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Abstract: The only cases where exact distributions of estimates are known is for samples from
exponential families, and then only for special functions of the parameters. So statistical inference
was traditionally based on the asymptotic normality of estimates. To improve on this we need
the Edgeworth expansion for the distribution of the standardised estimate. This is an expansion in
n~1/2 about the normal distribution, where 7 is typically the sample size. The first few terms of this
expansion were originally given for the special case of a sample mean. In earlier work we derived it
for any standard estimate, hugely expanding its application. We define an estimate @ of an unknown
vector w in RP, as a standard estimate, if E ® — w as n — oo, and for r > 1 the rth-order cumulants of
@ have magnitude 7! ~" and can be expanded in n 1. Here we present a significant extension. We give
the expansion of the distribution of any smooth function of W, say (@) in R7, giving its distribution
to n~5/2. We do this by showing that ¢(), is a standard estimate of t(w). This provides far more
accurate approximations for the distribution of f(®) than its asymptotic normality.

Keywords: Edgeworth expansions; parametric inference; standard estimates; chain rules for cumulant
coefficients

MSC: 60B12; 60B20; 60E05; 62E20; 62F12; 62G86; 62H10

1. Introduction and Summary

Suppose that @ is a standard or Type A estimate of an unknown w in RP with respect to
a given parameter n. That is, E @ — w as n — oo and for v > 1, its rth-order cumulants
have magnitude 7! ~" and can be expanded as

7 =x(@h, ..., a7) =
e

Z n kI for1<iy, ..., i, <p, (1)
=y —

1

where the cumulant coefficients k1~ = kJ! ' do not depend on 7, or at least are bounded as
n — o0. So k} = w'. For example, (1) holds for @ a function of a sample mean. We show
that if t(@) is a smooth function of a standard estimate @, then it is a standard estimate of
t(w). We establish this for unbiased @ in Theorem 2, and for biased @ in Theorem 3. More
generally, we define @ as a Type B estimate if E @ — wasn — oo, and forr > 1,

[o0] . .
= Y n?2p " for1<iy, ..., i <p, by =b]"
d=2r—2

For example, this type arises when considering one-sided confidence regions. If t(®) is a
smooth function of a Type B estimate, then it is a Type B estimate of ¢(w). So for a Type
A estimate, B}i_r is k) =" for d = 2e and 0 for d odd. 7 is typically the sample size or the
minimum sample size if there is more than one sample.

Sections 3 and 4 show that a smooth function of @, say t(), is a standard estimate
of t = t(w). These sections provide the cumulant coefficients of t(@) in terms of those
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of @ and the derivatives of t(w). Section 3 does this for @ unbiased and Section 4 for @
biased. So they can be thought of as chain rules for obtaining the cumulant coefficients for
t(®) from those of @. We use the notation Y;, = O(n~7) to mean that n"7Y}, is bounded as
n — oo. We provide the cumulant coefficients required for Edgeworth expansions of f to
O(n~5/%). Cumulant coefficients up to O(n~!) were given in [1]. Cumulant coefficients up
to O(n~"/2) use the rth derivatives of t(w). Section 5 specialises to univariate t(w) with

examples. Theorem 3 and Corollary 4 rectify 232 = K] 12 and ay on pages 67 and 59 of [2].

Section 2 extends the shorthand bar notation above and gives the foundation theorem.
We now summarise the expressions for Edgeworth expansions of @ for standard and
Type B estimates in terms of the cumulant coefficients k) ~" and b;_r given in [3-5]:

Prob.(Yyy < x) Z n r/ZPr ) P, (X Z n_r/z (2)
where Y = n'/2( —w — bin/2), (by); = b}, Py(x) = Py (x), 3)
Py(x) = By(e(—0/9x)) ®y(x) forr > 1, (4)

j+2
ei(t) = Y byf by .k, /7, Byl = b?ﬂ“, (5)
r=1

@y (x) is the multivariate normal distribution with zero mean and covariance V = (b12),
B:(e) is the complete ordinary Bell polynomial of [6]:

Bi(e) = ey, By(e) = ex + €3, Bs(e) = e3 +2e1en + 63,
By(e) = eq + 2e1e3 + €3 + 3e2ey + ef.

This equation provides the 5th-order Edgeworth expansion for the distribution of Y,
extending it up to O(n~%/2). It is important to note that (5) utilises the tensor summation
convention of implicitly summing iy, ..., i, over their range 1,. .., p. For example,

for al' = a/ax,» and ék = a,’k,

Pi(x) = e1(—9/9x)) @y (x) = i byt (—01)...(=dy) Dy (x)/r!

r=1
= ki (—01) Py (x) + k33 (—01)(—02)(—33) Py (x)/6

for a standard estimate. For a standard estimate, by = 0 in (3) and the cumulant coefficients
needed for Py (x), p,(x) of (2) are k} = w',

forr=0: kj% forr=1:kj, ki3 forr=2: k% k™% (6)
forr=3: k), ky 3, k> forr=4: kP, kj %, ki °. 7)

Therefore, to derive the 5th-order Edgeworth expansion for the distribution of n'/2(t() —
t(w)) for @ a standard estimate, we simply substitute the coefficients in (6) and (7) in the
expression for P;(x), r < 4, with those corresponding to t(®) as provided in Sections 3-5.

Equation (9) of [3] provides Py (x) for the more general case where Py(x) is the distribu-
tion function of Y in RP which depends on n but is asymptotic to @y (x) and has a Type B
expansion. One can choose Py(x) so that the number of terms in each P (x) greatly reduces:
see Withers and Nadarajah (2012d) [7,8]. When @ is lattice, further terms need to be added:
see for example Chapter 5 of [9], [10], and for the density of Yy, p211 of [11], Section 5 of
[12], and Section 6 of [13]. Corollary 1 of [3] gives the tilted Edgeworth expansion for
t(®), sometimes called the saddlepoint approximation, or the small sample expansion as it
is a series in n~! not just n~1/2. It is very useful for the tails of the distribution where
Edgeworth expansions perform poorly. Cumulant coefficients are also needed for bias
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reduction, Bayesian inference, confidence regions and power. See [7,8,14-18]. for examples.
For a historical overview of Edgeworth expansions, refer to Section 7.

In summary, this paper gives high-order expansions for the distribution of a wide
range of estimates, by determining the cumulant coefficients required for any smooth
function of a standard estimate. This approach offers unprecedented accuracy for these
distributions and eliminates the necessity for simulation methods.

2. Foundations

Considering w = (wl,- -+, wP) in RP and an estimate @, assume that E ® — w as

n — oo and that for r > 1, its rth-order cumulants have magnitude nl=". Giveniy,--- i, in
1,2,---,p, we write these cumulants in shorthand as

Kr =kl = (..., ') = O(n' ") as n — co. (8)

For example, if @ = X is the mean of a random sample of size n, then (8) holds since
kl-r = nl’rK(Xil, eeey Xi') where X! is the ith component of X. According to Theorem 1,
Equation (8) is valid if @ is a smooth function of one or more sample means. Let t : R — R1
be a smooth function in a neighbourhood of w with jth component # = t/(w), j=1,--- ,q
and finite partial derivatives

B, =t

slglpee

=0,0;, - e (w), I = t{Z~~~ir fors <r

where 9; = 9/0w'. Superscripts i are reserved for the cumulants of @ and subscripts for
partial derivatives of t(w). Superscripts j are reserved for the components of t(w) and for
the joint cumulants of f = #(@). This bar shorthand allows us to shorten expressions by
suppressing the is and js. We write the cumulants of f = (@) as

RY=T = Khir = (P, ..., ) where f = t(0), I = H(). ©9)

For example, k'2 = k12 and K'? = K/12 imply that the covariance of @ is represented by
(k'2), and the covariance of f is represented by (K'?), both of which scale as O(n~1). Next,
we demonstrate that

K'? = 1K'+ O(n™?) where 1K'? = {5 k'2.

In other words, 1 K/1/2 = t{ }1 t{fz k2, employing the tensor sum convention. The rest of this
section and all proofs can be skipped on a first reading. Theorem 1 provides the cumulants
of f = t(#) when @ is unbiased.

We use the notation Y- /172" to denote summing over all N permutations of jy, ja, - - -
resulting distinct terms.

Theorem 1. Suppose E & = w and Equation (8) holds. Then forr > 1and1 <j;, ..., <4q,
K=" of (9) satisfies

i Z K where (K1 = (K = O(n™%) as n — oo, (10)
e=r—1
and the leading .K' =" are as follows.

okY = 1, that is, oK/t = th1.

_ ) A P
1KY = B,k12 /2, that is, 1K' = t{z!liz Kii2 /9 — Z tgliz Kii2 /2.
i,ip=1

RU=F  B3/6 18, k12638,
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that is,
K=t Kl 64t 2R /8,
K =F K24+ B KRS /12 4 B KI2E34E /48,
K= B 15120 + 1 (R4 /48 + R34 6 /72) + B, R 3K /48
4 E%—S 7{12]_(34]_(56]_(78/384
11212 _ f%f% ElZ K12 T12 kl 3/2 + T12 k12k34 /2

where

2 2 7 a4 P 2
T?; = Zt B T2y = Zt 385 + s, Zt B =0 B +0 0
3K = U2 B+ T2 K%k + T2 k12k34k56 /4

where
up, = Zt 35/6+1,8,/4,
T2 S_Z(tl 4t5/6+t1245t3/4+f%24{§5/2+5%45’?%3/4)/
a1 2 A4 7
T2 = Ztl 5t6/2+zt1235t46+t1—3t4—6+2t135t246/3'
K3 =HEB K + T2 K
where
13 v BE.
Iy = Zt
SR8 = T 43k1 4/ 4 TI-3 FIOR 4 703 R4
where
L 3 6 3
T2 = Zt%zfﬁ/z + Zthﬁzﬁ/z + Zt%2t§4t3/2 + Y Hu BB,
1-3 3
T~ *2f1z35f4t6/2+2t1 stiste +2t135t24t /2 + 3Bt
c1—4 _ 7l 1-4 | pl—4 [1-3[45 | 714 F12F34F56
SR = L T RO 4 Tl 2R
where

