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Abstract: We apply known special functions from the literature (and these include the Fox H—function,
the exponential function, the Mittag-Leffler function, the Gauss Hypergeometric function, the Wright
function, the G—function, the Fox-Wright function and the Meijer G—function) and fuzzy sets and
distributions to construct a new class of control functions to consider a novel notion of stability
to a fractional-order system and the qualified approximation of its solution. This new concept of
stability facilitates the obtention of diverse approximations based on the various special functions
that are initially chosen and also allows us to investigate maximal stability, so, as a result, enables us
to obtain an optimal solution. In particular, in this paper, we use different tools and methods like
the Gronwall inequality, the Laplace transform, the approximations of the Mittag-Leffler functions,
delayed trigonometric matrices, the alternative fixed point method, and the variation of constants
method to establish our results and theory.
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1. Introduction

Stability analysis depends on the control of a system’s behavior in response to changes
or perturbations. It includes analyzing the equilibrium state of a problem, assessing
its ability to recover from disturbances, and maintaining stability over time when acted
upon by forces tending to displace it. Generally, stability theory addresses the stability of
solutions under small perturbations of initial conditions.

In mathematics and engineering, stability concepts are categorized as follows [1-10]:

* Lyapunov stability: if the solutions that start out near an equilibrium point x, stay
near forever, then x, is Lyapunov stable.

*  Asymptotic stability: if x. is Lyapunov stable and all solutions that start out near x.
converge to x., then x, is said to be asymptotically stable.

e Exponential stability: this stability guarantees a minimal rate of decay, i.e., an estimate
of how quickly the solutions converge.

*  Probability stability: a property of probability distributions.

e Algebraic geometry stability: this stability is a notion which characterizes when a
geometric object has some desirable properties for the purpose of classifying them.

*  Numerical stability: a property of numerical algorithms which describes how errors
in the input data propagate through the algorithm.

e K-stability: a stability condition for algebraic varieties.

*  Radius stability: a property of continuous polynomial functions.
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e  Learning theory stability: a property of machine learning algorithms.

Stability in the Ulam sense is important since it introduces analytical approximate
solutions for diverse problems where exact solutions are difficult to obtain. If a system is
Ulam stable, then essential properties hold in the vicinity of the exact solution (see [11-13]
and their references) and this is seen in optimization, biology and economics (especially
when very little is known in regards to exact solutions). Ulam-type stability was first
proposed in Ulam’s talk at a conference in 1940 [14], and he phrased it as follows: Let M be
a group and N a metric group with metric d. Given ¢ > 0, is there a 6 > 0, such thatifa
mapping g : M — N satisfies d(g(yx), g(y)g(x)) < 6, for every y, x € M, then, there exists
a homomorphism i : M — N with d(g(x),h(x)) <e¢, forall x € M?

The first answer was given by Hyers [15]. Let Y] and Y, be Banach spaces and let
€ > 0. Then, forall g: Y1 — Y, with

sup [[g(y+x) —g(y) —g(x)|| <e
Y,XEY]

there exists a unique additive mapping i : Y1 — Y5, such that

sup [g(x) —h(x)|| <e.

xeYp

The Ulam stability of differential equations was first studied by Ger and Alsina [16]
and they noted the following. Let ¢ > 0, ] be an open real-valued interval and g : ] — R be
a differentiable function. If ¢ satisfies

Ig(x) = g'(x) <& xe],

then, there exists a differentiable function gy : ] — R such that g{,(x) = go(x) and

18(x) = go(x)[| <3¢, x €.

The stability of differential linear equations of the first order was studied in [16,17],
Riccati equations were studied in [18], Bernoulli equations in [19], and Ulam stability
of partial differential equations was investigated by Rassias and Prastaro in [20-22]; the
authors presented a different concept of perturbation stability in the Ulam sense.

To obtain an affective decision about the best approximation of a fractional-order
system, one has to enhance reliable and applicable information on various facets of it. In this
paper, to obtain useful information about the quality and the certainty of approximating the
solution of a fractional-order system, we apply the concept of fuzzy systems and probability
theory. As will be shown, by introducing the concept of time-stamped fuzzy sets and
distribution functions that have a dynamic state, we can choose the best approximation of
the solution of a fractional-order system at any time. Motivated by [21,22], we study the
following fractional-order system:

DoG1(x) = HoG2(x, G1(x), D1G1(X),---, DmG1(x)) + H1G1(x) (1)
+H2G3(x)G1(x) + H3G1(x — V).

A brief discussion on fractional calculus can be found in Sections 2.6 and 2.7. Here, we
apply known special functions and use the concept of fuzzy sets and distribution functions
to construct a new class of control functions to consider the stability of (1) and the qualified
approximation of its solution. Let [.],x, be a square matrix. Let us consider the following
special cases:

Case 1:

e m=1Dy=D;:=" DZ;}’P”& (6-Hilfer derivative).
. IiIPy‘SGl(zx"’) = Gp € R (6-Riemann-Liouville integral).
i 7)1 S (011]1 PZ € [O/”/ 733:731 +P2(1_7)l)
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*  Hp:=[1]ix1, Hi=[0]1x1,i=1,2,3.
e G:I-R,Gy:IxR2—>R.
e I:=[ap](@ndl:=R).

Case 2:
* x=uxe)
e m=3,Dy= ch)z (Conformable derivative), D; = &, D, = %, D3 = d{%
e Pe(0,1]
*  Hp:=[11x1, Hi=[0]1,1,1=123.
Case 3:

e D= RLDZCJO,X (Riemann-Liouville derivative).

o REDPIGH(x) =Gy-1y, £=1,2.
X=Xo

e Pe(1,2), x> Xxo-

o H; € RN H; = [0]xn i=0,23.

e G R

Case 4:

e Dy= RLDZ(JO,X (Riemann-Liouville derivative).

o REDPIGy(x) =Gy, £=12.
X=Xo
e Pe(1,2), x> Xxo-
° H; € Rxn H, = [1]n><nr H; = [O}nxn/ 1=20,3.
. G € R", G3: I — R"*",
e T:=[xo, ).
Case 5:

o Dy= C"&wa (%wa) (Caputo derivative).
« YD, (“D?,)Gi(x) =H3Gi(x =), x >0, Y > 0.
* Gi(x) =Ux), Gi(x) =U'(x), x € [-V,0], Y >0.

e Hz:=-H? HeR™, H; = [0]yxn i=0,1,2.

e Gy eR,UEeC(-V0,R").

e 1:=1[0,T], T>0.

The goal in this paper is to effectively generalize stability problems and to evaluate
optimized controllability and stability. Our mathematical stability results (based on fixed
point theory) can be found in Theorems 1-7. In the following sections, we present the
theory and some comparison results to tackle this. In Case 1, we begin with the theory and
present fuzzy multistability and Fox-type stability results via aggregate special controllers
and fixed point theory. We discuss both finite and infinite domains and controllability and
optimal error estimates are also presented here. In Case 2, we illustrate the numerical
theory by considering a modified nonlinear Schrodinger equation and we apply the first
Kudryashov-type method to obtain numerical solutions. In Cases 3 and 4, we present the
theory of fuzzy stability and the fuzzy asymptotic stability and our results are achieved via
the Gronwall inequality, the Laplace transform, and some approximations of Mittag-Leffer
functions. In Case 5, we present random finite-time stability theory via the delayed matrix
cosine and sine functions.

We now present two results as an example of the theorems established in this paper.

