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Abstract: Many practical problems can be classified as constrained multi-objective optimization
problems. Although various methods have been proposed for solving constrained multi-objective
optimization problems, there is still a lack of research considering the integration of multiple con-
straint handling techniques. Given this, this paper combines the objective and constraint separation
method with the multi-operator method, proposing a population feasibility state guided autonomous
constrained evolutionary optimization method. This method first defines the feasibility state of the
population based on both feasibility and ε feasibility of the solutions. Subsequently, a reinforce-
ment learning model is employed to construct a mapping model between the population state and
reproduction operators. Finally, based on the real-time population state, the mapping model is
utilized to recommend the promising reproduction operator for the next generation. This approach
demonstrates significant performance improvement for ε constrained mechanisms in constrained
multi-objective optimization algorithms, and shows considerable advantages in comparison with
state-of-the-art constrained multi-objective optimization algorithms.

Keywords: constrained multi-objective optimization problems; population feasibility state;
autonomy; evolutionary optimization; reinforcement learning
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1. Introduction

Constrained multi-objective optimization problems (CMOPs) refer to optimizing
multiple conflicting performance metrics simultaneously while ensuring that decision
variables meet the constraints of the objective problem. Many real-world problems can be
classified as CMOPs, such as integrated energy dispatch [1], multi-stage portfolio [2], and
spacecraft orbit optimization [3]. Without loss of generality, a CMOP can be defined as

Min F(x) = ( f1(x), f2(x), . . . , fm(x))
s.t. gi(x) ≤ 0, i = 1, 2, . . . , l

hj(x) = 0, j = l + 1, l + 2, . . . , n
x = (x1, x2, . . . , xd, . . . , xD), xd ∈ rand(LBd, UBd)

where x represents the D− dimensional decision variables, fk(x) is the k-th objective func-
tion for k = 1, 2, . . . , m. gi(x) ≤ 0 represents the i-th inequality constraint for i = 1, 2, . . . , l.
hj(x) = 0 represents the j-th equality constraint for j = l + 1, l + 2, . . . , n. LBd and UBd are
lower and upper boundaries of xd, respectively, and rand(LBd, UBd) generates a random
number between LBd and UBd. The wide application in real-world problems makes the
performance testing of the constrained multi-objective optimization algorithm more de-
manding; therefore, many real-world test suites, such as RC [4], have been proposed in the
existing research, and the challenges of solving constrained multi-objective optimization
problems can be studied in depth.
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While meeting the problem constraints, the decision variables in CMOPs also need to
be optimized for improving multiple conflicting objective functions simultaneously. This
difficulty contributes to the challenging nature of solving multi-objective optimization
problems. The key to solving CMOPs lies in constraint handling. Applying appropriate
constraint handling methods ensures a balance between the feasibility of solutions, con-
vergence, and diversity in the objective space. Currently, common constraint handling
methods include the penalty function method, the objective and constraint separation
method, the multi-objective method, the transformation method, the mixed method, and
the multiple-operator method [5]. In the objective and constraint separation method, the
ε constraint method is an effective constraint handling approach, which is capable of
leveraging information from relatively good infeasible solutions to guide the evolution
of the population to some extent. However, the ε constraint method also has limitations.
For example, the setting of ε values often relies on human experience, which can lead to
biases in the population search direction. It is, therefore, important to adjust the search
direction for the ε constraint method. To adjust the search direction, the multiple-operator
method is a candidate. In this method, use of different reproduction operators leads to
the generation of diverse types of solutions, aiding in adjusting the search direction of the
population [3,6–8]. However, the selection of reproduction operators also usually relies on
subjective human experience, making it tough to determine the timing and scope of their
application. Therefore, combining the ε constraint method with the multi-operator method
poses a challenge.

In light of this, this paper combines the objective and constraint separation method
with the multi-operator method, proposing a population feasibility state guided autonomous
constrained evolutionary optimization method. This method first establishes the popu-
lation state based on both feasibility and ε feasibility of the solutions. Subsequently, a
reinforcement learning model is employed to construct a mapping model between the
population state and the operator. Finally, based on the real-time population state, the
mapping model is utilized to recommend the subsequent reproduction operator for the
next generation.

The main contributions of this paper are summarized as follows:

(1) Proposing a self-guided optimization method that combines the objective and con-
straint separation method with the multi-operator method. Specifically, this method
combines the ε constraint method with the multi-operator method, using the multi-
operator approach to enhance the diversity of solutions with more search directions.
Adjusting the population search direction helps reduce the dependence of the ε con-
straint method on human experience for setting ε values. Additionally, overcoming
the limitations of the multi-operator method relying on human experience using rein-
forcement learning further enhances the algorithm’s performance. This holds potential
to contribute to the field of combining various constraint handling methods.

(2) Proposing a novel method for characterizing the population state. Existing research
has not characterized the population state from the perspective of both feasibility
and ε feasibility of population solutions, limiting the perception of the population’s
feasibility state. The proposed method for characterizing population state in this
paper contributes to the description of population state in the field of autonomous
intelligent optimization.

The rest of this paper is organized as follows. Section 2 reviews the relevant re-
search works and points out the existing problems in the current research. The proposed
method is described in Section 3, including the characterization of the population state,
the population’s reproduction operators, and their performance evaluation. Section 4 is
the experimental results and analysis. Finally, Section 5 summarizes the whole paper and
discusses future research directions.
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2. Related Works

This paper proposes a solving approach for constrained multi-objective optimization
problems by combining the objective and constraint separation method with the multi-
operator method. Hence, this section primarily reviews existing methods for constraint
handling. Given that our method focuses on the objective and constraint separation method,
as well as the multi-operator method, a review of the progress of research on these two
approaches is also provided.

2.1. Constrained Multi-Objective Evolutionary Optimization

Constraint handling is a crucial task in addressing constrained multi-objective prob-
lems. The penalty function method is a common approach for constraint handling. The idea
is to construct a penalty term based on the degree of constraint violation and incorporate
this penalty term into the objective function. This transforms the constrained optimization
problem into an unconstrained optimization problem. The setting of the penalty factor
has a significant impact on the algorithm. Setting the penalty factor to be too large or too
small both have negative effects. If the feasible region consists of several disconnected
and independent subregions, setting the penalty factor too large may lead to premature
convergence of the population and narrow down the located search space. On the other
hand, setting the penalty factor too small may render the constraint conditions ineffective,
making it challenging for the population to converge. In light of this, existing research has
considered the use of variable penalty factors. In the method proposed by Jiao et al. [9],
the penalty factor is dynamically adjusted based on the ratio of feasible solutions in a
real-time population. In the dynamic penalty function method proposed by Maldonado
et al. [10], the penalty factor undergoes gradual adjustments with changes in the population
generations. Furthermore, in the learning-guided parameter tuning method proposed by
Fan et al. [11] an adaptively generated penalty factor significantly enhances the adaptability
of the penalty factor. From this, it is evident that the penalty function method is straightfor-
ward, yet the proper setting of the penalty factor is still challenging and usually relies on
human expertise.

The hybrid method bridges evolutionary algorithms with traditional optimization
methods, effectively integrating the strengths of evolutionary algorithms and mathematical
programming. This approach aims to maintain both population convergence and diver-
sity, while emphasizing the feasibility of optimized solutions. In general, evolutionary
algorithms guide the population towards promising regions, and mathematical program-
ming further explores feasible solutions within the located region. Morovati et al. [12]
combined evolutionary algorithms with the Zoutendijk feasible direction method to search
for solutions that meet both optimization objectives and constraints. Schutze et al. [13]
utilize traditional optimization methods to explore information about nearby solutions of
population. They predict the subsequent evolutionary direction of the population, guiding
it towards the feasible regions. The hybrid approach is a comprehensive method that
combines global and local search capabilities, effectively balancing optimization objectives
and constraint satisfaction. However, the timing of integrating evolutionary algorithms
and mathematical programming still requires further research.

The idea behind multi-objective optimization is to transform constrained multi-
objective optimization problems into unconstrained multi-objective optimization problems.
In contrast to the penalty function method, this approach transforms constraints into one
or more optimization objectives. Through continuous population evolution, the method
optimizes the transformed objectives, aiming to reduce the degree of constraint violation.
Various methods may transform constraint conditions into a different number of optimiza-
tion objectives. Long et al. [14] converted all constraints into a single optimization objective
related to the degree of constraint violation. Vieira et al. [15]. transformed constraint
conditions into two optimization objectives: the total degree of constraint violation and
the number of violated constraints. Ming et al. [16] transformed constraint conditions into
three optimization objectives. Compared with the penalty function method, this method
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offers greater flexibility in handling constraint conditions. However, as the number of
transformed objective functions increases, the handling complexity also rises.

2.2. The Objective and Constraint Separation Method

The idea behind the objective–constraint separation method is to handle the problem’s
objective and constraints separately. While reducing the degree of constraint violation, it
also optimizes the objective functions. The conventional methods include the constrained
dominance principle (CDP) [17], the ε constrained method [18], and stochastic ranking
(SR) [19].

2.2.1. Constraint Dominance Principle

In the CDP, for solutions x and y, x is considered to be non-dominated to y when any
of the following conditions is satisfied:

(1) Both x and y are feasible solutions, but x has a better optimization objective value.
(2) x is a feasible solution, whereas y is an infeasible solution.
(3) Both x and y are infeasible solutions, but cv(x) < cv(y), where cv(·) represents the

degree of constraint violation for the optimization solution.

The selection principle of CDP is relatively straightforward, as it tends to retain feasible
solutions and eliminate infeasible ones, leading the population to be prone to local optima.