12 4 12
1-4 f,BEH, 714 A B AP B
T\ 5 =) HuBEE, T\ 7¢ =) Hisbhl+ ) Hbshfe.
1-4 1-4 71-5 14 FL4g56 | y1-4 1346 | 714 [1-3pasge7
Ny /2+u RL4F%6 4 V14 B1-3F4-6 4 714 F1-3565%
1-4 712734756778
+ T1-4 RSk
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where

where

where

U5 = Zt BEE,
4 24 6
U= = Zﬂzs%fﬁfg/z + Y HeseBBE/2+ 25%2%5’?2{3/2 + Y HsBeBh),
Vit = 2t124t3f3f4/2 + ifl (BE/2+ Zt Bsbate,
T)" ;L— Zt1246t3t5t7/2+Zf1456f2t3t7/2+Zt124t36t5t /2+Zt1z4t56t3t7/2
+ 2t145t26t3t /2+ Z FasBsB2l; + 2t146t25t3t7 + Z Fasf3BE5/2
+ Zt456t17t2 + Zt12t34t56t4/2 + Zt14t25f§6t4 + Ztl4t26t57t3)
e g = Zt12357t4t6t4/2 + Zt1235 Hrfels /2 + Zf1357t24{25§/2
+ Zt123t457t6t4/ 2+ Zt135t247t6t4/ 2+ Zt123t45t37t8 /2+ 2’5135754%7754

+ Zt135f27t48t /2+ Zt13t25t47t68

SRS = 1 B RI5 o T1 fLAR56 y g1-5 FL-3pd—6 y 715 FL-3p45Ee7

+ Tll:85 ]}121234]25612.78

7273 1-5
T}~ ZtlSt BEE, u1 6 ZtM t3t5t6,
1-5 27374715 7l 72 137475 37415
T2 = 2t146t Bfst +Zt14t26t b +Zt Bhib,

1-5 2737475 37475 5
g = 2t1357t Bt /5+2t135t27t4t ts +2t13t25t47t6t8'
SRI6 = F .. F3 176 4 T8 BSR4 (16 L4557 4 T1-¢ 4R
1-6 T1-374—6778 | 1—6 F1-3745767789 | 11—6 F1273475677879,10
+ U8 B3R ORTS 4 TI8 RL3RASE7RS 4 T1-6) RIZRHESORTSF

1-6 273 1-6 _ V7l RBH5T
T, %= 2t16t B, u1 5= 2t15t2t3t4t £,

1-6 23747576 47576 5
T g = 2t1468t2t3t5t fg + 2t146t28t3t RIS + ) Faelssal3h 10
0 120 e 720
+ ) HiesPisBi + ) HabeRsSBE + ) FlyBe e Al E
360

6
+) f t14t56t T3 131,

1-6 U mdss  ed 2 BABH L 2 856
T = Zt13579t2t4t6t8t10 + ) Hasrbolafslstly + ) Hasharolafe 3,

360 360 360
A1 2 3 56 A 2 3 A5® 12 B M50
+ ) Hasbrliofelstlo + ) Fiastafso sl + ) Fiabastasteots o

Note 1. For reference regarding N in YN, refer to page 48 of [19]. It is important to note that
the notation Y- in terms like Tlljs’ only applies for N < r! in the context where they are used.
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For example, writing (abc) = f’{ﬁgfﬁi and recalling that YN only permutes superscripts but leaves
subscripts alone, we have

T =) = %(123) = (123) + (213) + (321) (11)

with N = 3 not 3! since

i(m):(123)+(132)+(213)+(231)+(321 (312) Zsk

say, when multiplied by K'2k3*, as in ,K173, gives Y5_, S, i say, where fork = 1,2,3, S, = S}, .
For example, Tllf Z k12k3% in ,K'=3 above is shorthand for 23 t%;z_i k12k34, For,

Sy = BB k2B = BE2H,EME = S = T] 3 k2% = Sf + S5 + Si.

Proof. This result can be derived by substituting A1 , = Azl i byt = t]ll1 i /!
according to [19]. O

Likewise, one can readily derive 4K12, 4R173 from pages 51-53 of [19]. The tensor
form 212% = f%zl_c%z can be conceptualised as a molecule or molecular structure of 2 atoms, f%z
and 7{%2, connected by the double bond 1,2, represented as i1, 1. »K! is a linear combination
of f} 5 k'73, 2 atoms linked by the triple bond 1,2,3, and secondly k!> 1, k**. The last
expression has the structure of CO,, with 2 identical atoms each linked by a double bond
to a central atom. Just as such bonds are depicted in chemistry to illustrate the structure of
a molecule, they can be very useful here to illustrate the difference in structure of similar
mathematical expressions. S} of Note 1 is a linear molecular form with the 4 single bonds
1,2,3,4 and 4 distinct atoms, f%, f%, f%z, and k2. Other expressions have more complex
structures. Doubling the last term in ,K'? yields T1?, k'?k** = S'2 4 S2! + S where
S12 — k12 f%_3 k34 fﬁ exhibits a linear structure with a double bond between 1 and 2,
followed by two single bonds, 3 and 4. Additionally, S = £, k2 £, k*> forms a square
or rectangle with four single bonds 1,2,4,3 arranged along successive edges of the square.
These pictorial forms are a very useful way to distinguish similar expressions in YN fijz2,

Section 6 provides the ‘'more complicated” terms referred to (but not given) on
P49 of [19] when @ is biased. It can be used for an alternative Proof of Theorem 3 be-
low. From Theorem 1, Edgeworth expansions can be obtained for the distribution and
density of the standardised form of (o),

Yo = n!/2(F—t) = n'2(t(@) — t(w)), (12)

of the form
Prob. Ynt < X 2 Prn PYm Z Prn (13)

where Py, (x), prn(x) are O(n’r/z). The K'~" of Theorem 1 needed for Py, (x), pyu(x) are
as follows.

For Pon(x), pOn(x) : OKl = iﬂ, 1K12. For Pln(x),pln(x) : 1K1, 2K173.

For Py, (x), pZn(x) : 2K12, 3K1_4. For P3n(x), pgn(x) : zKl, 3K1_3, 4K1_5.
For Py, (x), pan(x) : 3K'72, 4K17%, 5K176.
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3. Cumulant Coefficients for t(@) when E & = w
We now show thatforv > 1and 1 < jj, ..., jr < g, the cumulant coefficient Ki-r
from Equation (10) can be expanded as

o
By =) R (14)

e=r—1

R~ — ki — (il .

Substituting {k' ="} with {K'~"} on the right-hand side of (4), denoted as RHS (4), provides
the Edgeworth expansion for Y;; as in Equation (12). If 7r is a product of cumulants as
in Equation (1), let (7). denote the coefficient of n~¢ in the expansion of 7r. For example,,
(El—r)e = I_ng_r,

(R12K34); = FI2E34 4 RI2k34 ) (K1203%), = K123 + FL2R34 4 k12634

(K13745) , = K135 + K135,

(K2K345°0) 4 = K2RPHRS0 + k12R34E30 + kZRARSS. (15)

Now, let us provide the elements of the expansion (14) when E @ = w.

Theorem 2. Assume that @ is an unbiased estimate of w satisfying Equation (1) and t(w) has
finite derivatives. In this case, Equation (14) holds with bounded cumulant coefficients

R =K = Y R (16)
k=r—1

K== ,4K],

K}ﬂ‘ - rfllz}ir + rK}#,

and so forth. The leading coefficients needed for Py(x), py(x) of (4) for the distribution of Y of (12)
are given in the T, U, V notation of Theorem 1 as follows.

Ktl) =11 thatis, Kj1 — th = th( ). 0K1 = 0fore> 1.
For Py(x) : Ki?2 = 1Ki?2 = B2 k12, that is, I(JU2 = t]}lt]fzk’llz
For P(x) : K} = 1K} = B,k12/2, that is, K} =t} | k1" /2,
Kl -3 _ Kl -3 _ f1t2t3 kl =34 T1—3 };121234
For Py(x) : K3? = 1R3* + oR3? for 1K) = (B k7,
2K =T25 k012 + T2 KPR /2,
RS = SRS = (0B Bt T RS T R
For () KA = 1R} + R4 for 1K) = 272, oK = 1 F32/6
+ B, K2k34/8, that is, I<]21 = t]1 k1112/2+ - k111213 /64 1 k1112k1314 /8,

Wpipis iy —iy
3
RI2 = 3 WKL for oK = BE B2 4+ T3 (B2,
k=2
1-3 1-3 714 1-3 71-37. 45 1-3 712734756

SR = T3 R4 2+ TR 2 B3k + T2 RIPRARSS,
RIS = RIS = BRSSO Ul R
718 FLORRY 4TI FIZRMSORTS,

3
For Py(x) : K3 = Y (K32 for 1K3? = FiB3 k¥?

k=1
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2K12 = T1153 I_Cé_S/z + T1134 (E12E34)3/2,
KPP = U, k5 + {25 Ky 3k + T2 kR0 /4,
4
Ryt =Y kK Hfor 5Ky = (- ) Ry + T8 (K%,
k=3
+ T8 (K12K345), (R = Ul 2k, 5 /24 Ui ¢ kA 4R3°
I RR T RS 4 T RPRROER,
RIS = 5RO = 1 (R0 4 T R + UL BT + TS E R
—6 71-374—67 —6 T1-37457677 —6 7127347567.7879,10
UL FRE T + THS FORPRTRD -+ Tif, FERARIROR
. 4 _
Also, for K}, K}, K} above, E V1 (@) = Y n=°K} + O(n°) where

e=0

3
Ky=) WKsfor 1R3=1,K52/2, oKs =H s K7°/6 + 0 4 6%K3"/4,

k=1
B =B R4 B RORS /12 4 B RIRRES /48,
4
Ki = Z kK}LfOT‘ 1Ki = f%zl_c}f/z,
k=1

2R} = B kL3 /6+ iy (kPR + K32K3Y) /8,

KL =B K4/0a 4+ 1 (RVORE 4 RI3R95) 12+ B KI2R34EE /16,

WK =F ki °/120+ 5 _¢ (kK30 /48 + Ky 3ky ¢ /72) + Fi_, k3 kRS /48
+ FL_g KI2RHMESORT8 /384,

Proof. Substituting (1) into K!~" of Theorem 1 gives (K!~" = Y2, ;Kl="n~¢ say. So by
(10), (14) and (16) hold. (K=" = (K7 is (V' of [2]. O

Note 2. (11) made explicit the 3 terms needed in Tll;f for Py (x) of Theorem 2. Similarly P (x)
needs the 12 terms

T 5 = §(1234) = (1234) + (1243) + (2413) + (2431) + (3124) + (3142)

+ (3241) + (3412) + (4123) + (4132) + (4231) + (4321)

where (abed) = B, FSESFL. Tt also needs the 4 + 12 terms Tll:g = A + B where

4
A =Y(1234) = (1234) + (2134) + (3124) + (4123) for (abed) = Fi355E5FE,

B= f:(1234) = (1234) + (1423) + (1432) + (1324) + (2134) + (2314) + (2413)
+ (3124) + (3214) + (3412) + (4213) + (4312) for (abcd) = E,BsFSE.