Result 1. In Section 2, we discuss

DTG (x) = Galx, Gi(x), 7 DL Ga (x)),

177Gy (a*) =Gy, Gy €R,
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and in Theorem 1, under appropriate assumptions, we establish a unique solution and, in

addition, we obtain that it is multistable. To achieve this, we use fixed point theory and our

argument makes use of aggregation maps on special functions which define our class of

controllers. Comparison and optimality is discussed after the main result is presented.
Result 2. In Section 5, we discuss

RLpP (G1(x) = H1G1(x), x > Xo,
RpEIGI()| =Gy, (=12
X=Xo

where 1 < P < 2, H; € R"™", and G; € R", and in Theorem 3, under appropriate
assumptions, we consider a relationship between stability, asymptotic stability and criti-
cal eigenvalues.

2. Preliminaries
2.1. Fox’s H-Functions

We define the Fox’s H-function ( see [23-28]) as
CHP, {X

1 7 ]
T 2mi /y @(S)exp(Si arg(x) +log|x|])

TTL, T(Nj — MjS) T T(1 = V; + W;S)

H]’ZAJrl r(1- Nj + MJ'S) H]C:BH r(VJ - W]S)

(lewj)l,C
(N;,Mj)1,0

(2)

7

inwhichC,B,D, A€ N,0<B<(C,1<A<LD, W]-,V]- > 0and M]-,N]- > 0,and 2 are a
—— ——
j=1,...C j=1,...D

contour of a Mellin-Barnes-type integral in the complex S-plane.

The following special cases of Fox’s H-function have an important role in our results:

e Exponential map oHp[x].

e Mittag-Leffler function oHj [x; N7], with 1 parameter.
e Gauss Hypergeometric function »H; [x; Ny; V1, V.

e Wright function 1Hj [x; Ny; V4].

e G-function cHp[x; Ny,...,Nc; Vq, ..., Vel

(Vi W1) o, (Ve,We) ]

. Fox-Wright function cHp {X‘ (N My )Ny M)

e Meijer G-function AHE {x

(Vlll)/~--,(Vc,])
(Nlll)r'“r(ND,l) ‘

2.2. Generalized Triangular Norms (GTNs)
Assume € := [0,1] and

Ry 0 0 - 0
0 Rp 0 -+ 0
diagMu(e):=¢ | 0 0 Rss -+ 0| —diag[Ry1, -+ ,Ru], Ry €€y,
S : et
0 0 0 -+ Ru 1<j<n

with the following partial order relation:

R := diag[Ry1,- -, Runl, S := diag[S11,- - , Sun] € diagM,, (),
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st<:>R,’j§S 1§i,j§1’l.

1y
Definition 1 ([22]). A GTN is a mapping & from (diagM,(€))? to diagM,,(€), s.t. for every
R,S,E K € diagM,(€), we have

(1)R®1=R,

2 R®S=S®R,

B)RR(SQE) = (R®S) D,

@R=<SandE<K=—RQ®E <S®K.

For each sequence {R,}, {Sn } converging to R, S € diagM,,(¢), if we obtain
lim(Ry, Q) Sim) =RQ)S,

then @ on diagonal matrices is continuous.
We define the continuous GTN ® : (diagMy,(€))? — diagM, (€), as follows:

RS
M
= diag[Ru,' v /Rnn] ® diag[SM, Tty Snn]
M
= diag[min{Rn,Sn},- e ,min{Rnnz Snn}]-
In the rest of the paper, we consider @ := @, .

2.3. Fuzzy Normed Spaces
Consider the following assumptions:

J is a linear space.

& is a family of matrix-valued fuzzy (shortly, MVF) sets @ : J x (0, +00) — diagM,(e).
@ is a continuous increasing function.

limp oo ®(x,¢) =1, forall x € J,and ¢ > 0.

P <P — D(x,¢) 2P (x,¢) foreachxy € J, ¢ > 0,and ©, P’ € &.

A triple (J, @, ®) is said to be a MVF normed space (MVEN space), if for each ¢, ¢' > 0,
x,x €3J,and 0 # v € C, we have

(i) @(x,¢) = diag[L,--- ,1],2, < x = 0.

(i) diag[0, - - - ,0],2 < ®(x, ¢).

(iii) (X", ¢") @P(x, @) 2 (X' +x,9" +¢),

(iv) Doy, ¢) = B(x, %»

2.4. MV Random Normed (MVRN) Spaces
Consider the following assumptions:
J is a vector space.
¢ is a set of MV distribution functions (MVDFs) « : RU {—o0, 400} — diagM,,(€).
« is a left-continuous and non-decreasing function.
k(—00) = 0 and k(4o0) = 1.
¢t C €& contains functions ¥ € €, s.t., limw e Yy =1
e k=« < x(p) 2« () forevery p € R,and x,x’ € €7,
1, >0,
0, ¥ <0.
The MVRN space (J, ¥, ®) is defined and studied in [21,29]. A triple (J, ¥, ®) is said
to be an MVRN space if for each y, x' €3, and > 0, we have
(1) Yx(p) = Eo(y),iff x = 0.
(2) Yo (p) = ‘I’X(li), for every 0 # v € C.

vl

e the maximal element of €7 is £ (¢) = {
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X

P1V+P2*1Mg)

3) Tx+x’(¢ + l[/) = TX (IIJ) X ‘F)(/ (IIJ/)
A complete MVRN space is said to be an MVR-Banach (MVRB) space.

2.5. Mittag-Leffler Function and Its Approximations
Consider the two-parameter Mittag-Leffler function

0 k
X
M D —
P72 (X) ,§0 T(Pik + Py)

for Py, P, € C,and R(P1), R(P2) >0
Lemma 1 ([30]). Let P >0, P; € (0,2), P, € C,and 0 € R, s.t., 0 € (0.5rP, min{r, TP}).
Then, for integer m > 1, we obtain

1-P, —”

m
Mip, p, (x) = 5% e = L v, = +O(lxI™"7),

with |x| — coand |arg(x)| < o, and

—n

m
X —m—1
M ) Y Sy
P1,P> (X) n;l 1—-(732 — Pli’l) (|X| )

4

with |x| — coand o < |arg(x)| < 7.

In view of Lemma 1 and the derivatives of the two-parameter Mittag-Leffler function,
we have

Prv+Pr—1 (v) d v 1 ;i 'F'L
X My 5, (17 ):(g) P PN ©)
with y — co and |arg(x)| < o, and
—v—1 (A —V—2
Piy ~ (—1)VH1L L Pr—P—1 % Pr—2P;—1
o, () = (=1) TP, =P T, —2py) X , @)

with y — o0, 0 < Jarg(x)| < m,andv =0,1,2,---

2.6. Fractional Derivatives
2.6.1. Hilfer Derivative

Consider a real interval (Z;, ;). Let 6(x) be an increasing and positive monotone
function on (&7, Z;] that has a continuous derivative ¢'(x) on (£1,5;). We define the
fractional-order Riemann-Liouville integral with respect to é on [, E,]| as follows:

1;}"5@(;() = r(lp) /:T 5'(0)(6(x) —6(0)P1G(0)de, P > 0.

LetP; € (E—1,E) withZ € N, P, € [0,1] and h,6 € CZ[E4, E5], be two functions, s.t.
disincreasing and &' (x) # 0, forall x € [Eq, Ey]. Then, the §-Hilfer fractional derivative [21]

A DPIP22 () is defined by
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2.6.2. Conformable Derivative

The conformable derivative of order P for a given function G : [0,00) — R is given
by [31]

,0<P<1, E>0.

e—0 €

2.6.3. Riemann-Liouville Derivative

The Riemann-Liouville derivative [30] is defined by

RLpHP — #di X _ \n—P-1
DX,XOG(X) T T(n—P)dy" /Xo (x—s) G(s)ds, (5)

where P € [n—1,n), n € N.
The Laplace transforms of (5) for xo = 0, are given by [30]

L{"'D},,G(x).p} = p"L{G(0)} — ;‘) P DG TG0 =0

where P € [n—1,n), n € N.

