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Abstract: The only cases where exact distributions of estimates are known is for samples from
exponential families, and then only for special functions of the parameters. So statistical inference
was traditionally based on the asymptotic normality of estimates. To improve on this we need
the Edgeworth expansion for the distribution of the standardised estimate. This is an expansion in
n−1/2 about the normal distribution, where n is typically the sample size. The first few terms of this
expansion were originally given for the special case of a sample mean. In earlier work we derived it
for any standard estimate, hugely expanding its application. We define an estimate ŵ of an unknown
vector w in Rp, as a standard estimate, if E ŵ → w as n → ∞, and for r ≥ 1 the rth-order cumulants of
ŵ have magnitude n1−r and can be expanded in n−1. Here we present a significant extension. We give
the expansion of the distribution of any smooth function of ŵ, say t(ŵ) in Rq, giving its distribution
to n−5/2. We do this by showing that t(ŵ), is a standard estimate of t(w). This provides far more
accurate approximations for the distribution of t(ŵ) than its asymptotic normality.

Keywords: Edgeworth expansions; parametric inference; standard estimates; chain rules for cumulant
coefficients

MSC: 60B12; 60B20; 60E05; 62E20; 62F12; 62G86; 62H10

1. Introduction and Summary

Suppose that ŵ is a standard or Type A estimate of an unknown w in Rp with respect to
a given parameter n. That is, E ŵ → w as n → ∞ and for r ≥ 1, its rth-order cumulants
have magnitude n1−r and can be expanded as

k̄1−r = κ(ŵi1 , . . . , ŵir ) =
∞

∑
e=r−1

n−e k̄1−r
e for 1 ≤ i1, . . . , ir ≤ p, (1)

where the cumulant coefficients k̄1−r
e = kj1−jr

e do not depend on n, or at least are bounded as
n → ∞. So k̄1

0 = wi1 . For example, (1) holds for ŵ a function of a sample mean. We show
that if t(ŵ) is a smooth function of a standard estimate ŵ, then it is a standard estimate of
t(w). We establish this for unbiased ŵ in Theorem 2, and for biased ŵ in Theorem 3. More
generally, we define ŵ as a Type B estimate if E ŵ → w as n → ∞, and for r ≥ 1,

k̄1−r =
∞

∑
d=2r−2

n−d/2 b̄1−r
d for 1 ≤ i1, . . . , ir ≤ p, b̄1−r

d = bi1 ...ir
d .

For example, this type arises when considering one-sided confidence regions. If t(ŵ) is a
smooth function of a Type B estimate, then it is a Type B estimate of t(w). So for a Type
A estimate, b̄1−r

d is k̄1−r
e for d = 2e and 0 for d odd. n is typically the sample size or the

minimum sample size if there is more than one sample.
Sections 3 and 4 show that a smooth function of ŵ, say t(ŵ), is a standard estimate

of t = t(w). These sections provide the cumulant coefficients of t(ŵ) in terms of those
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of ŵ and the derivatives of t(w). Section 3 does this for ŵ unbiased and Section 4 for ŵ
biased. So they can be thought of as chain rules for obtaining the cumulant coefficients for
t(ŵ) from those of ŵ. We use the notation Yn = O(n−γ) to mean that nγYn is bounded as
n → ∞. We provide the cumulant coefficients required for Edgeworth expansions of t̂ to
O(n−5/2). Cumulant coefficients up to O(n−1) were given in [1]. Cumulant coefficients up
to O(n−r/2) use the rth derivatives of t(w). Section 5 specialises to univariate t(w) with
examples. Theorem 3 and Corollary 4 rectify ā12

2 = K j1 j2
2 and a22 on pages 67 and 59 of [2].

Section 2 extends the shorthand bar notation above and gives the foundation theorem.
We now summarise the expressions for Edgeworth expansions of ŵ for standard and

Type B estimates in terms of the cumulant coefficients k̄1−r
e and b̄1−r

d given in [3–5]:

Prob.(Ynw ≤ x) =
∞

∑
r=0

n−r/2Pr(x), pYnw(x) =
∞

∑
r=0

n−r/2 pr(x), (2)

where Ynw = n1/2(ŵ − w − b1n−1/2), (b1)i = bi
1, P0(x) = ΦV(x), (3)

Pr(x) = B̃r(e(−∂/∂x)) ΦV(x) for r ≥ 1, (4)

ej(t) =
j+2

∑
r=1

b̄1...r
r+j ti1 . . . tir /r!, b̄1...r

r+j = bi1 ...ir
r+j , (5)

ΦV(x) is the multivariate normal distribution with zero mean and covariance V = (b̄12
2 ),

B̃r(e) is the complete ordinary Bell polynomial of [6]:

B̃1(e) = e1, B̃2(e) = e2 + e2
1, B̃3(e) = e3 + 2e1e2 + e3

1,

B̃4(e) = e4 + 2e1e3 + e2
2 + 3e2

1e2 + e4
1.

This equation provides the 5th-order Edgeworth expansion for the distribution of Ynw,
extending it up to O(n−5/2). It is important to note that (5) utilises the tensor summation
convention of implicitly summing i1, . . . , ir over their range 1, . . . , p. For example,

for ∂i = ∂/∂xi and ∂̄k = ∂ik ,

P1(x) = e1(−∂/∂x)) ΦV(x) =
3

∑
r=1

b̄1...r
r+1 (−∂̄1) . . . (−∂̄r) ΦV(x)/r!

= k̄1
1 (−∂̄1) ΦV(x) + k̄1−3

2 (−∂̄1)(−∂̄2)(−∂̄3) ΦV(x)/6

for a standard estimate. For a standard estimate, b1 = 0 in (3) and the cumulant coefficients
needed for Pr(x), pr(x) of (2) are k̄1

0 = wi1 ,

for r = 0 : k̄12
1 ; for r = 1 : k̄1

1, k̄1−3
2 ; for r = 2 : k̄12

2 , k̄1−4
3 ; (6)

for r = 3 : k̄1
2, k̄1−3

3 , k̄1−5
4 ; for r = 4 : k̄12

3 , k̄1−4
4 , k̄1−6

5 . (7)

Therefore, to derive the 5th-order Edgeworth expansion for the distribution of n1/2(t(ŵ)−
t(w)) for ŵ a standard estimate, we simply substitute the coefficients in (6) and (7) in the
expression for Pr(x), r ≤ 4, with those corresponding to t(ŵ) as provided in Sections 3–5.

Equation (9) of [3] provides Pr(x) for the more general case where P0(x) is the distribu-
tion function of Y in Rp which depends on n but is asymptotic to ΦV(x) and has a Type B
expansion. One can choose P0(x) so that the number of terms in each Pr(x) greatly reduces:
see Withers and Nadarajah (2012d) [7,8]. When ŵ is lattice, further terms need to be added:
see for example Chapter 5 of [9], [10], and for the density of Ynw, p211 of [11], Section 5 of
[12], and Section 6 of [13]. Corollary 1 of [3] gives the tilted Edgeworth expansion for
t(ŵ), sometimes called the saddlepoint approximation, or the small sample expansion as it
is a series in n−1 not just n−1/2. It is very useful for the tails of the distribution where
Edgeworth expansions perform poorly. Cumulant coefficients are also needed for bias
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reduction, Bayesian inference, confidence regions and power. See [7,8,14–18]. for examples.
For a historical overview of Edgeworth expansions, refer to Section 7.

In summary, this paper gives high-order expansions for the distribution of a wide
range of estimates, by determining the cumulant coefficients required for any smooth
function of a standard estimate. This approach offers unprecedented accuracy for these
distributions and eliminates the necessity for simulation methods.

2. Foundations

Considering w = (w1, · · · , wp) in Rp and an estimate ŵ, assume that E ŵ → w as
n → ∞ and that for r ≥ 1, its rth-order cumulants have magnitude n1−r. Given i1, · · · , ir in
1, 2, · · · , p, we write these cumulants in shorthand as

k̄1−r = ki1···ir = κ(ŵi1 , . . . , ŵir ) = O(n1−r) as n → ∞. (8)

For example, if ŵ = X̄ is the mean of a random sample of size n, then (8) holds since
k̄1−r = n1−rκ(Xi1 , . . . , Xir ) where Xi is the ith component of X. According to Theorem 1,
Equation (8) is valid if ŵ is a smooth function of one or more sample means. Let t : Rp → Rq

be a smooth function in a neighbourhood of w with jth component tj = tj(w), j = 1, · · · , q
and finite partial derivatives

t̄k
sr··· = tjk

�isir ··· = ∂is ∂ir · · · tjk (w), t̄k
s−r = tjk

�is ···ir for s ≤ r

where ∂i = ∂/∂wi. Superscripts i are reserved for the cumulants of ŵ and subscripts for
partial derivatives of t(w). Superscripts j are reserved for the components of t(w) and for
the joint cumulants of t̂ = t(ŵ). This bar shorthand allows us to shorten expressions by
suppressing the is and js. We write the cumulants of t̂ = t(ŵ) as

K̄1−r = K j1···jr = κ(t̂j1 , . . . , t̂jr ) where t̂ = t(ŵ), t̂j = tj(ŵ). (9)

For example, k̄12 = ki1i2 and K̄12 = K j1 j2 imply that the covariance of ŵ is represented by
(k̄12), and the covariance of t̂ is represented by (K̄12), both of which scale as O(n−1). Next,
we demonstrate that

K̄12 = 1K̄12 + O(n−2) where 1K̄12 = t̄1
1 t̄2

2 k̄12.

In other words, 1K j1 j2 = tj1
�i1

tj2
�i2

ki1i2 , employing the tensor sum convention. The rest of this
section and all proofs can be skipped on a first reading. Theorem 1 provides the cumulants
of t̂ = t(ŵ) when ŵ is unbiased.

We use the notation ∑N f j1 j2··· to denote summing over all N permutations of j1, j2, · · ·
resulting distinct terms.

Theorem 1. Suppose E ŵ = w and Equation (8) holds. Then for r ≥ 1 and 1 ≤ j1, . . . , jr ≤ q,
K̄1−r of (9) satisfies

K̄1−r =
∞

∑
e=r−1

eK̄1−r where eK̄1−r = eK j1···jr = O(n−e) as n → ∞, (10)

and the leading eK̄1−r are as follows.

0K̄1 = t̄1, that is, 0K j1 = tj1 .

1K̄1 = t̄1
12k̄12/2, that is, 1K j1 = tj1

�i1i2
ki1i2 /2 =

p

∑
i1,i2=1

tj1
�i1i2

ki1i2 /2.

2K̄1 = t̄1
1−3 k̄1−3/6 + t̄1

1−4 k̄12k̄34/8,
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that is,

2K j1 = tj1
�i1i2i3

ki1i2i3 /6 + tj1
�i1−i4

k̄i1i2 k̄i3i4 /8.

3K̄1 = t̄1
1−4k̄1−4/24 + t̄1

1−5k̄1−3k̄45/12 + t̄1
1−6 k̄12k̄34k̄56/48,

4K̄1 = t̄1
1−5k̄1−5/120 + t̄1

1−6 (k̄
1−4k̄56/48 + k̄1−3k̄4−6/72) + t̄1

1−7 k̄1−3k̄45k̄67/48

+ t̄1
1−8 k̄12k̄34k̄56k̄78/384.

1K̄12 = t̄1
1 t̄2

2 k̄12, 2K̄12 = T12
1−3 k̄1−3/2 + T12

1−4 k̄12k̄34/2

where

T12
1−3 =

2

∑ t̄1
12 t̄2

3, T12
1−4 =

2

∑ t̄1
1−3 t̄2

4 + t̄1
13 t̄2

24,
2

∑ t̄1
a−b t̄2

c−d = t̄1
a−b t̄2

c−d + t̄2
a−b t̄1

c−d.

3K̄12 = U12
1−4 k̄1−4 + T12

1−5 k̄1−3k̄45 + T12
1−6 k̄12k̄34k̄56/4

where

U12
1−4 =

2

∑ t̄1
1−3 t̄2

4/6 + t̄1
12 t̄2

34/4,

T12
1−5 =

2

∑(t̄1
1−4 t̄2

5/6 + t̄1
1245 t̄2

3/4 + t̄1
124 t̄2

35/2 + t̄1
145 t̄2

23/4),

T12
1−6 =

2

∑ t̄1
1−5 t̄2

6/2 +
2

∑ t̄1
1235 t̄2

46 + t̄1
1−3 t̄2

4−6 + 2t̄1
135 t̄1

246/3.

2K̄1−3 = t̄1
1 t̄2

2 t̄3
3 k̄1−3 + T1−3

1−4 k̄12k̄34

where

T1−3
1−4 =

3

∑ t̄1
13 t̄2

2 t̄3
4.

3K̄1−3 = T1−3
1−4 k̄1−4/2 + T1−3

1−5 k̄1−3k̄45 + T1−3
1−6 k̄12k̄34k̄56

where

T1−3
1−5 =

6

∑ t̄1
124 t̄2

3 t̄3
5/2 +

3

∑ t̄1
145 t̄2

2 t̄3
3/2 +

6

∑ t̄1
12 t̄2

34 t̄3
5/2 +

3

∑ t̄1
14 t̄2

25 t̄3
3,

T1−3
1−6 =

3

∑ t̄1
1235 t̄2

4 t̄3
6/2 +

6

∑ t̄1
1−3 t̄2

45 t̄3
6 +

6

∑ t̄1
135 t̄2

24 t̄3
6/2 + t̄1

13 t̄2
25 t̄3

46.

3K̄1−4 = t̄1
1 · · · t̄4

4 k̄1−4 + T1−4
1−5 k̄1−3k̄45 + T1−4

1−6 k̄12k̄34k̄56

where

T1−4
1−5 =

12

∑ t̄1
14 t̄2

2 t̄3
3 t̄4

5, T1−4
1−6 =

4

∑ t̄1
135 t̄2

2 t̄3
4 t̄4

6 +
12

∑ t̄1
13 t̄2

25 t̄3
4 t̄4

6.