4. Cumulant Coefficients for t(@) when E & # w

We proceed by removing the assumption of @ being unbiased. We utilise K} " from
Theorem 2, and the shorthand f,,,, = 0;, f where again d; = d/ ow'. A significant distinction
arises compared to Theorem 2: in that case, k) =" was treated as an algebraic expression.
However, now we must consider each of them as a function of w. Thus, we assume that the
distribution of W is determined by w. This assumption is necessary to derive higher order
confidence intervals for t(w) when g = 1: see [20]. It is demonstrated that for Y,; from
Equation (12), P,(x), p2(x) require the first derivatives k12 = 9;k1> where 9; = 9/9w’,
P3(x), p3(x) need the 1st derivatives k5, and so on. The derivatives of Kl =" are computed
using Leibniz’s rule for the derivatives of a product. For example,
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K3 = (ABK?) s = Zt1t23 ) k12 + BB ki3 for Zt1t23 = 35 + f1f33,
Ris = (Foki*)a/2 = H_3k° /2 + ki’ /2,

2
AR AR \i2 AR 27
Ki%y = =Y [(Flafs + HE_ki* + ABsk1% + HaBki3] + F ki,
R
(ABB K )4 = (058) 4k + BBB k>, (HBB)4 = HBB, + OB,H + F,BE,
1-3 712734 1-3_ 12734 71-3 (1234
(T174 ky“kq )5 = I ys kl ky + T4 (kl ky ).5,

3
1-3 A4 28,7128, 1 28 (712734 234 | 7127
T 705 = Y (Fashhfs + Fabsty + Habhys), (Ki7KY)5 = 5K + Pk s

Theorem 3. Let @ in RP be a biased standard estimate of w satisfying (1) where k. =" depend on
w. Then t = t(®) in RY is a standard estimate of t(w):

e

(e}
k(B, ..., 7)) = Z nea " forr>1,1<jy, ..., j» <gq, (17)
=r—1
+

whereal ™ =K+ D}, DT =0, (18)

for R~ of Theorem 2, and the other D} =" = Dl needed for P (x), pr(x) of (4) for Yy of (12)
are as follows.

For Py(x): DI2=0=al2 = K2 = K* = BB k2.
For Py(x) : D1 = Rk} = a} = Ki + D} = Rk} + F,k1%/2,
For P(x) : D3* = Ki3 k3 = [(F135 + FB53) ki + BB ki3] K

= a2 = B k2 + TEs ky2/2+ T2, k2kt /2

+[(Fs5 + HBs) ki + 1B ki3] K.

For P3(x) : Dy =K, +Kj, Ki; =Kizk, Kj, = Fky + Fokiki /2 =

ah = Bkb + (k2 + KR + B3K) /2 + B4 (kKL 3 /6 + Kk /2) + B_ k12K /8,
DI8 =K1k = (ABBE )4k + (T}—j 12121234) 125

For Py(x): D3* = K33 + Ki3, K33 = K35 K, Ki5 = K13 k3 /2 + Ki%, Kk,
DI = RI4K5, DI~ 6 -0

For E t/1(d) to O(n™>) we also need Dj = D},j = 3,4, given by

D3 =Ry + Kip + Ko, Kop = Kok,
KZl—(tl 3k23+t23k )/2+(f1 4k2 4+t2 4k )/6+t1 5k23k45/8+t2 5k23k /4,
Kip = Ryak; + Ki.12kik7 /2,

2K1 1=1F_ 3k1 + tzgkl 1 2K1 12 =F_ 4k1 + th 4k1 1+ t34k1 127

12

KO,B = fll_C% + E12]E%]E% + 1?1_3]_(%1_{%7{%/6;

Dy = K31 + Kpp + Ky 3+ Kog, K31 = KB.lH,

Kg 1=HfH_ 3]_%3/2 + 1?23]_(%31 /2 +F_ 41_(2_4/6 +6H_ 47%_14/6 + £ 57(23]245/4
+ BoskPRY /2 + (F_sk3 ° + B_sk3,°) /24 + (Fi_eks *K3° + a6k 17
+Fy_gk3™ 4k1_1)/12 + KBED (F_7kY /48 + F2_7kY, /16),
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Rap = Kok + Rookiki /2,
KZ.l = E1,3]_C53/2 + {2312%?1 /2+ iT1,4I_(%74/6 + fz,4k%34/6 + {1,512%3]_(%5/8 + 52_512%37(%_51 /4,

2 2
2Kop = F_ak3t + Y Bhoskh + Bakan, + (osky 2+ Y _Fi3_sk3,° + F-5k515) /3
12 12

2
+ B0/ 4+ ) Fa-6k /2 + Bs (5K + K'Kih,) /2,
12

2
K3 = Kyaks + Ki.12kiK3 + K1aoskiK3KS /6, 2Ky = Fi_3k3° + Faskay), 2Ki1p = Fi_aky® + ) Fiaakis + Fakiao,

12

3
2Ky103 = F1_skP + Y (Fiauski + F3_skip) + Faskisy s,

KO,4 = fll_QlL + by (E%]_Cg + ]_C%]_(%/Z) + {1,3]2%]2%’23/2 + 51,41_(%1_(%1_(?7(%/24

Proof. K!~"(w) = K" and K} ~"(w) = K!~" are functions of w. By (14)
—_ © —_
Klfr(wn) = 2 n*ngfr(wn) forw, = E® =w+d,,

e=r—1
where by (1), d, has i;th component d}, = di} =Y, n—¢kl. Consider the Taylor series
expansion
— — — — © —
KMt dy) = K o K"y Ky dudi /20 o= L R say.
e=

Substituting into (14) gives (17) with

1 1 c—r+1 1
a =) K.,= ) K. (19)
k+e=c e=0
Also K,lar = K]l*’ so that (18) holds with
B c—r+1
DI = R, (20)
e=1

O

An alternative proof can be obtained using Section 6. This corrects C, = a. given in
Appendix B of [21]. Ref. [2] uses K]' /" = K;*’ for ﬁ;*r but the expression for K4 on
p67, lines 2-3 omitted the term A?A;?kllj,kk’{. That is, the last term in d%z of Theorem 3 was
omitted. Similarly the results on p67 for r = 3,4 are only true when the @ is unbiased or
the cumulant coefficients of @ do not depend on w, as they omit the derivatives of k!~
The examples given there are not affected as ®@ is unbiased. Nor are the nonparametric
examples of [22] and [23] affected, as the empirical distribution is an unbiased estimate of a
distribution. Likewise @ is unbiased for the examples of [20]. M-estimates are biased but

the results of [16] are not affected as only K}2, KJ!, KJV2? are given. No changes are needed
for [3,4,17,24]. Applications to non-parametric and parametric confidence intervals were
given in [22] and [20,23] and to ellipsoidal confidence regions and power in [4] and [25].
For nonparametric problems, F(x) and its empirical distribution F,(x) play the role of w
and @; since it is unbiased, no corrections are needed. For g =1, a,; = ﬁ}*’ were given
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for parametric and non-parametric problems in [22] and [2,23] and expressions for the
classic Edgeworth expansion of Y, in terms of a,; were given in [14]. Forg > 1, ﬁ}fr for
parametric problems were given in [2], and can be obtained easily from a,; given when
g = 1 for 1-sample and multi-sample non-parametric problems in [22] and [23] and for
semi-parametric problems in [16,24]. All these results can be extended to samples with
independent non-identically distributed residuals, as done in [26] Section 6 and [17]. The
extension to matrix @ just needs a slight change in notation. For example, in [17], @ can
be viewed as a function of the mean of n independent complex random matrices, although
n is actually the number of transmitters or receivers. Extensions to dependent random
variables are also possible: see [27] .

