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Abstract: Uniaxial compressive strength is a variable necessary for adequately characterizing a
material’s mechanical properties. However, a specimen’s geometric deviations and elastic properties
may lead to undesirable stress states, which cause strong discrepancies between the results of
the uniaxial compression test and its theoretical foundations. While geometric deviations may
cause non-uniform contact between the platen and the specimen, elastic properties can provoke
severe end effects that disturb the local stress field near the points of contact. To address how the
relative stiffness between the platen and the specimen influences the induced stress field, numerical
simulations considering the stiffness ratios Ep/Es = 3, Ep/Es = 1 and Ep/Es = 0.05 were performed.
Subsequently, these results were employed to establish the relation between relative stiffness and
specimen failure patterns in brittle materials, particularly in three different rocks. The results prove
that the platen stiffness must be accurately selected to match that of the tested material, in order to
avoid undesirable local stress fields near the point of contact and to induce homogeneous uniaxial
compression that guarantees reliable uniaxial compressive strength characterization. Furthermore,
the brittle failure patterns reported in previous studies were correlated with the induced stress fields
inside the specimen depending on its platen stiffness, allowing the validity of the test results to be
verified based on a simple visual inspection.

Keywords: relative stiffness; length-to-diameter ratio; uniaxial compressive strength; elastic behavior;
brittle failure

MSC: 65Z05

1. Introduction

The accurate characterization of a material’s mechanical properties is mandatory to
successfully determine its strength and, consequently, its suitability for specific engineering
projects and applications. This requirement not only applies to manufactured materials
employed in industrial products, but also to naturally generated ones such as rock materials,
which are involved in engineering projects related to underground work, mining or civil
topics. Consequently, a precise characterization is usually required to determine the
capabilities of a given material subjected to various stress conditions. To achieve this, its
tensile, compressive and triaxial strengths at different stress ratios must be obtained.

In the case of ductile materials, it is common to subject a specimen to direct tensile
tests. However, for brittle materials, any limitations to achieving the desired dog-bone
shape during the specimen preparation process or the possibility of inducing cracks when
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fixing the specimen to the testing device mean that an indirect tensile test [1–8], also known
as the Brazilian test [9], is still preferred. Nevertheless, new procedures to determine the
uniaxial tensile strength (UTS) are increasing in popularity [10,11], as they provide a true
uniaxial stress state (UTS) rather than a combined biaxial one [12,13].

The determination of the uniaxial compressive strength (UCS) is typically performed
using the standardized uniaxial compression test (UCT), employing prismatic or cylindrical
geometries for most materials [14–20]. Nevertheless, indirect methods, such as the point
load test [21–24] or the Schmidt–Hammer test [25,26], are becoming increasingly popular, as
no particular standardized geometry shape must be reproduced; this is extremely useful in
those cases where the available samples can be limited or difficult to obtain due to location.

Although the UCT has been meticulously standardized by several societies and insti-
tutions to ensure its trustworthiness and reliability, discrepancies between its theoretical
foundations and the expected experimental results have been documented. From an elastic
perspective, the material considered is subject to a uniform compression stress along the
contact between the specimen and the platens, which induces a homogeneous compressive
stress field inside the specimen. However, it is widely accepted that in the vicinity of the
contact, a non-homogeneous triaxial stress field is generated due to shear stresses caused
by the different stiffness values between the materials of the platen and specimen. Notably,
these shear stresses may evolve into friction when the applied load allows slippery contact
conditions to be induced. Several theoretical formulations seek to capture this end-effect
phenomenon [27–29]; however, the influence of constrained displacement at end points is
still under discussion among the scientific community. In this sense, different slenderness
ratios have been proposed to limit its influence [30–32]. Nevertheless, consensus on the
relative stiffness of post-peak behavior exists, which is considered to be dependent on the
friction between the platen and the specimen, instead of being an intrinsic property of the
tested material [31,33].

All of these discrepancies may explain the variability in the accepted failure patterns
related to the UCT [34,35], although the specific testing conditions responsible for them
remain uncertain. It is worth highlighting here that some discrepancies may also exist in
the characterization of elastic constants depending on the measuring technique employed,
although novel research directions currently allow the results between procedures to be
corrected [36–38].