2.6.4. Caputo Derivative
The fractional-order Caputo derivative [22] for G : [-), 00) — R is given by

& P B 1 x  Gl(s) B
DPyG() = F—py /_y PERECE S ©

where P € (0,1].

2.7. Fractional-Order Delayed Matrix Sine and Cosine

Here, we introduce the parametric Mittag-Leffler matrices, and then, we present the
fractional-order delayed matrix cosine, the fractional-order delayed matrix sine, and some
of their properties [32-37].

Let 0 and I (or 1) be the zero and identity matrices, respectively.

Here, we consider the Mittag-Leffler matrices [21] with parameters P1, P, > 0, and
[H]»»n which are defined by

Mop, (H B a—
7 (H) kg]l"(Plk—i—l)
o F(1+P1) F(1+2P1) !
and
M H) = -
P17, (H) k;OF(Plk—i-'Pz)
= I+ H + H? + -
- 1—'(731 + 732) 1—'(2771 + 7)2)

Definition 2 ([38]). The fractional-order delayed matrix cosine, and the fractional-order delayed
matrix sine of a polynomial of degree 2jP on x € [(j — 1)), jY) identified at the nodes x = jY,
j=20,1,---,are, respectively, given by
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0, —co < x < =),
cosy p HXP = b I, ( 7 -y < x <0, (7)
2 2 (x— jfl)y / 7 i
I—H%-F"'—F(—l)]fl]w/ (]_1)y§7(<]y'
and
0, —o<x< -,
) P g AN —Y<x<0
siny p HY" = T(P+1) o =x=0 (8)
+y P 3P . . ( 7(71)‘)}) 2j+1)P . .
HYE — B ol + -+ (F)HZHAE 0 (- 1)y < x <.

Lemma 2. For x € [(j —1)),jY], and j,a, B € R, we obtain

Alx) = /j;‘oc—s)“(s —jV)Pds = (x — jY)FHIBla 1,84 1),

in which Bla, B] = f01 t%=1(1 — t)1=Pdt is the Beta function.

Proof.
o = [P av-eretio (@=s-i)
= [Pa-ro- 2o
= [y eretss @G- v)=0)
= (=) Bl +1,p+1],
O

Lemma 3. The Caputo derivative of the fractional-order delayed matrix cosine cosy p Hx? and
the fractional-order delayed matrix sine siny p Hx” are given by

%ijﬁ cosy p Hy” = —H siny p H(x — VP,
%D?Jﬁ siny p Hy” =H cosy p Hy”.

Proof. By repeating the computation in Lemma 2, for every x € [(E—1)Y,EY]and E € N,
we obtain

%D?Jﬁ cosy p Hx”
1 y §2P-1

0 P 1 _
T Ta-pP) ./_y(X*s) 7D“H“}lHr(l—P) /0 (x =) 7D[*Hzr(zp)}’is
1 2y B SZPfl (s _ y)47>fl
+71“(1—73)/y (x —s) P{_HZF(ZQ)+H4 T(aP) ds+ ...

S27371 (S _ (E _ 1)y>2E7371
TP +.+ (-D)EH?E FEP)

— H? ds

1 X _
o) e
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+F(11—7’> /gsc_ny(x—s)‘?’ (—1)Fm2E S (Er(2 ]15)7)3)))2'57’—1 N
— —H2r(7§7jr1) + —H4M o4 (—1)ERZE (XN((fE—ll))J}P)(j_E;)l)P
= HsinypHlx - ).

Lemmad4. For x € [(j—1)),jY), j € N, and $ > ?, we have that

%
®(cosy,p HY”, ¢)

_)
= @(Mop(HX*7), ¢),
Q(Sinyﬂ’ HXP, ?) =

O(Mp (H(x + V)P) — Map (H2(x + V)?), §).

_)
Proof. For every ? > 0, we obtain

%
®(cosy,p Hx", ¢)

2P , 2jP
2 X 2 X =
q’(HH repyn) 0 TH r(zﬂD+1)"”>
00 (HZXZP)j _>)
- O -
= (];)r(szﬂ) ¢

— &(Myp(H?"), §),

and

. —
®(siny,p HY”, ¢)

(x+¥)7" (x+ )% 1 (
o(Hy T B e R

_l’_

j

S (Hx+M)"P) & BN+ -
tq’(}g T(P+1) —];) T(2/P +1) "P)

— O(Mp(H(x + ¥)7) — Mop (H2 (x + V)77), §).

O

2.8. Aggregate Maps

Assume Y = diag[Yy,---,Yn], Y; € ,1 <i < n,and n € N. A mapping Ac() .

diagM,, (€) — e is called an n-ary aggregation map [22] if AG() (Y) =Y, and

inf A" (Y) = infe, and sup AG")(Y) = supe.
Yice Y;ee

Note, for each Y, Y’ € diagM,,(e), if Y; < Y/, then AGU (Y) < A" (Y).

Consider the following well-known aggregation functions AG; : diagM, (¢") — e,

1<i<8:

*  Geometric mean functions AG;(Y) = ([T, Yi) 3
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1
*  Arithmetric mean functions AG,(Y) = - YiiqYi

e Maximum functions AG3(Y) = max{Yy,---,Yx}.
e Minimum functions AG4(Y) = min{Yy,---,Y,}.

e Median of odd numbers AGs(diag[Y1, - - -, Yo2,—1]) = minycp,—1 maxie, Y;.
|N|=n

*  Median of even numbers AGq (diag[Y1, - - -, Y2,|) = minycp, maxje, Y;.
|N|=n

*  Sum functions: AG7(Y) =Y/ ; Y;.
e Product functions: AGg(Y) = [T, Y;.

2.9. Alternative Fixed Point Theory [22]

Consider the complete [0, oo]-valued metric rh on w and the strictly contractive map-
ping A on w with the Lipschitz constant k < 1, s.t.

M (Ax1, Ax2) < ki (x1,x2),

for every x1,x2 € w.If we geta Ny € N, s.t.
h (ANx1, AN x) < oo,

for every N > Ny, then, we have the following results for every x1, x2 € w:

(1) The fixed point x* of A is the convergence point of {ANx1};
(2) Intheset {xo € w: (ANox,x2) < oo}, x* is the unique fixed point of A;
G 1=k h(x2x") <M (x2, Ax2)-

2.10. The First Kudryashov-Type Method

Here, we propose the process of the first Kudryashov-type technique [39] for a nonlin-
ear PDE:
We consider an NPDE of the following type:

N(G,D}'G,D}'G,D}*G, D}'D*G, DI DG, --) =0, 0 < P, P2 <1, )

where G = G(x1, x2)- Convert the nonlinear PDE (9) into an ODE through

d?cfpl c X;Pg
= + Gxx2) = G(p), 10
in which c and d are fixed. Rewrite (9) as follows:
N(G,G',G",G",...) =0. (11)

Assume the general solution of (11) can be expressed as
G(p) = ao + ark(t) + axk? () + -+ - + ank™ (). (12)

where 4; are retrieved later, and the value of N € N can be computed through the
N~

1<i<N
homogeneous balance principle, and

1

) = T g (13)

which satisfies

k' (1) = k() (k(p) — 1) In(a). (14)
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3(x,

According to (11) and (12), a nonlinear system of algebraic type is obtained, and by
solving it, solutions of (12) are obtained.