Deb et al. [17] proposed the abovementioned constraint handling method, which to
some extent alleviates the solving pressure associated with constrained multi-objective
problems. Subsequently, to utilize effective information from infeasible solutions, Saha and
Ray [20] introduced a probability point-based method for repairing equality constraints.

2.2.2. ε Constrained Method

In the ε constraint method, the approach involves relaxing constraints and gradually
reducing the value of ε to tighten the constraints. This method utilizes information from
excellent infeasible solutions to guide the population towards the feasible region during
evolution. When ε = 0, the ε constraint method is equivalent to CDP. For solutions x
and y, x is considered to be non-dominated to y when either of the following conditions
is satisfied:

(1) Both x and y are ε feasible solutions, but x has a better optimization objective value.
(2) x is an ε feasible solution, whereas y is not an ε feasible solution.
(3) Both x and y are not ε feasible solutions, but cv(x) < cv(y), where cv(·) represents the

degree of constraint violation for the optimization solution.

The ε constraint method to some extent utilizes information from excellent infeasible
solutions, but the choice of ε often relies on human expertise, which may still lead the
population into local optima. Sana Ben Hamida et al. [21] tried to propose an ε-based
algorithm by temporarily tolerating high violation degrees to expand the feasible region,
and gradually narrowing the feasible region to enhance global search capability. This
method effectively utilizes information from infeasible solutions, thereby guiding the
population moves from infeasible regions to feasible regions, improving the algorithm’s
performance. In addition, the small habitat technique with an adaptive radius can be
used to extend the penalty function. Ponsich et al. [22] incorporated constraint violation
and a scalar function as optimization objectives, transforming CMOPs into bi-objective
problems. They integrated the ε constraint method into MOEA/D to prove the performance
on solving the CMOPs.

2.2.3. Stochastic Ranking

SR refers to the probabilistic selection of constraint dominance and objective domi-
nance to better generate offspring populations. Compared with the two methods mentioned
above, this approach better utilizes valuable information from excellent infeasible solutions,
increases the diversity of the population, avoids premature convergence of the population,
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and enhances global search capability. However, the setting of selection probabilities still re-
lies on human expertise, which may lead to the population falling into local optima. SR has
diverse applications, each of which possesses flexible performance and functionality. Liu
et al. [23] combined indicator-based MOEA with CDP, the ε constraint method, and the SR
method, respectively. They proposed multiple indicator-based constrained multi-objective
methods, separately studying their solution performance. Jan and Khanum [24] first em-
bedded SR in the framework of the decomposition-based multi-objective evolutionary
algorithm (MOEA/D), effectively enhancing the algorithm’s performance. Ying et al. [25]
drew inspiration from simulated annealing and proposed an annealing SR mechanism.
This mechanism can fully utilize well-behaved feasible solutions, guiding the evolution
toward global optima. Sabat et al. [26] combined particle swarm optimization with SR,
proposing a new hybrid algorithm for solving standard-constrained engineering design
problems. The proposed hybrid algorithm leverages the domain independence of SR and
the faster convergence of particle swarm optimization. To address the drawback of setting
SR parameters relying on manual expertise, some scholars have proposed methods for
adaptively adjusting SR parameters. Li et al. [27] adaptively randomize sorting based on the
dynamic balance of convergence and diversity in the population’s state in high-dimensional
space. Ying et al. [28] proposed an adaptive SR mechanism by dynamically controlling
probability parameters based on the difference between the current evolutionary stage
and the degree of individual constraint violation. Gu et al. [29] proposed an enhanced
SR strategy correlating fitness and probability operators, which comprehensively consid-
ers the convergence and diversity of the population to improve the quality of candidate
solutions. There are various methods for adjusting evaluation indicators using SR, each
with its characteristics. Wang et al. [30] introduced a logistic regression model to correct
surrogate-assisted fitness evaluations and employed SR to further reduce the impact of
the approximate constraint function. Li et al. [31] proposed a multi-objective algorithm for
multi-objective optimization problems, which utilized SR techniques to balance search bi-
ases across different objectives. Chen et al. [32] proposed a multi-objective algorithm based
on gradient SR. This employed a two-layer gradient SR method for offspring selection,
guiding the direction of Pareto front selection and enhancing the relationships between
different indicators in indicator-based MOEA.

2.3. The Multi-Operator Method

The dynamic selection of multiple reproduction operators can influence the distribu-
tion of the population in the search space. The fundamental idea of the multi-operator
method is that of performing different reproduction operators on population to meet the
solving requirements. The selected multiple reproduction operators need to balance well
the feasibility, convergence, and diversity of the solution set. In the multi-operator algo-
rithm proposed by Yu et al. [33], infeasible solutions are reproduced with special mutation
operators from the mutation operator pool with a certain probability. In the approach
proposed by Xu et al. [34], distinct mutation strategies are applied to feasible and infeasible
solutions, facilitating the population’s rapid evolution toward the feasible region. Liu
et al. [35] divided the entire population into multiple subpopulations, with each subpop-
ulation adopting different crossover operators. This approach facilitates the population
in escaping local optima and fully exploring the search space. He et al. [36] implemented
different crossover and mutation operators for feasible solutions and good infeasible solu-
tions, driving the infeasible solutions toward the feasible region. Tian et al. [37] employed
deep reinforcement learning to select different operators at different stages, striking a
balance between the diversity and convergence of the population. Zuo et al. [38] also used
deep reinforcement learning to dynamically employ reproduction operators, which can be
embedded into existing evolutionary algorithms and improve their performance.

It can be observed that the multi-operator method can adapt to the solving require-
ments, balancing the feasibility, convergence, and diversity of optimized solutions. How-
ever, because the multi-operator method usually relies on manual expertise, configuring
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performance-complementary reproduction operators, and determining the appropriate
timing or scope of using reproduction operator poses a challenge.

2.4. Discussion

From this section, it can be inferred that the objective and constraint separation
method is simple to conduct; however, using a single reproduction operator may lead to a
biased search direction for the population. Therefore, it is necessary to employ multiple
reproduction operators to adjust the population’s search directions. The multi-operator
method can enhance the population diversity but this often relies on human expertise
to determine the timing and scope of using different operators. Similar to the difficulty
in using the constraint separation method, reliance on human expertise is one of the
limitations of the multi-operator method, and this results in a subjective determination
of the timing and scope for the use of different operators. Using reinforcement learning
methods can effectively reduce the dependence on human expertise. This indicates that
combining reinforcement learning with the objective and constraint separation method,
and the multi-operator method can leverage strengths and mitigate weaknesses, which has
promising prospects for improving algorithm performance.

In light of this, a self-evolving optimization approach guided by the feasibility state of
the population is proposed in Section 3, which leverages the feasibility state of population
solutions within a reinforcement learning framework to recommend the reproduction
operator choices for population evolution. This significantly enhances the autonomy of
solving problems, avoiding the subjectivity caused by human expertise.

3. The Proposed Method
3.1. Overall Framework

This section introduces the population feasibility state guided autonomous evolu-
tionary optimization method. It first characterizes the feasibility state of the population
solutions based on both feasibility and ε feasibility of the solutions, where the individual
i of population Pt is presented as Pi,t = (x1, x2, . . . , xD). Subsequently, a real-time map-
ping model between the state of solutions and reproduction operator choices based on
the Q-learning reinforcement learning model is constructed. Finally, based on the current
state of the population, the mapping model is utilized to recommend the reproduction
operator to generate offspring population. This method exhibits a significant performance
improvement for constrained multi-objective optimization algorithms employing the ε
constraint mechanism. By employing the aforementioned method, it becomes possible to
autonomously select appropriate reproduction operators for different population states,
efficiently addressing constrained multi-objective optimization problems. Q-learning is
used to build the mapping relationship between population state and operators. The reason
for using Q-learning is that we regard dynamically selecting operators for varying popula-
tions as a Markov decision process, and Q-learning is an excellent reinforcement learning
algorithm used to solve Markov decision process problems. The ability of Q-learning
includes the following aspects:

(1) Learning the optimal strategy: Q-learning can learn the optimal strategy, that is, taking
actions that can maximize cumulative returns in each state. By continuously updating
the Q-value table, the agent can gradually converge to the optimal strategy.

(2) No model required: Q-learning does not require modeling of the environment; that
is, it does not require prior knowledge of state transition probabilities and reward
functions. It learns the Q-value function through interaction with the environment,
thus achieving model free learning.

(3) Adaptability: Q-learning can adapt to different environments and tasks. It can handle
continuous state space and action space.

(4) Convergence: Under certain conditions, the Q-learning algorithm can converge to the
optimal Q-value function. This means that the agent can learn the optimal strategy
within a limited time.
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An analogy for the concept of evolutionary computation is that of reinforcement
learning. Population is analogous to agent, population state is analogous to agent state,
operator is analogous to action, indicator-based population evaluation is analogous to
reward, and fitness landscape is analogous to environment.

The overall framework of the proposed method is illustrated in Algorithm 1. Regard-
ing existing constrained multi-objective optimization algorithms, the method proposed in
this paper only requires the incorporation of two steps in the algorithm process. One is
the selection of the reproduction operator; the other is Q-value learning. Specifically, begin
by initializing the relevant parameters for reinforcement learning, along with the Q-table
for storing Q-values and the Count-table for tracking the frequency of action selections.
Then, in each generation, select the reproduction operator according to Algorithm 2 to
generate offspring populations. Finally, update the Q-value table with (st, at, rt ) according
to Algorithm 3. The whole flowchart of the proposed method is presented in Figure 1,
where the extra modules required by this method are highlighted.