The material strength for confined stress states is addressed by the triaxial compression
test. It is conducted using a Hoek cell; not only are stresses on the ends of a cylindrical speci-
men applied, but a uniform fluid pressure is also applied to its lateral surface [39,40]. Thus, by
selecting adequate ratios between the axial and confining stresses, the material’s behavior
can be predicted. Nevertheless, this test implies that the minor (σ3) and intermediate (σ2)
principal stresses are equal; thus, deviations from the triaxial test results must be expected
when this requirement is not fulfilled [41,42].

To determine a material’s strength under real-world conditions, failure envelopes
must be obtained by combining the results from a Brazilian test, a uniaxial compression
test and a triaxial compression test. The failure envelopes of brittle materials are usually
established by means of the Mohr–Coulomb or Hoek–Brown criterion [39,43]. The former
considers a linear relationship between the major (σ1) and minimum (σ3) principal stresses,
whereas the second establishes a non-linear envelope, as shown in Equations (1) and (2),
where ϕ is the friction coefficient and m and s are material constants, setting s = 1 for the
case of an intact rock.

σ1 =
1 + sin ϕ

1 − sin ϕ
σ3 + UCS (1)

σ1 = σ3 + UCS
(

m
σ3

UCS
+ s

)0.5
(2)

It is worth highlighting that the sign criterion used relates to compressive and tensile
stresses as positive and negative stress values, respectively, as is commonly used in the
field of rock mechanics. Nevertheless, it is pertinent to emphasize that the Mohr–Coulomb
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criterion is mainly formulated to address the compressive area (σ3 > 0) of the σ1 − σ3
chart (Figure 1). Hence, its straightforward lengthening into the tensile area (σ3 < 0)
would lead to excessively imprecise results. To soften this limitation, a truncated Mohr–
Coulomb (TMC) criterion is used instead (Figure 1), which restricts the allowable tensile
states (σ3 < 0) to those under the maximum threshold value set by the indirect tensile
strength obtained in the Brazilian test (σBD). Therefore, the compressive and tensile values
are encompassed in a more consistent failure envelope.
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This approach is conservative for bearing purposes, as elastic theory guarantees higher
tensile σ3 values before reaching failure. In this sense, the Hoek–Brown criterion is even
more conservative, as it equates the indirect tensile strength with the uniaxial one, thereby
transforming the point (σ3, σ1 = −σBD, 3σBD) into (σ3, σ1 = −σBD, 0).

Due to the relevance of accurately determining UCS for engineering purposes, the
influence of relative stiffness in the induced stress field inside the specimen is investigated
to ascertain UCT suitability to generate homogeneous compression fields. For this purpose,
numerical UCT simulations considering ratios between the platen (Ep) and specimen (Es)
stiffnesses of 3, 1 and 0.05 were performed. Subsequently, and based on the induced
stress fields obtained, the location of the failure initiation point for brittle materials and its
correlation with main failure patterns registered in the current literature are discussed. The
results highlight that uniaxial compression stress states at the failure initiation point are
only guaranteed for platens with similar stiffness to the tested specimen, and that brittle
failure patterns depend on relative stiffness.

2. Numerical Model

To address the influence of relative stiffness between the platen and the specimen
in the output results obtained from the standardized UCT, numerical simulations were
performed using the commercial software FLAC 7 3D version 7.00, which is widely used in
the field of rock mechanics modeling [44]. Therefore, the elastic behavior was predicted
using a finite difference method (FDM) [45,46]. The latter is based on substituting the
partial derivatives of a desired function by finite differences on a given domain [44]. Hence,
the continuity of this method’s results is one of its essential characteristics, but it also
reveals one of its major drawbacks, which is that it does not adequately address fractures in
the material. The materials in our proposed analysis were limited to the elastic range, with
no damage evolution, as only the failure initiation point was determined; FDM therefore
remains a suitable choice to model the UCT for our stated purposes.