4K̄1−4 = U1−4
1−5 k̄1−5/2 + U1−4

1−6 k̄1−4k̄56 + V1−4
1−6 k̄1−3k̄4−6 + T1−4

1−7 k̄1−3k̄45k̄67

+ T1−4
1−8 k̄12k̄34k̄56k̄78
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where

U1−4
1−5 =

4

∑ t̄1
12 t̄2

3 t̄3
4 t̄4

5,

U1−4
1−6 =

12

∑ t̄1
125 t̄2

3 t̄3
4 t̄4

6/2 +
4

∑ t̄1
156 t̄2

2 t̄3
3 t̄4

4/2 +
24

∑ t̄1
12 t̄2

35 t̄3
4 t̄4

6/2 +
6

∑ t̄1
15 t̄2

26 t̄3
3 t̄4

4),

V1−4
1−6 =

12

∑ t̄1
124 t̄2

3 t̄3
5 t̄4

6/2 +
12

∑ t̄1
12 t̄2

34 t̄3
5 t̄4

6/2 +
6

∑ t̄1
14 t̄2

25 t̄3
3 t̄4

6,

T1−4
1−7 =

12

∑ t̄1
1246 t̄2

3 t̄3
5 t̄4

7/2 +
12

∑ t̄1
1456 t̄2

2 t̄3
3 t̄4

7/2 +
24

∑ t̄1
124 t̄2

36 t̄3
5 t̄4

7/2 +
24

∑ t̄1
124 t̄2

56 t̄3
3 t̄4

7/2

+
24

∑ t̄1
145 t̄2

26 t̄3
3 t̄4

7/2 +
12

∑ t̄1
146 t̄2

23 t̄3
5 t̄4

7 +
24

∑ t̄1
146 t̄2

25 t̄3
3 t̄4

7 +
12

∑ t̄1
146 t̄2

57 t̄3
2 t̄4

3/2

+
12

∑ t̄1
456 t̄2

17 t̄3
2 t̄4

3 +
24

∑ t̄1
12 t̄2

34 t̄3
56 t̄4

7/2 +
12

∑ t̄1
14 t̄2

25 t̄3
36 t̄4

7 +
12

∑ t̄1
14 t̄2

26 t̄3
57 t̄4

3),

T1−4
1−8 =

4

∑ t̄1
12357 t̄2

4 t̄3
6 t̄4

8/2 +
24

∑ t̄1
1235 t̄2

47 t̄3
6 t̄4

8/2 +
12

∑ t̄1
1357 t̄2

24 t̄3
6 t̄4

8/2

+
12

∑ t̄1
123 t̄2

457 t̄3
6 t̄4

8/2 +
12

∑ t̄1
135 t̄2

247 t̄3
6 t̄4

8/2 +
24

∑ t̄1
123 t̄2

45 t̄3
67 t̄4

8/2 +
24

∑ t̄1
135 t̄2

24 t̄3
67 t̄4

8

+
12

∑ t̄1
135 t̄2

27 t̄3
48 t̄4

6/2 +
3

∑ t̄1
13 t̄2

25 t̄3
47 t̄4

68.

4K̄1−5 = t̄1
1 · · · t̄5

5 k̄1−5 + T1−5
1−6 k̄1−4k̄56 + U1−5

1−6 k̄1−3k̄4−6 + T1−5
1−7 k̄1−3k̄45k̄67

+ T1−5
1−8 k̄12k̄34k̄56k̄78

where

T1−5
1−6 =

20

∑ t̄1
15 t̄2

2 t̄3
3 t̄4

4 t̄5
6, U1−5

1−6 =
15

∑ t̄1
14 t̄2

2 t̄3
3 t̄4

5 t̄5
6,

T1−5
1−7 =

30

∑ t̄1
146 t̄2

2 t̄3
3 t̄4

5 t̄5
7 +

60

∑ t̄1
14 t̄2

26 t̄3
3 t̄4

5 t̄5
7 +

60

∑ t̄1
14 t̄2

56 t̄3
2 t̄4

3 t̄5
7,

T1−5
1−8 =

5

∑ t̄1
1357 t̄2

2 t̄3
4 t̄4

6 t̄5
8/5 +

60

∑ t̄1
135 t̄2

27 t̄3
4 t̄4

6 t̄5
8 +

60

∑ t̄1
13 t̄2

25 t̄3
47 t̄4

6 t̄5
8.

5K̄1−6 = t̄1
1 · · · t̄5

6 k̄1−6 + T1−6
1−7 k̄1−5k̄67 + U1−6

1−7 k̄1−4k̄5−7 + T1−6
1−8 k̄1−4k̄56k̄78

+ U1−6
1−8 k̄1−3k̄4−6k̄78 + T1−6

1−9 k̄1−3k̄45k̄67k̄89 + T1−6
1−10 k̄12k̄34k̄56k̄78k̄9,10

where

T1−6
1−7 =

30

∑ t̄1
16 t̄2

2 t̄3
3 t̄4

4 t̄5
5 t̄6

7, U1−6
1−7 =

60

∑ t̄1
15 t̄2

2 t̄3
3 t̄4

4 t̄5
6 t̄6

7,

T1−6
1−8 =

60

∑ t̄1
157 t̄2

2 t̄3
3 t̄4

4 t̄5
6 t̄6

8 +
180

∑ t̄1
15 t̄2

27 t̄3
3 t̄4

4 t̄5
6 t̄6

8 +
120

∑ t̄1
15 t̄2

67 t̄3
2 t̄4

3 t̄5
4 t̄6

8,

U1−6
1−8 =

90

∑ t̄1
147 t̄2

2 t̄3
3 t̄4

5 t̄5
6 t̄6

8 +
360

∑ t̄1
14 t̄2

27 t̄3
3 t̄4

5 t̄5
6 t̄6

8 +
90

∑ t̄1
17 t̄2

48 t̄3
2 t̄4

3 t̄5
5 t̄6

6,

T1−6
1−9 =

60

∑ t̄1
1468 t̄2

2 t̄3
3 t̄4

5 t̄5
7 t̄6

9 +
360

∑ t̄1
146 t̄2

28 t̄3
3 t̄4

5 t̄5
7 t̄6

9 +
360

∑ t̄1
146 t̄2

58 t̄3
2 t̄4

3 t̄5
7 t̄6

9

+
180

∑ t̄1
468 t̄2

15 t̄3
2 t̄4

3 t̄5
7 t̄6

9 +
120

∑ t̄1
14 t̄2

26 t̄3
38 t̄4

5 t̄5
7 t̄6

9 +
720

∑ t̄1
14 t̄2

26 t̄3
58 t̄4

3 t̄5
7 t̄6

9

+
360

∑ t̄1
14 t̄2

56 t̄3
78 t̄4

2 t̄5
3 t̄6

9,

T1−6
1−10 =

6

∑ t̄1
13579 t̄2

2 t̄3
4 t̄4

6 t̄5
8 t̄6

10 +
120

∑ t̄1
1357 t̄2

29 t̄3
4 t̄4

6 t̄5
8 t̄6

10 +
90

∑ t̄1
135 t̄2

279 t̄3
4 t̄4

6 t̄5
8 t̄6

10

+
360

∑ t̄1
135 t̄2

27 t̄3
49 t̄4

6 t̄5
8 t̄6

10 +
360

∑ t̄1
135 t̄2

27 t̄3
89 t̄4

4 t̄5
6 t̄6

10 +
360

∑ t̄1
13 t̄2

25 t̄3
47 t̄4

69 t̄5
8 t̄6

10.

Note 1. For reference regarding N in ∑N , refer to page 48 of [19]. It is important to note that
the notation ∑N in terms like T1−r

1−s only applies for N < r! in the context where they are used.
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For example, writing (abc) = t̄a
13 t̄b

2 t̄c
4 and recalling that ∑N only permutes superscripts but leaves

subscripts alone, we have

T1−3
1−4 =

N

∑(123) = (123) + (213) + (321) (11)

with N = 3 not 3! since

3!

∑(123) = (123) + (132) + (213) + (231) + (321) + (312) =
6

∑
k=1

Sk

say, when multiplied by k̄12k̄34, as in 2K̄1−3, gives ∑6
k=1 S′

k say, where for k = 1, 2, 3, S′
2k = S′

2k−1.
For example, T1−3

1−4 k̄12k̄34 in 2K̄1−3 above is shorthand for ∑3 t̄1
13 t̄2

2 t̄3
4 k̄12k̄34. For,

S′
2 = t̄2

4k̄43 t̄1
31k̄12 t̄3

2 = t̄2
1k̄12 t̄1

13k̄34 t̄3
4 = S′

1 ⇒ T1−3
1−4 k̄12k̄34 = S′

1 + S′
3 + S′

5.

Proof. This result can be derived by substituting Āj
1−r = Aj

i1···ir by t̄1
1−r/r! = tj1

.i1···ir /r!
according to [19].

Likewise, one can readily derive 4K̄12, 4K̄1−3 from pages 51–53 of [19]. The tensor
form 2K̄1

1 = t̄1
12k̄12

1 can be conceptualised as a molecule or molecular structure of 2 atoms, t̄1
12

and k̄12
1 , connected by the double bond 1, 2 , represented as i1, i2. 2K̄1 is a linear combination

of t̄1
1−3 k̄1−3, 2 atoms linked by the triple bond 1,2,3, and secondly k̄12 t̄1

1−4 k̄34. The last
expression has the structure of CO2, with 2 identical atoms each linked by a double bond
to a central atom. Just as such bonds are depicted in chemistry to illustrate the structure of
a molecule, they can be very useful here to illustrate the difference in structure of similar
mathematical expressions. S′

1 of Note 1 is a linear molecular form with the 4 single bonds
1,2,3,4 and 4 distinct atoms, t̄2

1, t̄1
1, t̄1

12, and k̄12. Other expressions have more complex
structures. Doubling the last term in 2K̄12 yields T12

1−4 k̄12k̄34 = S12 + S21 + S where
S12 = k̄12 t̄1

1−3 k̄34 t̄2
4 exhibits a linear structure with a double bond between 1 and 2,

followed by two single bonds, 3 and 4. Additionally, S = t̄1
31 k̄12 t̄2

24 k̄43 forms a square
or rectangle with four single bonds 1,2,4,3 arranged along successive edges of the square.
These pictorial forms are a very useful way to distinguish similar expressions in ∑N f j1 j2···.

Section 6 provides the ’more complicated’ terms referred to (but not given) on
p49 of [19] when ŵ is biased. It can be used for an alternative Proof of Theorem 3 be-
low. From Theorem 1, Edgeworth expansions can be obtained for the distribution and
density of the standardised form of t(ŵ),

Ynt = n1/2(t̂ − t) = n1/2(t(ŵ)− t(w)), (12)

of the form

Prob.(Ynt ≤ x) =
∞

∑
r=0

Prn(x), pYnt(x) =
∞

∑
r=0

prn(x), (13)

where Prn(x), prn(x) are O(n−r/2). The eK̄1−r of Theorem 1 needed for Prn(x), prn(x) are
as follows.

For P0n(x), p0n(x) : 0K̄1 = t̄1, 1K̄12. For P1n(x), p1n(x) : 1K̄1, 2K̄1−3.

For P2n(x), p2n(x) : 2K̄12, 3K̄1−4. For P3n(x), p3n(x) : 2K̄1, 3K̄1−3, 4K̄1−5.

For P4n(x), p4n(x) : 3K̄1−2, 4K̄1−4, 5K̄1−6.
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3. Cumulant Coefficients for t(ŵ) when E ŵ = w

We now show that for r ≥ 1 and 1 ≤ j1, . . . , jr ≤ q, the cumulant coefficient K̄1−r

from Equation (10) can be expanded as

K̄1−r = K j1−jr = κ(t̂j1 , . . . , t̂jr ) =
∞

∑
e=r−1

n−eK̄1−r
e (14)

Substituting {k̄1−r} with {K̄1−r} on the right-hand side of (4), denoted as RHS (4), provides
the Edgeworth expansion for Ynt as in Equation (12). If π is a product of cumulants as
in Equation (1), let (π)e denote the coefficient of n−e in the expansion of π. For example„
(k̄1−r)e = k̄1−r

e ,

(k̄12k̄34)3 = k̄12
1 k̄34

2 + k̄12
2 k̄34

1 , (k̄12k̄34)4 = k̄12
1 k̄34

3 + k̄12
2 k̄34

2 + k̄12
3 k̄34

1 ,

(k̄1−3k̄45)4 = k̄1−3
2 k̄45

2 + k̄1−3
3 k̄45

1 ,

(k̄12k̄34k̄56)4 = k̄12
1 k̄34

1 k̄56
2 + k̄12

1 k̄34
2 k̄56

1 + k̄12
2 k̄34

1 k̄56
1 . (15)

Now, let us provide the elements of the expansion (14) when E ŵ = w.

Theorem 2. Assume that ŵ is an unbiased estimate of w satisfying Equation (1) and t(w) has
finite derivatives. In this case, Equation (14) holds with bounded cumulant coefficients

K̄1−r
e = K j1−jr

e =
e

∑
k=r−1

kK̄1−r
e : (16)

K̄1−r
r−1 = r−1K̄1−r

r−1,

K̄1−r
r = r−1K̄1−r

r + rK̄1−r
r ,

and so forth. The leading coefficients needed for Pr(x), pr(x) of (4) for the distribution of Ynt of (12)
are given in the T, U, V notation of Theorem 1 as follows.

K̄1
0 = t̄1, that is, K j1

0 = tj1 = tj1(w). 0K̄1
e = 0 for e ≥ 1.

For P0(x) : K̄12
1 = 1K̄12

1 = t̄1
1 t̄2

2 k̄12
1 , that is, K j1 j2

1 = tj1
�i1

tj2
�i2

ki1i2
1 .

For P1(x) : K̄1
1 = 1K̄1

1 = t̄1
12k̄12

1 /2, that is, K j1
1 = tj1

�i1i2
ki1i2

1 /2,

K̄1−3
2 = 2K̄1−3

2 = t̄1
1 t̄2

2 t̄3
3 k̄1−3

2 + T1−3
1−4 k̄12

1 k̄34
1 .

For P2(x) : K̄12
2 = 1K̄12

2 + 2K̄12
2 for 1K̄12

2 = t̄1
1 t̄2

2 k̄12
2 ,

2K̄12
2 = T12

1−3 k̄1−3
2 /2 + T12

1−4 k̄12
1 k̄34

1 /2,

K̄1−4
3 = 3K̄1−4

3 = (t̄1
1 · · · t̄4

4) k̄1−4
3 + T1−4

1−5 k̄1−3
2 k̄45

1 + T1−4
1−6 k̄12

1 k̄34
1 k̄56

1 .

For P3(x) : K̄1
2 = 1K̄1

2 + 2K̄1
2 for 1K̄1

2 = t̄1
12k̄12

2 /2, 2K̄1
2 = t̄1

1−3k̄1−3
2 /6

+ t̄1
1−4 k̄12

1 k̄34
1 /8, that is, K j1

2 = tj1
�i1i2

ki1i2
2 /2 + tj1

�i1i2i3
ki1i2i3

2 /6 + tj1
�i1−i4

ki1i2
1 ki3i4

1 /8,

K̄1−3
3 =

3

∑
k=2

kK̄1−3
3 for 2K̄1−3

3 = t̄1
1 t̄2

2 t̄3
3 k̄1−3

3 + T1−3
1−4 (k̄12k̄34)3,

3K̄1−3
3 = T1−3

1−4 k̄1−4
3 /2 + T1−3

1−5 k̄1−3
2 k̄45

1 + T1−3
1−6 k̄12

1 k̄34
1 k̄56

1 ,

K̄1−5
4 = 4K̄1−5

4 = t̄1
1 · · · t̄5

5 k̄1−5
4 + T1−5

1−6 k̄1−4
3 k̄56

1 + U1−5
1−6 k̄1−3

2 k̄4−6
2

+ T1−5
1−7 k̄1−3

2 k̄45
1 k̄67

1 + T1−5
1−8 k̄12

1 k̄34
1 k̄56

1 k̄78
1 .