2.11. Gronwall Inequality
Suppose a(x) < B(x) + f;(o y(t)a(T)dT, for x € [xo,T), T < +oo,in which all the
above functions are continuous on [xo, 7), 7(x) > 0, and B(x) is nondecreasing. Then,

X
«(x) < pryep( | (@) (15)
0
for every x € [xo, T)- (See [40]).
3. Fuzzy Stability Results of (1) for Case 1
Taking into account Case 1 of (1), we have
7D Gi(x) = Ga(x, G1 (1), 7 DI Gax)), (16)
17Gy(at) =Gy, GpeR (17)
at 1 0r 0 Y

(see [28,41-50]). Now, consider the fuzzy inequality below:

@ (%Dfﬁmcm ~ Ga(x, G1(x), ' DD Gy (x)), ?) (18)
= diag[AG1 (3(x, G1¢1)),- -+, AGs(3(x, Gs¢s))],

where x €1, ? =(p1, - ,¢8),¢i € (0,400), &; >0,i=1,---,8, and the fuzzy Fox-type
controller 3 is given by

, —18(x) —6(0)|™1 —18(x) —8(0) [P
)= dlag{ JH; {VerZ}Nl} | (X)¢1 (0)] ],oHo[ | (X)¢2 (0)] } (19)
16(0) =61 prs [—16(X) = 8(0)[™ |V Wi
OHl |:N1/ (P3 /CHD ¢4 (Z\}j,l\/ij)l,[) 4
—lo(x) —o(0)[™ —16(x) = 8O | (va, W), (Ve W)
1H1 |:Vl’ 4)5 ’ HD (P6 (l\;ll]\/lll)/"‘/(l\ngl\(/}D)
aggs [ 1500 = 3O | 1),..(ve)
c'D 4)7 (Nlll)/-"/(ND/l) ’
_ _ P
CHD |:V1,...,Vc,'N1,...,NC; |6(X)¢ 5(0>| 1:| :|
8

Definition 3. The fractional-order Equations (16) and (17) is multistable with respect to

))r rAGS(B((Xf ))]r

if there exist &; > 0, s.t., for any &; > 0 and each solution G € C(I,R) to (18) and 101;733;5@(0(*)
= Gy, there exist a solution G, € C(I,R) to (16) and (17) with

diag[acy (3(x, $ ¢

®(G(x) ~ Gi(x), §) = diaglaG, (3(x, &:811)), -+, ACs(3(x, SsSss))],
for every x € I, and ¢; € (0,+00),i=1,---,8.

3.1. Fuzzy Multistability Results for Finite Domains
Here, let I := [a, B].
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Lemma 5 ([45-47]). The fractional-order Equations (16) and (17) are equivalent to
G o 00 =@ s .
in which Ug, € C(I, R) satisfies
5(x) —6(a))Ps1 :
te, () = Ga (1 “ L EV 6ok U, (0. U (1) @)

Remark 1 ([45-47]). Suppose G1 € C(L,R) is a solution of (18) and I;:P”JGl(a) = Go. Thus,
G is a solution of

—_ P3-1
@ (G100 - L6y - s [ 0600 80 e, (1, F )

= diag[AGy (3(x, G1¢1)), - - - , AGs(3(x, Gs¢s))]
in which ¢; € (0,+00), &; >0,i=1,---,8,and Ug, € C(I,R) satisfies (21).

Let us consider the following assumptions:
(&1) Gy :1x R? — R is continuous.
(&) Thereexists0 <P; < 1,i=1,---,8, st Iﬁ;’SAGi(S(X, Sigi)) = AG;(3(x, %@)),
- =
forevery x €I, 6, >0,and ¢ > 0.

(£3) Thereexists 0 < ©1,0;, s.t. (91"%2) <1l,i=1,---,8,and
— = =
$) = ®(O1(k—%), ¢)) QP(@2(v—7), ¢)),

GTN

(G2 (x, %, v) — Ga(x, %, 0),

foreachx,v,%,0 € R, x € I and ? > 6>

Theorem 1. Assume (&), (E;) and (£3) hold. Then, (16) and (17) have a unique solution G in
C(LR),s.t.

~ — ol Ps—1 .
G = WA G 4 e (v, @)

in which Ug € C(I, R) is given by

_ P31
Ug(x) = G2 (X, (0 r((;(:)) ) Go + [ Ug (x), Ug (X))

and for each x € Land ? > 7,

®(G1(x) — G(x), §) = diag[ac (3(x, D1&1¢n)), - , AGs(3(x, DsGsghs))], (23)
where 0
. —_ J— i — _l p— RS
D; .= (1 (®1 +®2)) , 1=1, ,8. (24)

Proof. Consider & = C(I, R) and a mapping A : E2 — [0, +c0], given by

My, v') = inf { Gy, Cs) € (0,+00) - @(v(x) —v'(x), §) (25)

- diag[Acms(x,‘Ejgvl)),--- ,Acs<3<x,ﬁ:¢8>> vV €E xel > ?}.

We have that the double (E, A) is a complete generalized metric space (see [46]).
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In view of Lemma 5, we have that (16) and (17) are equivalent to (20). Consider
Y:E— & st forevery iy € &,

S50\ Ps-1
(6(x) r(j)(go))) Got r(7131) /OX §(PY(6(x) — 6(x) Py, (T)dT  (26)

Y(h(x)) =
in which Uy, € C(I,R) is defined by

U, (x) = Ga(x, T (X), Un, (X)) (27)

We now show that the self-mapping Y is contractive on Z. Consider Y : & — = given
n (26). Let le, ﬁz S C(H,R), ]k,’ S [0, +00], i=1,...,8, and )\(ﬁl()(), ﬁz()()) < (ﬂ(l, s ,]kg).
Forevery x € Tand ¢ > 0, we obtain

(Y (M (x)) = Y(ha(x)), ¢ ) (28)
= (s [ 9 POG00 — 80 W () — Uiy (0,

in which Uy, (x) = Gz2(x, hj(x),Un;(x)), j = 1,2. Making use of (£3), for every x € I and
$ € (0, +0)8, we obtain

DU, (X) —Un, (), B ) = DO (T (xX) — 1a(x)), ) R (O (U, (X) — Uny (X)), B ),
GTN
which can be written as
(U, (§) — Un,(x), $) = B((O1 + @) (B (x) — ha(x)), B)- (29)

In view of Remark 1, (28) and (29), we obtain

(Y (I (x)) - Y(ha(x)), ¢ )

o Fn S [ P60 o) tn(x) ~ ()i, F )
1

roas [ o P00 ey
x diag [AGl <3 (X, (6)14?1{?2)61%) > .-+, AGg (3 (X, (®1+k§)2)68¢8> } i

diag {AGl (3 <)(, (@)1%1%2)61([)1)), -+ ,AGg (3 (X, W‘PS) ] ,

Y

Y

Y

which infers

MY((0) = X(ha0) < (5 ia Torres )M — halo)

Pi
(©1+0;)
Assume G; € E. We now prove A(YGy,G1) < (oo,---,00). Based on (18) and

—_———

Thus, we conclude the contractive property of Y, because <l,i=1,...,8

Remark 1, we obtain
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%
Q(Y(G1(x)) = Gi(x), ¢)
(6(x) = 5(0))7s! 1 /X / P-1 e
- G — Gy — 1) 1) -0 17U, dr,
= 0G0y - LI G- o [P et - a0t (2, §
= diag[AGi(3(x, S1¢1)), -, AGs(3(x, Gsds))],
for each ? S (O,—i—oo)S, 6 >0,i=1,...,8 and x € I. Thus, we conclude that
AYG1,Gy) < (1,---,1). In view of the alternative fixed point theory, we can find
———