Standards suggest different acceptable length (L)-to-diameter (D) ratios for the tested
specimens. Nevertheless, the obtained results can be considered acceptable if the aspect
ratio (L/D) is between 2 and 3. Indeed, a value of L/D = 2.5 is simultaneously proposed by
main rock mechanics standards. For this reason, the specimen used in the numerical model
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is 50 mm in diameter and 125 mm in length. It can be argued that such dimensions do not
strictly fulfill the minimum 54 mm diameter standard. Nevertheless, this recommendation
is due to the intrinsic heterogeneity of most rock materials, in which grain sizes of several
millimeters may behave as large inclusions, and thus cause the test results to deviate.

Regarding the platen dimensions, they were all 50 mm in diameter and 40 mm in
thickness to ensure that most standards were simultaneously satisfied.

As the geometries used in the numerical model are theoretically perfect—their shape
exactly matches that of ideal cylinders—no further considerations regarding geometric
deviations were made. However, this limits the results to the case in which specimen ends
can be considered perfectly flat for practical purposes.

All the specimens and platens were considered to be homogeneous and isotropic
materials. Furthermore, as the current research addresses the failure of brittle materials,
their plastic behavior was considered neglectable; therefore, the specimens had perfectly
elastic behavior up to the initiation of failure.

On each mesh element, the stress state can be defined by their maximum (σ1), interme-
diate (σ2) and minimum (σ3) principal stresses and their directions. However, as only σ1
and σ3 are considered in most applied failure criteria for brittle materials, the σ2 values will
be neglected in subsequent sections of this article.

To accurately reproduce the contact phenomenon reported during test execution,
we only imposed displacements as boundary conditions. Hence, instead of distributing
stresses along the contact surfaces in an arbitrary manner, the top of the upper plate
(y = 102.5 mm) was displaced towards the specimen with a velocity of 10−10 m/s, in
order for equilibrium conditions to be fulfilled between each calculation step. No other
restrictions or assumptions were made on the shear stresses or horizontal displacements at
the surface of the top platen. Under this approach, stresses are induced inside the specimen
due to the compression caused by the platen during its displacement. Although the use of
an interphase is widely accepted as the means to solve the problem under certain contact
restrictions, the authors consider that it may cause biased results, as many assumptions
may not necessarily hold true during real test executions. For this reason, the simulation
was performed without the use of interphase between the elastic bodies. Contrarily, the
model was meshed, assigning a common node for the specimen and the platen points in
contact. Consequently, the results are limited to those cases where neither slippery nor
relative horizontal displacement between contact surfaces is allowed. Hence, this analysis
cannot be extended to the case of friction or the use of effective lubricants.

The addressed problem is elastically three-dimensional; however, considering that
platens and the specimen are perfect solids of revolution and that contact conditions have
radial symmetry, the problem can be treated as an axisymmetric one. Therefore, the stress
state on each element is independent of its angular position; thus, only 45◦ of the cylinders
were used as geometric input to the model (Figure 2).

The mechanical properties of the assigned materials, as well as the ratio that relates
the platen (Ep) and specimen (Es) Young’s modulus and Poisson’s ratio (ν), are shown in
Table 1. The M2 material properties were elected to match representative values of rock
materials [40], whereas M1 and M3 were aimed at representing a much stiffer material and
an extensively softer one, respectively. For this purpose, mechanical properties similar to
those of steel and polymethyl methacrylate were selected [47].

Table 1. Mechanical properties of the material assigned to the model.

Stiffer Platen M1 Equal Stiffness Platen M2 Less Stiff Platen M3

Young’s Modulus E
(GPa) 210 70 3.20

Poisson’s ratio 0.30 0.33 0.40
Ep/Es 3 1 0.05
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Additionally, to address the influence of platen stiffness on the failure initiation
point, as well as in the associated failure pattern, three different limestone lithotypes were
used [48]. These limestones were selected to cover a wide spectrum of different UCS, σBD
and ϕ values, as shown in Table 2.

Table 2. Mechanical properties of the rocks employed to determine the failure initiation point. Data
are extracted from reference [48].

Limestone Lithotype
L1

Limestone Lithotype
L2

Limestone Lithotype
L3

Uniaxial compressive
strength UCS (MPa) 83.0 42.7 52.4

Internal friction angle
ϕ (◦) 37.4 35.3 27.3

Indirect tensile
strength σBD

5.5 2.8 3.2

A new stress defined as σ0, equal to 70% of the limestone lithotype 2 UCS value, was
selected to normalize all of the stress states and simultaneously ensure that the results
were limited to the elastic range. Once the σ0 value was reached in the points of the outer
circumference, the platen stopped its movement.