For P4(x) : K̄12
3 =

3

∑
k=1

kK̄12
3 for 1K̄12

3 = t̄1
1 t̄2

2 k̄12
3 ,
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2K̄12
3 = T12

1−3 k̄1−3
3 /2 + T12

1−4 (k̄
12k̄34)3/2,

3K̄12
3 = U12

1−4 k̄1−4
3 + T12

1−5 k̄1−3
2 k̄45

1 + T12
1−6 k̄12

1 k̄34
1 k̄56

1 /4,

K̄1−4
4 =

4

∑
k=3

kK̄1−4
4 for 3K̄1−4

4 = (t̄1
1 · · · t̄4

4) k̄1−4
4 + T1−4

1−5 (k̄1−3k̄45)4

+ T1−4
1−6 (k̄12k̄34k̄56)4, 4K̄1−4

4 = U1−4
1−5 k̄1−5

4 /2 + U1−4
1−6 k̄1−4

3 k̄56
1

+ V1−4
1−6 k̄1−3

2 k̄4−6
2 + T1−4

1−7 k̄1−3
2 k̄45

1 k̄67
1 + T1−4

1−8 k̄12
1 k̄34

1 k̄56
1 k̄78

1 ,

K̄1−6
5 = 5K̄1−6

5 = t̄1
1 · · · t̄5

6 k̄1−6
5 + T1−6

1−7 k̄1−5
4 k̄67

1 + U1−6
1−7 k̄1−4

3 k̄5−7
2 + T1−6

1−8 k̄1−4
3 k̄56

1 k̄78
1

+ U1−6
1−8 k̄1−3

2 k̄4−6
2 k̄78

2 + T1−6
1−9 k̄1−3

2 k̄45
1 k̄67

1 k̄89
1 + T1−6

1−10 k̄12
1 k̄34

1 k̄56
1 k̄78

1 k̄9,10
1 .

Also, for K̄1
0, K̄1

1, K̄1
2 above, E tj1(ŵ) =

4

∑
e=0

n−eK̄1
e + O(n−5) where

K̄1
3 =

3

∑
k=1

kK̄1
3 for 1K̄1

3 = t̄1
12 k̄12

3 /2, 2K̄1
3 = t̄1

1−3 k̄1−3
3 /6 + t̄1

1−4 k̄12
1 k̄34

2 /4,

3K̄1
3 = t̄1

1−4 k̄1−4
3 /24 + t̄1

1−5 k̄1−3
2 k̄45

1 /12 + t̄1
1−6 k̄12

1 k̄34
1 k̄56

1 /48,

K̄1
4 =

4

∑
k=1

kK̄1
4 for 1K̄1

4 = t̄1
12k̄12

4 /2,

2K̄1
4 = t̄1

1−3k̄1−3
4 /6 + t̄1

1−4 (2k̄12
1 k̄34

3 + k̄12
2 k̄34

2 )/8,

3K̄1
4 = t̄1

1−4 k̄1−4
4 /24 + t̄1

1−5 (k̄
1−3
2 k̄45

2 + k̄1−3
3 k̄45

1 )/12 + t̄1
1−6 k̄12

1 k̄34
1 k̄56

2 /16,

4K̄1
4 = t̄1

1−5 k̄1−5
4 /120 + t̄1

1−6 (k̄
1−4
3 k̄56

1 /48 + k̄1−3
2 k̄4−6

2 /72) + t̄1
1−7 k̄1−3

2 k̄45
1 k̄67

1 /48

+ t̄1
1−8 k̄12

1 k̄34
1 k̄56

1 k̄78
1 /384.

Proof. Substituting (1) into kK̄1−r of Theorem 1 gives kK̄1−r = ∑∞
e=k kK̄1−r

e n−e say. So by
(10), (14) and (16) hold. kK̄1−r

e = kK j1···jr
e is kṼ j1···jr

e of [2].

Note 2. (11) made explicit the 3 terms needed in T1−3
1−4 for P1(x) of Theorem 2. Similarly P2(x)

needs the 12 terms

T1−4
1−5 =

12

∑(1234) = (1234) + (1243) + (2413) + (2431) + (3124) + (3142)

+ (3241) + (3412) + (4123) + (4132) + (4231) + (4321)

where (abcd) = t̄a
14 t̄b

2 t̄c
3 t̄d

5. It also needs the 4 + 12 terms T1−4
1−6 = A + B where

A =
4

∑(1234) = (1234) + (2134) + (3124) + (4123) for (abcd) = t̄a
135 t̄b

2 t̄c
4 t̄d

6,

B =
12

∑(1234) = (1234) + (1423) + (1432) + (1324) + (2134) + (2314) + (2413)

+ (3124) + (3214) + (3412) + (4213) + (4312) for (abcd) = t̄a
13 t̄b

25 t̄c
4 t̄d

6.

4. Cumulant Coefficients for t(ŵ) when E ŵ ̸= w

We proceed by removing the assumption of ŵ being unbiased. We utilise K̄1−r
e from

Theorem 2, and the shorthand f̄�m = ∂im f where again ∂i = ∂/∂wi. A significant distinction
arises compared to Theorem 2: in that case, k̄1−r

e was treated as an algebraic expression.
However, now we must consider each of them as a function of w. Thus, we assume that the
distribution of ŵ is determined by w. This assumption is necessary to derive higher order
confidence intervals for t(w) when q = 1: see [20]. It is demonstrated that for Ynt from
Equation (12), P2(x), p2(x) require the first derivatives k̄12

1�i = ∂i k̄12
1 where ∂i = ∂/∂wi,

P3(x), p3(x) need the 1st derivatives k̄1−3
2�4 , and so on. The derivatives of K̄1−r

e are computed
using Leibniz’s rule for the derivatives of a product. For example,
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K̄12
1�3 = (t̄1

1 t̄2
2 k̄12

1 )�3 = (
2

∑
12

t̄1
1 t̄2

23) k̄12
1 + t̄1

1 t̄2
2 k̄12

1�3 for
2

∑
12

t̄1
1 t̄2

23 = t̄1
13 t̄2

2 + t̄1
1 t̄2

23,

K̄1
1�3 = (t̄1

12k̄12
1 )�3/2 = t̄1

1−3k̄12
1 /2 + t̄1

12k̄12
1�3/2,

K̄12
1�34 =

2

∑
12
[(t̄1

14 t̄2
23 + t̄1

1 t̄2
2−4)k̄

12
1 + t̄1

1 t̄2
23k̄12

1�4 + t̄1
14 t̄2

2k̄12
1�3] + t̄1

1 t̄2
2k̄12

1�34,

(t̄1
1 t̄2

2 t̄3
3 k̄1−3

2 )�4 = (t̄1
1 t̄2

2 t̄3
3)�4k̄1−3

2 + t̄1
1 t̄2

2 t̄3
3 k̄1−3

2�4 , (t̄1
1 t̄2

2 t̄3
3)�4 = t̄1

1 t̄2
2 t̄3

34 + t̄1
1 t̄2

24 t̄3
3 + t̄1

14 t̄2
2 t̄3

3,

(T1−3
1−4 k̄12

1 k̄34
1 )�5 = T1−3

1−4�5 k̄12
1 k̄34

1 + T1−3
1−4 (k̄12

1 k̄34
1 )�5,

T1−3
1−4�5 =

3

∑(t̄1
135 t̄2

2 t̄3
4 + t̄1

13 t̄2
25 t̄3

4 + t̄1
13 t̄2

2 t̄3
45), (k̄

12
1 k̄34

1 )�5 = k̄12
1�5k̄34

1 + k̄12
1 k̄34

1�5.

Theorem 3. Let ŵ in Rp be a biased standard estimate of w satisfying (1) where k̄1−r
e depend on

w. Then t̂ = t(ŵ) in Rq is a standard estimate of t(w):

κ(t̂j1 , . . . , t̂jr ) =
∞

∑
e=r−1

n−e ā1−r
e for r ≥ 1, 1 ≤ j1, . . . , jr ≤ q, (17)

where ā1−r
e = K̄1−r

e + D̄1−r
e , D̄1−r

r−1 = 0, (18)

for K̄1−r
e of Theorem 2, and the other D̄1−r

e = Dj1 ...jr
e needed for Pr(x), pr(x) of (4) for Ynt of (12)

are as follows.

For P0(x) : D̄12
1 = 0 ⇒ ā12

1 = K̄12
1 = K j1 j2

1 = t̄1
1 t̄2

2 k̄12
1 .

For P1(x) : D̄1
1 = t̄1

1k̄1
1 ⇒ ā1

1 = K̄1
1 + D̄1

1 = t̄1
1k̄1

1 + t̄1
12k̄12

1 /2,

For P2(x) : D̄12
2 = K̄12

1�3 k̄3
1 = [(t̄1

13 t̄2
2 + t̄1

1 t̄2
23) k̄12

1 + t̄1
1 t̄2

2 k̄12
1�3] k̄3

1

⇒ ā12
2 = t̄1

1 t̄2
2 k̄12

2 + T12
1−3 k̄1−3

2 /2 + T12
1−4 k̄12

1 k̄34
1 /2

+ [(t̄1
13 t̄2

2 + t̄1
1 t̄2

23) k̄12
1 + t̄1

1 t̄2
2 k̄12

1�3] k̄3
1.

For P3(x) : D̄1
2 = K̄1

1,1 + K̄1
0,2, K̄1

1,1 = K̄1
1�3 k̄3

1, K̄1
0,2 = t̄1

1k̄1
2 + t̄1

12k̄1
1k̄2

1/2 ⇒
ā1

2 = t̄1
1k̄1

2 + t̄1
12(k̄

12
2 + k̄1

1k̄2
1 + k̄12

1�3k̄3
1)/2 + t̄1

1−3(k̄
1−3
2 /6 + k̄1

1k̄23
1 /2) + t̄1

1−4k̄12
1 k̄34

1 /8,

D̄1−3
3 = K̄1−3

2�4 k̄4
1 = (t̄1

1 t̄2
2 t̄3

3 k̄1−3
2 )�4 k̄4

1 + (T1−3
1−4 k̄12

1 k̄34
1 )�5 k̄5

1.

For P4(x) : D̄12
3 = K̄12

2,1 + K̄12
1,2, K̄12

2,1 = K̄12
2�3 k̄3

1, K̄12
1,2 = K̄12

1�3 k̄3
2/2 + K̄12

1�34 k̄3
1k̄4

1,

D̄1−4
4 = K̄1−4

3�5 k̄5
1, D̄1−6

5 = 0.

For E tj1(ŵ) to O(n−5) we also need D̄j = D̄1
j , j = 3, 4, given by

D̄3 = K̄2,1 + K̄1,2 + K̄0,3, K̄2,1 = K̄2�1k̄1
1,

K̄2�1 = (t̄1−3k̄23
2 + t̄23k̄23

2�1)/2 + (t̄1−4k̄2−4
2 + t̄2−4k̄2−4

2�1 )/6 + t̄1−5k̄23
1 k̄45

1 /8 + t̄2−5k̄23
1 k̄45

1�1/4,

K̄1,2 = K̄1�1k̄1
2 + K̄1�12k̄1

1k̄2
1/2,

2K̄1�1 = t̄1−3k̄23
1 + t̄23k̄23

1�1, 2K̄1�12 = t̄1−4k̄34
1 +

2

∑
12

t̄2−4k̄34
1�1 + t̄34k̄34

1�12,

K̄0,3 = t̄1k̄1
3 + t̄12k̄1

1k̄2
2 + t̄1−3k̄1

1k̄2
1k̄3

1/6,

D̄4 = K̄3,1 + K̄2,2 + K̄1,3 + K̄0,4, K̄3,1 = K̄3�1k̄1
1,

K̄3�1 = t̄1−3k̄23
3 /2 + t̄23k̄23

3�1/2 + t̄1−4k̄2−4
3 /6 + t̄2−4k̄2−4

3�1 /6 + t̄1−5k̄23
1 k̄45

2 /4

+ t̄2−5k̄23
1 k̄45

2�1/2 + (t̄1−5k̄2−5
3 + t̄2−5k̄2−5

3�1 )/24 + (t̄1−6k̄2−4
2 k̄56

1 + t̄2−6k̄2−4
2�1 k̄56

1

+ t̄2−6k̄2−4
2 k̄56

1�1)/12 + k̄23
1 k̄45

1 (t̄1−7k̄67
1 /48 + t̄2−7k̄67

1�1/16),
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K̄2,2 = K̄2�1k̄1
2 + K̄2�12k̄1

1k̄2
1/2,

K̄2�1 = t̄1−3k̄23
2 /2 + t̄23k̄23

2�1/2 + t̄1−4k̄2−4
2 /6 + t̄2−4k̄2−4

2�1 /6 + t̄1−5k̄23
1 k̄45

1 /8 + t̄2−5k̄23
1 k̄45

1�1/4,

2K̄2�12 = t̄1−4k̄34
2 +

2

∑
12

t̄2−4k̄34
2�1 + t̄34k̄34

2�12 + (t̄1−5k̄3−5
2 +

2

∑
12

t̄13−5k̄3−5
2�2 + t̄3−5k̄3−5

2�12)/3

+ t̄1−6k̄34
1 k̄56

1 /4 +
2

∑
12

t̄13−6k̄34
1 k̄56

1�2/2 + t̄3−6(k̄34
1�2k̄56

1�1 + k̄34
1 k̄56

1�12)/2,

K̄1,3 = K̄1�1k̄1
3 + K̄1�12k̄1

1k̄2
2 + K̄1�123k̄1

1k̄2
1k̄3

1/6, 2K̄1�1 = t̄1−3k̄23
1 + t̄23k̄23

1�1, 2K̄1�12 = t̄1−4k̄34
1 +

2

∑
12

t̄134k̄34
1�2 + t̄34k̄34

1�12,

2K̄1�123 = t̄1−5k̄45
1 +

3

∑
1−3

(t̄1345k̄45
1�2 + t̄3−5k̄45

1�12) + t̄45k̄45
1�1−3,

K̄0,4 = t̄1k̄1
4 + t̄12(k̄1

1k̄2
3 + k̄1

2k̄2
2/2) + t̄1−3k̄1

1k̄2
1k̄3

2/2 + t̄1−4k̄1
1k̄2

1k̄3
1k̄4

1/24.