5. Cumulant Coefficients for Univariate #(@)

Now suppose that § = 1. Let Ky, be the coefficient of ¢ in K'~". We write K" as
Kie. For E @ = w, (14), (16) and (20) become

£ e
K=wx(f)= ) n K, 2L Ke= Y, (K (21)
e=r—1 k=r—1
r r+1
Kr,r—l = r—lKr,r—L Ky = Z K, Kr,r+1 = Z kKr,r+1r
k=r—1 k=r—1

For E @ # w, (17)—(19) become

00 c—r+1
K = Kr(t) = Z nieare/ r>1; are = Kye + Dye, Dye = 2 Kr,c—e,e :
e=1

e=r—1

2
Dyy-1=0, Dy =Ky -1, Dypi1 = Z Kirt1-eer -+
e=1

Here, we give the cumulant coefficients K;, needed for the Edgeworth expansion of Yy
of (12) for P;(x), r < 4. We do this when E @ = w in Corollary 1 and when E @ # w in
Corollaries 3 and 4. To show more clearly the expressions we need in molecular form, we
introduce the following ions, (expressions with unpaired suffixes),

W&l _p127 - 7 2 _ 7 7237 934 _ 7317 724 5 ;3
s =5 =ki"h, il = F1p5° = bkl XU = Ky Fioktt, Zip = 1357,

171 = I_{%zl/_lz = }_(14174, X = {1252, S_l = 7(%2{2, yl = 7(%73{2{3, Yl = {12]72. (22)

where a suffix does not have a match then summation does not occur. For example, the RHS
of 5t = k%zfz sums over i but not i7. Let v, g1, co2, €21, €22, €23, €11, * -, €1,10, €31, * ,€3,11 be
the 27 functions of w given on p4234-4235 of [20], labelled there as Iz(é), L (é), R (égg).
By Corollaries 1 and 3 below, those needed for P,(x), r < 2, of (4), that is, for the Edgeworth

expansion of Y of (12) to O(n_3/ 2), are the following molecules.
For Py(x) : v = Ky = F1ki2E,.
For Py (x), Kyy @ cop = Fioki?; for Dyy : cqp = Fiki;
forKzp : ¢ = fﬁzfgl_c%_:; = flyl, (3 =35
For P> (x),Kp ¢ c11 = Bky’F, = B S', c15 = Biky b, c19 = X2,
c110 =5 h3ky = Zp3kT;
for Doy @ c1p = K1k BaFs, c16 = Kiily = KiE.10kPE3;
i3, c310 = U1ki2Mlp, C311 = 5°5°5°F

for Kyz : c31 = Fibafsfaky ™, c36 = 7 1-3-
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Each molecule can be written as a shape. For example, c9 is a rectangle. We now give the
molecules Lj, L;j needed for the Edgeworth expansion to O(n=>%/?), that is, for P,(x) for
r = 3,4. Note that P, (x) needs the derivatives of t(w) up to order r + 1.

For P5(x), Kia : Ly = Fiokd?, Ly = F1_3ky 3, Ly = B4 kI°K3%;

for Kas : Ly = Bl ky 2, Ls = 115", Lo = Fishfaky %, Ly = 212 ky O,

Ly = §'tus kK, Lyz = Fioky 2113, Ly = FakPlsky 7t

Lg; = k1?H_45°5%, Lyp = k{*F1_37°, Lgs = X>*z34,

Lgs = X! 1E45k1 fs1, a sexagon,

forKsy: Lo =F - Fs ki, Lig = mbbls ki 4, Liy = 7Yy = 7' Fioif?,

Ly = 7 53575, L1 = bk} iz, Ling = Vo707,

Ligg =5+ 5 Fi_y, Ligp = §'5°F_30°, L33 = 0'F1p0” = 7' %y.

For Py(x),Kos : Ly = FiFy k3%, L1s = Fioky °F3, L1y = S'F 3k,

Ligy = Z1oky?, Liz1 = X**hos. Lig1 = Fi_gky *fs, Ligy = Fioky *Fas, Lion = k3 2 _45%,

Loy = k1?F1_ak3 Fs, Loz = F1_3k3 *Fask3', Lioa = Fioky 2F3_s5kT°,

Lot = ki*k3*H 55", Logp = k{*F1_4 X, Loos = K1*F1_ak3 Fa_6h3",

Laos = Fi35 (k1*K3*K3°) Foue;

for Ky : Loy = F1 -+ - By ki, Logy = Yok3°Hs, Logp = ilifaf3 K2,

Loz = §'2155% Loy = 525%, Logp = ik i,

Los = Fiok} °Eshats, Logy = Fibaky *_53°, Logy = Fifafaks 4y 6k3°,

Logz = 51212}),_4?3@, Logy = 5152E§_4(535f46)1256,

Loy = hky 3Fa_ 437, Loza = 1ok} 2Ys, Logs = Fiky 2 (Faafss) k3 OF,

Logi = biky *F55'8°, Logp = 'k H 47", Loss = fi1ky 223,

Logs = F1ky *Fy_40*, Logs = Yok F3_ski’, Loge = Fiokhy “Z345",

Losy = Frky >Faski®Zs3, Lags = 713X,

Loso = Fioky °%3, Logio = irky > (Fasfas) k1%,

Login = Fiky 2 (Faakt® F36ky) Fs7, Loor = ki°F1_55°5°5°, Logp = ki°F1_40°5%,

Lyos = X**F3_65°5°, Loos = k111 _3k} E4—65°5°, Loos = ki* (213224 )KY ",

Loos = k12F1_3ky %4, Laoy = k1% Fi3s0°Fos K57,

Loos = X" 45k°Z61, Lago = X *E45X5;

for Kes : Lag =Fi - Fe ki ©, La1 = imbksfafsky >, Ly = FibaFsky “lus,

Laz = bbbk} *2455°, Loy = ks *hsky, Lags = Fibaksky %y

Ly = F_37'5°7°, Lap = Y2E27453ﬂ4, Lags = Y1k1?Ya, Las = 7°F3_65%5°5°,

flﬂzkl 2345 Lsss = 7'F120%, Lass = Y4k fs_75%%7,
A5

L35y

Lass = iyiptisky °, Lase = hitlaky °%3, Lasy = F3_57°0
_1 347 Hz6
L3gr =5 - N Fi_s, Lagp = 51525 tl 4?} L3gz =5 Zl3k1 t4_65°5°,
15 =2 s 734+ = -
Lags = 0'2190°, Lags = 5 Z13k1 %4, Lage = 1k %o
These ¢;s and L; do not use derivatives of I_cg_r, the cumulant coefficients of @.

Corollary 1. Suppose that W is an unbiased standard estimate of w in RP with respect to n, and
that ¢ = 1. Then the cumulants of | = t(®) can be expanded as (21) with bounded cumulant
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coefficients Kye. The leading coefficients needed for P, (x) of (4) for the distribution of Yps of (12) are
as follows.

K10 =f= i’(ZU) For P()(.X) : K21 =0 = {1 I_(%z i_'z.
For Py(x) : Ki1 = c2/2, Kszp = cp1 + 3c3.

2
For Py(x) : Ko = ) (K, 1Ko = 11, 2Kop = c15 + €19/2 + ¢110,

k=1
Ky3 = c31 +12c36 + 12C3,10 + 4:C3,11.
2
For P3(x) : Kip =) Kz, 1K1 = L1/2, 2Kip = Lr/6+ L3/8;
k=1
3
Kzz = Z «Kss, 2Ksz = Ly + 6Ls, 3K33 = 3Lg/2 + 3Ly + Lg where (23)
k=2
4
L7 = Ly 4+3L7/243 Y Ly, Lg =3Lg1/2+ 6Lgy + 3Ls3 + 3Lga, (24)
k=3
Ksy = Lo +20L19 + 15L11 + 30Lq» + Lq3 where (25)
Li2 = Li21 +2L12p +2L123, L13 = L131 +60(L132 + L133).
3 2
For Py(x) : Koz = ) Ko, 1Koz = L1a, 2Kos = L1s + Y Ligk + Li71,
k=1 k=1
20 4
3Ko3 = Lig1 /34 Liga/4+ ) Ly where Lig = L191/3+ Y Lok,
k=19 k=2
Log = Log1/4 + Loo2/2 + Lyo3 /4 + Los/6;
4 2
Ky =) 1Kus, 3Kag = Loy +12 ') Log + 12Lo31 + 24Lo41 + 12Logp.
k=3 k=1
3
4Kyg =205+ 2L+ 6 Z Loz + Log + Log where
k=1
Lo = 3Lae1 + Loz + 6L263 + 3L26a,
11
Log = Y cxLogk, c1 = 6,03 = 24,08 = 4, ¢, = 12 otherwise,
k=1

9
Log = Y hiLook, h1 = 2,hy = he = 12,hy = 24,hg = 3,y = 6 otherwise;
k=1

Kegs = Lao 4+ 30L31 + 60vL3p 4+ 60L33 + 90L34 + 60L35 + 6L3¢ for
L33 = L331 + 3L332 + 2L333, L34 = L3g1 + 4L34p + Laas,

7
Lss = Y dilask, d1 =1, dp =d3 =dy =6,dy =3, ds =2, de = 12,
k=1

6
Lss = ) exLagk, e1 =1, e =20, e3 =15, e7 = 6, ¢4 = e5 = €6 = 60.
k=1

Also, Ky3 = Fpk? /2 + B3k} 3 /6 + F1_y (K'2k34)3/8 + 14k} /24
+F1_sks Ok /12 4+ 16 k12K34K3° /48 where (ab); = a1by + azby,

Kig = Fioki? /2 + Fosky 2 /6 + F_g [(K12K3*)4/8 + k) */24) + F1_5 [k} °/120
+ (K173k*)4/12] + i 6 [(K1RP*%0) 4 /48 + k3 *K30 /48 + k) k3¢ /72)]
oy KL ORISRE /48 1T, g KRRRIORTS /384

where the 1st(ab)y = aybs + axby + azby,

the 2nd (ab)y = ayby + asby,

and (abc)y = arbycy + a1bacy + axbicy.
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ur

Proof. Since g = 1, YN becomes N. We write T/, Ul 7 Vlljsr as T} .

1-s’"1-s’ Vlr—s' By
Theorem 2 we need the following.

e
Y 4/3 = hahly, T{_3/2 = fals, T{_4/2 = b 3ly + Fizf,

T} 5/12 = Fiybolsls, T /4 = Fiastafafs + 3F13basiats,

Ty 5/3 = Fioalats + 3Fiasbafs /2 + 3Fiofauls + 3Fiabasts,

T{_¢ = 3Fi3stafe /2 + 6F1_3kuste + 3F135Faafs + FisFostas,

T15—6/20 = F15trt3841s, Uf_6/15 = F14brt5151s,

T} _7/30 = Fuehobafst; + 2Fiabastatst; + 2Fatsebatst7,

T} g = Fissrhatalsls + 60F135Fartatels + 60F13Fastartels. Uy = Fi_3ta/3 + Fiofsa/4,
TP 5 = Fi_afs/3 + Fioasts /2 + Fioafss + Fuasfas /2,

TP ¢ = Fi_sfe + 2Fioastae + F1—3Fs—g + 2F135F246 /3,

T} 5/12 = Fiyboksts, U} /4 = Fplsiyfs,

U{_¢/2 = 3bostshale + 2Fi5EaFsEs + 6F1aFastate + 3FisEas ks,

Vit ¢/6 = Fioalstste + Fiafaafste + Flabastsle,

T{_; = 6Fiaetalsty + 3Fiusealaly + 24F04ta6tsEr + 12F104F56E5E

+ 12F145t26E3t7 4 12F146E235E7 + 24F146E25E3E7 + 4146571013

+ 12t456t17t0t3 + 12kt t56t7 + 12814t05E36E7 + 12114t0615713,

T{_g = 2Fiossytakels + 12F0astarfols + 6F13s7Faafels

+ 6b103ts7t6ts + 6F135t047E6ts + 12F103 45 67Es + 24F135E04 6718

+ 15t135ta79tatststio + 60F135ta7taotststio + 60t135t27ts0tstst1o + 60F13E25t47E60 8 10
For P(x) : T2 , Ki?k3* = 3co3.