3. Platen Stiffness Influence on Stress Field inside the Specimen

Due to the strain mismatch for a given load between platen and specimen materials,
shearing stresses appeared in their contact surfaces. Therefore, different platens will in-
evitably lead to different contact stress distributions and, consequently, to different induced
stress fields inside the specimen. In this section, a detailed analysis was performed to high-
light the main differences when significantly higher, almost equal, and significantly lower
platen stiffnesses are used. For this purpose, platens with stiffness ratios of Ep/Es = 3,
Ep/Es = 1 and Ep/Es = 0.05 were simulated. It is worth remembering here that aluminum
was assigned as a specimen material in the numerical model for its well-known and repre-
sentative elastic properties. Special attention was paid to points where pure compression
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(σ3 = 0 and σ1 > 0) or pure tensile stress states (σ3 < 0 and σ1 = 0) were induced. In
addition, the evolution of the maximum shearing stresses (τmax) for each case is discussed.

3.1. Stress Field Comparison

In light of the previous discussion, it follows that relative stiffness significantly influ-
ences the stress field generated inside the specimen, especially in the vicinity of contact.
The stress states for all of the mesh elements and for all considered platens are depicted in
Figure 3. The distribution of stress states plotted in the σ1 − σ3 charts substantially varies
for each stiffness ratio; this allows for straightforward identification of the platen used from
its particular σ1 − σ3 chart shape (Figure 3). In those cases where a significant difference
in relative stiffness exists, the stress field is strongly influenced by the appearance of σ3
stresses that cause a deviation from the desired homogeneous uniaxial compression field
inside the specimen. Regarding this phenomenon, the ratio Ep/Es = 3 principally induces
σ3 compression stresses, whereas the latter are principally tensile for Ep/Es = 0.05. In this
sense, as brittle materials tend to show lower tensile than compressive strength values,
stiffer platens may be preferable to use for test execution, thus avoiding local tensile failures
near the contact.
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However, the dispersion of stress states among the σ1 − σ3 chart almost vanished for
platens with similar stiffnesses to the tested specimen (Ep/Es = 1), as shown in Figure 3.
Indeed, for practical applications, the dispersion can be considered reduced to just one
point located along the σ1 axis. In other words, no tensile stress is involved in the induced
stress field, and a unique compression stress value is induced to the whole specimen. Given
that the main purpose of the UCT is to accurately determine the UCS, it is imperative to
minimize the influence of σ3 values, either tensile or compressive, as they cause the induced
stress field to deviate from the desired uniaxial compression field. Consequently, more
coherent results are obtained regarding the theoretical assumptions from the test using the
Ep/Es = 1 ratio for the platens.

As in any numerical model, minor rounding discrepancies with respect to the analytic
solutions may arise. Consequently, and aiming at a practical application of the obtained
data, values of σ3 < 0.001σ1max were considered as pure compression (σ3 = 0 and σ1 > 0) in
the subsequent analysis.

Figure 4 illustrates all of the different stress states generated across the spectrum of
platen stiffnesses under consideration: pure compression (σ1 > 0 and σ3 = 0) is represented
by red points, the σ3 tensile component with green ones, and cases with both maximum
(σ1) and minimum (σ3) stress components of compression are depicted with blue dots.
Regarding softer platens (Ep/Es = 0.05), all points in the medium transversal plane
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develop a tensile stress lower than 0.002σ1max ; therefore, they do not satisfy the imposed
requirement for pure compression. Nevertheless, they prove that stiffness conditions have
no influence on the induced stress state at points located far from the contact (Figure 4).
Thus, pure compression is distributed along the mid height of the specimen for all cases,
making it reasonable to accept that a local uniaxial compression stress field exists in this area
independently from the platen stiffness. However, this last statement must be considered
cautiously, as only one length-to-diameter ratio of L/D = 2.5 was considered.
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Furthermore, equal stiff platens (Ep/Es = 1) induce a stress field with a ratio be-
tween maximum and minimum compressive stresses (σ1max and σ1min , respectively) of
σ1min /σ1max = 0.99 and neglectable σ3. Therefore, it was found that a uniaxial compression
stress field inside the specimen is guaranteed for stiffness ratios close to Ep/Es = 1. Hence,
no further considerations were made on tensile stresses for this case, as they could be
neglected for practical purposes.