8
G € &, s.t. the following applies:
(1) Gisafixed pointof Y, i.e.,

in which Ug € C(I, R) is given by

5(x) —6(0))Ps—1 .
Us (x) = G2 (x, ) — o) Ifl"sua(x),ua(x)) (1)
I'(Ps)
which is unique in the set 2* = {h € E: A(YGy, h) < (00, -+ ,00)}.
8
2) A(Y™(G1),G) — (0,---,0), as m — oo.
\—\8/—/
(3) We obtain
AGLG) < ( ! ! ) A(YG1,G1)
VR T30+ 0, T Bs(01 + 0,) vt
8
< 1 . 1 )
T M 1-P(01+0,)" T1-Pg(@14+0,)”
8
which infers
S(Gy(x) — é(m,?) » diag[AG1 (3(x, D161¢1)), - - - , AGs(3(x, DsGs¢s))], (32)
where 1
D=, i=1,---,8 (33)
1 _ ‘431
(01+02)

for each x € I and ? € (0, —|—oo)~8. We now show the fixed point in Z* is unique. Let GeckE
satisfy (22) and (23). We prove G = G and G € E*. According to (22), we obtain

~ — P3—1
TRCCE LR

T(Py) ./0.)C &' (P1)(0(x) — (5(T))P1_1L{(~;(T)dr, (34)

in which Ug € C(I, R) is defined as

_ P3—
Us(x) = Gz (x, (O) r(g}(;)))) : Go+ I Ug (X)/Ue;(x)) (35)
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1

I'(P1)

(6(x) = (0))™ "

Y(G(0) N

Gy +

[ 8P - )P teg(ir. G6)

Now, we prove N
Ge{heZ: AMY(Gy),h) < (o0, ,00)},
8
ie, A(Y(G1),G) < (oo,--- ,00). From (23) we have
—_———
8

D(Gy(x) - G(X%?) = diag[AG1 (3(x, D16141)), - - -, AGs(3(x, DsGss))], (37)

where D;, i =1,-- - ,8 are given in (33), for each x € I and ? € (0, +00)8.
Based on the triangle inequality, (18), (36) and (37), and Remark 1, we obtain

(Y(G1(x)) - G(x), §)
(60— 80P
= q’( A
sy [ POGG) - 82 e, (D + 610 — 1)~ G(w), )
_ P1—1 Y
= o( LI 6y 1 s [ 0(PO6) - 607 e, (D) - G ), 4 )
_>
R ®(G1(x) — G(x), L)

GTN

2

- diag[AG1 (3(x,261¢1)), -, AGs(3 (X, 28s¢s))]

) diag[aG1(3(x,2D161¢1)), - - -, AGs(3(x,2DsSs¢s))]
GTN

~ diag[AG1(3(x,2max{1,D1}&1¢1)),- - ,AGs(3(x,2max{1, Dg}Sgps))],

foreach ¢ € ITand ? > 0. This infers AYGy,G) < (2max{1,Dq},---,2max{1,Dg}) < oo,
then, G € E*. Here, we conclude the existence, uniqueness and the multistability property
of solutions of fractional-order Equations (16) and (17).

The plots of the aggregate special functions AG;(3), i = 1,...,8 are shown in the
sub-figure [1] of Figure 1. As you can observe, AG4(3) (yellow) and AG3(3) (green) include
the lowest and highest values, respectively, and AG;(3), i = 1,2,5,6,7,8 are placed between
them. Therefore, this infers that AG4(3) can present a better approximation for the governing
fractional-order system than others. Thus, based on (32), we obtain

diag[AG1 (3(x, D16141)), - - -, AGs(3(X, DsSss))]
= diag[AG4(3(x, D16141)), - - -, AG4(3(x, DsSss))]-

The plots of AG4 on special functions given in the the main diagonal of square matrix
3 are shown in the sub-figure [2] of Figure 1. As you can see, the diagram of the H-Fox

ion AHE | ZLEG=6@P1 [(ViW)re
function ¢ Hp 1 (N;,Mj)1,p

the other special functions. Then, we can conclude that

} (yellow) can present a better approximation than

diag[AG4(3(x, D1G141)), - - -, AG4(3(x, DsGs¢s))]

- daig[ g‘HBD[

—[6(x) —6(0)|™
D161¢1

—[6(x) —6(0)|™
DgSs¢s

(ViWj)1,c
(Nj,Mj)1,0

(ViWj)1,c
(Nj,Mj)1,0

} ,gﬂg[

|
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This means the governing fractional-order system is Fox-type stable with respect to
Fox’s H function.

1 i | 047 ;;Mlllill\lwllilil.
.....__,h 7 T 0 O I N T R
044 Ajsam o
04z |
YT RESY 47 a8V
15
038 [+
036]%F 7 ¢ . i
034 4
032
030
028 g
026
024
022
ozofi
018{

BRI L

0154

08

x

[2]

(1]

Figure 1. [1] displays the plots of aggregation maps AG;(3), i = 1,...,8, in which the minimum
aggregation map AG4(3) and the maximum aggregation map AGz(3) are shown in yellow and green
colors, respectively, and the rest are in between. [2] displays the plots of aggregation map AGy
on special functions given in the the main diagonal of square matrix 3, in which the diagram of
H-Fox function and the Wright function are displayed in yellow and brown colors, and the rest are
in between.

In the Table 1 below, we present some numerical results for (19). As mentioned earlier,
the Fox function shows an optimal error estimate compared to the others.

Table 1. Numerical results for ¢ = 0.05, P; = 0.5, and 6(.) = exp(.).

0 [ [5G0 —o ()™ ] 0.0317 0.0620 0.0829 0.0857

¢

JHy |V w 0.0214 0.0548 0.0705 0.0789

cHp V1, JVeNy ..., M] 0.0129 0.0364 0.0489 0.0601

AmrB | —16(x)—=6(0)[P1 50 P11 (Vi) (Ve 1)
]HI [ (Nll, " ,(ND,l)] 0.0095 0.0199 0.0317 0.0501

3.2. Fuzzy Multi-Stability Results for Unbounded Domains
Here, let S = C(I), in which I := R.
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Theorem 2. Suppose (£1), (&) and (&3) are satisfied. If Gy in S satisfies (18) and also
Ii; 7)3;‘5G1(0c+) = Gy, then, there is a unique function G satisfying (16) and (17), s.t. (23)
is satisfied for each x € R.

Proof. Foralln e N, and J > 0, we let J,, = [ -—n,J+ n] As stated in Theorem 1, there is
a unique function G, € C(Jn, R), s.t.