Proof. K̄1−r(w) = K̄1−r and K̄1−r
e (w) = K̄1−r

e are functions of w. By (14)

K̄1−r(wn) =
∞

∑
e=r−1

n−eK̄1−r
e (wn) for wn = E ŵ = w + dn,

where by (1), dn has i1th component d̄1
n = di1

n = ∑∞
e=1 n−e k̄1

e . Consider the Taylor series
expansion

K̄1−r
k (w + dn) = K̄1−r

k + K̄1−r
k�1 d̄1

n + K̄1−r
k�12 d̄1

nd̄2
n/2! + · · · =

∞

∑
e=0

K̄1−r
k,e n−e say.

Substituting into (14) gives (17) with

ā1−r
c = ∑

k+e=c
K̄1−r

k,e =
c−r+1

∑
e=0

K̄1−r
c−e,e. (19)

Also K̄1−r
k,0 = K̄1−r

k so that (18) holds with

D̄1−r
c =

c−r+1

∑
e=1

K̄1−r
c−e,e : (20)

D̄1−r
r = K̄1−r

r−1,1, D̄1−r
r+1 =

2

∑
e=1

K̄1−r
r+1−e,e, · · ·

An alternative proof can be obtained using Section 6. This corrects Ce = ā1
e given in

Appendix B of [21]. Ref. [2] uses K j1···jr
k = K̄1−r

k for ā1−r
k but the expression for Kab

2 on

p67, lines 2–3 omitted the term Aa
i Ab

j kij
1,kkk

1. That is, the last term in ā12
2 of Theorem 3 was

omitted. Similarly the results on p67 for r = 3, 4 are only true when the ŵ is unbiased or
the cumulant coefficients of ŵ do not depend on w, as they omit the derivatives of k̄1−r

e .
The examples given there are not affected as ŵ is unbiased. Nor are the nonparametric
examples of [22] and [23] affected, as the empirical distribution is an unbiased estimate of a
distribution. Likewise ŵ is unbiased for the examples of [20]. M-estimates are biased but
the results of [16] are not affected as only K j1 j2

1 , K j1
1 , K j1 j2 j3

2 are given. No changes are needed
for [3,4,17,24]. Applications to non-parametric and parametric confidence intervals were
given in [22] and [20,23] and to ellipsoidal confidence regions and power in [4] and [25].
For nonparametric problems, F(x) and its empirical distribution Fn(x) play the role of w
and ŵ; since it is unbiased, no corrections are needed. For q = 1, ari = ā1−r

i were given
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for parametric and non-parametric problems in [22] and [2,23] and expressions for the
classic Edgeworth expansion of Ynw in terms of ari were given in [14]. For q ≥ 1, ā1−r

i for
parametric problems were given in [2], and can be obtained easily from ari given when
q = 1 for 1-sample and multi-sample non-parametric problems in [22] and [23] and for
semi-parametric problems in [16,24]. All these results can be extended to samples with
independent non-identically distributed residuals, as done in [26] Section 6 and [17]. The
extension to matrix ŵ just needs a slight change in notation. For example, in [17], ŵ can
be viewed as a function of the mean of n independent complex random matrices, although
n is actually the number of transmitters or receivers. Extensions to dependent random
variables are also possible: see [27] .

5. Cumulant Coefficients for Univariate t(ŵ)

Now suppose that q = 1. Let kKre be the coefficient of n−e in kK1−r. We write K̄1−r
e as

Kre. For E ŵ = w, (14), (16) and (20) become

Kr = κr(t̂) =
∞

∑
e=r−1

n−eKre, r ≥ 1; Kre =
e

∑
k=r−1

kKre : (21)

Kr,r−1 = r−1Kr,r−1, Krr =
r

∑
k=r−1

kKrr, Kr,r+1 =
r+1

∑
k=r−1

kKr,r+1, · · ·

For E ŵ ̸= w, (17)–(19) become

Kr = κr(t̂) =
∞

∑
e=r−1

n−eare, r ≥ 1; are = Kre + Dre, Drc =
c−r+1

∑
e=1

Kr,c−e,e :

Dr,r−1 = 0, Drr = Kr,r−1,1, Dr,r+1 =
2

∑
e=1

Kr,r+1−e,e, · · ·

Here, we give the cumulant coefficients Kre needed for the Edgeworth expansion of Ynt
of (12) for Pr(x), r ≤ 4. We do this when E ŵ = w in Corollary 1 and when E ŵ ̸= w in
Corollaries 3 and 4. To show more clearly the expressions we need in molecular form, we
introduce the following ions, (expressions with unpaired suffixes),

si1 = s̄1 = k̄12
1 t̄2, ū1 = t̄12 s̄2 = t̄12k̄23

1 t̄3, X̄34 = k̄31
1 t̄12k̄24

1 , z̄12 = t̄1−3 s̄3,

v̄1 = k̄12
1 ū2 = X̄14 t̄4, x̄1 = t̄12v̄2, S̄1 = k̄12

2 t̄2, ȳ1 = k̄1−3
2 t̄2 t̄3, Ȳ1 = t̄12ȳ2. (22)

where a suffix does not have a match then summation does not occur. For example, the RHS
of s̄1 = k̄12

1 t̄2 sums over i2 but not i1. Let v, c01, c02, c21, c22, c23, c11, · · · , c1,10, c31, · · · , c3,11 be
the 27 functions of ω given on p4234–4235 of [20], labelled there as I2(

2
0), I1(

1
0), · · · , I301(

222
000).

By Corollaries 1 and 3 below, those needed for Pr(x), r ≤ 2, of (4), that is, for the Edgeworth
expansion of Ynt of (12) to O(n−3/2), are the following molecules.

For P0(x) : v = K21 = t̄1k̄12
1 t̄2.

For P1(x), K11 : c02 = t̄12k̄12
1 ; for D11 : c01 = t̄1k̄1

1;

for K32 : c21 = t̄1 t̄2 t̄3k̄1−3
2 = t̄1ȳ1, c23 = s̄1 t̄12 s̄2 = s̄1ū1.

For P2(x), K22 : c11 = t̄1k̄12
2 t̄2 = t̄1S̄1, c15 = t̄1k̄1−3

2 t̄23, c19 = t̄12X̄12,

c1,10 = s̄1 t̄1−3k̄23
1 = z̄23k̄23

1 ;

for D22 : c12 = k̄1
1k̄23

1�1 t̄2 t̄3, c16 = k̄1
1ū1 = k̄1

1 t̄.12k̄23
1 t̄3;

for K43 : c31 = t̄1 t̄2 t̄3 t̄4k̄1−4
3 , c36 = ȳ3ū3, c3,10 = ū1k̄12

1 ū2, c3,11 = s̄1 s̄2 s̄3 t̄1−3.
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Each molecule can be written as a shape. For example, c19 is a rectangle. We now give the
molecules Lj, Lij needed for the Edgeworth expansion to O(n−5/2), that is, for Pr(x) for
r = 3, 4. Note that Pr(x) needs the derivatives of t(w) up to order r + 1.

For P3(x), K12 : L1 = t̄12k̄12
2 , L2 = t̄1−3k̄1−3

2 , L3 = t̄1−4 k̄12
1 k̄34

1 ;

for K33 : L4 = t̄1 t̄2 t̄3 k̄1−3
3 , L5 = ū1S̄1, L6 = t̄13 t̄2 t̄4 k̄1−4

3 , L71 = z̄12 k̄1−3
2 t̄3,

L72 = ȳ1 t̄145 k̄45
1 , L73 = t̄12k̄1−3

2 ū3, L74 = t̄14k̄45
1 t̄52k̄1−3

2 t̄3,

L81 = k̄12
1 t̄1−4 s̄3 s̄4, L82 = k̄12

1 t̄1−3v̄3, L83 = X̄34z̄34,

L84 = X̄14 t̄45k̄56
1 t̄61, a sexagon,

for K54 : L9 = t̄1 · · · t̄5 k̄1−5
4 , L10 = ū1 t̄2 t̄3 t̄4 k̄1−4

3 , L11 = ȳ1Ȳ1 = ȳ1 t̄12ȳ2,

L121 = ȳ1 t̄1−3 s̄2 s̄3, L122 = t̄1k̄1−3
2 ū2ū3, L123 = Ȳ2v̄2,

L131 = s̄1 · · · s̄4 t̄1−4, L132 = s̄1 s̄2 t̄1−3v̄3, L133 = v̄1 t̄12v̄2 = v̄1 x̄1.

For P4(x), K23 : L14 = t̄1 t̄2 k̄12
3 , L15 = t̄12k̄1−3

2 t̄3, L161 = S̄1 t̄1−3k̄23
1 ,

L162 = z̄12k̄12
2 , L171 = X̄24 t̄24. L181 = t̄1−3k̄1−4

3 t̄4, L182 = t̄12k̄1−4
3 t̄34, L191 = k̄1−3

2 t̄1−4 s̄4,

L192 = k̄12
1 t̄1−4k̄3−5

2 t̄5, L193 = t̄1−3k̄2−4
2 t̄45k̄51

1 , L194 = t̄12k̄1−3
2 t̄3−5k̄45

1 ,

L201 = k̄12
1 k̄34

1 t̄1−5 s̄5, L202 = k̄12
1 t̄1−4X̄34, L203 = k̄12

1 t̄1−3k̄34
1 t̄4−6k̄56

1 ,

L204 = t̄135 (k̄12
1 k̄34

1 k̄56
1 ) t̄246;

for K44 : L21 = t̄1 · · · t̄4 k̄1−4
4 , L221 = Ȳ2k̄23

2 t̄3, L222 = ū1 t̄2 t̄3 k̄1−3
3 ,

L231 = s̄1z̄12S̄2. L241 = x̄2S̄2, L242 = ū1k̄12
2 ū2.

L25 = t̄12k̄1−5
4 t̄3 t̄4 t̄5, L261 = t̄1 t̄2k̄1−4

3 t̄3−5 s̄5, L262 = t̄1 t̄2 t̄3k̄1−4
3 t̄4−6k̄56

1 ,

L263 = t̄12k̄1−4
3 t̄3ū4, L264 = t̄1 t̄2k̄1−4

3 (t̄35 t̄46)k̄56
1 ,

L271 = t̄1k̄1−3
2 t̄2−4ȳ4, L272 = t̄12k̄1−3

2 Ȳ3, L273 = t̄1k̄1−3
2 (t̄24 t̄35) k̄4−6

3 t̄6,

L281 = t̄1k̄1−3
2 t̄2−5 s̄4 s̄5, L282 = s̄1k̄23

1 t̄1−4ȳ4, L283 = ū1k̄1−3
2 z̄23,

L284 = t̄1k̄1−3
2 t̄2−4v̄4, L285 = Ȳ2k̄23

1 t̄3−5k̄45
1 , L286 = t̄12k̄1−3

2 z̄34 s̄4,

L287 = t̄1k̄1−3
2 t̄24k̄45

1 z̄53, L288 = ȳ1 t̄1−3X̄23,

L289 = t̄12k̄1−3
2 x̄3, L2810 = ū1k̄1−3

2 (t̄24 t̄35) k̄45
1 ,

L2811 = t̄1k̄1−3
2 (t̄24k̄45

1 t̄36k̄67
1 ) t̄57, L291 = k̄12

1 t̄1−5 s̄3 s̄4 s̄5, L292 = k̄12
1 t̄1−4v̄3 s̄4,

L293 = X̄34 t̄3−6 s̄5 s̄6, L294 = k̄12
1 t̄1−3k̄34

1 t̄4−6 s̄5 s̄6, L295 = k̄12
1 (z̄13z̄24)k̄34

1 ,

L296 = k̄12
1 t̄1−3k̄34

1 x̄4, L297 = k̄12
1 t̄135v̄5 t̄24 k̄34

1 ,

L298 = X̄14 t̄45k̄56
1 z̄61, L299 = X̄14 t̄45X̄58;

for K65 : L30 = t̄1 · · · t̄6 k1−6
5 , L31 = ū1 t̄2 t̄3 t̄4 t̄5k̄1−5

4 , L32 = t̄1 t̄2 t̄3k̄1−5
4 t̄45,

L331 = t̄1 t̄2 t̄3k̄1−4
3 z̄45 s̄5, L332 = ū1ū2k̄1−4

3 t̄3 t̄4, L333 = t̄1 t̄2 t̄3k̄1−4
3 x̄4

L341 = t̄1−3ȳ1 s̄2ȳ3, L342 = Ȳ2k̄2−4
2 t̄3ū4, L343 = Ȳ1k̄12

1 Ȳ2, L351 = ȳ3 t̄3−6 s̄4 s̄5 s̄6,

L352 = t̄1ū2k̄1−3
2 z̄34 s̄4, L353 = ȳ1 t̄12v̄2, L354 = Ȳ4k̄45

1 t̄5−7 s̄6 s̄7,

L355 = ū1ū2ū3k̄1−3
2 , L356 = t̄1ū2k̄1−3

2 x̄3, L357 = t̄3−5ȳ3v̄4 s̄5.

L361 = s̄1 · · · s̄5 t̄1−5, L362 = s̄1 s̄2 s̄3 t̄1−4v̄4, L363 = s̄1z̄13k̄34
1 t̄4−6 s̄5 s̄6,

L364 = v̄1z̄12v̄2, L365 = s̄1z̄13k̄34
1 x̄4, L366 = x̄1k̄12

1 x̄2.

These crs and Lj do not use derivatives of k̄1−r
e , the cumulant coefficients of ŵ.

Corollary 1. Suppose that ŵ is an unbiased standard estimate of w in Rp with respect to n, and
that q = 1. Then the cumulants of t̂ = t(ŵ) can be expanded as (21) with bounded cumulant
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coefficients Kre. The leading coefficients needed for Pr(x) of (4) for the distribution of Ynt of (12) are
as follows.

K10 = t̄ = t(w). For P0(x) : K21 = v = t̄1 k̄12
1 t̄2.

For P1(x) : K11 = c02/2, K32 = c21 + 3c23.

For P2(x) : K22 =
2

∑
k=1

kK22, 1K22 = c11, 2K22 = c15 + c19/2 + c1,10,

K43 = c31 + 12c36 + 12c3,10 + 4c3,11.

For P3(x) : K12 =
2

∑
k=1

kK12, 1K12 = L1/2, 2K12 = L2/6 + L3/8;

K33 =
3

∑
k=2

kK33, 2K33 = L4 + 6L5, 3K33 = 3L6/2 + 3L7 + L8 where (23)

L7 = L71 + 3L72/2 + 3
4

∑
k=3

L7k, L8 = 3L81/2 + 6L82 + 3L83 + 3L84, (24)

K54 = L9 + 20L10 + 15L11 + 30L12 + L13 where (25)

L12 = L121 + 2L122 + 2L123, L13 = L131 + 60(L132 + L133).