Special attention must be paid to the tensile σ3 areas depicted in Figure 4. They
appeared for both stiffer (Ep/Es = 3) and softer (Ep/Es = 0.05) platens; however, the
induced stress states strongly differed in each case. Whereas the former generate tensile
stresses in points located far from the contact, they are placed in its immediate vicinity for
the latter. Both cases can be considered almost complementary to each other, for which the
distribution of tensile stress points refers to inside the specimen.

Despite similarities shown in the specimen’s mid height (Figure 4), the Ep/Es = 3
and Ep/Es = 0.05 ratios strongly differ on the stress state induced in the points located at
the vicinity of the contact. Whereas the former generate a compressive bulb in which both
stress components (σ1 and σ3) are compressive (blue dots in Figure 4), the latter generates
tensile stresses (green dots in Figure 4) due to the higher deformation of the platen, which
is a softer material than the tested specimen (Figure 4). Nevertheless, it must be noted that
these discrepancies regarding the comparison of the Ep/Es = 3 and Ep/Es = 0.05 ratios
should only be applied for specimens with an aspect ratio of L/D = 2.5. For lower L/D
values, the aforementioned bulbs may be close enough to meet each other and, therefore,
the existence of points with a uniaxial compressive state would be reduced. Determining
the exact highest aspect ratio where this phenomenon is first produced is beyond the scope
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of the present study, as only the influence of relative stiffness and not of the slenderness
ratio was considered. However, its dependence on the relative stiffness is undoubtedly
based on the exposed results.

3.2. Identification of Relevant Points on the σ1 − σ3

Figure 5 shows the stress field induced by stiffer platens (Ep/Es = 3) across the whole
specimen. It is worth noting that there are two sets of points of special interest—those
related to elevated σ1 values that form a straight line with a negative slope in the σ1 − σ3
chart (highlighted in purple in Figure 5), and those with σ3 tensile values located on the
tensile bulb highlighted in green in Figure 5. The former belong to the top and bottom
ends of the specimen, where the maximum σ1 value (highlighted in red) is simultaneously
located on their outer circumference. This decreasing slope is of special interest, as it proves
that compressive stresses along the contact may not be uniformly distributed along it, being
maximum at the vicinity of the lateral surface and decreasing towards the centre of both
ends. Furthermore, points belonging to the tensile bulb (highlighted in green on Figure 5)
are all located along the longitudinal axis of the specimen, which suggests that its failure
may be initiated along it.
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In the case of the Ep/Es = 1 stiffness ratio, and based on the results shown in
Figures 3 and 4, there is no special interest on treating any point or set of points sepa-
rately, as they are all packed together within a narrow area that, for technical purposes, can
be considered as a unique stress state. Therefore, no further considerations were made on
pure tensile or compressive points for that case.

The predominance of points located in the tensile area of the σ1 − σ3 chart is obtained
for the case of softer platens (Ep/Es = 0.05); however, no points of pure tensile stress
(σ3 < 0 and σ1 = 0) are located inside the specimen (Figure 6). Nevertheless, Figure 6
shows a point with an extremely elevated σ3 tensile value (indicated in green in Figure 6).
This is located in the centre of the top and bottom of the specimen’s ends, whereas red and
blue areas are found in their exterior circumference. Note that these sets of points are the
main candidates to initiate failure, as they are closer to the possible tensile failure envelope.
Finally, the sets of points highlighted in purple in Figure 6 are those that are also shown in
Figure 4 along the vertical axis and depicted with blue dots.
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3.3. Maximum Shearing Depending on the Material of the Platen

A comprehensive analysis was performed on points of maximum shear stress depend-
ing on the platen stiffness. Firstly, it is pertinent to note that no graphical representation
of softer platens is depicted in this subsection. This omission is justified by the findings
exposed in Section 3.1, wherein it was established that the induced stress field inside the
specimen can be considered as a homogeneous compression in which the σ3 values are
neglectable when compared to those of σ1. Consequently, from the algebraic expression
of maximum shear stresses τmax (Equation (3)), it can be stated that τmax remains nearly
constant inside the specimen.