ZDPIPRG, (%) = Galx, Gu(x), 7 DIV G (x)), x €l (38)

177G (") = Gy, GoER,  (39)

and
~ —
Q(Gn(x) —Gi1(x), ¢
where D; := (1 — (@13"62)
of G, infers that if x € Jy, then,

) = diag[AG1 (3(x, D1G1¢1)), - - - , AGs(3(x, DsGs¢s))], (40)

)’1 foreach x € Ju, 6;,%;,¢; > 0,i=1,...,8. The uniqueness

~

Gu(x) = Gus1(X) = Guia(x) =+ - . (41)

Define n(x) € Nasn(x) = min{n € N|x € J,}. In addition, define a function

, given by G(x) = (A}n(x) (x). We claim that G € S. For x; € R, we consider the
mteger ny = n(x1). Then, x; belongs to the interior of J, 41 and there is an € > 0, s.t.
G(x) = an1+1(X), for each x with x; —e < x < x1 + €. We now prove G satisfies (16),
(17) and (23) for each x € R. For each x € R, we consider the integer n(). Thus, it infers
X € Juy and also, it infers from (38) and (39) that for ué,uén(x) € S, defined as (31),

we obtain
G(X) = é’n(;() (X) (42)
(6(8) —4(0)™! L Y (P
G0t E ) O P66 — o)™ g, (D)t
_ (6(®) —d(0)™! L Sy
= S0 w ) O POOG) — o)™ g (e,
where the equality above remains true because n(7) < n(x ) orall T € J,(,), and it infers
from (41) that G(7) = f}nm(r) = Gn(x)(T). Since G(x) = G () (X) and x € J,,(y), for all

x € Rand ? € (0, +00)8, (40) infers that
o(G(x) - Gi(x), $) = @(Gu(x)~Gi(x), #)
= diag[AG1(3(x, D161¢1)), - - -, AGs(3(x, DsGs¢hs))]-

Finally, we prove G is unique. Let G € S be another function, which satisfies (16), (17)
and (23) for each x € R. Since G| T (— (X)) and G|y, o0 both satisfy (16), (17) and (23),

for each x € J,,(,), the uniqueness of G =G| Ty mfers that

as required. [

4. Results of (1) for Case 2

Taking into account Case 2 of (1), we consider the following conformable time-
modified nonlinear Schrodinger equation (CTFMNLSE) [51-54]:

iDz;G1 + Ul(Gl)Xle + 0'2‘G1|2G1 — i5l(G1)x1X1x1 1(52G2(G1) + 1(53|G1| (Gl) —04G1 =0, (43)
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g —Eo0? Eo cos(0)
where 0 < P < 1,04 = 0 ,azﬁ,dz 0 ,
= 7T 802(—3cos(0) +2)" 7 2 "' 1603 (—5c0s2(0) — 6)
o) 0 3E70)
5y = %OS(),& = g 0 5y = QO|G1\)2Cl , and Q) is the wave number and & is
x1=0

the frequency of the carrier wave.
The original applications of CTEMNLSE are to model the water wave propagation in
ocean engineering and study small-amplitude gravity waves on the surface of water.
We start with .
Gi(x1,x2) = G(n)e” (44)

where u = 1(x1 — % xY)and Y = —wyx; + % x5 + e, and ¢ is the phase constant, ¢ is the

frequency and w is the wave number. Setting (44) in (43), we get the imaginary and real
parts as

72 (01 —361w0)G" + (02 + (62 + 03)w)G® + (—¢ — yw? + 61w — 6,)G =0,  (45)

and
(361w* — p — 201w) G’ — 617*°G"" 4 (85 — 6,)G*G’ = 0. (46)
By integrating (45) and taking the constant equal to zero, we obtain
3(361w* — p — 201w)G — 36172G" + (63 — 6,)G> = 0. (47)
From (45) and (47), we have that
W35 — ¢ — qw? — 4 01 —306w  wh+wd+ o (48)
3(351(4]2 —p— 20’1)61) - —351 B (53 — 52
From the above, we have that
_ (Slg + (5154 + 2(,0(0'1 - 251(4])2
- o] — 35160 !
_ 01(02 — J3) — 3024
6410
Rewrite (45) into the following form:
G"+¢G* -G =0 (49)
or
G’ =G —1G? (50)
_— 2 3 _
where ¢; = w and ¢ = — ks e G2

n2(0p — 361w) n2(oq — 361w)

Application of the First Kudryashov-Type Method

Balancing G in (50) with G3, we obtain the balancing number 3N = N +2or N = 1.
Suppose the solution of (50) can be given by

G(p) = ag + ark(p), (51)

in which ag, and a; are constants to be determined later.



Mathematics 2024, 12,904

19 of 31

0.9.

Making use of (14), (47) and (51), we obtain

9w2a051 — u052 + a8§3 — bwagoy — 3pag =0,

—3In(a ) 7 20161 + 9w?a181 + 9w?aq by — 352a(2)a1 + 353a%a1 — 6wayoy — 3pa; =0,
91In(a)2y%a101 — 36,a0a3 + 383apa3 = 0,

—61n(a)?n%a181 — 6pa5 + 83a5 = 0.

Solving the above system, we obtain
1
0=z 1n(a)2ﬂ251 +361w? — 20w

/ — —
a0 —:|:1 (652 653 511]111

5y — 03

\/ 6(52 —6(53 5111111

)

Based on the above results, the following solution to CTFMNLSE (43) is obtained by

1«/— 60y — 603)011 In(a «/— 66y — 603)011 In(a
Gi(xix2) = ( 252_}3 4 ( 252_}3 I 62

‘ ¢
1 [t padre

% In(a)?n?6; + 36,w? — 207w
10— 7 x5

1+da
The Figures 2—4 display the plots of (52), for specific valuesand « = 0,1,0.2,0.3,- - -,

-1

[1]

Figure 2. The [1]-[6] display the plots of the imaginary parts of (52), for « = 0.7,0.8,0.9.
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>
5.9

-10 k) Iy 5 10 -10 -5 Iy 5 1

[10]

[11] [12]

Figure 3. The [1]-[12] display the plots of the real parts of (52), for « = 0.2,0.3,0.4,0.5.
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[10]

[11] [12]

Figure 4. The [1]-[12] display the plots of the real parts of (52), for « = 0.6,0.7,0.8,0.9.
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5. Fuzzy Asymptotic Stability Results of (1) for Case 3
Taking into account Case 3 of (1), we have that
®DT, 1G1(x) = HiGi(x), x > Xo, (53)
REDPLG1(x) =Gy £=1,2, (54)

G1(x)

X=Xo

where 1 < P <2,H; € R™" and G; € R".

Definition 4 ([22]). The zero solution of fractional-order Equations (53) and (54) is stable if
there is a positive M, s.t. ®(G1(x), ?) = ®(M, ?)for every x > Xo and ? > 0. The zero
solution of fractional-order Equations (53) and (54) is asymptotically stable if it is stable and
P(G1(x), ?) — 1,as x — oo, for every ¢ > 0.

Lemma 6 ([36]). Consider the square complex matrix Hy. Then, there is an invertible matrix w, s.t.
2 Hia=p,@- @ B;, in which B, are the Jordan blocks of matrix Hy, with the eigenvalues of
H; on the diagonal.

Note that spec(H) means the spectrum of the matrix H. In the next theorem, we con-
sider a relationship between stability, asymptotically stability and critical eigenvalues [55].

Theorem 3. The fractional-order differential Equations (53) and (54) is asymptotically stable if
and only if |arg(spec(Hy))| > 0.57tP. In addition, the fractional-order differential Equations (53)
and (54) is stable if and only if either it is asymptotically stable, or those critical eigenvalues that
satisfy |arg(spec(Hy))| = 0.57TP, have the same geometric and algebraic multiplicities.

Proof. Making use of the Laplace transform, the solution of fractional-order Equations (53)
and (54) can be expressed as

(x —x0)" " ™™p»(Hi(x — x0)")G1o + (x — x0)” *Mpp_1(Hi(x — x0)”)Gn1

1

Y (x = x0)" " ™Mpp_o(Hi(x — x0)”)Gus- (55)
=0

With respect to Hy, there is an invertible matrix «, s.t.
Hy=afa ' =a(By, -, B, (56)
in view of Lemma 6, where the Jordan block
v 1

ﬁl: IYl ".