For P4(x) : K23 =
3

∑
k=1

kK23, 1K23 = L14, 2K23 = L15 +
2

∑
k=1

L16k + L171,

3K23 = L181/3 + L182/4 +
20

∑
k=19

Lk where L19 = L191/3 +
4

∑
k=2

L19k,

L20 = L201/4 + L202/2 + L203/4 + L204/6;

K44 =
4

∑
k=3

kK44, 3K44 = L21 + 12
2

∑
k=1

L22k + 12L231 + 24L241 + 12L242.

4K44 = 2L25 + 2L26 + 6
3

∑
k=1

L27k + L28 + L29 where

L26 = 3L261 + L262 + 6L263 + 3L264,

L28 =
11

∑
k=1

ckL28k, c1 = 6, c3 = 24, c8 = 4, ck = 12 otherwise,

L29 =
9

∑
k=1

hkL29k, h1 = 2, h2 = h6 = 12, h7 = 24, h9 = 3, hk = 6 otherwise;

K65 = L30 + 30L31 + 60vL32 + 60L33 + 90L34 + 60L35 + 6L36 for

L33 = L331 + 3L332 + 2L333, L34 = L341 + 4L342 + L343,

L35 =
7

∑
k=1

dkL35k, d1 = 1, d2 = d3 = d7 = 6, d4 = 3, d5 = 2, d6 = 12,

L36 =
6

∑
k=1

ekL36k, e1 = 1, e2 = 20, e3 = 15, e7 = 6, e4 = e5 = e6 = 60.

Also, K13 = t̄12k̄12
3 /2 + t̄1−3k̄1−3

3 /6 + t̄1−4 (k̄12k̄34)3/8 + t̄1−4k̄1−4
3 /24

+ t̄1−5k̄1−3
2 k̄45

1 /12 + t̄1−6 k̄12
1 k̄34

1 k̄56
1 /48 where (ab)3 = a1b2 + a2b1,

K14 = t̄12k̄12
4 /2 + t̄1−3k̄1−3

4 /6 + t̄1−4 [(k̄12k̄34)4/8 + k̄1−4
4 /24] + t̄1−5 [k̄1−5

4 /120

+ (k̄1−3k̄45)4/12] + t̄1−6 [(k̄12k̄34k̄56)4/48 + k̄1−4
3 k̄56

1 /48 + k̄1−3
2 k̄4−6

2 /72]

+ t̄1−7 k̄1−3
2 k̄45

1 k̄67
1 /48 + t̄1−8 k̄12

1 k̄34
1 k̄56

1 k̄78
1 /384

where the 1st(ab)4 = a1b3 + a2b2 + a3b1,

the 2nd (ab)4 = a2b2 + a3b1,

and (abc)4 = a1b1c2 + a1b2c1 + a2b1c1.
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Proof. Since q = 1, ∑N becomes N. We write T1−r
1−s , U1−r

1−s , V1−r
1−s as Tr

1−s, Ur
1−s, Vr

1−s. By
Theorem 2 we need the following.

T3
1−4/3 = t̄13 t̄2 t̄4, T2

1−3/2 = t̄12 t̄3, T2
1−4/2 = t̄1−3 t̄4 + t̄13 t̄24,

T4
1−5/12 = t̄14 t̄2 t̄3 t̄5, T4

1−6/4 = t̄135 t̄2 t̄4 t̄6 + 3t̄13 t̄25 t̄4 t̄6,

T3
1−5/3 = t̄124 t̄3 t̄5 + 3t̄145 t̄2 t̄3/2 + 3t̄12 t̄34 t̄5 + 3t̄14 t̄25 t̄3,

T3
1−6 = 3t̄1235 t̄4 t̄6/2 + 6t̄1−3 t̄45 t̄6 + 3t̄135 t̄24 t̄6 + t̄13 t̄25 t̄46,

T5
1−6/20 = t̄15 t̄2 t̄3 t̄4 t̄6, U5

1−6/15 = t̄14 t̄2 t̄3 t̄5 t̄6,

T5
1−7/30 = t̄146 t̄2 t̄3 t̄5 t̄7 + 2t̄14 t̄26 t̄3 t̄5 t̄7 + 2t̄14 t̄56 t̄2 t̄3 t̄7,

T5
1−8 = t̄1357 t̄2 t̄4 t̄6 t̄8 + 60t̄135 t̄27 t̄4 t̄6 t̄8 + 60t̄13 t̄25 t̄47 t̄6 t̄8. U2

1−4 = t̄1−3 t̄4/3 + t̄12 t̄34/4,

T2
1−5 = t̄1−4 t̄5/3 + t̄1245 t̄3/2 + t̄124 t̄35 + t̄145 t̄23/2,

T2
1−6 = t̄1−5 t̄6 + 2t̄1235 t̄46 + t̄1−3 t̄4−6 + 2t̄135 t̄246/3,

T4
1−5/12 = t̄14 t̄2 t̄3 t̄5, U4

1−5/4 = t̄12 t̄3 t̄4 t̄5,

U4
1−6/2 = 3t̄125 t̄3 t̄4 t̄6 + 2t̄156 t̄2 t̄3 t̄4 + 6t̄12 t̄35 t̄4 t̄6 + 3t̄15 t̄26 t̄3 t̄4,

V4
1−6/6 = t̄124 t̄3 t̄5 t̄6 + t̄12 t̄34 t̄5 t̄6 + t̄14 t̄25 t̄3 t̄6,

T4
1−7 = 6t̄1246 t̄3 t̄5 t̄7 + 3t̄1456 t̄2 t̄3 t̄7 + 24t̄124 t̄36 t̄5 t̄7 + 12t̄124 t̄56 t̄3 t̄7

+ 12t̄145 t̄26 t̄3 t̄7 + 12t̄146 t̄23 t̄5 t̄7 + 24t̄146 t̄25 t̄3 t̄7 + 4t̄146 t̄57 t̄2 t̄3

+ 12t̄456 t̄17 t̄2 t̄3 + 12t̄12 t̄34 t̄56 t̄7 + 12t̄14 t̄25 t̄36 t̄7 + 12t̄14 t̄26 t̄57 t̄3,

T4
1−8 = 2t̄12357 t̄4 t̄6 t̄8 + 12t̄1235 t̄47 t̄6 t̄8 + 6t̄1357 t̄24 t̄6 t̄8

+ 6t̄123 t̄457 t̄6 t̄8 + 6t̄135 t̄247 t̄6 t̄8 + 12t̄123 t̄45 t̄67 t̄8 + 24t̄135 t̄24 t̄67 t̄8

+ 6t̄135 t̄27 t̄48 t̄6 + 3t̄13 t̄25 t̄47 t̄68, T6
1−7/30 = t̄16 t̄2 t̄3 t̄4 t̄5 t̄7, U6

1−7/60 = t̄15 t̄2 t̄3 t̄4 t̄6 t̄7,

T6
1−8/60 = t̄157 t̄2 t̄3 t̄4 t̄6 t̄8 + 3t̄15 t̄27 t̄3 t̄4 t̄6 t̄8 + 2t̄15 t̄67 t̄2 t̄3 t̄4 t̄8,

U6
1−8/90 = t̄147 t̄2 t̄3 t̄5 t̄6 t̄8 + 4t̄14 t̄27 t̄3 t̄5 t̄6 t̄8 + t̄17 t̄48 t̄2 t̄3 t̄5 t̄6,

T6
1−9/60 = t̄1468 t̄2 t̄3 t̄5 t̄7 t̄9 + 6t̄146 t̄28 t̄3 t̄5 t̄7 t̄9 + 6t̄146 t̄58 t̄2 t̄3 t̄7 t̄9

+ 3t̄468 t̄15 t̄2 t̄3 t̄7 t̄9 + 2t̄14 t̄26 t̄38 t̄5 t̄7 t̄9 + 12t̄14 t̄26 t̄58 t̄3 t̄7 t̄9 + 6t̄14 t̄56 t̄78 t̄2 t̄3 t̄9,

T6
1−10/6 = t̄13579 t̄2 t̄4 t̄6 t̄8 t̄10 + 20t̄1357 t̄29 t̄4 t̄6 t̄8 t̄10

+ 15t̄135 t̄279 t̄4 t̄6 t̄8 t̄10 + 60t̄135 t̄27 t̄49 t̄6 t̄8 t̄10 + 60t̄135 t̄27 t̄89 t̄4 t̄6 t̄10 + 60t̄13 t̄25 t̄47 t̄69 t̄8 t̄10.

For P1(x) : T3
1−4 k̄12

1 k̄34
1 = 3c23.

For P2(x) : T2
1−3 k̄1−3

2 /2 = c15, T2
1−4 k̄12

1 k̄34
1 /2 = c19/2 + c1,10;

K43 = c31 + g1 + g2 for g1 = T4
1−5 k̄1−3

2 k̄45
1 = 12c36,

g2 = T4
1−6 k̄12

1 k̄34
1 k̄56

1 = 4c3,11 + 12c3,10.

For P3(x) : 2K33 = L4 + 3L′
5, L′

5 = T3
1−4/3 (k̄12k̄34)3 = t̄13 t̄2 t̄4 (k̄12k̄34)3 = 2L5,

L6 = T3
1−4/3 k̄1−4

3 , L7 = T3
1−5/3 k̄1−3

2 k̄45
1 ,

L71 = s̄4 t̄412 k̄1−3
2 t̄3, L8 = T3

1−6 k̄12
1 k̄34

1 k̄56
1 ,

L81 = t̄1235 t̄4 t̄6 k̄12
1 k̄34

1 k̄56
1 , L82 = t̄1−3 t̄45 t̄6 k̄12

1 k̄34
1 k̄56

1 , L83 = t̄135 t̄24 t̄6 k̄12
1 k̄34

1 k̄56
1 ,

L84 = t̄13 t̄25 t̄46 k̄12
1 k̄34

1 k̄56
1 .

K54 is given by (25) with L10 = T5
1−6/20 k̄1−4

3 k̄56
1 , L11 = U5

1−6/15 k̄1−3
2 k̄4−6

2 ,

L12 = T5
1−7/30 k̄1−3

2 k̄45
1 k̄67

1 , L121 = t̄2 t̄3k̄1−3
2 t̄146 s̄4 s̄6, L13 = T5

1−8 k̄12
1 k̄34

1 k̄56
1 k̄78

1 .

For P4(x) : 2K23 = L15 + L16 + L17/2, L15 = T2
1−3/2 k̄1−3

3 , L16 =
2

∑
k=1

L16k,
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L162 = s̄2 t̄2−4k̄34
2 , L17 = T2

1−4/2 (k̄12k̄34)3 =
2

∑
k=1

L17k, L172 = L171;

3K23 =
20

∑
k=18

Lk : L18 = U2
1−4k̄1−4

3 = L181/3 + L182/4,

L19 = T2
1−5k̄1−3

2 k̄45
1 =

4

∑
k=1

L19k/gk for g1 = 3, g2 = g3 = g4 = 1,

L192 = t̄3k̄1−3
2 t̄1245k̄45

1 , L193 = t̄412k̄1−3
2 t̄35k̄54

1 , L194 = k̄45
1 t̄451k̄1−3

2 t̄23,

L20 = T2
1−6k̄12

1 k̄34
1 k̄56

1 /4 = L201/4 + L202/2 + L203/4 + L204/6,

L202 = k̄12
1 t̄1235 (k̄34

1 k̄56
1 ) t̄46.

3K44 = L21 + 12L22 + 4L, L = T4
1−6/4 (k̄12k̄34k̄56)4 = L23 + 3L24,

L22 = T4
1−5/12 (k̄1−3k̄45)4 = (L221 + L222) by (15),

L23 = t̄135 t̄2 t̄4 t̄6 (k̄12k̄34k̄56)4 =
3

∑
k=1

L23k by (15), L23k ≡ L231. By (15),

L24 = t̄13 t̄25 t̄4 t̄6 (k̄12k̄34k̄56)4 = 2L241 + L242;

4K44 = 2L25 + 2L26 + 6L27 + L28 + L29, L25 = k̄1−5
4 U4

1−5/4,

L26 = U4
1−6/2 k̄1−4

3 k̄56
1 , L27 = V4

1−6/6 k̄1−3
2 k̄4−6

2 =
3

∑
k=1

L27k,

L28 = T4
1−7k̄1−3

2 k̄45
1 k̄67

1 , L29 = T4
1−8k̄12

1 k̄34
1 k̄56

1 k̄78
1 ;

for K65 : L31 = T6
1−7 k1−5

4 k67
1 /30, L32 = U6

1−7 k1−5
4 k67

1 /60v,

L33 = T6
1−8 k̄1−4

3 k̄56
1 k̄78

1 /60, L34 = U6
1−8 k̄1−3

2 k̄4−6
2 k̄78

2 /90,

L35 = T6
1−9 k̄1−3

2 k̄45
1 k̄67

1 k̄89
1 /60, L36 = T6

1−10 k̄12
1 k̄34

1 k̄56
1 k̄78

1 k̄9,10
1 /6.

Example 1. Suppose that E ŵ = w and t(w) is linear in w. Then K1e = 0 for e ≥ 1. For r ≤ 4,
the Kij needed for Pr(x) of (4) for the distribution of Ynt of (12) are as follows.

K10 = t̄ = t(w). For P0(x) : K21 = v. For P1(x) : K32 = c21.

For P2(x) : K22 = 1K22 = c11, K43 = c31.

For P3(x) : K33 = 2K33 = L4, K54 = L9.

For P4(x) : K23 = 1K23 = L14, K44 = 3K44 = L21, K65 = L30.

For, ū1, v̄1, x̄1, z̄12 are 0, as are most cij, Lk and 2K22, 3K33, 2K23, 3K23, 4K44.
So for r = 0, · · · , 4, for Pr(x) we only need to calculate these 3 cij and 5 Lj.

Let Gγ be a gamma random variable with known mean γ. Its rth cumulant is (r − 1)!γ.
For a standard exponential random variable γ = 1.

Example 2. Linear combinations of scale parameters. Suppose that E ŵ = w and t(w) is
linear, the components of ŵ are independent, and for 1 ≤ i ≤ p, ŵi/wi has a distribution with
known rth cumulant n1−rκri. Then, Kre = 0 for e ̸= r − 1 and

Kr,r−1 =
p

∑
i=1

tr
�iκri(wi)r.