τmax =
|σ1 − σ3|

2
(3)

However, this evidence does not apply for stiffer or softer platens. In these cases,
maximum shear stresses should significantly vary, especially in the latter, due to the
elevated tensile σ3 values reached. For stiffer platens (Ep/Es = 3), the distribution of τmax
within the specimen is not homogeneous, yet no significant variations were registered
across the majority of the sample, as the τmax values were over 0.90τmaxmax , where τmaxmax

is the maximum τmax value (Figure 7a). Only the immediate vicinity of the contact is
under this range and, despite the fact that maximum shear stress is located at a distance of
approximately 27.8% from the top and bottom ends due to symmetry, the mid-height area
can be considered with constant τmax due to a lower σ3 value compared to those of σ1 in
that portion of the specimen. This last statement is consistent with the results discussed in
Section 3.1.

For softer platens (Ep/Es = 0.05), elevated tensile values of σ3 are induced, leading to a
completely different distribution of τmax inside the specimen (Figure 7b). The appearance of
a significant tensile stress field located in the vicinity of the contact suggests that maximum
τmax values are concentrated in this area. In fact, even if a threshold of 0.50τmaxmax is
considered, only points near both ends are over it (Figure 7b). Consequently, Figure 7b
proves the existence of a pronounced τmax gradient near the outer circumference of both
ends, which may induce undesired local failures that eventually affect the trustfulness of
the obtained test results.
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4. Platen Stiffness Influence on Failure Criterion

The UCT is aimed at determining the UCS of a given material. Within this context,
it may be argued that only failure criteria on the compressive area of the σ1 − σ3 chart
would be sufficient to address the failure initiation point in standardized UCT specimens.
However, based on the results shown in Section 3, it becomes imperative to consider
potential tensile failure in the analysis of the failure initiation point. Thus, even if the aim of
this test is to provoke failure of the specimen in a point with coordinates (σ3, σ1) = (0, UCS),
meaning that in the ideal scenario no stresses other than compressive stress will be induced,
it is essential to verify this scenario for all feasible combinations of relative stiffness. The
tensile strength of most brittle materials is not determined by the direct tensile test, but
by the Brazilian test. Therefore, the stress state in the failure initiation point is no longer
uniaxial; in fact, it is subjected to biaxial stress where (σ3, σ1) = (−σBD, 3σBD). It is worth
mentioning here that this last statement is widely accepted among the scientific community
when failure is initiated at the centre of the specimen, which is only the case for certain
contact conditions [12,49]. Furthermore, even in those cases where the failure initiation
point is located in the centre of the specimen, deviations from the accepted ratio σ3/σ1 = −3
arise as a function of the contact length between the specimen and the jaw during test
execution [7].

The failure envelope of each material in the tensile area (σ3 < 0) was defined by a
linear criterion that connects the points (σ3, σ1) = (0, UCS) and (σ3, σ1) = (−σBD, 3σBD)
of the material. Consequently, the stress state regarding the Brazilian test is placed in
the σ1 − σ3 chart, considering that failure is initiated in the centre of the specimen, and
that the influence of the contact length is negligible. Hence, the failure envelopes for the
compressive and tensile areas are defined by Equation (1)—the Mohr–Coulomb criterion—
and Equation (4), respectively.

σ1 =
UCS − 3σBD

σBD
σ3 + σc (4)