The methods for selecting the reproduction operator and updating the Q-value table
are outlined in Sections B and C, respectively.

Algorithm 1 Overall framework

Input: Maximum generation Tmax, Population size NP, Problem dimension D, Scaling factor in
DE operator F, Crossover CR; reward update parameter α, reward predictability parameter γ,
greedy strategy parameter ε.
Output: final population PTmax

1. t← 1 ;
2. Initialize population Pt with equation (4)
3. Pt−1 ← Pt ;
4. st ← (R f t, Ret) ;
5. α←0.005, γ←0.2, ε←0.8;
6. Q-table ←0 and Count-table ←0;

7. Ai = ε
(t)
i + δ, Bi =

T

cp

√√√√ln

(
ε
(0)
i +δ

δ

) ;

8. ε
(t)
i = Aie

−( t
Bi
)

cp

− δ;
9. While t ≤ Tmax do
10. Generate the Mating Pool Pt;
11. Select operator with Algorithm 2;
12. Qt ← reproduction(Pt) ;
13. Rt ← Qt ∪ Pt ;
14. For e = 1:|Rt|
15. gi(xe) = max

(
gi(xe)− ε

(t)
i , 0

)
;

16. hj(xe) = max
(∣∣∣hj(xe)

∣∣∣−ε
(t)
j , 0

)
;

17. cv(xe) = 1
n

(
∑l

i=1
gi(xe)

maxxe∈Pt {gi(xe)} + ∑n
j=l+1

hi(xe)
maxxe∈Pt {hi(xe)}

)
;

18. F(xe) = ( f1(xe), f2(xe), . . . , fm(xe));
19. end
20. Rankt ← ND_sorting(cv(Rt), F(Rt)) ;
21. Pt+1 ← RRankt{1:NP},t ;
22. Get(st, at, rt) with Algorithm 3 to update Q-table;
23. t← t + 1 ;

24. Ai = ε
(t)
i + δ, Bi =

T

cp

√√√√ln

(
ε
(0)
i +δ

δ

) ;

25. ε(t) = Aie
−( t

Bi
)

cp

− δ;
26. End while
27. Return PTmax ;
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3.2. The Selection of Reproduction Operator
3.2.1. Reproduction Operator for Regulating Population State

In evolutionary algorithms, regulating the population state is achieved through dif-
ferent reproduction operators, each with its advantages and disadvantages. Therefore,
employing different reproduction operators for different population states has a significant
impact on population regulation. Among various evolutionary algorithms, Differential
Evolution (DE) [38] and Genetic Algorithm (GA) [9] are very typical and have been widely
applied. The reproduction operator in DE typically exhibits good convergence, while the
reproduction operator in GA possesses strong global search capabilities. Combining the
reproduction operator of DE and GA enables a balance between global exploration and
local exploitation, contributing to the improvement of the algorithm’s search performance.
Therefore, this paper considers using two reproduction operators from DE and GA to
generate high-quality offspring populations.

Algorithm 2 Two-stage reproduction operator selection

Input: current generation t, Q-table, Count-table;
Output : operator at;
1. If t≤ Tsam then
2. amax

t ← randoperator ;
3. Else
4. r′t= Q-table(st, at)/Count-table(st, at);
5. amax

t ← argmax{r′t };
6. End if
7. If rand < ε then
8. amax

t ← randoperator ;
9. End if

With this approach, there are two reproduction operators used for regulating the
population state. Let us denote at as the identifier of the reproduction operator adopted by
population Pt. The possible values and their meanings are as follows: at = 1 represents the



Mathematics 2024, 12, 913 9 of 24

execution of the reproduction operator from DE, and at = 2 represents the execution of the
reproduction operator from GA.

3.2.2. Two-Stage Reproduction Operator Selection

In the early stage of the evolutionary search, due to the unavailability of sufficient
training samples, the Q-value table (Q-table) cannot provide effective guidance on repro-
duction operator choices. Therefore, the evolution of the population is divided into two
stages. First, from the 1st generation to the Tsam generation, it is the reinforcement learning
warm-up stage, where samples are collected for updating the Q-table. Second, from the
Tsam + 1 generation until the end of the population evolution, it is the application stage
of reinforcement learning. This two-state operator selection assisted by Q-learning can
be visualized in Figure 2, and its implementation details are illustrated in Algorithm 2.
In Algorithm 2, the first stage involves randomly selecting the reproduction operator at
to accumulate training samples and update the Q-table. In the application stage, for the
evolutionary population Pt at generation t, the state st of this population is used as input to
the Q-table to obtain performance predictions for different reproduction operators. Denote
the performance prediction obtained after applying the reproduction operator at to Pt as r′t.
For all reproduction operators, let

amax
t = arg max

{
r′t
}

(1)

denote the reproduction operator with the maximum performance prediction. So, amax
t is

the reproduction operator adopted for the subsequent evolution of the population.
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It is worth noting that the frequency of choosing each reproduction operator has a
significant impact on the Q-table updates and may result in inaccurate predicted Q-values.
Therefore, this paper also records the frequency of reproduction operator choices in the
Count-table to calculate the average Q-value for each population state st, aiming to improve
the accuracy of Q-value predictions and ensure the stability of algorithm performance.
Hence, the abovementioned r′t is obtained by

r′t = Q-table/Count-table (2)

To mitigate the negative impact of overfitting in Q-learning and enhance the explo-
ration capability of the population state space, this paper borrows the Epsilon–Greedy
strategy. With a small probability ε, a strategy is randomly chosen from the reproduction
operator space instead of the one recommended by the Q-table. This operator is then
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used for the subsequent evolution of the population. The ε based operator selection is
presented by

amax
t =

{
argmax{r′t} i f rand > ε

randoperator otherwise
(3)

where randoperator means a random operator is selected.

3.3. Update the Q-Table

The updating of the Q-table is illustrated in Algorithm 3. Firstly, calculate the propor-
tion of feasible and ε feasible solutions in the population to obtain st. Then, calculate rt
by comparing Pt−1 and Pt. Finally, update the Q-value table based on the adopted at and
record the update frequency in the corresponding position of the Count-table.

3.3.1. Characterizing the Population State Based on the Feasibility of Population

In constrained multi-objective evolutionary algorithms (CMOEAs), a x representing D−
dimensional decision variables is regarded as a population individual, and the e-th population
individual is denoted as xe. Hence, a population with NP individuals in the t-th generation
is denoted as Pt =

(
x1, x2, . . . , xe, . . . , xNP), where xe =

(
xe

1, xe
2, . . . , xe

d, . . . , xe
D
)
∈ RD. xe

d is
initialized by

xe
d = rand(LBd, UBd), d = 1, 2, ..., D (4)

LBd and UBd are lower and upper boundaries, respectively. During the evolution of Pt,
its feasibility and ε-feasibility are two important pieces of knowledge during the popula-
tion evolution process. Both of them influence the search direction and efficiency of the
algorithm. In view of this, the proportions of both can be used to jointly characterize the
population state. As introduced in DCNSGA-II, the normalized average degree of the con-
straint violation of Pt on all constraints is regarded as the constraint violation objective by

cv(xe) =
1
n

(
∑l

i=1
gi(xe)

maxxe∈Pt{gi(xe)} + ∑n
j=l+1

hi(xe)

maxxe∈Pt{hi(xe)}

)
(5)

where gi(xe) = max
(

gi(xe)− ε
(t)
i , 0

)
, hj(xe) = max

(∣∣∣hj(xe)
∣∣∣−ε

(t)
j , 0

)
, ε

(t)
i and ε

(t)
j are the

dynamic constraint boundaries, t = 0, 1, ..., T, T is the maximum number of generations.
ε
(t)
i and ε

(t)
j are updated following the same criterion. As an example, ε

(t)
i is updated by

ε
(t)
i = Aie

−( t
Bi
)

cp

− δ, i = 1, 2, · · · , q (6)

where δ is a close-to-zero value (δ = 1 × 10−8) and cp controls the decreasing trend of ε. Ai
and Bi are updated as follows:

Ai = ε
(t)
i + δ, Bi =

T

cp

√
ln
(

ε
(0)
i +δ

δ

) (7)

With cv(xe), the constraint violation degree xe is computed. Thus, the population state
can be characterized. Firstly, calculate the proportions of feasibility

R f t =
FNPt

NP
(8)

and ε-feasibility in the population by

Ret =
ENPt

NP
(9)
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where NP is the population size, FNP and ENP are number of feasible population and
ε-feasible population. Next, divide the proportions of both in the population into three
parts, respectively, including zero to one-third, one-third to two-thirds, and two-thirds to
one. Consider that feasibility proportion is not higher than the ε-feasibility proportion, so
the population Pt only contains six states, denoted as

st = (R f t, Ret) (10)

Algorithm 3 Update the Q-table

Input: st, at, Pt−1, Pt, parameters of Q-learning, Count-table, Q-table;
Output: Q-table, Count-table;
1. st ← (R f t, Ret) ;
2. If φt−1 > 0||φt > 0 then
3. rt =

φt−1−φt
φt−1

;
4. Else
5. rt =

HVt−HVt−1
HVt−1

;
6. End if
7. Q(st, at)← Q(st, at) + α · (rt + γ ·max(Q(st+1, at+1))−Q(st, at)) ;
8. Count-table (st, at)← Count-table( st, at) + 1;

3.3.2. Stage-Wise Evaluation of Population Solutions

This paper adopts a stage-wise evaluation method. If the evolved population has no
feasible solutions, the performance of reproduction operators is evaluated based on the
extent to which the constraint violation of the best individual in the population increases
or decreases. Considering the best individual in population Pt, apply the strategy of this
population as at. To evaluate the performance of at, calculate the violation degree of this
individual for each constraint, summing up these violation degrees to obtain the overall
constraint violation degree φt. Then, the performance of the reproduction operator at,
denoted as rt, can be expressed as

rt =
φt−1 − φt

φt−1
(11)

It can be observed that the values of rt fall within the range of 0 to 1. It is worth noting
that rt = 0 means applying the reproduction operator at does not lead to an improvement in
the population’s satisfaction with constraints. rt = 1 means applying at, the best individual
in the population becomes a feasible solution.