For example, if ŵi/wi is a gamma random variable with mean γ, then κri = (r − 1)!γ.
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For s ≤ r and any function f is ···ir , set ∑s−r f̄ s−r = ∑is ,··· ,ir f is ···ir summed over their
range. In Example 3 their range is 1, 2; for example in L123, ∑1 t�2i1 v̄1 = ∑k

i1=1 t�2i1 v̄1. In
Example 4 their range is 1, · · · , k; for example ū1 = ∑2 t̄12 s̄2 = ∑k

i2=1 t̄12 s̄2.

Example 3. Suppose that µ̂ ∼ N1(µ, V/n) and V̂/V = χ2
f / f = Gγ/γ are independent, where

γ = f /2 has magnitude n. Set ν = γ/n. Then κr(µ̂) = µδr1 + Vn−1δr2, κr(V̂) = krn1−r for
kr = (r − 1)!ν1−rVr, and cross-cumulants of ŵ are zero. Take p = 2, w1 = µ, w2 = V. Then by
Corollary 1, Kre are given in terms of

s1 = t�1V, s2 = t�2k2, u1 = t�11t�1V + t�12t�2k2, u2 = t�12t�1V + t�22t�2k2,

v1 = Vu1, v2 = k2u2,

as follows.

For P0(x) : K21 = v = t2
�1V + t2

�2k2/2.

For P1(x) : c02 = t�11 + t�22k2, c21 = t3
�2k3, c23 =

2

∑
i=1

t�ii(si)2.

For P2(x) : c11 = 0, c15 = t�22t�2k3, c19 = (t�11V)1 + (t�22k2)
2 + 2t�12Vk2,

c31 = t4
�2k4, c36 = t2

�2k3u2, c3,10 = u2
1V + u2

2 k2,

c3,11 =
2

∑
i=1

(si)3t�iii + 3
2

∑
12
(s1)2s2t�112 where

2

∑
12

f12 = f12 + f21.

For P3(x) : L1 = L4 = L5 = 0, L2 = t�222k3,

L3 = t�1111V2 + 2t�1122Vk2 + t�2222k2
2,

L6 = t�22t2
�2k4, L71 = z22k3t2, L72 = y2(t�211V + t�222k3), L73 = t�22k3u2,

L74 = (Vt2
�12 + k2t2

�22)k3t�2, L81 = (Vt�1i2i3i4 + k2t�2i2i3i4)s̄
3 s̄4,

L82 = ∑
1
(Vt�11i1 + k2t�22i1)v

i1 , L83 = V2t�11z11 + 2Vk2t�12z12 + k2
2t�22z22,

L84 = ∑
1−3

k̄11
1 k̄22

1 k̄33
1 t̄12 t̄23 t̄31,

L9 = t5
�2k5, L10 = u2t3

�2k4, L11 = (y2)2t�22, L121 = y2 ∑
12

t�2i1i2 s̄1 s̄2,

L122 = t�2k3u2
2, L123 = y2 ∑

1
t�2i1 v̄1, L13 = ∑

1−3
s̄1 s̄2 t̄1−3k̄33

1 ū3.

Similarly, one can write down the Ls needed for P4(x).

Example 4. Suppose that we have the summary statistics from k samples of size ni from normal
populations with means and variances µi, Vi, 1 ≤ i ≤ k. Take p = 2k, wi = µi, wi+k =
Vi, 1 ≤ i ≤ k. So we have p independent statistics, µ̂i ∼ N (µi, Vi/ni) and V̂i ∼ Viχ

2
fi

/ fi =

ViGγi /γi, 1 ≤ i ≤ k where γi = fi/2 has magnitude n, the total sample size. Set

νi = γi/n, λi = ni/n, τi = Vi/λi.

Then κr(µ̂i) = µiδr1 + Vi(λin)−1δr2, κr(V̂i) = kri(λin)1−r for kri = (r − 1)!ν1−r
i , and cross-

cumulants of ŵ are zero. Suppose that t(w) only depends on µ1, · · · , µk, as in Example 3.3 of [2].
(The notation there is slightly different). Then

s̄1 = t̄1τ̄1, ū1 = ∑
2

t̄12 s̄2, v̄1 = τ̄1ū1, z̄12 = ∑
3

t̄1−3 s̄3,



Mathematics 2024, 12, 905 17 of 28

and by Corollary 1, the coefficients needed are as follows.

For P0(x) : K21 = v = t̄1 s̄1 = ∑
1

t̄2
1τ̄1,

For P1(x) : c02 = ∑
1

t̄11τ̄1, c21 = 0, c23 = s̄1 t̄12 s̄2 = ∑
12

t̄1τ̄1 t̄12 t̄2τ̄2,

For P2(x), K22 : c11 = c15 = 0, c19 = ∑
12

t̄2
12τ̄1τ̄2, c1,10 = ∑

12
t̄1τ̄1 t̄122τ̄2;

For K43 : c31 = c36 = 0, c3,10 = ∑
1

ū2
1τ̄1, c3,11 = ∑

1−3
s̄1 s̄2 s̄3 t̄1−3.

For P3(x), K12 = L3/6 = ∑
12

t̄1122τ̄1τ̄2/6 as L1 = L2 = 0;

for K33 : L4 = L5 = L6 = L7 = 0, L81 = ∑
1−3

τ̄1 t̄1123 s̄2 s̄3, L82 = ∑
12

τ̄1 t̄122v̄2,

L83 = ∑
12

t̄12τ̄1τ̄2z̄12 = ∑
1−3

τ̄1τ̄2τ̄3 t̄12 t̄123 t̄3, L83 = ∑
1−3

τ̄1τ̄2τ̄3 t̄12 t̄23 t̄31;

for K54 : Lk = 0 for 10 ≤ k ≤ 14.

For P4(x), K23 : Li,k = 0 for i = 15, 16, 18, 19, L171 = ∑
12

t̄2
12τ̄1τ̄2,

L201 = ∑
1−3

τ̄1τ̄2 t̄11223 s̄5, L202 = ∑
1−3

τ̄1τ̄2τ̄3 t̄1123 t̄23, L203 = ∑
1−3

τ̄1τ̄2τ̄3 t̄112 t̄233,

L204 = ∑
1−3

τ̄1τ̄2τ̄3 t̄2
123;

K44 = L29 as Lk = 0 for k = 21, (22, k), (23, 1), (24, k), 25, (26, k), (27, k), (28, k),

L291 = ∑
1−4

τ̄1 s̄2 s̄3 s̄4 t̄11234, L292 = ∑
1−3

τ̄1 t̄1123v̄2 s̄3, L293 = ∑
1−4

τ̄1τ̄2 s̄3 s̄4 t̄1234,

L294 = ∑
1−4

τ̄1τ̄2 t̄112 t̄234 s̄3 s̄4, L295 = ∑
12

τ̄1z̄2
12τ̄2, L296 = ∑

1−3
τ̄1τ̄2τ̄3 t̄112 t̄23,

L297 = ∑
12

τ̄1 x̄12 t̄12 for x̄12 = ∑
3

t̄123v̄3, L298 = ∑
1−3

τ̄1τ̄2τ̄3 t̄12 t̄23z̄31,

L299 = ∑
1−4

τ̄1τ̄2τ̄3τ̄4 t̄12 t̄23 t̄34 t̄41;

K65 = 6L36, as the other components of K65 are 0. Also,

K13 = ∑
1−3

τ̄1τ̄2τ̄3 t̄112233/48, K14 = ∑
1−4

τ̄1τ̄2τ̄3τ̄4 t̄11223344/384.

Corollary 2. Set Yn = v−1/2Ynt = (n/v)1/2(t(ŵ)− t(w)). Then

Prob.(Yn ≤ x) =
∞

∑
r=0

n−r/2Prv(x)

where Prv(x) is Pr(x) of Corollary 1 with Kre replaced by Kre/vr/2.

Proof. This is straightforward.

Looking at Kre, cab, v, s̄2, ū3 as functions of w, we denote their partial derivatives with
respect to w̄3 = wri3, say. by K̄re�3, c̄ab�3, v̄�3, s̄2

�3, ū3�3 and similarly for higher derivatives. We
shall give the ones we need in Lemma 1. When constructing confidence regions, one needs
to assume that the distribution of ŵ is determined by w. So far, we have not assumed this.
For ŵ biased, we need

Corollary 3. Let ŵ in Rp be a biased standard estimate of w satisfying (1) where k̄1−r
e may depend

on w. Then for q = 1, t̂ = t(ŵ) is a standard estimate of t = t(w) in R:
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κr(t̂) =
∞

∑
e=r−1

n−eare for r ≥ 1, where are = Kre + Dre, Dr,r−1 = 0, (26)

and the other Dre needed for Pj(x) of (4) for the distribution of Ynt of (12) are as follows.

For P0(x) : D21 = 0 ⇒ a21 = K21 = v = t̄1k̄12
1 t̄2.

For P1(x) : D11 = c01 ⇒ a11 = c01 + c02/2, a32 = K32 = c21 + 3c23,

For P2(x) : D22 = v̄�3 k̄3
1 = c12 + 2c16, a43 = K43.

For P3(x) : D12 = K11,1 + K10,2, K11,1 = K̄11�3 k̄3
1, K10,2 = t̄1k̄1

2 + k̄1
1 t̄12k̄2

1/2,

D33 = K̄32�4 k̄4
1, a54 = K54.

For P4(x) : D23 = K22,1 + K21,2, K22,1 = K̄22�3 k̄3
1, K21,2 = v̄�3 k̄3

2/2 + v̄�34 k̄3
1k̄4

1,

D44 = K̄43�5 k̄5
1, a65 = K65.

Proof. This follows from Theorem 3. Drc = ∑c−r+1
c=1 Kr,c−r,e where Krke is the coefficient of

n−e in the expansion of Krk(E ŵ) about Krk.

For r ≤ s, and any X̄r−s, let ∑N
r−s X̄r−s sums over all N permutations of ir, · · · , is giving

distinct terms. For example,

3

∑
3−5

t̄13 t̄245 = t̄13 t̄245 + t̄14 t̄235 + t̄15 t̄234.

The derivatives of v = K21 and Kre needed for Corollary 3 are given by

Lemma 1.

v̄�3 = 2ū3 + T̄3, v̄�34 =
2

∑
k=0

v̄34k, where T̄3 = t̄1 t̄2k̄12
1�3, (27)

v̄340 = 2z̄34 + 2t̄31k̄12
1 t̄24, v̄341 = 2t̄1(k̄12

1�3 t̄24 + k̄12
1�4 t̄23), v̄342 = t̄1 t̄2k̄12

1�34.

v̄�3−5 =
3

∑
k=0

v̄3−5k for v̄3−50 = 2k̄62
1

3

∑
3−5

t̄63 t̄245 + s̄6 t̄3−6, (28)

v̄3−51 = 2
3

∑
3−5

(t̄1k̄12
1�3 t̄245 + t̄31k̄12

1�4 t̄25), v̄3−52 = 2t̄1

3

∑
3−5

t̄23k̄12
1�45, v̄3−53 = t̄1 t̄2k̄12

1�3−5,

2K̄11�3 = c02�3 = k̄12
1 t̄1−3 + t̄12k̄12

1�3, K̄32�4 = c21�4 + 3c23�4

for c21�4 = 3Ȳ4 + t̄1 t̄2 t̄3k̄1−3
2�4 , c23�4 = s̄1 s̄2 t̄124 + 2b4, b4 = s̄1

�4ū1 = x̄4 + ū1k̄12
1�4 t̄2.

K̄22�3 = c11�3 + c15�3 + c19�3/2 + c1,10�3 for c11�3 = 2t̄31S̄1 + t̄1 t̄2 k̄12
2�3,

c15�4 =
3

∑
k=1

c15k4, c1514 = t̄14k̄1−3
2 t̄23, c1524 = t̄1k̄1−3

2 t̄2−4, c1534 = t̄1k̄1−3
2�4 t̄23,

c19�5 = 2c1915 + 2c1925, c1915 = t̄34k̄31
1 k̄42

1 t̄125, c1925 = k̄23
1�5 t̄34k̄41

1 t̄12,

c1,10�4 =
3

∑
k=1

c1,10k4, c1,1014 = k̄23
1 t̄1−3 s̄1

�4 = k̄23
1 t̄1−3(k̄15

1 t̄54 + t̄5k̄15
1�4),

c1,1024 = s̄1k̄23
1 t̄1−4, c1,1034 = s̄1 t̄1−3k̄23

1�4,

K̄43�5 = c31�5 + 12c36�5 + 12c3,10�5 + 4c3,11�5 for c31�5 = 4t̄51 k̄1−4
3 t̄2 t̄3 t̄4

+ t̄1 · · · t̄4 k̄1−4
3�5 , c36�5 = 2t̄51k̄1−3

2 t̄2ū3 + t̄1 t̄2ū3k̄1−3
2�5 + ȳ3 t̄3−5 s̄4 + Ȳ4(k̄41

1�5 t̄1 + k̄41
1 t̄15).

c3,10�3 = ū1k̄12
1�3ū2 + 2v̄1 s̄2 t̄1−3 + 2t̄1 x̄2k̄12

1�3 + 2x̄1k̄12
1 t̄23,

c3,11�5 = 3s̄1 s̄2 t̄1−3 s̄3
�5 = 3s̄1 s̄2 t̄1−3 t̄4k̄34

1�5 + 3s̄1 s̄2 t̄1−3k̄34
1 t̄45. (29)
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Proof. For example, substitute ū3�5 = t̄3−5 s̄4 + t̄34k̄41
1�5 t̄1 + t̄34k̄41

1 t̄15 into c36�5 = 2t̄1 t̄25k̄1−3
2 ū3 +

t̄1 t̄2(k̄1−3
2�5 ū3 + k̄1−3

2 ū3�5).

So now we can write Dre needed for Corollary 3 in molecular form:

Corollary 4. Assume that the conditions of Corollary 3 hold. Then Dre and Kre,j given there satisfy

D22 = c12 + 2c16 ⇒ a22 = c11 + c15 + c19/2 + c1,10 + c12 + 2c16.

For D12, K11,1 = (t̄1−3 k̄12
1 + t̄12 k̄12

1�3)k̄
3
1/2.

D33 = (3ȳ3 t̄34 + t̄1 t̄2 t̄3k̄1−3
2�4 + 3s̄1 s̄2 t̄124 + 6v̄1 t̄14 + 6ū1k̄12

1�4 t̄2)k̄4
1.

For D23, K22,1 = (2t̄31S̄1 + t̄1 t̄2 k̄12
2�3)k̄

3
1 + (t̄14k̄1−3

2 t̄23 + t̄1k̄1−3
2 t̄2−4 + t̄1k̄1−3

2�4 t̄23)k̄4
1

+ (t̄125X̄12 + k̄23
1�5 t̄34k̄41

1 t̄12)k̄5
1 + [k̄23

1 t̄1−3(k̄15
1 t̄54 + t̄5k̄15

1�4) + s̄1k̄23
1 t̄1−4 + s̄1 t̄1−3k̄23

1�4]k̄
4
1;

K21,2 = (2ū3 + t̄1 t̄2k̄12
1�3) k̄3

2/2 + [4t̄1k̄12
1�3 t̄24 + s̄1 t̄134 + t̄31k̄12

1 t̄24

+ t̄1 t̄2k̄12
1�34] k̄3

1k̄4
1.