To understand how failure is initiated under varied contact conditions, the interactions
between the induced stress field and the failure criteria for each case must be carefully
analysed. Firstly, interactions between stress states and the failure envelope in the tensile
area were addressed (Figure 8). In the case of stiffer platens (Ep/Es = 3), its character-
istic tensile bulb suggests that failure is likely reached in the tensile area rather than in
the compressive one (σ1 > 0). Furthermore, the failure initiation point correlates with
significantly high negative σ3 values located far from the desired vicinity of the σ1 axis;
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this yields results that diverge significantly from the intended uniaxial stress state. For all
considered limestone specimens, the failure initiation point is located at the vertical axis
and at a distance of approximately 16.7% of the total length of the specimen from both ends,
with a ratio σ3/σ1 = −0.0132. This result applies independently of the failure criterion
used, so even when the Mohr–Coulomb criterion is lengthened from the compressive to
the tensile area, the predicted failure initiation remains unchanged and fails due to the
existence of a σ3 stress component that deviates testing results from the originally desired
uniaxial stress state.
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In contrast, the Ep/Es = 1 ratio induced a stress state in the failure initiation point
that can be assumed to be uniaxial compression for practical purposes. Additionally, it is
located in the compression area, thereby eliminating the influence of tensile stresses on
the obtained strength and establishing a stronger relation with the theoretical foundations
of the test. Nevertheless, it is worth reiterating that the load ratio highly encourages one
to take these results as the real UCS value for any further engineering applications. As
the failure is always initiated in the compression area of the σ1 − σ3 plot, no tensile failure
envelope needs to be considered.

Independently of the failure criterion chosen, all the materials reached failure by
the influence of tensile stresses in the case of softer platens (Ep/Es = 0.05). Even if only
the Mohr–Coulomb criterion is used for the compressive region, but lengthened to the
tensile area, the specimen reaches failure in the tensile area of the σ1 − σ3 chart. In that
case, the stress ratio at the failure initiation point is σ3/σ1 = −2.06, indicating that tensile
stress surpasses compressive stress significantly, exceeding reasonable limits to correlate
the result with the uniaxial compressive strength of the material. Consequently, it is not
recommended to use platens that are significantly less stiff than the tested specimen. It
is worth mentioning that softer platens would induce failure in all considered materials,
whereas the rest of the platens would not induce failure in any of the specimens.

Figure 9 simultaneously shows the failure envelope for the tensile and compressive
areas for all considered rock materials. In addition, it not only includes the stress states
previously used in Section 3 and up to this point in Section 4, but also those incremented
by a factor of 5, the approximate moment in which failure is reached by compression
in the case of softer (Ep/Es = 0.05) platens (Figure 9). Stress fields prove that failure is
caused by the existence of a tensile stress component σ3 in stiffer (Ep/Es = 3) and softer
(Ep/Es = 0.05) platens.
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ens (𝐸௣/𝐸௦ = 3), the generated failure pattern exhibits a characteristic cone shape (Figure 
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Figure 9. Stress states for (*) stiffer (Ep/Es = 3), (#) equal stiffness (Ep/Es = 1) and (□) softer
(Ep/Es = 0.05) platens for two different load levels; and failure envelopes for (orange) L1, (green) L2
and (magenta) L3 limestones.

Correlating previous initiation failure points within the σ1 − σ3 chart with their actual
coordinates (x, y, z) inside the specimen provides meaningful insights into the predominant
failure patterns usually documented as the test output. In the case of stiffer platens
(Ep/Es = 3), the generated failure pattern exhibits a characteristic cone shape (Figure 10a).
This result applies independently of the failure criterion used (tensile or compressive), so
even when the Mohr–Coulomb criterion is lengthened from the compressive to the tensile
area, the predicted failure initiation point remains unchanged and fails due to the existence
of a σ3 stress component that deviates testing results from the uniaxial stress state originally
desired.
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Platens with the same stiffness as the tested material (Ep/Es = 1) induced a stress field
inside the specimen that initiates failure at the outer circumference of both ends, generating
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a failure pattern defined by an oblique plane that connects them (Figure 10b). Therefore,
all the similar failure patterns strongly suggest that failure is reached in the compression
area and in a uniaxial stress state. This evidence facilitates a preliminary assessment of test
validity results without needing any additional tools.

In Figure 10c, the location of the failure initiation point for the case of softer platens
(Ep/Es = 0.05) is depicted. This point is situated along the longitudinal axis of the
specimen, suggesting a failure plane that contains this axis and splits the specimen into
two symmetrical halves. Consequently, the induced stress state highly correlates with the
phenomenon of axial splitting during the execution of the test.