When the evolved population contains one or more feasible solutions to the problem,
the performance of reproduction operators is evaluated based on the extent to which the
Hypervolume (HV) indicator of feasible solutions improves. The Hypervolume (HV) not
only reflects the diversity of feasible solutions but also indicates the convergence of these
solutions. For the population Pt, calculate the HV indicator of feasible solutions in this
population, denoted as HVt. Then, the performance rt of reproduction operator at can be
expressed as

rt =
HVt − HVt−1

HVt−1
(12)

HVt measures the volume of the objective space enclosed by the obtained solution set in Pt
and a reference point zr, which can be obtained by

HVt = VOL(
⋃

Pm,t∈Pt

[P1,t, zr
1]× · · · × [Pm,t, zr

m]) (13)
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where VOL represents the Lebesgue measure. With this approach, the performance rt of
the reproduction operator at can be expressed as

rt =

{ φt−1−φt
φt−1

, i f φt > 0
HVt−HVt−1

HVt−1
, otherwise

(14)

3.3.3. Q-Value Update

This paper employs the Q-value function for updating the Q-value table, and its
functional expression is as follows:

Q(st, at) = Q(st, at) + α · (rt + γ ·max(Q(st+1, at+1))−Q(st, at)) (15)

where α is the learning rate controlling the willingness to accept newly observed informa-
tion. rt is the immediate reward obtained after taking action at. γ is the discount factor,
indicating the importance given to future rewards. st+1 is the next state transitioned to
after taking action at.max(Q(st+1, at+1)) represents the Q-value corresponding to choosing
the optimal action in the next state st+1. By constantly interacting with the population
evaluation function, the population can choose an operator based on the current state and
update the corresponding Q-value in the Q-table based on the immediate return and the
maximum expected return value of the next state. Through multiple iterations, the values
in the Q-table will gradually converge to the optimal value, and the agent can choose the
optimal action based on the values in the Q-table to achieve the optimal strategy.

3.4. Further Explanation

The research [37] presented by Tian et al. is enlightening on guiding the operator
selection with deep reinforcement learning. Although we also use reinforcement learning
to solve the same problem, our proposed method is still different from their method in the
following aspects:

(1) The problem type aimed at is different. Our research is devoted to solving constrained
multi-objective problems, while the mentioned research is proposed for the uncon-
strained optimization problems.

(2) The definition of population state is different. Our research defines the population state
with the population feasibility information, which is useful to reduce the complexity
of the mapping model between state, action, and reward. This option is important
for proposing an efficient online adaptive operator selection algorithm, without the
offline training phase. Oppositely, the population state in the abovementioned paper
is population individual. Hence, their mapping model will be more accurate once well
trained. However, it is not convenient to transfer the mapping model between the
problems with different dimensions.

(3) The definition of reward function is different. Our research defines the reward func-
tion using the indicator-based evaluation method, while the abovementioned paper
employs the population fitness method to evaluate the performed action. Oppositely,
their method has low cost on the reward function, while our method is more stable on
evaluating the effectiveness of the performed operator.

In addition, our proposed approach reduces the degree of reliance on human experi-
ence. Although the new approach still relies on human experience, it still makes sense to do
so. This is because the elimination of difficult-to-control parameters and the introduction of
new parameters can help simplify algorithm design, and improve algorithm stability and
controllability. By reducing the parameters that are difficult to control, the complexity of
the algorithm can be significantly reduced, the uncertainty will be alleviated, and the relia-
bility of the algorithm is finally improved. At the same time, introducing new parameters
and ensuring that they are less sensitive can better control the behavior of the algorithm,
making it easier to adjust and optimize the algorithm. This can improve the performance
and efficiency of the algorithm, and make the algorithm easier to apply and popularize.
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3.5. Complexity Analysis

A review of the content of the above introduction shows that the time complexity
of the proposed method is mainly influenced by the extraction of population feasibility
states, the execution of evolutionary strategies, and the evaluation of evolutionary strategy
performance, as well as the warm-up and application stages of Q-learning.

When solving an optimization problem with a decision space of m dimensions, for
an evolutionary algorithm with a maximum number of generations set to Tmax and a
population size of n, extracting the population states involves the necessity to compute the
feasibility and ε feasibility of the population for Tmax generations. Executing evolutionary
strategies involves vector calculations for all individuals in the population. The evaluation
of evolutionary strategies is related to the number of feasible solutions and the number
of optimization objectives, denoted as m. For Q-learning, it is necessary to compute the
number of Q-table updates for each generation. The time complexities for these four
components are as follows:

(1) The time complexity of extracting population states is O(Tmaxnd).
(2) The time complexity of executing evolutionary strategies in the worst-case scenario is

O(Tmaxnd).
(3) The time complexity of evaluating evolutionary strategies in the worst-case scenario is

O
(

Tmaxn2m + Tmaxnm−2logn
)

.

(4) The time complexity of pre-warming and applying Q-learning in the worst-case
scenario is O(2Tmax ).

From this, it can be inferred that the time complexity of the proposed method is
primarily determined by Tmax, n, d, m, and the number of Q-table updates. For large-
scale constrained multi-objective optimization problems, the above time complexity is
primarily determined by the extraction of population states and the execution of evolu-
tionary strategies, which is O(Tmaxnd). When the number of objectives increases, the time
complexity is primarily determined by the evaluation of evolutionary strategies, which is
O
(

Tmaxn2m + Tmaxnm−2logn
)

.

4. Experiment

To evaluate the performance of the proposed method in this paper, four groups of
experiments were conducted in this section. The first group of experiments compared the
performance of the DCNSGA-III [39] with that embedded our method, named IDCNSGA-
III. This aimed to validate the effectiveness of the proposed method on benchmark test
problems. The second group of experiments compared the IDCNSGA-III with five superior-
performing algorithms for constrained multi-objective optimization. This further elucidated
the performance of the proposed method. The third experiment compared our algorithm
with the ε-based multi-objective optimization algorithms, which illustrates the advances
achieved in our algorithms. The fourth experiment studied the influence of parameter
setting on algorithm performance, which can help to recommend the best parameter setting.
The experimental setup included the following environmental conditions: 13th Gen Intel(R)
Core(TM) i5-13400 2.50 GHz, 16 GB RAM, Windows 10, and PlatEMO [40].

4.1. Benchmark Test Suits

In terms of test problems, the experiments utilized four groups of benchmark test
problems: LIR-CMOP, MW, TREE, and RWMOP [41]. The four groups of test problems
comprehensively cover four common types of constrained multi-objective optimization
problems [42], namely: (1) the UPF and the CPF completely coincides; (2) parts of the
UPF are feasible, and the CPF is part of the UPF; (3) some regions of the UPF are feasible,
and the CPF and UPF partly coincide; (4) the UPF is located in the infeasible region, and
the CPF is wholly separated from the UPF. It can be seen that the selected test problems
comprehensively assess the method proposed in this paper.
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4.2. Comparison Algorithms and Parameters Setting

To test the effectiveness of the proposed method, we chose the algorithm DCNSGA-III
as the original algorithm embedding the proposed method. The algorithm embedded with
the proposed method is named IDCNSGA-III, which is compared with DCNSGA-III to
experimentally evaluate its effectiveness. The parameter of DCNSGA-III is kept consistent
with the original literature. For IDCNSGA-III, the greedy strategy factor is set to ε = 0.8,
and the parameters for Q-learning are set as γ = 0.2, α = 0.005. Tsam = 0.2 × Tmax,
Tupd = 0.1× Tmax.

To further illustrate the performance of the proposed method, a comparison was
conducted with CMOEA-MS [43], BiCo [44], AGE-MOEA-II [45], DSPCMDE [46], NSGA-
II [17], IDCNSGA-III, Trip [47], DPPPS [47], and CAEAD [48]. The parameter values for
the aforementioned comparative algorithms were kept consistent with the PlatEMO.

The population size for all test problems was set to 50, and the number of function
evaluations for each test problem was 10,000.

4.3. Performance Indicator

The HV is a comprehensive and effective indicator to evaluate the convergence and
diversity of algorithms. In this paper, it was chosen as the evaluation criterion for algorithm
performance. The symbols “+”, “−”, and “=“ are used to indicate that an algorithm
significantly outperforms, underperforms, or has no significant difference compared to
another algorithm, respectively.

4.4. Effectiveness of the Proposed Method

For each test problem, DCNSGA-III and IDCNSGA-III were run independently
30 times, obtaining HV indicator values. The HV results statistics are presented in
Table 1, where the best results are highlighted. For the HV indicator, in 17 out of
33 test problems, the performance of IDCNSGA-III was significantly better than the original
algorithm. From this, it can be concluded that applying the method proposed in this paper
significantly improves the algorithm’s performance.