L X1,

=1,y Zﬁzl n, = n, and 7y, € C are the eigenvalue of H;. Inserting (56) in
(x —x0)" " "Mp p_o(Hi(x — x0)”)G1s, we get

(x = x0)" " Mpp_o(Hi(x — x0)7) (57)
g & diaglBf, -, Y (x — x0)TE
_ _ P—L—-1 ]
= e Y ey

= (x—x0)" " adiagMp p_¢(B1(x — x0)"), .. . Mpp_e(B)(x — x0)")]a ",



Mathematics 2024, 12,904 23 of 31

in which ¢ = 1,2. The matrix (x — x0)”~“""Mp p_¢(8:(x — x0)”) can be given by

YMpp_o(v(x —x0)7))| (58)
Y=
in which
13 a5 G (7)™
1 9 1 (@)n,fz
Jy (n,—2)!\ oy
Y=(x—-x)""" : : (59)
L %
- 1 -

The non-zero elements of (x — x0)” ~/~™Mp p_¢(B:(x — x0)*) can be written by

o yp—-1_ 1 9 1 ) B V12 )
020 g G M x| =120 ). @

Now, consider the following cases:

(1) If 7, = 0, then (60) is equal to A := %, and A — oo, when y — oo, for
every { = 0,and v > 1. Then, ®(G1(x), ?) # 1, when x — oo, for every ? >0,

(2) If 7, # 0, we have the following cases:

(2-i) If |arg(spec(Hy))| = |arg(y;)| > 0.57P, and x — oo, then, based on (4), (60) is

equivalent to (—1)’/[7#(7;(7_7(2))471 + VWVAF((X_}{%),;(?PA}. Then, ®(G1(x), ?) — 1, when
X — oo, for every ? > f
(2-ii) If |arg(spec(Hy))| = |arg(y:)| < 0.5rP, and xy — oo, based on (3), we obtain

=20t G M x| )
= xe)P -
= WM’P,’]D_Z(’Y(X - Xo)m) ‘ﬂ—ﬁl

1 1-p+r

BT 7 exp(77 (x — XO))} H

Q

1 i v—1
<v—1>!{<a/s) -
1 {(1+e—7>)(1+z—27>)..-(1+e—(v—1)7>)71+fpv7>+

(v—1)! PV 1
P e U Gt s s
731/

v(1-P)+L-1 1 v-P)+ 1

Xy, T (x—Xo)HJra% 4 (X—XO)Vl}eXP(’YzP(X—XO))/
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<I><(X — x0)7 ! @ e 0 {(%)”Mm—g(v(% —x0)%) } ’ ?)

.B:.BI
1 (1+L—P)1+L—-2P)- -1+ L~ (v—1)P) 1LaP
—
(et P mT
P e Ut s s
’]DV
_>
v(1=P)+-1 B 1 v(1=P)+L L,
Xy 7 (x—)co)“Jrﬁ% 7 (x = xo) 1}, 1 i() )
exp (W cos(2E0) —xO>)

A 1, asxy — oo,

foreveryv =1,2,---,n,. Note that Cos(%(%)) > 0, for %(%) < 0.57. Thus, ®(G1(x), ?)
= O(T}_o(x — x0)” " "Mpp_(Hi(x — x0)")Gr, §) /1, (x = o).

(2-iii) Let |arg(spec(H;))| = larg(y,)|] = 0.57P, and v, = r(isin(0.57P) +
cos(0.57tP)), where r := |v,|. Now, we have two cases:

(2-iii-a) Suppose the critical eigenvalue 7, has the same geometric and algebraic
multiplicities. In this case, §, is a diagonal matrix. Making use of (58), we obtain

(x = x0)" " Mpp_o(Bi(x —x0)") = (x = x0)" " Mp p_o(1(x — x0)7)diag[1, -, 1]. (62)

If |arg(y1)| = 0.57rP, based on (3), we obtain

O((x —x0)" " Mpp_i(1(x — x0)7), F) = @GP D), (x - oo).

Thus, the solution of (53) and (54) is stable.

(2-iii-b) Suppose the geometric multiplicity of the critical eigenvalue is not equal to the
algebraic multiplicity. Here, B, is a Jordan block matrix and (x — x0)”~*""Mp p_,(B:(x —
)(0)73) is the same as (58). Thus, according to (61), the nondiagonal elements of
(x = x0)" " "Mp p_¢(Bi(X — X0)"'), can be given by

(x—xo)" 1 W _1 i {(aaﬁ)v_lMPﬂ:z(W(X - x0)%) H

B=5:
N 1 (1+0-P)14+L—-2P)---(1+L—(v—-1)P) LLaP
= o1 P L
P e U (G R e
’PV
v(1-P)+(-1 1 v(1=P)+¢

_ _ .1
Xy, 7 (x—)co)”+ﬁ% 7 (x —xo0)" 1}e><p(lr7’(x—)co)), V=2,

Then,

py—1 1 9\, Y. —
‘I’((X—Xo) (v—l)!{(@) Mp,p_¢(7(Xx — x0) )Hﬁﬂ]wb)
of L [Q+(=P)A+(=2P)-- (1+(=(v=1)P) 1>
(i P’ "
P U (Gt s
’Pl/
v(1-P)+0-1 1

B v(1=P)+( 3 —
N (x—m)”“rpf% P (x —xo)" 1},¢)

A 1, as x — o,

1Y
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foreveryv =2,---,n,. Thus, ®(G1(x)), ?) 4 1,as x — oo.
O

6. Fuzzy Asymptotic Stability Results of (1) for Case 4
Taking into account Case 4 of (1), we have that

RLpP Gi(x) = HiGi(x) + Ga(X)G1(x), x > Xo, 63)
DA G1(x) =Gy, (=12, (64)
X=Xo0

where1 < P <2,H; € R"™", Gy € R", and G3 : [0, 0) — R"*" is a continuous matrix.
Theorem 4. Consider the matrix Hy, s.t., |spec(Hy )| # 0, and |arg(spec(Hy))| > 0.57tP. Let the
critical eigenvalues that satisfy |arg(spec(Hy))| = 0.57P have the same geometric and algebraic

multiplicities, and | ;; G3(x)dx be bounded. Thus, the zero solution of (63) and (64) is stable.

Proof. Making use of the Laplace transform, the solution of (63) and (64) can be given by

Gi(x) = (x—x0)" ™Mpp(Hi(x —x0)")G1o+ (x — x0)”*Mppr_1(Hi(x — x0)”)Gn
+Xﬂxf@P*MMpuhuewﬂﬁcﬁ@Guw% (65)

1
= Y (x—x0)" " Mpp_o(Hi(x — x0)7) G
=0

[ e 9P Mp p (1 (x — )7 Ga ()G ().
Xo

In view of the Gronwall inequality (15), we obtain

Z x—x0)" " Mpp_(Hi(x — x0)” )G

oxp ([ =97 Wm0~ 97)Ga(s)s ).