The findings presented in this section apply for the materials described in Table 2. Al-
though they cover a wide spectrum of material properties, a straightforward extrapolation
of these results to all materials cannot be made, as there is no reason to refuse the possibility
of slight differences in the stress field that lead to slightly different failure initiation points in
the case of stiffer or softer platens, where points located closer or further to the ends would
be acceptable. Nevertheless, it can be ensured that at least three different failure patterns
exist, and that they depend on the relative stiffness for specimens with length-to-diameter
ratios of 2.5. However, this affirmation can reasonably be extended to those cases where a
specimen’s slenderness is sufficiently elevated to guarantee an area of a nearly uniform
compressive stress field at the mid height of the specimen, while simultaneously being low
enough to preclude buckling effects.

Although the preceding results were derived from numerical simulations, experimen-
tal evidence of this phenomena can be found in the current literature. Figure 11, extracted
from reference [33], shows the standardized UCT performed on cylindrical and prismatic
specimens after modifying the contact conditions. In particular, four different cases were
addressed. The reference cases in Figure 11 were executed subject to the recommendations
set by the standards, whereas glued, grease, Teflon and brush plates were used to vary
the boundary conditions at specimen ends, from impeded horizontal displacement to the
complete absence of friction between platen and specimen. In both the cylindrical and pris-
matic geometries, the experimental results are in obvious agreement with the predictions
made by the numerical simulations. The reference and glued sheets show a failure pattern
defined by the formation of two cones due to the significantly higher stiffness of the platens
and the impeded movement sets by glue in the ends of the specimen. After reducing
the influence of friction by using grease, the failure pattern obtained experimentally is an
oblique plane joining both top and bottom ends, exactly as in the numerical simulations.
It is worth noting that the same material and the greased material used in reference [33]
was used to reduce the influence of friction and shearing stresses along the boundaries;
consequently, both achieved similar results. Eventually, platens with significantly lower
stiffnesses led to axial splitting or failure planes parallel to the longitudinal axis of the
specimen, as previously predicted by simulations.

It is important to emphasize that different failure patterns are caused even if the
specimen’s material is considered to be homogeneous and isotropic. Hence, the influence of
platen stiffness in more complex real scenarios may be boosted by additional external factors
not considered in this analysis, such as high temperature and melting and freezing cycles.
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5. Conclusions

Numerical simulations were performed to determine the influence of platen stiffness
on the induced stress field inside specimens subjected to the standardized uniaxial com-
pression test (UCT). Subsequently, the locations of the expected failure initiation points
and their dependence on the induced stress field and their related failure patterns were
addressed. The results show that when the relative stiffness between the platen (Ep) and the
specimen (Es) is Ep/Es = 3, a cone-shaped failure pattern caused by tensile failure is pro-
duced. Additionally, a compression bulb in the vicinity of the contact due to the impeded
horizontal movement in the top and bottom ends of the specimen is generated for this
stiffness ratio. Conversely, for EP/Es = 0.05, the induced tensile stresses are concentrated
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in a narrow band in the vicinity of the contact, leading to failure initiation points located
along the longitudinal axis of the specimen; therefore, a failure pattern characteristic of
axial splitting was generated. However, when the platen and specimen stiffnesses are
equal (Ep/Es = 1), a uniform and homogeneous stress field is induced inside the specimen,
where maximum stresses σ1 can be considered constant and σ3 can be neglected for engi-
neering applications. In this latter case, the failure pattern is formed by an oblique plane
joining the outer circumference of both ends of the specimen. Therefore, platen material
should not be established independently from the tested material. In fact, platen stiffness
should be determined considering the material to be characterized, aiming to ensure a
stiffness value as close as possible to that of the specimen’s. Furthermore, these results
allow one to establish the validity of testing results by a simple visual inspection of the
generated failure pattern. Finally, those cases where slippery occurred between platen and
specimen points along the contact cannot be addressed, considering the findings exposed
in this study, as no relative displacement between points was allowed in the numerical
model used. Contrary to this, when lubricants are employed to reduce the influence of
shearing stresses at the contact, the results may correspond to the case of equal stiffness
(Ep/Es = 1), as no horizontal displacement at the specimen ends is constrained; however,
further research on the possible deviations from the treated problem must be carried out to
ensure definitive conclusions.
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