The TREE testing problem has a high dimensionality, and it poses a considerable chal-
lenge to be solved. In the comparison, IDCNSGA-III demonstrated a clear advantage. This
means that, although the test problems have high dimensionalities, the fitness landscapes
are relatively simple. IDCNSGA-III can easily acquire effective evolutionary informa-
tion, guiding the direction of population movement and promoting rapid convergence of
the population.

The feasible region of the LIR-CMOP test problem is very small. Some problems
exhibit only one curve, and the shape of the constraint Pareto front consists of several
disjointed segments or sparse points. IDCNSGA-III exhibits significant advantages on
the majority of LIR-CMOP problems. There is no apparent advantage for IDCNSGA-III
on LIR-CMOP7 to LIR-CMOP8 problems, which may be caused by the relatively low
solving difficulty of these problems. In this case, the algorithm can easily obtain feasible
solutions, leading to a limited regulatory effect for the proposed method. There is also no
significant advantage for IDCNSGA-III on LIR-CMOP13 to LIR-CMOP14, which are two
three-dimensional problems. This may be caused by the high difficulty in solving these
problems, and the algorithm struggles to obtain feasible solution information over the long
term, resulting in less noticeable performance in regulating the population.
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Table 1. HV indicator statistics for IDNSGA-III and DCNSGA-III.

Problem M D IDCNSGA-III DCNSGA-III

TREE1 2 300 7.2952 × 10−1 (1.64 × 10−2) + 7.0269 × 10−1 (7.73 × 10−3)
TREE2 2 300 7.6076 × 10−1 (1.01 × 10−2) + 7.4026 × 10−1 (6.86 × 10−3)
TREE3 2 120 7.9388 × 10−1 (9.08 × 10−3) + 7.6790 × 10−1 (1.20 × 10−2)
TREE4 2 120 7.0300 × 10−1 (3.38 × 10−2) + 6.3061 × 10−1 (3.22 × 10−2)
TREE5 2 120 7.8099 × 10−1 (2.67 × 10−2) + 7.4329 × 10−1 (2.03 × 10−2)

LIRCMOP1 2 30 1.2444 × 10−1 (2.56 × 10−2) + 1.0638 × 10−1 (2.28 × 10−2)
LIRCMOP2 2 30 2.4912 × 10−1 (2.00 × 10−2) + 2.2259 × 10−1 (2.44 × 10−2)
LIRCMOP3 2 30 1.0955 × 10−1 (2.05 × 10−2) + 9.0574 × 10−2 (1.32 × 10−2)
LIRCMOP4 2 30 2.0854 × 10−1 (1.79 × 10−2) + 1.8894 × 10−1 (1.89 × 10−2)
LIRCMOP5 2 10 2.8561 × 10−1 (1.65 × 10−3) + 2.1053 × 10−1 (2.88 × 10−2)
LIRCMOP6 2 10 1.9183 × 10−1 (1.32 × 10−3) + 1.1070 × 10−1 (4.64 × 10−2)
LIRCMOP7 2 30 2.1168 × 10−1 (5.83 × 10−2) = 1.9214 × 10−1 (7.85 × 10−2)
LIRCMOP8 2 30 1.3642 × 10−1 (9.86 × 10−2) = 1.4752 × 10−1 (9.08 × 10−2)
LIRCMOP9 2 30 2.5944 × 10−1 (7.32 × 10−2) + 1.0893 × 10−1 (3.78 × 10−2)
LIRCMOP10 2 30 1.9340 × 10−1 (1.40 × 10−1) + 5.9978 × 10−2 (3.49 × 10−2)
LIRCMOP11 2 30 2.7786 × 10−1 (8.43 × 10−2) + 1.6002 × 10−1 (4.40 × 10−2)
LIRCMOP12 2 30 4.0423 × 10−1 (7.72 × 10−2) + 2.8276 × 10−1 (1.00 × 10−1)
LIRCMOP13 3 30 0.0000 × 10+0 (0.00 × 10+0) = 3.7687 × 10−6 (2.06 × 10−5)
LIRCMOP14 3 30 1.7358 × 10−5 (5.94 × 10−5) = 1.6225 × 10−5 (6.98 × 10−5)

MW1 2 30 1.4722 × 10−1 (1.30 × 10−1) Infeasible
MW2 2 30 3.8124 × 10−1 (1.29 × 10−1) = 4.3084 × 10−1 (8.17 × 10−2)
MW3 2 30 5.0566 × 10−1 (1.43 × 10−2) = 4.3151 × 10−1 (1.60 × 10−1)
MW4 3 30 4.3348 × 10−1 (5.15 × 10−2) Infeasible
MW5 2 30 1.1962 × 10−1 (7.62 × 10−2) Infeasible
MW6 2 10 2.9226 × 10−1 (1.89 × 10−2) = 2.9375 × 10−1 (3.12 × 10−2)
MW7 2 10 4.0304 × 10−1 (1.59 × 10−3) = 4.0119 × 10−1 (3.99 × 10−3)
MW8 3 10 4.8872 × 10−1 (2.38 × 10−2) - 5.0081 × 10−1 (1.98 × 10−2)
MW9 2 30 1.3763 × 10−1 (1.70 × 10−1) = 1.4546 × 10−1 (0.00 × 10+0)

MW10 2 30 2.2475 × 10−1 (9.60 × 10−2) = 2.6132 × 10−1 (1.02 × 10−1)
MW11 2 30 4.3830 × 10−1 (1.25 × 10−3) + 4.3107 × 10−1 (4.68 × 10−3)
MW12 2 30 1.4185 × 10−1 (2.45 × 10−1) = 0.0000 × 10+0 (0.00 × 10+0)
MW13 2 30 2.9592 × 10−1 (8.84 × 10−2) − 3.6448 × 10−1 (5.60 × 10−2)
MW14 3 30 1.1746 × 10−1 (4.12 × 10−2) + 6.9888 × 10−2 (4.25 × 10−2)

+/−/= 17/2/11

The constraints in the MW test problem have various forms. Its characteristic is that
the objective space is divided from a very large infeasible region into very small feasible
regions, and the constrained Pareto front includes multiple isolated solutions. On MW1,
MW4, and MW5, the DCNSGA-III fails to find feasible solutions, while IDCNSGA-III can
find and locate feasible solutions in the space. This demonstrates that applying our method
can enhance the algorithm’s performance. In the case of MW8 with a high-dimensional
objective space, the IDCNSGA-III’s performance degrades. This may be caused by the
greediness of IDCNSGA-III, which favors continuously executing a single operator that
returns higher rewards, leading to premature convergence of the population. In high-
dimensional problems, there are many local optima, exacerbating the issues related to the
algorithm’s greediness. On MW13, there is also a decline in the algorithm’s performance.
Because our method depends on well-defined infeasible solutions to provide effective
information, however, the shape of the constraint region in MW13 is excessively narrow,
providing insufficient feedback information, which leads to the ineffectiveness of the
method proposed in this paper.

In summary, the autonomous evolution optimization method guided by the popula-
tion feasibility state is effective in improving the performance of evolutionary algorithms
with the ε constrained method. The autonomy here is the dynamic selection of operators
realized by reinforcement learning, as shown in Figures 3 and 4, where the TREE1 and
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LIRCMOP1 problems are performed as examples, and the variation of reward value along
the operator selection is also simulated. In Figure 3, it can be seen that at the three key
time points where the operator is preferentially selected, the reward value is obviously
improved. A similar phenomenon also happened in Figure 4; at the three key time points
where the operator is preferentially selected, the reward value is also obviously improved.
Overall, the method proposed in this article can uniformly select operators in the early
stages of evolution, accumulating sufficient and evenly distributed sampling data. In
the later stage of evolution, this method can continuously adjust the operators adopted
to improve the solving performance of the algorithm based on operator evaluation and
real-time population state.
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The demonstrated effectiveness of using reinforcement learning to autonomously
select multiple operators in conjunction with the ε constrained method can be explained
as follows:

(1) Collaboration of multiple operators can increase the population diversity. When
solving constrained multi-objective optimization problems, the complexity of the
problem often leads to the algorithm falling into local optima. By using multiple
operators to work together, the population diversity is increased, thereby enlarging
the coverage on search space, and helping to avoid getting stuck in local optima.

(2) Multiple operators’ collaboration can improve the convergence speed of algorithms.
When solving constrained multi-objective optimization problems, the algorithm needs
to find the optimal solution within a limited number of iterations. By using multiple
operators to work together, it is possible to search in different directions, thereby
accelerating the convergence speed of the algorithm.

(3) Collaboration of multiple operators can increase the search ability of algorithms. When
solving constrained multi-objective optimization problems, the algorithm needs to find
the optimal solution in the search space. By using multiple operators to work together,
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it is possible to search in different directions simultaneously, thereby increasing the
search capability of the algorithm and helping to find better solutions.

4.5. The Comprehensive Performance of the Proposed Method
4.5.1. Compared with State-of-the-Art Constrained Optimization Algorithms

This section selects the state-of-the-art constrained multi-objective optimization
algorithms—including CMOEA-MS, BiCo, AGE-MOEA-II, DSPCMDE, and the classic algo-
rithm NSGA-II—to compare with IDCNSGA-III. Regarding the test problems, IDCNSGA-III
and the selected comparative algorithms were independently run 30 times, obtaining HV
indicator values. The performance statistics of HV are presented in Tables 2 and 3, where
the best results are highlighted.

Table 2. HV indicator statistics for IDNSGA-III and comparison algorithms (part 1).