For Py(x) : TE 5 ki 2/2=c15, To_ 4 ki2k3* /2 = c19/2 + c1.10;

Kg3 = c31 + g1 + g2 for g1 = T _5 ks 2kP° = 123,

92 = Ti ¢ kIK34K3® = desqq + 12¢3 10.

For P3(x) : pKs3 = Ly +3LE, L = T} /3 (K*2k3%)5 = Fiabafy (K12K%4)3 = 2Ls,
Le=T} 4/3ki™*, Ly =T /3k 3k,

Ly = ' k) %8, Lg = T3 kI2K3AR3S,

Ls1 = Fiosstale k12K R3S, Leo = Fi_skaste k1°k7*K3°, Las = Fisshaals kiky k70,
Lgy = Fisbastag K12k K30,

Ksq is given by (25) with Lig = T}_¢/20 k3 *k3®, Ly = U7 /15Ky k56,

Lip = T15_7/30 E%_BI_C%SI_(?, Lip1 = fzf3f€%_3fl46§4§6, Lz = T15—8 ]_(%21_{%4]_(?61218

2
For Py(x) : 2Koz = L15 + L1g + L17/2, L1s = Te_3/2k3 3, Lig = Y Ligks
k=1
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2
Ligy = §°Fr_4k3", L1y = T7_4/2 (K'26*)3 Z 17k, Li72 = Ly,

20
5Kz = Y Lt Lig = Uj 4k * = Lisi /3+ Lisn /4,
k=18

4
Lio=T; 5Kk = Y Liok/gcforg1 =3, =83 =81 =1,
k=1

Liop = F3ky F1o4sky>, Loz = Fa1oky *Fasky?, Lios = kPP hasiky ko,
Log = T? JA2k34K30 /4 = Lygy /4 + Loga /2 + Loga /4 + Laga /6,

Loy = ki*Fioss (K3*RY°) Fae-

sKas = Loy +12Lyy +4L, L = T /4 (K2K34%°)y = Lys + 3Los,
Loy = T} 5/12 (K1 73Ky = (L221 + Lo2) by (15),

Loz = Fizshafafe (K12K4K0), Z Loz by (15), Logx = Las1- By (15),
=1

L24 = f13f25f4f6 (E12R34]‘<56)4 = 214241 + L242;
4K44 = 2L25 —+ 2L26 + 6L27 + L28 + L29/ L25 = kliSUil 5/4

Los = Ut /2 k34K, Loy = Vi o /6 k) 3k 6 = Z Lok,

Log = T4 KL 3KI5KE7, Lo = T4 KI2EMEEORTS,

for Kgs : Lap = TP, ki >k /30, Lap = US_, kiK% /600,

Ly = TP g ki *k30k78 /60, Loy = US_g k3 3k376k38 /90,

Las = TP o kK 3kPREE /60, Lag = TP KIZESAROKT3R,10 /6.
O

Example 1. Suppose that E ® = w and t(w) is linear in w. Then Ky, = 0 for e > 1. Forr < 4,
the K;; needed for P,(x) of (4) for the distribution of Yyt of (12) are as follows.

K10 =f= ( ) For PQ(X) : K21 = v. For Pl(x) : K32 = (C21-

For Py(x) : Koo = 1K = c11, K4z = c31.
For P3(x) : = 2Ks3 = Ly, Ksq4 = Lo.
For Py(x) : = 1Ky3 = L14, Kyg = 3Ky4 = Loy, Kes = L3o.

For, 14, ol, X1,Z1p are 0, as are most Cijs Ly and 7Ky, 3K33, 2Kp3, 3K23, 4Kyg.
Soforr=0,--- 4, for P,(x) we only need to calculate these 3 c;j and 5 L.

Let G, be a gamma random variable with known mean . Its rth cumulant is (r —1)!7.
For a standard exponential random variable ¢ = 1.

Example 2. Linear combinations of scale parameters. Suppose that E © = w and t(w) is
linear, the components of W are independent, and for 1 < i < p, @'/w' has a distribution with
known rth cumulant n'~"«,;. Then, K;e = 0 for e # r — 1 and

P
Kr,rfl = Z tfiKi‘i(wl ’
i=1

For example, if &' /w' is a gamma random variable with mean v, then x,; = (r —1)!1.
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For s < r and any function f"r, set Y, , f* 7 =Y, _; f* " summed over their
range. In Example 3 their range is 1, 2; for example in L1p3, } 1 t,zilﬁl = Zi‘(l:l t i, 7l. In
Example 4 their range is 1, - - , k; for example ity = Y, F1o5% = Zi’;:l F1p52.

Example 3. Suppose that fi ~ N (u,V/n) and V/V = X} /f = Gy /7y are independent, where

v = f/2 has magnitude n. Set v = y/n. Then k(1) = udy + Vn=16,0,%,(V) = kyn'~" for
ky = (r — 1)!W'="V", and cross-cumulants of ® are zero. Take p = 2, wy = p, wo = V. Then by
Corollary 1, K, are given in terms of

st =11V, $% = toky, uy = tartaV + tantoky, up = tiptaV + tootoks,

ol = Vuq, v = kour,
as follows.

For Py(x) : Ky =0 = t3V + t5ky /2.
2

For Py(x) : cop = ta1 + taoka, co1 = thks, co3 = Y tii(s)2.
i=1

For Py(x) : c11 =0, c15 = tootoks, c19 = (t11V)! + (taoka)? + 2t12 Vo,
31 = thka, c36 = thksua, c310 = UiV +uj ko,

2

' 2 2
a1 = Y (st +3 ) (s1)2s? 112 where Y fio = fi2 + for.
i=1 2 2

For P3(x): Ly = Ly = Ls =0, Lp = topoks,

Ly = t1111V? + 2t 1122 Vo + £2000K3,

L = toathks, Ly1 = zookaty, Lyp = y*(tan1V + tanks), Lys = taoksun,
L7y = (VB + kot )kato, Let = (Viaiisi, + kot 2iyisi, )55,

Lgp = Y (Vtany, +katos )0"t, Lsg = V2ta1z11 + 2Vkat.1oz10 + K3toozn,
1

Loy = Y k'K kPP Fobsts,
13

Ly = t5ks, Lig = uatdks, L11 = (¥*)*t20, L1 = 1> Zt.zilizglgz,
12

2 2 1 A27 733
Lioy = toksus, Lips = y* ) t0i,0', Liz = ) §'5°F_3ky 3.
1 1-3

Similarly, one can write down the Ls needed for Py(x).

Example 4. Suppose that we have the summary statistics from k samples of size n; from normal
populations with means and variances p;, Vi, 1 < i < k. Take p = 2k, w; = y;, Wi =
Vi, 1 <i < k. So we have p independent statistics, fi; ~ N (u;, V;/n;) and Vi ~ ViX;, /fi =
ViGy,/vi, 1 < i < kwhere «y; = f;/2 has magnitude n, the total sample size. Set

vi =i/n, Aj=ni/n, T =Vi/A
Then x: (i) = Hid + Vi(Ain) 6,2, %: (Vi) = kyi(Ain)'™" for kyi = (r — 1)t} ™", and cross-

cumulants of W are zero. Suppose that t(w) only depends on yq, - - -, uy, as in Example 3.3 of [2].
(The notation there is slightly different). Then

_ T = _ T =2 =1 - = = I =3
=hHT, i =Y b8, 0' =Ty, Zip = ) _F1-35,
2 3
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and by Corollary 1, the coefficients needed are as follows.
For Po(x) : Ky =v= 1?1571 = ZE%TL
1

) I _ S R, R
For Py(x): cop =Y _FiiTi, c1 =0, co3 =5 F1p5” = ) _ETiFnhD,
1 12

) o R e R I
For Py(x), Koo : c11 =c¢15 =0, c19 = Y_FoTiTa, c110 = 3_ A TiFinT;
12 12

. _ _ _ =2 = _ =1:2-37
ForKyz: c31 =36 =0, 310 = Y #3111, C311 = ) §' 575 F_3.
1 1-3

For P3(x), Ko = L3/6 =) _F1mTiTh/64as L1 = Ly = 0;
12
forKsg: Ly=Ls=Le=L; =0, Ly = Y 71F11235°5, Lgp = Y TiF1277,
1-3 12
Lgz = ) FoTihzn = Y Thlhnhsls, Les = ) Tkl
12 1-3 1-3

forKsg: Ly =0for 10 < k < 14.