D44 = [4t̄51 k̄1−4
3 t̄2 t̄3 t̄4 + t̄1 · · · t̄4 k̄1−4

3�5 + 24t̄51k̄1−3
2 t̄2ū3 + 12t̄1 t̄2ū3k̄1−3

2�5

+ 12ȳ3(t̄3−5 s̄4 + t̄34k̄41
1�5 t̄1 + t̄34k̄41

1 t̄15)] k̄5
1 + 12[2v̄2 t̄2−4 s̄4 + 2t̄1 x̄2k̄12

1�3

+ 2x̄1k̄12
1 t̄23 + 12ū1k̄12

1�3ū2] k̄3
1 + 12(s̄1 s̄2 t̄1−3 t̄4k̄34

1�5 + s̄1 s̄2 t̄1−3k̄34
1 t̄45) k̄5

1.

Proof. a1e were given for i ≤ 4 by Theorem 3. Corollaries 5.3, 5.4 agree with a11, a32, a22, a43
given for Pr(x), r ≤ 2 on p59 of [2] except that D22 in a22 was overlooked.

Fisher and Cornish (1960) [28] showed the accuracy available using a few terms for the
quantile expansions for the chi-square (or gamma), Student’s t, and F distributions. Similar
results can be given for the accuracy of their Edgeworth expansions in approximating their
distributions.

6. An Extension to Theorem 1

Here we remove the condition in Theorem 1 that E ŵ = w and give the extra terms
referred to but not given on p49 of [19]. We use eK̄1−r of Theorem 1, and the shorthand
f̄�m = ∂im f̄ where ∂i = ∂/∂wi. Suppose that for r ≥ 1, the rth-order cumulants of (8) can be
expanded as

k̄1−r = κ(ŵi1 , . . . , ŵir ) =
∞

∑
e=r−1

e k̄1−r for 1 ≤ i1, . . . , ir ≤ p, (30)

where e k̄1−r = O(n−e), and that ŵ → w as n → ∞, so that 0k̄1 = w̄1.

There is a key difference with Theorem 1: there, e k̄1−r was treated as an algebraic expression.
But now we must view each of them as a function of w. So, we assume that the distribution of
ŵ is determined by w.

The derivatives of eK̄1−r of Theorem 1 are given by Leibniz’s rule for the derivatives
of a product:

1K̄12
�3 = (t̄1

1 t̄2
2 k̄12)�3 = (t̄1

13 t̄2
2 + t̄1

1 t̄2
23) k̄12 + t̄1

1 t̄2
2 k̄12

�3 ,

1K̄1
�3 = (t̄1

12k̄12)�3/2 = t̄1
1−3k̄12/2 + t̄1

12k̄12
�3 /2,

(t̄1
1 t̄2

2 t̄3
3 k̄1−3)�4 = (t̄1

1 t̄2
2 t̄3

3)�4k̄1−3 + t̄1
1 t̄2

2 t̄3
3 k̄1−3

�4 , (t̄1
1 t̄2

2 t̄3
3)�4 = t̄1

1 t̄2
2 t̄3

34 + t̄1
1 t̄2

24 t̄3
3 + t̄1

14 t̄2
2 t̄3

3,

(T1−3
1−4 k̄12k̄34)�5 = (T1−3

1−4 )�5 k̄12k̄34
1 + T1−3

1−4 (k̄12k̄34)�5,

(T1−3
1−4 )�5 =

3

∑(t̄1
135 t̄2

2 t̄3
4 + t̄1

13 t̄2
25 t̄3

4 + t̄1
13 t̄2

2 t̄3
45), (k̄

12k̄34)�5 = k̄12
�5 k̄34 + k̄12k̄34

�5 .
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Theorem 4. Let ŵ in Rp be a biased standard estimate of w satisfying (30). Then t̂ = t(ŵ) in Rp

is a standard estimate of t = t(w):

κ(t̂j1 , . . . , t̂jr ) =
∞

∑
e=r−1

e ā1−r for r ≥ 1, 1 ≤ j1, . . . , jr ≤ q, (31)

where e ā1−r = eK̄1−r + eD̄1−r, r−1D̄1−r = 0, (32)

and the other eD̄1−r = eDj1...jr needed for Prn(x) of (13) for the distribution of Ynt of (12) are as follows.

For P0(x) : 1D̄12 = 0 ⇒ 1 ā12 = 1K̄12 = 1K j1 j2 = t̄1
1 t̄2

2 1k̄12],

For P1(x) : 1D̄1 = 1 t̄1k̄1 ⇒ 1 ā1 = t̄1
1 1k̄1 + t̄1

12 1k̄12/2,

For P2(x) : 2D̄12 = 1K̄12
�3 1k̄3 ⇒ ā12

2 = t̄1
1 t̄2

2 2k̄12 + T12
1−3 2k̄1−3/2

+ T12
1−4 1k̄12

1k̄34/2 + (t̄1
13 t̄2

2 + t̄1
1 t̄2

23) 1k̄12 + t̄1
1 t̄2

2 1k̄12
�3 1k̄3.

For P3(x) : 2D̄1 = 1K̄1
1 + 0K̄1

2, 1K̄1
1 = ( 1K̄1)�3 1k̄3,

0K̄1
2 = t̄1

1 2k̄1 + t̄1
12 1k̄1

1k̄2/2 ⇒

2 ā1 = t̄1
1 2k̄1 + t̄1

12( 2k̄12 + 1k̄1
1k̄2 + 1K̄12

�3 1k̄3)/2

+ t̄1
1−3( 2k̄1−3/6 + 1k̄1

1k̄23/2) + t̄1
1−4 1k̄12

1k̄34/8,

3D̄1−3 = 2K̄1−3
�4 k̄4

1 = (t̄1
1 t̄2

2 t̄3
3 2k̄1−3)�4 1k̄4 + (T1−3

1−4 1k̄12
1k̄34)�5 1k̄5.

For P4(x) : 3D̄12 = 2K̄12
1 + 1K̄12

2 , 2K̄12
1 = 2K̄12

�3 1k̄3,

1K̄12
2 = 1K̄12

�3 2k̄3/2 + 1K̄12
�34 1k̄3

1k̄4, 4D̄1−4 = 3K̄1−4
�5 1k̄5, 5D̄1−5 = 0.

Proof. K̄1−r(w) = K̄1−r and eK̄1−r(w) = eK̄1−r are functions of w. By (10),

K̄1−r(wn) =
∞

∑
e=r−1

kK̄1−r(wn) for wn = E ŵ = w + dn, (33)

where by (30), dn has i1 th component d̄1
n = di1

n = ∑∞
e=1 e k̄1. Consider the Taylor series

expansion

kK̄1−r(w + dn) = kK̄1−r + kK̄1−r
�1 d̄1

n + kK̄1−r
�12 d̄1

nd̄2
n/2! + · · · =

∞

∑
e=0

kK̄1−r
e

say. Substituting into (10) gives (31) with

c ā1−r = ∑
k+e=c

kK̄1−r
e =

c−r+1

∑
e=0

c−eK̄1−r
e .

Also kK̄1−r
0 = kK̄1−r so that (32) holds with

cD̄1−r =
c−r+1

∑
e=1

c−eK̄1−r
e : rD̄1−r = r−1K̄1−r

1 , r+1D̄1−r =
2

∑
e=1

r+1−eK̄1−r
e , · · ·

The Edgeworth expansion (13) holds if { eK̄1−r} are replaced by { e ā1−r}.

7. Discussion

Approximations to the distributions of estimates is of vital importance in statistical
inference. Asymptotic normality uses just the first term of the Edgeworth expansion. That
approximation can be greatly improved with further terms. When the estimate is a sample
mean, basic results were given by [29] and [30] with major advances by [31–33], Corollary
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20.4 of [9], and many others. For an application to the jackknife, see [34]. See [35] for some
historical references. For an application to the bootstrap, see [26]. For an application to
transport, see [36]. For an application to medical research, see [27]. For an application to
econometrics, see [37]. For an extension to order stats for a finite population, see [38]. For
a first-order application to inference on networks, see [39]. For more historical references
and a recent application to option and derivative pricing, see [40].

Extensions to stationary sequences were given by [41,42] For a derivation of the
Edgeworth expansion for a sample mean from the Gram–Charlier expansion, see [5,43] for
the univariate and vector cases. These showed for the first time that the coefficients in these
expansions were Bell polynomials in the cumulants.

The first extension from a sample mean for univariate estimates was by [28,44] They
assumed that the rth cumulant of the estimate was κr(ŵ) = n1−rkr where kr is a constant.
However, in applications they assumed that ŵ was a Type A estimate, and collected terms.
It was not until [14] that explicit results were given a univariate Type A estimate. Major
advances were made in [3]. This gave explicit results for the terms in the Edgeworth
expansion of a Type A or B estimate using Bell polynomials, as outlined in Section 1. It also
allowed for expansions about asymptotically normal random variables. The advantage of
this approach in greatly reducing the number of terms in each Pr(x) was illustrated in [7].

For univariate estimates, Cornish and Fisher (1937) [44] also showed how to invert
the Edgeworth expansion to obtain an expansion for the distribution quantiles. This was
extended to Type A estimates in [14]. For extensions to transformations of multivariate
estimates, like t(ŵ) = (ŵ − w)′V−1(ŵ − w), see [4,45,46]. An application to the amplitude
and phase of the mean of a complex sample is given in [47].

Turning now to smooth functions of a Type A estimate, the first univariate results were
given by [2] for parametric problems and [22] for nonparametric problems . These built
on a deep result of [19]. This is why if ŵ is a Type A (or B) estimate of w, then a smooth
function of ŵ, say t(ŵ), is a Type A (or B) estimate of t(w).

The extension from a vector to a matrix estimate is just a matter of relabelling: a single
sum becomes a double sum. The first examples of this we know of are in [17,24]. The
extension to a complex scalar or vector or matrix w was given in these same papers. The
first of these three papers applied it to the multi-tone problem in electrical engineering,
and the other papers to channel capacity problems where ŵ is a weighted mean of complex
matrix random variables, and n is no longer a sample size, but the number of transmitters
or receivers.

A different type of extension can be obtained by identifying a sample mean ŵ = X̄
from a distribution F(x) with its empirical distribution Fn(x), and t(w) with T(F), a smooth
functional of F(x), such as the bivariate correlation. T(Fn) is a Type A estimate of T(F), and
its cumulant coefficient can be read off those of t(ŵ). In this way one obtains the Edgeworth
expansion for n1/2(T(Fn)− T(F)). See [15] and its references for one or more weighted
samples. An extension to samples from a linear process was given by [18] .

A caveat on the use of an Edgeworth expansion is that including more terms makes it
more inaccurate in the tails. This is where the tilted expansions, also known as saddlepoint,
or small sample expansions, become essential. Results for the density of Ynw for a sample
mean, were given in Section 5 of [12] and Section 6 of [13]. For a discussion and more
references on tilting, mainly for a sample mean, see [11]. Ref. [3] shows how the cumulant
coefficients given in this paper can be used to obtain the tilted expansion for the distribution
and density of any Type A estimate.

8. Conclusions

Let ŵ represent a Type A estimate of an unknown parameter w belonging to Rp.
Its cumulant coefficients, as defined by (1), serve as the foundational elements for the
Edgeworth expansion (2) as a series n−1/2, where n is typically the sample size.

The necessary coefficients for the rth term, Pr(x), are provided in (6) and (7). Consider
a smooth function t(ŵ) mapping to Rq, which in turn is regarded as a Type A estimate of
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t(w) in Rq. Consider a smooth function t(ŵ) mapping to Rq, which in turn is regarded as
a Type A estimate of t(w) mapping to Rq. This paper presents the cumulant coefficients
for t(ŵ) in terms of those of ŵ and the derivatives of ŵ. Substituting these coefficients into
(2) yields the Edgeworth expansion of n1/2(t(ŵ)− t(w)) up to n−5/2.

The tilted Edgeworth expansion for ŵ, crucial for tail accuracy, was previously delin-
eated in [3] in terms of its cumulant coefficients. By incorporating those of t(ŵ) as presented
here, we derive the tilted Edgeworth expansion for t(ŵ).

In many practical statistical estimation problems, simulations serve as a favored
method for approximating distributions. However, their limitation lies in their inability to
comprehensively represent the entire parametric landscape.

We have showcased some applications in electrical engineering. For instance, ref. [17]
offered numerical comparisons of the initial three approximations to channel capacity for
multiple arrays with multiple frequencies and delay spread. Given p = 1, this permitted
an expansion for the percentile. There exist myriad other potential applications across
electrical engineering and allied fields.

Lastly, we outline potential future research avenues. Chain rules applied to t(ŵ) can
yield the cumulant coefficients of its Studentised form, paving the way for expansions in
the coverage probability of confidence regions and enhancements in their accuracy. These
coefficients find applications in bias reduction, Bayesian inference, confidence regions, and
power analysis. While the Edgeworth expansion can sometimes yield negative values
in distribution tails, tilted expansions circumvent this issue. Alternatively, selecting y in
Rp such that ∇nx = Prob.(Ynw ≤ x + n−1/2y)− ΦV(x) is O(n−1) offers another approach.
For p > 1 the diversity of y choices allows for potential reductions to ∇nx = O(n−3/2) or
smaller. Introducing n−1/2y replacements such as y(n) = n−1/2y0 + n−1y1 further expands
the range of options.
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Appendix A. Some Comments on the References

Here, we give some comments and corrections to some of our papers.
Withers (1982) [2]: To the expression for a22 on p59 add c12 + 2c16 where

c12 = I2

(
12
01

)
= titjk

ij
1,kkk

1, c16 = I11

(
12
00

)
= tik

ij
1 tjkkk

1.

This correction does not effect applications in which ω̂ is unbiased, as in [2,23].
In the expression on p60 for (a22)2, I31(

23
22) should be c36 = I31(

23
00).

On p61, 4 lines before Table 1, replace n/2)r−1 by n/2)1−r.
On p67, add to Kab

2 , ta
i tjb kij

1,kkk
1. For r = 3, 4 see Section 4.