According to the proof of Theorem 3, (x — x0)7 ~“"'"Mp p_,(Hy (x — x0)7), £ = 0,11s

bounded. Thus, there is positive My, s.t. ((X —x0)7 " ™Mp p_o(Hi (x — x0)7), ?) -

—

d(1, i), ¢ =0, 1. Therefore, we have that
My

®(Gi(x), ¢) (66)
- <I>((x —x0)7 " ™Mp p(H1(x — x0)7)Gro,
£ )
2exp (L0 = 507 b (1 x —5)7)Gale)s
X ((X —x0)7*Mpp_1(H1(x — x0)")G11,
£ )
2exp (3 (1 517 Mipp (1 (1~ 5)7)Ga5)s
. 7 3

q>(G10, 2Mj exp (Mo f;} Gg(S)dS)) ®CD(GH' 2M;j exp(My f;g Gs(s)ds) )
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Thus, ®(G1(x), ?) isbounded and then the zero solution of (63) and (64) is stable. [J
Theorem 5. Consider the matrix Hy, s.t. |spec(Hy)| # 0, and |arg(spec(Hy))| > 0.57tP. Let
G3(x) =O0(x —x0)*, k € (=1,1 —="P), for x > xo > 0. Thus, the zero solution of (63) and (64)
is asymptotically stable.

Proof. Based on the proof of Theorem 3, we obtain

o(x, ¢) 67)

> ((X x0)” *G1p, 3(5 )@Cb((X—XO)P_ZGn,;zz)

in which Ly, Ly, are positive s.t. ®((x — xo)Mpp(Hi(x — x0)"), ?) = d(Ly, ?) and
@(Mpp_1(Hy(x — x0)7), ?) = O(Ly, ?) Making use of the proof of Theorem 4, we have

N
¢ < /x:(x — Xx0)"7?Gs(5)Gu(s)ds, 32)

s —
- <G10/ (X XO)P 2G3( )exp <L1 '/XO(S — E)P_ZGB.(E)EIE) ds, 6LiPM0>
: ¢
®<I>(G11/ X —x0)" 72G3(s) exp <L1 /XO(SE)P_2G3(E)dE>dS’ 6L1M1)
_>
X P2 K (P
- <I><G1o /)m (x —x0)" “O(x —s)"ds, 6L, M, exp(L1M)>
—)
P2 " ¢
®¢(G11/ X —Xxo)" "O(x —s)"ds, 6L M; eXP(LlM)>
[(P—-1)T(1+x) K+P—1 ?
- <G10 T(P +x) Ol = x0)™ '6L1M06XP(L1M))

(P-1)T(1+x) k+P— ?
K (GH (P +x) Ol = x0)™", 6L1 M, eXP(LlM))’

in which M > 0. Thus, the zero solution of (63) and (64) is asymptotically stable. [

7. Random Finite-Time Stability Results of (1) for Case 5
Taking into account Case 5 of (1), we have (see [29,38,56-59])
D7y, ( D y+G1><x> —Hzcl(x y) X>0,Y>0, (68)

inwhich G; € R", H € R"", P € (0,1],and U € C([-Y,0],R").
Here, we study the fractional-order system (68) and (69), onI:= [0, 7], T > 0.

Definition 5. The fractional system (68) and (69) is random finite-time stable with respect to
; — — — —

{0,LLY, Ml,Mz} if YA(y) = Ywm () infers that Y () = Ym, (), for every

xel, l,b > 0 and positive M;, i = 1,2, and A := maxye[_y o {U(X), U'(X)}-

In view of Lemma 3, we obtain the following results:
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Gi(x)

(i) cosyp Hyx” is a solution of the fractional-order system (68) and (69), satisfying
cosy p Hx? =1, and (cosy p Hx”) =0, for x € [~),0]. In other words, we have
that

%/ijﬁ (%Dlijr cosy p HY") = —H?cosy p H(x — V)7.
(i) sinyp Hyx” is a solution of the fractional-order systems (68) and (69), satisfying
(X+y)p, and (siny p HY”)' = HM, for x € [-),0]. In other

T(1+P) I(P)
words, we have that

siny p Hx” = H

“DP,,.(“D7,,, siny p HY") = —H?siny » H(x — ¥)".

Applying the variation of parameters technique, the authors in [57,58], introduced the
explicit formula of solution for (68) and (69), as

Theorem 6. The solution of the fractional system (68) and (69) has the following form:

(70)
= (cosy,p HX")U(~Y) +H (siny» H(x — V)" )t (0) + /Oy cosy p H(x — Y —s)7U'(s)ds,
where H is a nonsingular matrix.
Proof. In view of the variation of parameters technique, set
Gi(x) (71)

0
= (cosyp H(x +C)?)A + (siny p H(x + D)”)B + /7y cosy pH(x — Y — )7 @' (s)ds,

inwhichC,D € R, A,B € R"and @ € C([-Y,0],R").

Using Definition 2, cosy » Hx” and siny p Hx? are solutions of (68) and (69); there-
fore, (71) is also a solution of (68) and (69).

We now obtain A, B,C, D and @, s.t. (71) satisfies G1(x) = U(x) and G} (x) = U'(x),
for every x € [—),0]. In other words, for every x € [-),0],

(cosy,p H(x + C)”)A + (siny » H(x + D)”)B (72)
0
+/ cosypH(x =Y — S)pw’(s)ds =U(x),
-y
and

d‘;{(cos,y,p H(x +C)P)A + (siny p H(x + D)7)B (73)

0
+ | cosypHx = - s)%'(s)ds} — U (x).
For x € [~),0], via the definition of cosy p» H(x)”, when s € [-), x], we obtain

~Y<x-Y-s<x<0andcosypH(x—Y —s)” =1,and when s € (x,0], we have
X—YV<x-Y-s<-YandcosypH(x-Y 35" =0.
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Then, we have that

/Oy cosypH(x — Y —5) @ (s)ds (74)

= /j(yw'(s)ds
= o) -o(=D).

Setting (74) in (72) and (73), we obtain

/xy cosypH(x — Y — )7 @' (s)ds

(cosyp H(x + C)P)A + (siny p H(x + D)P)B +o(x)—(-Y)=U(x), (75)

and

;;{(COS)/,P H(x + C)")A+ (sinyp H(x + D)”)B+ @(x) — w(—y)} =u'(x), (76)

for every x € [—),0]. Thus, (75) and (76) hold if we put C = 0,D = =Y, A = U(-D),
B=H'U'(0),and @(x) =U(x). O

Now, we present the random finite-time stability results for (68) and (69) as

Theorem 7. The fractional systems (68) and (69) are random finite-time stable with respect to
{0,1, Y, My, Mo}, if min{Mop (H*x*”), H™' [Mp (HX”) — Map (Hx*")], YMaop (H %) }

X 3My < My.
Proof. In view of Lemma 4, we obtain .
¥o,00(F) = ¥ LRy 4
G1(x) Y - cosy p HYPU (=) 3 H-!siny p H(x—Y)PU'(0) 3
%
Q¥ £
JZycosyp H(x=Y—s)PU'(s)ds* 3
[ v
= Va7 (31 @ Yot i) -vzp (207 (1)
[
03¢ Fyn,p (12x27) (3M1 )
_>
= ¥onin (Mo (H22P) H-1 [Mip (HYP) - Map (H2(2P)], Y (H22P) } 30y ( )
—>
t TM2( lp )/

for every $ > 0. Note that

— —
FeosypH(x-y—5)? (¥) = Yagypa-y—sr) (¥)

Y

ﬁ
TMZP(HZXZP)( v)

fors € [~),0] and ? ~>0. O

8. Conclusions

We presented a new definition of stability which allows us to obtain diverse approx-
imations depending on various special functions that are initially chosen. This allows
us to evaluate maximal stability and minimal error which enable us to obtain a unique
optimal solution of fractional equations. To effectively generalize stability problems and to
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evaluate optimized controllability and stability is a reasonable goal, so in this paper, we
present ideas and theory to tackle this. This concept of stability considers the optimization
of problems which are used in natural sciences and engineering disciplines.
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