For Py(x), Koz : Lix = 0fori=15,16,18,19, Li7; = }_H,TiD,
12

- -7 -5 R - e -7 T
Loor = ) TiToF112035, Loz = ), TiTaTabiiosfos, Loos = ) TiToTsFi1ofas3,
1-3 1-3 1-3

Loos = Y TiTaTstiys;

1-3
Kus = Lagas L = 0 fork = 21,(22,k), (23,1), (24, k), 25, (26, k), (27,k), (28,k),
Lot = Y 01555 F1osa, Loox = Y T1F11230°5°, Loz = Y 11575 Fiosa,

1-4 1-3 1-4

R . S -7 T
Logs = Y TiTob112F234575%, Loos = ) TiZioTo, Loos = ) TiTaTabi1nkos,

-4 12 1-3
L PR - _ V"7 3 R
Loy = Y Ti¥iobip for T1p = Y F1030°, Loog = Y TiTaTst1ofo3Za1,
12 3 1-3

Lygg = Y TiThT3Tafinbasfaalar;
1-4

Kgs = 6L3g, as the other components of Kes are 0. Also,

Kiz =) TiTT3H12033/48, Kis = ) TiTaT3Taf11223344 /384
1-3 1—4

Corollary 2. Set Y, = v~ 2Y,; = (n/0)Y2(t(0) — t(w)). Then
Prob.(Y, < x) = Y n""2Ppy(x)
r=0

where Pyy(x) is Pr(x) of Corollary 1 with K. replaced by K./ v'/2,

Proof. This is straightforward. O

Looking at Ky, c4p, v, 32, i3 as functions of w, we denote their partial derivatives with
respect to W3 = w,i3, say. by K3, Cap.3, 0.3, 5"_23, il3,3 and similarly for higher derivatives. We
shall give the ones we need in Lemma 1. When constructing confidence regions, one needs
to assume that the distribution of @ is determined by w. So far, we have not assumed this.
For @ biased, we need

Corollary 3. Let @ in RP be a biased standard estimate of w satisfying (1) where k}~" may depend
on w. Then for q = 1, = t(®) is a standard estimate of t = t(w) in R:
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[ee]
wr(F) = Z n"aye forr > 1, where aye = Kye + Dye, Dy p—1 =0, (26)
e=r—1

and the other Dy, needed for Pj(x) of (4) for the distribution of Yyt of (12) are as follows.

For Py(x) : Dy =0 = ay = Ky = v = Fiki°E.

For Py(x) : D11 = co1 = a11 = co1 + c02/2, az2 = Ko = cp1 + 3c23,

For Py(x) : Dy =33 k3 = c1p + 2c16, a3 = Kys.

For P3(x) : Dyp = Ki1,1 + Koo, Ki1 = Kins K, Kyop = Fik; + KiF10k7 /2,

Das = Rp.u K, a5y = Koy
For Py(x) : D3 = Kap1 + Ka12, Koo = Ron3 k3, Koip = 0.3 k3 /2 + 0,34 K3K7,
Dy = Kyz5 k3, ags = Kes.

Proof. This follows from Theorem 3. D, = ZE;ZH Ky .y where Ky, is the coefficient of
n~¢ in the expansion of K, (E @) about K. [

Forr < s,and any X, s, let YN . X, ¢ sums over all N permutations of iy, - - - , is giving
distinct terms. For example,

3
Z fiatoss = Fiatoss + Frafoss + Fistozs.
375

The derivatives of v = Kp; and K;, needed for Corollary 3 are given by

Lemma 1.

2
03 =203+ T3, O34 = Y Osak, where Ty = FHk}3, (27)
k=0

T340 = 2234 + 2F31k1%Foy, D341 = 251(12%_23524 + k% hs), G302 = 521-{%.234.

3 3
03-5= ) O3 sk for D3—s0 = 2k§> Y Feabous + B3¢, (28)
k=0 35

3 3
U351 = 2325({112%.235245 + Enki4Es), G3-5 = 2k 325 Faskids, O3-53 = Fibki% s,
2K11.3 = coo.3 = k{*F1—3 + Fiokl, Kagus = c21.4 + 3c234

for ca1.a = 3Yy + Bibabskh ), cosa = 5152 F104 + 2bs, by = 4yl = %4 + k410
Rops = c11.3 + c153 + €19.3/2 + €110 for ci1.3 = 2Fn St + Bib ki,

3

; 71-37 ; 71-37 r 71-37
C15.4 = ) Cisk4, C1514 = tiaky “f3, c1504 = Bk “ta_4, c1534 = tik; 4 to3,
k=1

;7317427 73 7 7417
€19.5 = 2€1915 + 2C1925, C1915 = t34ky k17t125, C1905 = k5t34ky tho,
3
7237 A _ 7237 (7157 4 7.715
€1,004 = Y C110k4s C1,1014 = kP F1-38y = kP _3(kp Fss 4 F5k1y),
k=1

€1,1024 = 517_(%351—4/ €1,1034 = 5! 51—37(‘;',34,

Ras.5 = 315 + 12c36.5 + 1203 10,5 + 43115 for c31.5 = 4fs1 ks *hafsly

+ B R kist, cses = 2851k hily + bk + 755" + Ya(kisE + k{'Es).
3,103 = Mki%ily + 20'8%F 5 + 20 5pki% 4 2%, k1% Eps,

€3,11.5 = 35_15_2{1_35__5 = 3§1§2f1_3f4l_€%f15 + 3§1§2f1_3l_{§'4f45. (29)
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Proof. For example, substitute if3,5 = F3_55* + Faak{LFy + Faak{!Fi5 into 365 = 2F1 Fasky Vi3 +
t tz(k%__53123 + k;_3ﬂ3_5). O
So now we can write D;, needed for Corollary 3 in molecular form:

Corollary 4. Assume that the conditions of Corollary 3 hold. Then Dy, and K, ; given there satisfy

Doy = c12 +2¢16 = a2 = c11 + €15 + €19/2 + ¢1,10 + ¢12 + 2¢16.

For Dy, Ky11 = (B3 K12 4+ T K1) /2.

Ds3 = (357°F34 + FifaFsky ,° + 35 5% F104 + 60 F1g + 6i11K14F2 KT

For Dy, Kap1 = (28318 + By K3%)IG + (Fuaky °Fas + By °Faa + Frky  Fa3 )k}

+ (Fios X2 4+ K E3gk 1) KS + (K230, 3 (KFsy + F5k12,) + 5'K33F 4 + 5 F_3k3, )k

Ko1p = (2013 + B F2ki3) K5 /2 + [4F k1% F0y + 8 Fi3g + Fa1k12Eny

+ Bibki,] KK

Dyy = (A5 kY *Babafy + 1 - - By ki 2* + 24851k} PRty + 12F Bkl 5°

+ 1273 (F3_55" + Fagk(sFy + Faakiis)] K3 + 12[20°F,_45* + 2F k15

+ 281 K12 Eo3 + 12i11 K15 100) kS + 12(513%F_3E, 5% + 5182 sk3tEs) K.
Proof. a1, were given for i < 4 by Theorem 3. Corollaries 5.3, 5.4 agree with a;1, a3, 422, 443
given for Pr(x),r < 2 on p59 of [2] except that Dy, in a; was overlooked. [

Fisher and Cornish (1960) [28] showed the accuracy available using a few terms for the
quantile expansions for the chi-square (or gamma), Student’s f, and F distributions. Similar
results can be given for the accuracy of their Edgeworth expansions in approximating their
distributions.

6. An Extension to Theorem 1

Here we remove the condition in Theorem 1 that E @ = w and give the extra terms
referred to but not given on p49 of [19]. We use K!~" of Theorem 1, and the shorthand
fom = i, f where 9; = 9/dw;. Suppose that for r > 1, the rth-order cumulants of (8) can be
expanded as

r=x(@h,..., ") = Y k'"Tfor1<iy, ..., i <p, (30)

e=r—1
where k!™7 = O(n™°), and that @ — w as n — oo, so that ok' = @'.

There is a key difference with Theorem 1: there, (k!~" was treated as an algebraic expression.
But now we must view each of them as a function of w. So, we assume that the distribution of
W is determined by w.

The derivatives of ,K!~" of Theorem 1 are given by Leibniz’s rule for the derivatives
of a product:

1K = (RBK?) 5 = (B +H1,) K2 + AB K,

1KY = (Fok'?)3/2 = 1 _5k'2/2 + k5 /2,

717273 71-3 717213\ 71-3 | 7123 £1-3 (717273 71253 | 712 3 7l 273

(BBE k") = (B k7 + BB k7, (BhE)a = il + il + Fabl,

1-3 p12734 1-3y _ 712f34 | T1-3 ({12734
(T174 kK ok™) s = (T174).5 koky™ + I (k°k) 5,

3
1-3 A 2B A2 B, 70 28\ (112734 712734 | 712734
(Ty23).s = Y (HssBoly + FaB3sty + FaBls), (K126 5 = kKgk>* + K12k
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Theorem 4. Let @ in RY be a biased standard estimate of w satisfying (30). Then f = t(®) in RP
is a standard estimate of t = t(w):

[ee]
k(B,..., 0 = Z A forr>1,1<j, ..., <q, (31)
e=r—1
where (a7 = K"+ DV, ,_ D' =0, (32)

and the other DY~ = ,DiJr needed for Ppy(x) of (13) for the distribution of Yy of (12) are as follows.

For Py(x): 1D =0= a'? = |R¥? = (K2 = B2 1k'?],

For Py(x): D! = Pk = ja! = f (K + 1, 1k12/2,

For Py(x): oD = K2 1k = al> = BB k2 + T{2,; ok 73/2

+ T2y (K20 /24 (R3B + Flg) 1K + BB (K3 E.

For P3(x): oD' = 1Ki 4 K3, 1K} = (1KY) 5 1K,

oK} = H okt + 8, (k11K /2 =

2al = B ok + B, (k' + (kK2 + (R E3) /2

+ B (k36 + 1Kk /2) + B, K2 kM8,

3D'7% = oKk = (BBE ok )4 1K+ (T{2] 171K 5 1.
For Py(x) : 3D = ,K{* + 1K5%, oKi? = oK5 1K,

1K3? = (K% ok /24 1KY 1Kk, 4DVt = 5K 1R°, sD'T0 =0

Proof. K'"(w) = K" and K'""(w) = .K'~" are functions of w. By (10),

RY"(wy) = Y WK (wy) forw, = Ed = w+dy,, (33)
=7 —

e 1

where by (30), d, has i; th component d, = 4l = Y22, ek!. Consider the Taylor series
expansion

kKl_r(ZU + dn) = kKl_r + kK.ll—r dd,l1 + kK_llar d_gzd% J21 4 = Z ng—r
e=0

say. Substituting into (10) gives (31) with

. 1 c—r+1 1
=Y K=Y KT
k+e=c e=0
Also (K}™" = {K'~" so that (32) holds with
51 ot 51 ol 1 2 o1
D= Z c—eKeir: DT = rflKlirr r+1D = Z r+1feKe7r/ T
e=1 e=1

The Edgeworth expansion (13) holds if { ,K'~"} are replaced by { .a'~"}.

