Parameters and performance metrics of simulated waveforms. 

Waveform Design Method Title 2 Title 3 
Fixed waveform M = 3, N = 256 PSL = −23.22 dB 
Multi-CAN [12] MG = 6, N = 256 PSL = −17.02 dB 
Primal-dual [18] MG = 6, N = 256 PSL = −20.18 dB 

p-MM [19] MG = 6, N = 256 PSL = −20.42 dB 

Proposed method when w = 0.9 M = 3, G = 2, N = 256 
PSL1 = −19.18 dB 
PSL2 = −19.39 dB 
PCL = −25.56 dB 

Proposed method when w = 0.1 M = 3, G = 2, N = 256 
PSL1 = −25.64 dB 
PSL2 = −25.88 dB 
PCL = −18.51 dB 

Figure 5. The block diagram of the matched filtering and digital beam forming processes.

Assuming that one pulse of the waveform has been intercepted, Figure 6 shows the
angle–range images formed with MIMO radar using adjacent pulse echoes. The results
show that the proposed algorithm is able to balance the antijamming and range compression
performances by adjusting the weighing factor. On this basis, the waveform diversity gain
of MIMO radar can be maximized by selecting a proper waveform set as the best response
to flexible adaptive deceptive jamming [26].
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5. Conclusions

Transmitting agile group orthogonal waveforms is an effective way for MIMO radar
to combat DRFM jamming. Aiming at balancing the waveform diversity gain and jamming
suppression performance for an MIMO radar system, in this article, a group orthogonal
waveform optimal design model was proposed. The objective function separates the wave-
form performances into two parts. The first part is the peak value of intragroup auto-
and cross-correlation functions. The other part is the peak value of the intergroup cross-
correlation functions. To solve the proposed optimization problem, after proper relaxations,
in this article, a group orthogonal waveform design algorithm was proposed, transforming
the minimization of the augmented Lagrange function into a series of subproblems. The
numerical results showed that the proposed algorithm can minimize the intra- and inter-
group correlation functions effectively. The antijamming simulation results showed that
the proposed algorithm is able to achieve a balance between the DRFM-based deceptive
jamming suppression and range compression performances. The proposed algorithm is
flexible and has potential in adaptive antijamming applications for MIMO radars.
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