Problem M D CMOEA-MS BiCo IDCNSGA-III

TREE1 2 300 6.9857 × 10−1 (8.47 × 10−3) − 6.6672 × 10−1 (1.07 × 10−2) − 7.2952 × 10−1 (1.64 × 10−2)
TREE2 2 300 7.3411 × 10−1 (6.04 × 10−3) − 7.0974 × 10−1 (6.64 × 10−3) − 7.6076 × 10−1 (1.01 × 10−2)
TREE3 2 120 7.2314 × 10−1 (3.43 × 10−2) − 6.7538 × 10−1 (2.71 × 10−2) − 7.9388 × 10−1 (9.08 × 10−3)
TREE4 2 120 5.8701 × 10−1 (7.96 × 10−2) − 3.6920 × 10−1 (5.26 × 10−2) − 7.0300 × 10−1 (3.38 × 10−2)
TREE5 2 120 7.1495 × 10−1 (5.06 × 10−2) − 5.8449 × 10−1 (3.32 × 10−2) − 7.8099 × 10−1 (2.67 × 10−2)

LIRCMOP1 2 30 9.7178 × 10−2 (1.24 × 10−2) − 1.1009 × 10−1 (8.09 × 10−3) − 1.2444 × 10−1 (2.56 × 10−2)
LIRCMOP2 2 30 2.1006 × 10−1 (1.81 × 10−2) − 2.2736 × 10−1 (1.08 × 10−2) − 2.4912 × 10−1 (2.00 × 10−2)
LIRCMOP3 2 30 9.0817 × 10−2 (9.06 × 10−3) − 1.0056 × 10−1 (1.06 × 10−2) − 1.0955 × 10−1 (2.05 × 10−2)
LIRCMOP4 2 30 1.8370 × 10−1 (1.16 × 10−2) − 1.9512 × 10−1 (1.11 × 10−2) − 2.0854 × 10−1 (1.79 × 10−2)
LIRCMOP5 2 10 1.1219 × 10−1 (1.01 × 10−1) − 1.8104 × 10−2 (5.57 × 10−2) − 2.8561 × 10−1 (1.65 × 10−3)
LIRCMOP6 2 10 8.2188 × 10−2 (5.35 × 10−2) − 1.6302 × 10−2 (3.54 × 10−2) − 1.9183 × 10−1 (1.32 × 10−3)
LIRCMOP7 2 30 2.3937 × 10−2 (6.37 × 10−2) − 0.0000 × 10+0 (0.00 × 10+0) − 2.1168 × 10−1 (5.83 × 10−2)
LIRCMOP8 2 30 0.0000 × 10+0 (0.00 × 10+0)− 0.0000 × 10+0 (0.00 × 10+0) − 1.3642 × 10−1 (9.86 × 10−2)
LIRCMOP9 2 30 1.0132 × 10−1 (2.56 × 10−2) − 8.6803 × 10−2 (1.68 × 10−2) − 2.5944 × 10−1 (7.32 × 10−2)
LIRCMOP10 2 30 5.5279 × 10−2 (2.33 × 10−2) − 5.3817 × 10−2 (1.60 × 10−2) − 1.9340 × 10−1 (1.40 × 10−1)
LIRCMOP11 2 30 1.6227 × 10−1 (3.12 × 10−2) − 1.4853 × 10−1 (2.92 × 10−2) − 2.7786 × 10−1 (8.43 × 10−2)
LIRCMOP12 2 30 1.9414 × 10−1 (6.64 × 10−2) − 2.1506 × 10−1 (8.50 × 10−2) − 4.0423 × 10−1 (7.72 × 10−2)
LIRCMOP13 3 30 7.8946 × 10−5 (9.93 × 10−5) + 3.2686 × 10−5 (7.50 × 10−5) + 0.0000 × 10+0 (0.00 × 10+0)
LIRCMOP14 3 30 3.3711 × 10−4 (3.44 × 10−4) + 1.7965 × 10−4 (2.07 × 10−4) + 1.7358 × 10−5 (5.94 × 10−5)

MW1 2 30 Infeasible Infeasible 1.4722 × 10−1 (1.30 × 10−1)
MW2 2 30 4.0040 × 10−1 (1.16 × 10−1) = 4.7769 × 10−1 (8.73 × 10−2) + 3.8124 × 10−1 (1.29 × 10−1)
MW3 2 30 3.8630 × 10−1 (1.67 × 10−1) − 4.3716 × 10−1 (6.28 × 10−2) − 5.0566 × 10−1 (1.43 × 10−2)
MW4 3 30 Infeasible Infeasible 4.3348 × 10−1 (5.15 × 10−2)
MW5 2 30 Infeasible 0.0000 × 10+0 (0.00 × 10+0) = 1.1962 × 10−1 (7.62 × 10−2)
MW6 2 10 2.9209 × 10−1 (2.72 × 10−2) = 3.0992 × 10−1 (1.04 × 10−2) + 2.9226 × 10−1 (1.89 × 10−2)
MW7 2 10 3.9338 × 10−1 (2.98 × 10−2) − 4.0454 × 10−1 (2.21 × 10−3) + 4.0304 × 10−1 (1.59 × 10−3)
MW8 3 10 4.8467 × 10−1 (7.40 × 10−2) = 5.1693 × 10−1 (1.55 × 10−2) + 4.8872 × 10−1 (2.38 × 10−2)
MW9 2 30 Infeasible Infeasible 1.3763 × 10−1 (1.70 × 10−1)

MW10 2 30 2.5155 × 10−1 (8.48 × 10−2) = 2.8290 × 10−1 (8.87 × 10−2) + 2.2475 × 10−1 (9.60 × 10−2)
MW11 2 30 3.4707 × 10−1 (6.92 × 10−2) − 3.2792 × 10−1 (8.55 × 10−2) − 4.3830 × 10−1 (1.25 × 10−3)
MW12 2 30 Infeasible Infeasible 1.4185 × 10−1 (2.45 × 10−1)
MW13 2 30 5.5586 × 10−2 (1.14 × 10−1) − 2.4713 × 10−1 (7.46 × 10−2) − 2.9592 × 10−1 (8.84 × 10−2)
MW14 3 30 7.1004 × 10−2 (4.95 × 10−2) − 3.5529 × 10−2 (2.09 × 10−2) − 1.1746 × 10−1 (4.12 × 10−2)
+/−/= 2/22/4 7/21/1

The problems in the TREE test set have a high dimensionality, making them challeng-
ing to solve. In comparison with other algorithms, IDCNSGA-III has achieved significant
advantages. This may be attributed to the fact that, although the test problems have high
dimensions, the fitness landscape is relatively simple, and the gradient information is clear.
The algorithm can effectively utilize feedback information, promoting rapid convergence
of the population.
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Table 3. HV indicator statistics for IDNSGA-III and comparison algorithms (part 2).

Problem AGEMOEA-II DSPCMDE NSGA-II IDCNSGA-III

TREE1 6.6896 × 10−1 (7.51 × 10−3) − 7.1916 × 10−1 (1.06 × 10−2) − 6.6897 × 10−1 (8.27 × 10−3) − 7.2952 × 10−1 (1.64 × 10−2)
TREE2 7.0870 × 10−1 (8.40 × 10−3) − 7.5347 × 10−1 (7.02 × 10−3) − 7.0990 × 10−1 (7.99 × 10−3) − 7.6076 × 10−1 (1.01 × 10−2)
TREE3 7.0231 × 10−1 (2.60 × 10−2) − 7.7027 × 10−1 (1.83 × 10−2) − 7.0375 × 10−1 (2.25 × 10−2) − 7.9388 × 10−1 (9.08 × 10−3)
TREE4 4.9408 × 10−1 (5.11 × 10−2) − 6.3215 × 10−1 (3.56 × 10−2) − 4.6792 × 10−1 (6.48 × 10−2) − 7.0300 × 10−1 (3.38 × 10−2)
TREE5 6.5838 × 10−1 (3.60 × 10−2) − 7.2691 × 10−1 (2.81 × 10−2) − 6.5426 × 10−1 (3.35 × 10−2) − 7.8099 × 10−1 (2.67 × 10−2)