7. Discussion

Approximations to the distributions of estimates is of vital importance in statistical
inference. Asymptotic normality uses just the first term of the Edgeworth expansion. That
approximation can be greatly improved with further terms. When the estimate is a sample
mean, basic results were given by [29] and [30] with major advances by [31-33], Corollary
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20.4 of [9], and many others. For an application to the jackknife, see [34]. See [35] for some
historical references. For an application to the bootstrap, see [26]. For an application to
transport, see [36]. For an application to medical research, see [27]. For an application to
econometrics, see [37]. For an extension to order stats for a finite population, see [38]. For
a first-order application to inference on networks, see [39]. For more historical references
and a recent application to option and derivative pricing, see [40].

Extensions to stationary sequences were given by [41,42] For a derivation of the
Edgeworth expansion for a sample mean from the Gram-Charlier expansion, see [5,43] for
the univariate and vector cases. These showed for the first time that the coefficients in these
expansions were Bell polynomials in the cumulants.

The first extension from a sample mean for univariate estimates was by [28,44] They
assumed that the rth cumulant of the estimate was x, (%) = nl="k, where k, is a constant.
However, in applications they assumed that @ was a Type A estimate, and collected terms.
It was not until [14] that explicit results were given a univariate Type A estimate. Major
advances were made in [3]. This gave explicit results for the terms in the Edgeworth
expansion of a Type A or B estimate using Bell polynomials, as outlined in Section 1. It also
allowed for expansions about asymptotically normal random variables. The advantage of
this approach in greatly reducing the number of terms in each P,(x) was illustrated in [7].

For univariate estimates, Cornish and Fisher (1937) [44] also showed how to invert
the Edgeworth expansion to obtain an expansion for the distribution quantiles. This was
extended to Type A estimates in [14]. For extensions to transformations of multivariate
estimates, like t(®) = (@ — w)' V(@ — w), see [4,45,46]. An application to the amplitude
and phase of the mean of a complex sample is given in [47].

Turning now to smooth functions of a Type A estimate, the first univariate results were
given by [2] for parametric problems and [22] for nonparametric problems . These built
on a deep result of [19]. This is why if @ is a Type A (or B) estimate of w, then a smooth
function of @, say (@), is a Type A (or B) estimate of ¢(w).

The extension from a vector to a matrix estimate is just a matter of relabelling: a single
sum becomes a double sum. The first examples of this we know of are in [17,24]. The
extension to a complex scalar or vector or matrix w was given in these same papers. The
first of these three papers applied it to the multi-tone problem in electrical engineering,
and the other papers to channel capacity problems where @ is a weighted mean of complex
matrix random variables, and # is no longer a sample size, but the number of transmitters
or receivers.

A different type of extension can be obtained by identifying a sample mean @ = X
from a distribution F(x) with its empirical distribution F,,(x), and ¢(w) with T(F), a smooth
functional of F(x), such as the bivariate correlation. T(F,) is a Type A estimate of T(F), and
its cumulant coefficient can be read off those of t(). In this way one obtains the Edgeworth
expansion for n'/2(T(F,) — T(F)). See [15] and its references for one or more weighted
samples. An extension to samples from a linear process was given by [18] .

A caveat on the use of an Edgeworth expansion is that including more terms makes it
more inaccurate in the tails. This is where the tilted expansions, also known as saddlepoint,
or small sample expansions, become essential. Results for the density of Y, for a sample
mean, were given in Section 5 of [12] and Section 6 of [13]. For a discussion and more
references on tilting, mainly for a sample mean, see [11]. Ref. [3] shows how the cumulant
coefficients given in this paper can be used to obtain the tilted expansion for the distribution
and density of any Type A estimate.

8. Conclusions

Let @ represent a Type A estimate of an unknown parameter w belonging to R”.
Its cumulant coefficients, as defined by (1), serve as the foundational elements for the
Edgeworth expansion (2) as a series /2, where # is typically the sample size.

The necessary coefficients for the rth term, P;(x), are provided in (6) and (7). Consider
a smooth function ¢(#) mapping to R7, which in turn is regarded as a Type A estimate of
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t(w) in R7. Consider a smooth function ¢(®) mapping to R7, which in turn is regarded as
a Type A estimate of t(w) mapping to RY. This paper presents the cumulant coefficients
for t(®) in terms of those of @ and the derivatives of @. Substituting these coefficients into
(2) yields the Edgeworth expansion of n!/2(t(#) — t(w)) up to n=>/2,

The tilted Edgeworth expansion for @, crucial for tail accuracy, was previously delin-
eated in [3] in terms of its cumulant coefficients. By incorporating those of () as presented
here, we derive the tilted Edgeworth expansion for ¢().

In many practical statistical estimation problems, simulations serve as a favored
method for approximating distributions. However, their limitation lies in their inability to
comprehensively represent the entire parametric landscape.

We have showcased some applications in electrical engineering. For instance, ref. [17]
offered numerical comparisons of the initial three approximations to channel capacity for
multiple arrays with multiple frequencies and delay spread. Given p = 1, this permitted
an expansion for the percentile. There exist myriad other potential applications across
electrical engineering and allied fields.

Lastly, we outline potential future research avenues. Chain rules applied to (@) can
yield the cumulant coefficients of its Studentised form, paving the way for expansions in
the coverage probability of confidence regions and enhancements in their accuracy. These
coefficients find applications in bias reduction, Bayesian inference, confidence regions, and
power analysis. While the Edgeworth expansion can sometimes yield negative values
in distribution tails, tilted expansions circumvent this issue. Alternatively, selecting y in
R? such that V= Prob.(Yyy < x +n~1/2y) — ®y(x) is O(n~1) offers another approach.
For p > 1 the diversity of y choices allows for potential reductions to V,,, = O(n~3/2) or
smaller. Introducing n~!/2y replacements such as ymn) = n=1/2yy +n~1y, further expands
the range of options.
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Appendix A. Some Comments on the References

Here, we give some comments and corrections to some of our papers.
Withers (1982) [2]: To the expression for app on p59 add c1p + 2c14 where

C1p = 12 <01> - titjkl]],kk]i’ Cl16 — Ill (00> = tlkll]t]kk]{

This correction does not effect applications in which @ is unbiased, as in [2,23].

In the expression on p60 for (a27)2, I (%g) should be ¢3¢ = I3 (%8)

On p61, 4 lines before Table 1, replace n/2)" ! by n/2)! .

On p67, add to Kgb , t‘l?t]-b kllj kkI{ . For r = 3,4 see Section 4.

On p68 in (A3), replace ("+?) by ("}?). Changing to the simpler notation of [15], denote
the expressions for I (%), o I301 (ggg) and 13(33), s 131(55%) given on pages 58-59 by 02 =

i
V = V(w) = tik]t;, co1,cop, 21, and c23, €11, €15, €19, €110, €31, €36, €310, €3,11, €22, €12, C14, €17,
€32, C34, C35, €38, C39. SO, the expressions on pages 59-60 become
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a1 = co1 +co2/2, az = ca1 + 3c23,
a» =c11 +c15+c19/2+ 1,10 + 12 + 2c16 by Corollary 3,
ag3 = c31 + 12¢36 + 12¢3 10 + 43,11,
(a11)1 = 0 Y(cor +coa/2) — 03 (cn/2+ ¢23), (a32)2 = 0 >(co1 — Bcon — 3c23),
3 . 3 .
(a2)2 =) V'A; (ag3)a = )V 'B; for
i—1 i—2
Ay =c11 —c14/2+c15 — 2017 —c19/2, Az = —(co1 +co2/2)(c22 + 2¢23)
— 32 — C34 + €35 — 2¢3¢ — 438 + 2039 — 20310 — 2€311,
Az =7(can +2c3)? /4, By = c31 — 6032 — 6¢34 + 335 — 24c3s — 120310 — 8311,
B3 = 6(c22 4 2c23) (—c1 + 3c22 + 3c23).

We now illustrate how the results on p.60 were obtained. Let ¢, denote ¢;s when () is
replaced by its Studentised form ¢ o) (@). Then

(a22)2 = ¢}y + 5+ €19/ 2+ €] 19 + €1p + 2¢7g, (A1)
The first few derivatives of ¢ (o) (@) at w, and of V(w), are
to; = V_l/ztl‘, tO.ij = V_1/2ti]‘ — V‘3/2(tiV]- + t]'Vi)/Z,
3 3
toije =V 2t — VIR Y (Vi + Vihe) /24 3V 2 Y KV VL /4,
ijk ijk
V; = 2tk Pty + Ktaty, and
2
Vij = 2tijaki by + 241,k + 2 Z iak{ity + k§'taty, where
ij
2 3
Zaib]- = Cll’b]' + Cljbi, Zﬂi]‘bk = ai]'bk + aikbj + a]'kbl' for llij S ﬂ]'i.
ij ijk
S !/ —1 ! —1 _ -2
0 C11 = % C11, €15 = %4 C15 % Ml,
o=Vl —2V2My + V3 (VM, + M3) /2,
10 =V te110 — V2 (Mscop + 2My + VMs + 2Me) /2 + 3V 3 (VMo + 2M3) /4,
o =Vley, g = Vleye — VE(VMy 4 co1M3) /2, where
My = titjklzjkvk = c32 + 2c36, Mo = Vik]Vj = c35 + 439 + 43 10,
Ms = tz‘kngj = Cop + 2093 = € say, My = tikiljtjkkklvl = 39 + 2310,
Ms = k{Vi; = 2¢110 + 2c19 + €14 + 4c17,
Me = tikiljvjkk]{ltl = 2¢310 + 2c3,11 + C34 + 4c38,
My = kllv, =c1p + 2c16 =
clg =V c10 +2V 2 (dess — cz10) + V265,/2,
3 .
Cll,lO = 2 Vﬁlbi for b1 = —C14/2 - 2C17 — (19, b3 = 35%2/2,
i—1

1

by = —C2pc2/2 — c34 + 3c35/4 — 4czg + 2c39 — €310 — 2€3,11-

Substitution into (A1) yields (a3),. The other a); = (a,;); given on p.60 are obtained
similarly.
Withers (1984) [14]:
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p393: In the 5-line expression for f4(x, L), replace (x*> — x) /30 by (x® — 3x) /30, and
+2473) /7776 by +2473x) /7776.

p394: In (3.4), replace (x> —1)/2, by (x> —1)/6,

p394: In line 2 of Section 4, ‘of Section 2’ should be ‘of Section 3.