On p68 in (A3), replace (r+2
r ) by (r+2

2 ). Changing to the simpler notation of [15], denote
the expressions for I2(

2
0), ..., I301(

222
000) and I3(

22
01), ..., I31(

222
001) given on pages 58–59 by σ2 =

V = V(w) = tik
ij
1 tj, c01, c02, c21, and c23, c11, c15, c19, c1,10, c31, c36, c3,10, c3,11, c22, c12, c14, c17,

c32, c34, c35, c38, c39. So, the expressions on pages 59–60 become
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a11 = c01 + c02/2, a32 = c21 + 3c23,

a22 = c11 + c15 + c19/2 + c1,10 + c12 + 2c16 by Corollary 3,

a43 = c31 + 12c36 + 12c3,10 + 4c3,11,

(a11)1 = σ−1(c01 + c02/2)− σ−3(c22/2 + c23), (a32)2 = σ−3(c21 − 3c22 − 3c23),

(a22)2 =
3

∑
i=1

V−i Ai, (a43)4 =
3

∑
i=2

V−iBi for

A1 = c11 − c14/2 + c15 − 2c17 − c19/2, A2 = −(c01 + c02/2)(c22 + 2c23)

− c32 − c34 + c35 − 2c36 − 4c38 + 2c39 − 2c3,10 − 2c3,11,

A3 = 7(c22 + 2c23)
2/4, B2 = c31 − 6c32 − 6c34 + 3c35 − 24c38 − 12c3,10 − 8c3,11,

B3 = 6(c22 + 2c23)(−c21 + 3c22 + 3c23).

We now illustrate how the results on p.60 were obtained. Let c′rs denote crs when t(ŵ) is
replaced by its Studentised form t(0)(ŵ). Then

(a22)2 = c′11 + c′15 + c′19/2 + c′1,10 + c′12 + 2c′16, (A1)

The first few derivatives of t(0)(ω̂) at w, and of V(w), are

t0.i = V−1/2ti, t0.ij = V−1/2tij − V−3/2(tiVj + tjVi)/2,

t0.ijk = V−1/2tijk − V−3/2
3

∑
ijk
(tijVk + Vijtk)/2 + 3V−5/2

3

∑
ijk

tiVjVk/4,

Vi = 2tiakab
1 tb + kab

1,itatb, and

Vij = 2tijakab
1 tb + 2tiakab

1 tjb + 2
2

∑
ij

tiakab
1,jtb + kab

1,ijtatb, where

2

∑
ij

aibj = aibj + ajbi,
3

∑
ijk

aijbk = aijbk + aikbj + ajkbi for aij = aji.

So c′11 = V−1c11, c′15 = V−1c15 − V−2M1,

c′19 = V−1c19 − 2V−2M4 + V−3(VM2 + M2
3)/2,

c′1,10 = V−1c1,10 − V−2(M3c02 + 2M4 + VM5 + 2M6)/2 + 3V−3(VM2 + 2M2
3)/4,

c′12 = V−1c12, c′16 = V−1c16 − V−2(VM7 + c01M3)/2, where

M1 = titjk
ijk
2 Vk = c32 + 2c36, M2 = Vik

ij
1 Vj = c35 + 4c39 + 4c3,10,

M3 = tik
ij
1 Vj = c22 + 2c23 = c̃22 say, M4 = tik

ij
1 tjkkklVl = c39 + 2c3,10,

M5 = kij
1 Vij = 2c1,10 + 2c19 + c14 + 4c17,

M6 = tik
ij
1 Vjkkkl

1 tl = 2c3,10 + 2c3,11 + c34 + 4c38,

M7 = ki
1Vi = c12 + 2c16 ⇒

c′19 = V−1c19 + 2V−2(4c35 − c3,10) + V−3 c̃2
22/2,

c′1,10 =
3

∑
i=1

V−ibi for b1 = −c14/2 − 2c17 − c19, b3 = 3c̃2
22/2,

b2 = −c̃22c02/2 − c34 + 3c35/4 − 4c38 + 2c39 − c3,10 − 2c3,11.

Substitution into (A1) yields (a22)2. The other a′ri = (ari)r given on p.60 are obtained
similarly.

Withers (1984) [14]:
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p393: In the 5-line expression for f4(x, L), replace (x3 − x)/30 by (x3 − 3x)/30, and
+2473)/7776 by +2473x)/7776.

p394: In (3.4), replace (x2 − 1)/2, by (x2 − 1)/6,
p394: In line 2 of Section 4, ‘of Section 2’ should be ‘of Section 3’.
The following corrigendum for a printer’s error appeared in Withers, C.S. J. R. Stat.

Soc. B, 1986, 48, p258:
The expression −l4

3(252x5 − 1688x3 + 1511x)/7776 should be added to the last line on
p393.

That also gives g5(y) and g6(y) for the last line on p393.
Withers (1987) [21]:
p2371: (2.4): ∑∞

i=1 n−iCi need not converge. We only require an asymptotic expansion.
The same is true for (3.2) p2375.

p2371, 3rd to last paragraph: Replace ‘Appendix C, which also’ with ‘Appendix D.
Appendix C’

p2372, Example 2.2, line 2: Replace t2j(θ) with t(2j)(θ), the 2j derivative of t(θ). In line
3 and in Example 3.1, (y)j = y(y − 1) · · · (y − j + 1).

p2377 line 2: Replace (1.2) with (2.4)
p2377 line 3: Replace /N| with /N
p2377 line 9: Replace ‘Section 2’ with ‘Section 3’ Since E1 = 0, C1 of Example 3.2 p2376 is

unaffected. p2378: These expression for Cj are correct if θ̂ is unbiased. In that case, the terms
on p2378 with a 1 in the top line are 0 so that Cj has only mj terms where m1 = 1, m2 = 3,
m3 = 6, m4 = 12. However, if θ̂ is biased, then these expression for Cj did not allow for
contributions from replacing θ by E θ̂ in the cumulant coefficients ka1···ar

j of (3.2). These
are corrected in Withers, C.S. and Nadarajah, S. (Submitted), Bias-reduced estimates for
parametric problems.

p2379 Appendix D: Add at start: For p = 1 see (3.4) of
Withers, C.S. and Nadarajah, S., Journal of Multivariate Analysis, 2013, 118, 138–147.

Withers (1988) [23]:
p729: In the 10th line from the bottom, replace “their range 1 · · · p” with “their range

1 · · · k”
p732 line 9: T

aiaj ...
xixj ... should be Ta1a2...

x1x2....
p734: In the expression for h1 in the 5th to last line, replace He2 with He2/6.
p737: In line 11, “Sections 1 and 2 of Withers (1983a)” should read “Sections 1 and 2 of

Withers (1983b)”.
p741: In the 4th equation from the bottom, at the end of the line, replace [1j]T j

2, with

[1j]1T j
2,

Withers and Nadarajah (2008) [15]:
p743 para 2, line 4: Replace ’about zero.’ qith ’about zero when G puts mass 1 at x.’
p754, p756: Replace wina with wina. Different samples can have different weights.
p754, 2nd-to-last line: The first term on RHS, c11/2, should be c11.
p755, line 6: There is a typesetting error in the first of the 2 lines for a220. Replace the

first line with

a220 = σ−2(c11 − c12 − c14/2 + c15 − 2c17 − c19/2)− σ−4[(c01 + c02/2)(c22 + 2c23) + c32

p756: The 3rd and 4th lines after (8), should be

[1r]a =
∫

TF(
a
x)

rdFa(x),

[1, 12, 2r]a1a2 =
∫ ∫

TF
(a1

x1

)
TF

(a1a2
x1x2

)
TF

(a2
x2

)rdFa1(x1)dFa2(x2),

Withers and Nadarajah (2009) [43]:
p272. Line 3: Convergence of S(t) is not needed, since Brk is a finite sum.
κr on LHS(1.1) should be kr.
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p273 last paragraph: Also, f (x)/ϕ(x) is only meaningful if X is dimension-free.
p275. (2.8) is correct, but since B1 = B2 = 0, (2.8) can also be written as

∫
f 2/ϕ = 1 +

∞

∑
k=3

B2
k /k!.

In the 5th line of Section 3, insert after Brk(α), ‘at α1 = α2 = 0’.
The first line of (3.1) should read

Br = ∑(Brkϵr−2k : 1 ≤ k ≤ r/3)

(3.2) can be written Ks = s − 2[s/3] where [x] is the integral part of x.
p276: In the expression for B10, B10,18 should be B10,1.
p277: In the 2nd-to-last line, b64 should be B61.
p278: In the expression for b4, the first term should be doubled. In the expression for

b5, b82 should be B82.
Withers and Nadarajah (2010a) [16]:
p3: In the 5th- and 6th-to-last lines, replace = n−2Kab + O(n−2) with = n−1Kab +

O(n−2)
p5: 2 lines above Theorem 2.2, replace “third moments” with “third central moments”
p7, lines 2–3: delete “and its Studentised version”
p7, lines 3–4: delete “or n−1/2(βa − βa) Ĵ−1/2

aa ”
p7, line 7–10: delete from “So, a one-sided” to “by O(n−1/2);
p9: Move “Set ϕ′ = · · ·m = p + 1. on the last 2 lines of p9 and 1st line of p10 to just

before “Set” on p9 line 9.
p10, lines 14–15: replace “gij where” by “gij.” and move the rest of the sentence,

“gij = · · · gN.ij···” to the line after (6.1) p9, preceded by the word “Set”
Withers and Nadarajah (2010b) [3]:
p1129, line 7: replace bi1...ir

k (Yn) by bi1...ir
k (Y)

To the 9th-to-last line we can add

P̃3(t, B) = e3(t) + e1(t)e2(t) + e1(t)3/6,

From p1130 line 6 to the end of Section 5: Replace s with p, the dimension of θ.
p1130 line 7 is clearer, we replace line 8 with

for p(k)
(n)(y) = ∂k1 · · · ∂kp p(n)(y), ∂k = ∂/∂yk,

p1130 line 9: Replace Hν+k(y) with Hν+k(y, V)

p1130, 5th- and 6th-to-last lines: for example Ki1...ir
j = k(i1...ir)

j (t) = ∂i1 · · · ∂ir k j(t) where
∂i = ∂/∂ti.

p1132: A note on Corollary 3.2. For the duality of I(x) and k0(t) see p176 of McCullagh,
P., Tensor methods in statistics. Chapman and Hall, London, 1987.

p1133: In line 14, replace Hν+λ(θ, Vt) with Hν+λ(0, Vt)
Withers and Nadarajah (2014a) [5]:
p81: In (2.14), replace Jr(x) and J′r(x) with Jr(x)/r! and J′r(x)/r!.
p81: The 2nd line after (2.15) should read

J′r(x) =
∫

Vȳ≤Vx̄
H̄r(ȳ, V̄)ϕV̄(ȳ)dȳ

The next line is correct:
J′r(x) =

∫
Vȳ≤Vx̄

(−∂ȳ)
rϕV̄(ȳ)dȳ.

p82: In (2.20), replace Jr(y1, y2) with Jr(y1, y2)/r!.
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p85: In Withers, C.S. and Nadarajah, S. (2009), replace ’via’ with ’in terms of’.
Withers and Nadarajah (2014b) [7]:
p676. Multiply RHS of (1.13) by n1/2. That is, replace it by

YJKθ = (n/s2Kθ)
1/2(θ̂ − s1Jθ), J ≥ 0, K ≥ 1.

p699: In the editing of the original paper of 64 pages down to 21 pages, some details had to
be removed. Here, are some more details for Theorem 1.2 after (1.24)

∇1 = 0 if J ≥ 1, ∇2 = Ā43H2 if K ≥ 2,

∇3 = Ā33H2 + Ā54H4 if J ≥ 2, ∇4 = Ā44H3 + Ā65H5 if K ≥ 3,

∇5 = Ā34H2 + Ā55H4 + Ā76H6 if J ≥ 3,

∇6 = Ā45H3 + Ā66H5 + Ā87H7 if K ≥ 4.

∇re = 0 if r ≤ 3 for e = h, f , g, ∇4e = [42]0 e(42),

∇5e = [45]0 e(45) + [34]1 e(34),

∇6e = ∑{[π]0 e(π) : π = 52, 46, 43}+ ∑{[π]1 e(π) : π = 42, 35}+ [32]2 e(32),

where the e(π), [π]i needed for er(x), 1 ≤ r ≤ 6, are as follows.

h(ij · · · ) = Hi+j+···−1 so that h(1i12i2 · · · ) = H1i1+2i2+···−1.

For r = 4 : [42]0 = Ā2
43/2!, h(42) = H7,

f (42) = H7 − H1H2
3 , g(42) = H7 − 2H3H4 + H1H2

3 .

For r = 5 : [45]0 = Ā43 Ā54, h(45) = H8,

f (45) = H8 − H1H3H4, g(45) = H8 − H3H5 − H2
4 + H1H3H4,

[34]1 = Ā33 Ā43, h(34) = H6, f (34) = H6 − H1H2H3,

g(34) = H6 − H2H4 − H2
3 + H1H2H3.

For r = 6 : [52]0 = Ā2
54/2!, h(52) = H9,

f (52) = H9 − H1H2
4 , g(52) = H9 − 2H4H5 + H1H2

4 ,

[46]0 = Ā43 Ā65, h(46) = H9,

f (46) = H9 − H1H3H5, g(46) = H9 − H3H6 − H4H5 + H1H3H5,

[43]0 = Ā3
43/3!, h(43) = H11, f (43) = H11 − 3H1H3H7 − H2H3

3 + 3H2
1 H3

3 ,

g(43) = H11 − 3H3H8 − 3H4H7 + 3H1H3H7 + 3H2
3 H5 + 6H3H2

4

− 9H1H2
3 H4 − H2H3

3 + 3H2
1 H3

3 ,

[42]1 = Ā43 Ā44,

[35]1 = Ā33 Ā54, f (35) = H7 − H1H2H4, g(35) = H7 − H3H4 − H2H5,

[32]2 = Ā2
33/2!, f (32) = H5 − H1H2

2 , g(32) = H5 − 2H2H3 + H1H2
2 .

p702 Section 2: In the 3rd equation of Theorem 1, ln Γ(µ) should be ln Γ(m). p704:
Disregard Table 3.

Withers and Nadarajah (2015) [8]:
In (22) and the formulas for d2, · · · , d6 that follow, replace dr by

d̄r = rdr = cr(x)/(r − 1)!.



Mathematics 2024, 12, 905 27 of 28

As stated this gives cr = cr(x) = r!dr. For example,

c2 = a1, c3 = 2a2
1 + a2, c4 = 3!a3

1 + 7a1a2 + a3,

c5 = 4!a4
1 + 46a2

1a2 + 11a1a3 + 7a2
2 + a4,

c6 = 5!a5
1 + 326a3

1a2 + 101a2
1a3 + 127a1a2

2 + 16a1a4 + 25a2a3 + a5.

In the first reference, [1], replace J.J. Alfredo with J.A. Jimenez.
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