LIRCMOP1 1.0273 × 10−1 (7.69 × 10−3) − 1.2727 × 10−1 (3.16 × 10−2) = 1.0180 × 10−1 (8.88 × 10−3) − 1.2444 × 10−1 (2.56 × 10−2)
LIRCMOP2 2.0970 × 10−1 (1.44 × 10−2) − 2.4769 × 10−1 (4.96 × 10−2) = 2.1462 × 10−1 (1.32 × 10−2) − 2.4912 × 10−1 (2.00 × 10−2)
LIRCMOP3 9.4261 × 10−2 (8.89 × 10−3) − 1.0803 × 10−1 (2.32 × 10−2) = 9.1757 × 10−2 (6.70 × 10−3) − 1.0955 × 10−1 (2.05 × 10−2)
LIRCMOP4 1.8121 × 10−1 (1.18 × 10−2) − 2.0798 × 10−1 (2.78 × 10−2) = 1.8629 × 10−1 (1.39 × 10−2) − 2.0854 × 10−1 (1.79 × 10−2)
LIRCMOP5 2.7174 × 10−2 (6.09 × 10−2) − 2.8432 × 10−1 (5.36 × 10−3) = 2.0243 × 10−2 (6.18 × 10−2) − 2.8561 × 10−1 (1.65 × 10−3)
LIRCMOP6 2.1490 × 10−2 (4.01 × 10−2) − 1.9216 × 10−1 (7.19 × 10−4) = 1.5007 × 10−2 (3.17 × 10−2) − 1.9183 × 10−1 (1.32 × 10−3)
LIRCMOP7 1.9382 × 10−2 (6.00 × 10−2) − 1.9844 × 10−1 (6.95 × 10−2) = 7.4225 × 10−3 (4.07 × 10−2) − 2.1168 × 10−1 (5.83 × 10−2)
LIRCMOP8 0.0000 × 10+0 (0.00 × 10+0) − 1.0965 × 10−1 (1.04 × 10−1) = 6.0278 × 10−3 (3.30 × 10−2) − 1.3642 × 10−1 (9.86 × 10−2)
LIRCMOP9 9.6729 × 10−2 (2.87 × 10−2) − 2.8800 × 10−1 (5.17 × 10−2) = 9.7909 × 10−2 (2.76 × 10−2) − 2.5944 × 10−1 (7.32 × 10−2)
LIRCMOP10 6.5082 × 10−2 (2.83 × 10−2) − 2.4906 × 10−1 (1.24 × 10−1) = 5.9470 × 10−2 (1.97 × 10−2) − 1.9340 × 10−1 (1.40 × 10−1)
LIRCMOP11 1.3892 × 10−1 (4.07 × 10−2) − 3.7183 × 10−1 (1.11 × 10−1) + 1.6531 × 10−1 (3.18 × 10−2) − 2.7786 × 10−1 (8.43 × 10−2)
LIRCMOP12 2.3159 × 10−1 (7.98 × 10−2) − 3.7287 × 10−1 (7.52 × 10−2) = 1.9288 × 10−1 (7.46 × 10−2) − 4.0423 × 10−1 (7.72 × 10−2)
LIRCMOP13 3.3380 × 10−4 (1.46 × 10−4) + 1.0577 × 10−2 (5.75 × 10−2) + 5.3026 × 10−5 (9.73 × 10−5) + 0.0000 × 10+0 (0.00 × 10+0)
LIRCMOP14 7.9656 × 10−4 (2.55 × 10−4) + 2.6131 × 10−2 (7.93 × 10−2) + 1.8352 × 10−4 (2.95 × 10−4) + 1.7358 × 10−5 (5.94 × 10−5)

MW1 Infeasible Infeasible Infeasible 1.4722 × 10−1 (1.30 × 10−1)
MW2 3.0609 × 10−1 (1.50 × 10−1) − 3.0403 × 10−1 (7.47 × 10−2) − 3.2396 × 10−1 (1.49 × 10−1) = 3.8124 × 10−1 (1.29 × 10−1)
MW3 2.0367 × 10−1 (2.06 × 10−1) − 4.8768 × 10−1 (1.93 × 10−2) − 2.2971 × 10−1 (1.71 × 10−1) − 5.0566 × 10−1 (1.43 × 10−2)
MW4 Infeasible 3.1094 × 10−1(0.00 × 10+0) = Infeasible 4.3348 × 10−1 (5.15 × 10−2)
MW5 Infeasible 9.8648 × 10−3 (1.56 × 10−2) − Infeasible 1.1962 × 10−1 (7.62 × 10−2)
MW6 2.2796 × 10−1 (5.47 × 10−2) − 2.2878 × 10−1 (4.78 × 10−2) − 2.0492 × 10−1 (6.42 × 10−2) − 2.9226 × 10−1 (1.89 × 10−2)
MW7 3.7160 × 10−1 (6.69 × 10−2) = 4.0684 × 10−1 (1.45 × 10−3)+ 3.8315 × 10−1 (5.65 × 10−2) − 4.0304 × 10−1 (1.59 × 10−3)
MW8 4.6429 × 10−1 (7.49 × 10−2) = 4.0464 × 10−1 (4.27 × 10−2) − 4.3323 × 10−1 (6.61 × 10−2) − 4.8872 × 10−1 (2.38 × 10−2)
MW9 Infeasible 2.8487 × 10−1 (1.60 × 10−2) = Infeasible 1.3763 × 10−1 (1.70 × 10−1)
MW10 2.0985 × 10−1 (1.03 × 10−1) = 8.2714 × 10−2 (1.02 × 10−2) − 1.9919 × 10−1 (1.03 × 10−1) = 2.2475 × 10−1 (9.60 × 10−2)
MW11 2.4123 × 10−1 (3.84 × 10−2) − 4.4117 × 10−1 (1.10 × 10−3)+ 2.3732 × 10−1 (3.80 × 10−2) − 4.3830 × 10−1 (1.25 × 10−3)
MW12 Infeasible 1.3176 × 10−1 (1.04 × 10−1) = Infeasible 1.4185 × 10−1 (2.45 × 10−1)
MW13 1.9544 × 10−1 (7.54 × 10−2) − 7.7809 × 10−2 (9.91 × 10−2) − 1.9767 × 10−1 (7.52 × 10−2) − 2.9592 × 10−1 (8.84 × 10−2)
MW14 4.7499 × 10−2 (2.15 × 10−2) − 2.3013 × 10−2 (1.94 × 10−3) − 3.3691 × 10−2 (1.39 × 10−2) − 1.1746 × 10−1 (4.12 × 10−2)
+/−/= 2/23/3 5/13/14 2/24/2

The feasible regions of the LIR-CMOP test suite are small. For some test problems, the
constrained Pareto front exhibits sparse points, continuous segments, and discontinuous
segments. A portion of the feasible region has closed, non-closed, and three-dimensional
grid shapes. For the two-dimensional test problems, such as LIR-CMOP1 to LIR-CMOP12,
IDCNSGA-III exhibits a clear advantage over the CMOEA-MS, BiCo, AGEMOEA-II, and
NSGA-II algorithms in the comparison. There is no clear advantage over DSPCMDE in
the comparison. Particularly in the two three-dimensional problems, LIR-CMOP13 to LIR-
CMOP14, the performance is not satisfactory. This could be due to the fact that when the
algorithm executes a certain operator and receives a higher reward, its inherent greediness
favors continuously executing a single operator, leading to premature convergence of the
population. Moreover, in high-dimensional problems, which have more local optima, the
greediness issue of the algorithm becomes more pronounced.

For the MW test problems, the constraints have various forms. In general, the fea-
sible region is very small, and it is divided from a very large infeasible region. Hence,
the constrained Pareto front includes multiple isolated solutions. Overall, IDCNSGA-III
exhibits a relatively significant advantage compared with the CMOEA-MS, AGEMOEAII,
DSPCMDE, and NSGA-II algorithms. In comparison with BiCo, IDCNSGA-III shows a
slight performance deficiency when facing problems with non-contiguous, narrow, and
scattered constraint shapes such as MW2, MW6, and MW10. This may happen due to
the dependence on well-defined infeasible solutions to provide the information guiding
population evolution. The scattered, narrow, and non-contiguous nature of the constraint
regions may lead to insufficient feedback information, thus limiting its regulatory effect.

In addition, a Friedman test is used to rank all the algorithms. As the ranking re-
sults presented in Table 4, IDCNSGA-III shows the best ranking, and shows significant
advantages in comparison with other algorithms.
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Table 4. Average rankings of the algorithms with Friedman test.

Algorithm Ranking

IDCNSGA-III 3.8088

DSPCMDE 4.4412

CMOEA-MS 5.7794

BiCo 6.0588

AGEMOEA-II 6.3676

NSGA-II 6.5441

In summary, when compared with other algorithms, the proposed method in this
paper has the best performance. This further elucidates the effectiveness of the proposed
approach. In terms of the problem dimension, the dimensions of TREE problems are higher
than 100, where IDCNSGA-III has more significant advantages than other algorithms. The
possible explanation is that combining the ε constrained method and the multi-operator
method can fully leverage the advantages of both methods. Loosening the constraints
first and gradually tightening them can effectively reduce the search space and improve
search efficiency. In addition, the multi-operator method can search the solution space
more comprehensively and improve search quality. The comprehensive application of the
two methods can better balance search efficiency and search quality, thereby exhibiting
better performance in solving high-dimensional problems.

4.5.2. Compared with ε-Feasibility-Based Constrained Optimization Algorithms

Because our algorithm uses the ε-feasibility-based population state to guide the evolu-
tion, we need to compare other ε-feasibility-based constrained optimization algorithms to
show the advantages. The selected state-of-the-art competitors include Trip, DPPPS, and
CAEAD. For the test problems, as well as TREE, LIRCMOP, and MW, we also selected the
RWMOP test suite to deeply test the performance of all algorithms. These problems are
classified into five parts according to their domain: mechanical design problems; chemical
engineering problems; process design and synthesis problems; power electronics prob-
lems; and power system problems. According to Kumar et al.’s analysis, the RWMOP test
function contains various questions with different difficulty levels. Although the RWMOP
benchmark suite contains testing issues with relatively low dimensions (up to 34), most
problems are hard to solve with the most advanced algorithms. IDCNSGA-III and the
selected comparative algorithms were independently run 30 times, obtaining HV indicator
values. The performance statistics of HV are presented in Table 5, where the best results
are highlighted, and the results for all algorithms that cannot find feasible solutions are
removed. All the problems for which no single algorithm can find a feasible solution are
removed from Table 5.

The experimental results illustrate that IDCNSGA-III has significant advantages in
comparison with competitors. For problems TREE3 to LIRCMOP6, and MW9-MW14,
IDCNSGA-III has the most prominent performance. Specifically, IDCNSGA-III achieved
“34+/14−/7=”, “36+/14−/5=” and “37+/13−/5=” on all test problems. In each test suite,
for all existing problems IDCNSGA-III can find feasible solutions, while competitors cannot
make it. Particularly in the MW test suite, there were five problems that competitors could
not solve even one of. This indicates that our proposed algorithm is efficient and has
promising performance in terms of applying ε-feasibility techniques.
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Table 5. HV indicator statistics for IDNSGA-III and comparison algorithms.