The following corrigendum for a printer’s error appeared in Withers, C.S. J. R. Stat.
Soc. B, 1986, 48, p258:

The expression —I5(252x> — 1688x> + 1511x) /7776 should be added to the last line on
p393.

That also gives g5(v) and g4(y) for the last line on p393.

Withers (1987) [21]:

p2371: (2.4): Y, n7IC; need not converge. We only require an asymptotic expansion.
The same is true for (3.2) p2375.

p2371, 3rd to last paragraph: Replace ‘Appendix C, which also” with ‘Appendix D.
Appendix C’

p2372, Example 2.2, line 2: Replace t2/(0) with (/) (9), the 2 derivative of ¢(6). In line
3 and in Example 3.1, (y); = y(y —1)--- (y —j + 1).

p2377 line 2: Replace (1.2) with (2.4)

p2377 line 3: Replace /N| with /N

p2377 line 9: Replace ‘Section 2" with ‘Section 3" Since E; = 0, C; of Example 3.2 p2376 is
unaffected. p2378: These expression for C; are correct if 0 is unbiased. In that case, the terms
on p2378 with a 1 in the top line are 0 so that C; has only m; terms where m; =1, my = 3,
mz = 6, my = 12. However, if 0 is biased, then these expression for C; did not allow for
contributions from replacing 8 by E 8 in the cumulant coefficients k?l”'”’ of (3.2). These
are corrected in Withers, C.S. and Nadarajah, S. (Submitted), Bias-reduced estimates for
parametric problems.

p2379 Appendix D: Add at start: For p = 1 see (3.4) of
Withers, C.S. and Nadarajah, S., Journal of Multivariate Analysis, 2013, 118, 138-147.

Withers (1988) [23]:

p729: In the 10th line from the bottom, replace “their range 1- - - p” with “their range
1--- k"

p732 line 9: Ti'ij should be T,‘?llgjjj.

p734: In the expression for ki in the 5th to last line, replace He, with He, /6.

p737: In line 11, “Sections 1 and 2 of Withers (1983a)” should read “Sections 1 and 2 of
Withers (1983b)”. '

p741: In the 4th equation from the bottom, at the end of the line, replace [1/] Té, with
[1]] 1 T ’

Withers and Nadarajah (2008) [15]:

p743 para 2, line 4: Replace "about zero.” gith ‘about zero when G puts mass 1 at x.”

p754, p756: Replace w;,, with w;,,. Different samples can have different weights.

p754, 2nd-to-last line: The first term on RHS, c17 /2, should be ¢13.

p755, line 6: There is a typesetting error in the first of the 2 lines for a29. Replace the
first line with

a0 =0 (c11 — c1p — c14/2 + 15 — 2017 — €19/2) — 0 *[(co1 + c02/2) (€22 + 2003) + €32
p756: The 3rd and 4th lines after (8), should be
) = [ Te(@)dFa(x),
(1122, = | [ Te (8) Te (852) T (3)Fe, (1) (1),
Withers and Nadarajah (2009) [43]:

p272. Line 3: Convergence of 5(t) is not needed, since B,y is a finite sum.
xr on LHS(1.1) should be k,.
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p273 last paragraph: Also, f(x)/¢(x) is only meaningful if X is dimension-free.
p275. (2.8) is correct, but since By = B, = 0, (2.8) can also be written as

/f2/¢ 1+ Y B/k.
k=3

In the 5th line of Section 3, insert after B, («), ‘at a1 = ap = 0.
The first line of (3.1) should read

By =Y (Bye *:1<k<r/3)

(3.2) can be written Ks = s — 2[s/3] where [x] is the integral part of x.
p276: In the expression for Byg, Bjg1s should be Byg ;.
p277: In the 2nd-to-last line, bgy should be Bg;.
p278: In the expression for by, the first term should be doubled. In the expression for
b5, bgz should be Bgz.
Withers and Nadarajah (2010a) [16]:
p3: In the 5th- and 6th-to-last lines, replace = n 2K, + O(n~2) with = n~1K,, +
O(n=?)
p5: 2 lines above Theorem 2.2, replace “third moments” with “third central moments”
p7, lines 2-3: delete “and its Studentised version”
p7, lines 3—4: delete “or n~ V2 (B, — Ba) fur'*”
p7, line 7-10: delete from “So, a one-sided” to “by o(n=1/2);
p9: Move “Set ¢’ = ---m = p + 1. on the last 2 lines of p9 and 1st line of p10 to just
before “Set” on p9 line 9.
p10, lines 14-15: replace “g;; where” by “g;;.” and move the rest of the sentence,
gij = - 8N.j- to the line after (6.1) p9, preceded by the word “Set”
Withers and Nadarajah (2010b) [3]:
p1129, line 7: replace b (Y;,) by b (Y)
To the 9th-to-last line we can add

“

Ps(t, B) = e3(t) + er(t)ea(t) +e1 () /6,
From p1130 line 6 to the end of Section 5: Replace s with p, the dimension of 6.
p1130 line 7 is clearer, we replace line 8 with

K
for PE,B) (¥) =9k, -+~ 9, P(n) (), Ok = 9/ Iy,

p1130 line 9: Replace H, . ((y) with H, ¢ (y, V)

p1130, 5th- and 6th-to-last lines: for example K}l'"l’ = k](.ll"'lr) (t)=0
d; = d/9dt;.

p1132: A note on Corollary 3.2. For the duality of I(x) and ko(t) see p176 of McCullagh,
P., Tensor methods in statistics. Chapman and Hall, London, 1987.

p1133: In line 14, replace H, ;5 (6, V;) with H, (0, V})

Withers and Nadarajah (2014a) [5]:

p81: In (2.14), replace J,(x) and J,(x) with J,(x)/r! and J/(x)/r!.

p81: The 2nd line after (2.15) should read

-+ 9; ki(t) where

Z‘1. ir]

F) = [,y 0 V)00 (@)

The next line is correct:

H@ = [, (30 0r(0)5

p82: In (2.20), replace J;(y1, y2) with J;(y1,y2) /1!
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p85: In Withers, C.S. and Nadarajah, S. (2009), replace 'via’ with “in terms of".

Withers and Nadarajah (2014b) [7]:
p676. Multiply RHS of (1.13) by n'/2. That is, replace it by

Yike = (n/s2x0)" (8 — s16), ] > 0,K > 1.

p699: In the editing of the original paper of 64 pages down to 21 pages, some details had to

be removed. Here, are some more details for Theorem 1.2 after (1.24)

V,=0if]>1, Vo = AH, if K > 2,
V3 = AssHy + AsgHy if | > 2, V4 = AgH3 + AgsHs if K > 3,

Vs = AsgHy + AssHy + A7gHg if | > 3,

V¢ = AysHz + AggHs + AgyH7 if K > 4.

Vie=0ifr <3fore="h,f,g, Vi = [4*]oe(4?),

Vse = [45]o e(45) + [34]1 e(34),

Vee =) {[mloe(r) : m=5%46,4%} + Y {[n]1 e(m) : = 42,35} + [3%]5 (3%),

where the e(71), [77]; needed for e, (x), 1 < r < 6, are as follows.

h(ij--+) = Higjj..1 50 that h(1122 - ) = Hyz gpy 4.1

Forr=4: [4%]o = A%/2!, h(4®) = Hy,
f(4%) = H; — HyH3, g(4%) = H; — 2H3H, + H H3.

Forr =5: [45]g = Ay3Asy, h(45) = Hg,
f(45) = Hg — HiH3H,, g(45) = Hg — H3Hs — H3 + HyH3H,,

[34); = As3Ay3, h(34) = Hy, f(34) = Hg — HiH,Hs,
¢(34) = Hg — HyHy — H> + H HyHs.

Forr =6: [5%]g = A2,/2!, h(5*) = H,
f(5%) = Hy — HyH3, §(5%) = Hy — 2H,Hs + H H3,

[46]g = A3 Aes, h(46) = Ho,
f(46) = Hy — H{H3Hs, g(46) = Hy — H3Hg — HyHs + H; H3Hs,

[4%)o = A33/3!, h(4®) = Hy, f(4%) = Hyy — 3HH3Hy — HoH3 + 3H{ H3,
¢(4%) = Hyy — 3H3Hg — 3H4Hy + 3HH3Hy + 3H3Hs + 6 H3 H>

—9H H3H, — HyHj; + 3H?H3,

[4%]y = AsgAu,

[35]1 = As3Ass, f(35) = H; — HiHyHy, §(35) = Hy — H3Hy — HyHs,

[3%]2 = A%;/2!, f(3%) = Hs — H1H3, §(3%) = Hs — 2H,Hs + H, H3.

p702 Section 2: In the 3rd equation of Theorem 1, In T'(u) should be In T'(m).

Disregard Table 3.
Withers and Nadarajah (2015) [8]:
In (22) and the formulas for dy, - - - , dg that follow, replace d, by

dy = rd, = c;(x)/(r — 1)L

p704:
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As stated this gives ¢, = ¢,(x) = r!d,. For example,

) =4ay, C3 = Za% +ap, ¢4 = S!a% + 7aqap + as,
c5 = 4!a‘11 =+ 46a%a2 + 1lajas + 711% + ay,
6 = 5!a? =+ 326ai’a2 =+ 101a%a3 + 12711111% + 16a1a4 4 25a5a3 + as.

In the first reference, [1], replace J.J. Alfredo with J.A. Jimenez.
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