Problem TriP DPPPS CAEAD IDCNSGA-III

RWMOP1 5.9308 × 10−1 (2.84 × 10−3) − 5.9372 × 10−1 (2.23 × 10−3) − 6.0515 × 10−1 (1.38 × 10−3) = 6.0529 × 10−1 (8.02 × 10−4)
RWMOP2 2.5903 × 10−1 (1.18 × 10−1) − 2.3218 × 10−1 (9.43 × 10−2) − 3.6619 × 10−1 (1.41 × 10−2) − 3.9251 × 10−1 (7.04 × 10−4)
RWMOP3 9.0001 × 10−1 (5.74 × 10−4) + 8.9997 × 10−1 (5.96 × 10−4) + 8.9798 × 10−1 (1.18 × 10−3) + 8.9312 × 10−1 (1.65 × 10−3)
RWMOP4 8.5421 × 10−1 (3.76 × 10−3) − 8.5443 × 10−1 (3.07 × 10−3) − 8.5315 × 10−1 (3.39 × 10−3) − 8.5873 × 10−1 (1.41 × 10−3)
RWMOP5 4.3215 × 10−1 (8.51 × 10−4) + 4.3186 × 10−1 (1.17 × 10−3) + 4.3341 × 10−1 (3.27 × 10−4) + 3.4774 × 10−1 (5.79 × 10−2)
RWMOP6 2.7559 × 10−1 (3.70 × 10−4) − 2.7536 × 10−1 (7.04 × 10−4) − 2.7448 × 10−1 (1.06 × 10−3) − 2.7585 × 10−1 (2.07 × 10−3)
RWMOP7 4.8340 × 10−1 (1.53 × 10−4) = 4.8319 × 10−1 (2.54 × 10−4) − 4.8398 × 10−1 (2.39 × 10−4) + 4.8340 × 10−1 (6.23 × 10−4)
RWMOP8 2.5752 × 10−2 (1.95 × 10−4) + 2.5758 × 10−2 (1.98 × 10−4) + 2.5913 × 10−2 (8.24 × 10−5) + 2.5611 × 10−2 (2.82 × 10−4)
RWMOP9 3.9371 × 10−1 (9.07 × 10−3) − 3.9425 × 10−1 (7.85 × 10−3) − 4.0953 × 10−1 (1.10 × 10−4) − 4.0970 × 10−1 (1.01 × 10−4)
RWMOP10 8.4260 × 10−1 (2.08 × 10−3) + 8.4157 × 10−1 (1.52 × 10−3) + 8.4204 × 10−1 (1.91 × 10−3) + 8.1216 × 10−1 (8.48 × 10−3)
RWMOP11 9.3081 × 10−2 (1.38 × 10−3) − 9.2283 × 10−2 (1.15 × 10−3) − 9.1840 × 10−2 (2.02 × 10−3) − 9.4492 × 10−2 (8.63 × 10−4)
RWMOP12 5.5804 × 10−1 (1.29 × 10−3) = 5.5752 × 10−1 (1.85 × 10−3) − 5.5619 × 10−1 (1.81 × 10−3) − 5.5854 × 10−1 (1.34 × 10−3)
RWMOP13 8.7506 × 10−2 (2.66 × 10−4) − 8.7487 × 10−2 (2.89 × 10−4) − 8.6793 × 10−2 (4.26 × 10−4) − 8.7645 × 10−2 (1.40 × 10−4)
RWMOP14 6.1141 × 10−1 (4.00 × 10−3) − 6.1217 × 10−1 (3.50 × 10−3) − 6.1320 × 10−1 (1.23 × 10−3) − 6.1683 × 10−1 (4.09 × 10−4)
RWMOP15 5.3143 × 10−1 (3.35 × 10−3) − 5.2874 × 10−1 (5.41 × 10−3) − 5.4037 × 10−1 (6.61 × 10−4) = 5.4029 × 10−1 (5.74 × 10−4)
RWMOP16 7.6265 × 10−1 (2.48 × 10−4) − 7.6259 × 10−1 (2.49 × 10−4) − 7.6250 × 10−1 (2.70 × 10−4) − 7.6316 × 10−1 (2.82 × 10−5)
RWMOP17 2.2013 × 10−1 (4.95 × 10−2) = 2.2862 × 10−1 (3.68 × 10−2) − 2.4094 × 10−1 (2.48 × 10−2) = 2.4837 × 10−1 (2.04 × 10−2)
RWMOP18 4.0510 × 10−2 (6.33 × 10−6) + 4.0509 × 10−2 (6.77 × 10−6) + 4.0505 × 10−2 (4.03 × 10−6) + 4.0481 × 10−2 (2.63 × 10−5)
RWMOP19 2.5834 × 10−1 (2.00 × 10−2) − 2.5561 × 10−1 (2.33 × 10−2) − 3.4259 × 10−1 (7.91 × 10−3) − 3.5698 × 10−1 (3.83 × 10−3)
RWMOP21 3.1570 × 10−2 (8.25 × 10−5) + 3.1621 × 10−2 (5.17 × 10−5) + 3.1760 × 10−2 (8.09 × 10−7) + 3.1508 × 10−2 (4.65 × 10−4)
RWMOP22 infeasible infeasible 8.0800 × 10−1 (2.15 × 10−1) infeasible
RWMOP23 9.9856 × 10−1 (4.53 × 10−16) = 9.9856 × 10−1 (0.00 × 10+0) = 1.0187 × 10+0 (1.15 × 10−1) = 1.0510 × 10+0 (1.21 × 10−1)
RWMOP25 2.4150 × 10−1 (2.47 × 10−5) + 2.4149 × 10−1 (2.37 × 10−5) + 2.4149 × 10−1 (1.95 × 10−5) + 2.4136 × 10−1 (8.03 × 10−5)
RWMOP26 1.2680 × 10−1 (1.78 × 10−2) − 1.2454 × 10−1 (1.62 × 10−2) − 1.4953 × 10−1 (9.48 × 10−3) = 1.4490 × 10−1 (6.30 × 10−3)
RWMOP27 1.3860 × 10+8 (4.40 × 10+8) − 1.2481 × 10+8 (4.08 × 10+8) = 1.2597 × 10+9 (5.96 × 10+9) = 4.0381 × 10+8 (1.79 × 10+9)
RWMOP28 infeasible infeasible infeasible 3.4356 × 10−2 (1.09 × 10−2)
RWMOP29 7.5012 × 10−1 (1.71 × 10−2) + 7.4954 × 10−1 (2.02 × 10−2) − 7.7187 × 10−1 (7.56 × 10−3) = 7.4998 × 10−1 (6.20 × 10−2)

TREE1 7.1186 × 10−1 (9.69 × 10−3) − 7.4386 × 10−1 (8.51 × 10−3) + 7.3571 × 10−1 (6.27 × 10−3) = 7.2952 × 10−1 (1.64 × 10−2)
TREE2 7.5052 × 10−1 (7.85 × 10−3) − 7.7012 × 10−1 (7.14 × 10−3) + 7.6484 × 10−1 (4.35 × 10−3) = 7.6076 × 10−1 (1.01 × 10−2)
TREE3 7.2121 × 10−1 (4.69 × 10−2) − 7.5576 × 10−1 (1.42 × 10−2) − 7.1745 × 10−1 (1.63 × 10−2) − 7.9388 × 10−1 (9.08 × 10−3)
TREE4 5.8872 × 10−1 (6.74 × 10−2) − 6.0943 × 10−1 (2.95 × 10−2) − 4.7716 × 10−1 (5.14 × 10−2) − 7.0300 × 10−1 (3.38 × 10−2)
TREE5 7.2876 × 10−1 (5.40 × 10−2) − 7.2453 × 10−1 (2.13 × 10−2) − 6.3036 × 10−1 (3.01 × 10−2) − 7.8099 × 10−1 (2.67 × 10−2)

LIRCMOP1 1.0835 × 10−1 (1.46 × 10−2) − 1.0634 × 10−1 (1.33 × 10−2) − 1.0751 × 10−1 (2.72 × 10−2) − 1.2444 × 10−1 (2.56 × 10−2)
LIRCMOP2 2.2951 × 10−1 (1.86 × 10−2) − 2.2789 × 10−1 (1.92 × 10−2) − 2.3089 × 10−1 (3.32 × 10−2) − 2.4912 × 10−1 (2.00 × 10−2)
LIRCMOP3 9.9237 × 10−2 (1.21 × 10−2) − 1.0128 × 10−1 (1.02 × 10−2) − 8.9164 × 10−2 (1.50 × 10−2) − 1.0955 × 10−1 (2.05 × 10−2)
LIRCMOP4 1.8951 × 10−1 (1.70 × 10−2) − 1.8867 × 10−1 (1.62 × 10−2) − 1.8284 × 10−1 (3.20 × 10−2) − 2.0854 × 10−1 (1.79 × 10−2)
LIRCMOP5 2.8560 × 10−1 (6.95 × 10−3) − 2.7503 × 10−1 (1.98 × 10−2) − 2.6212 × 10−1 (5.20 × 10−2) − 2.8561 × 10−1 (1.65 × 10−3)
LIRCMOP6 1.8882 × 10−1 (2.17 × 10−2) − 1.8259 × 10−1 (1.95 × 10−2) = 1.6545 × 10−1 (2.05 × 10−2) − 1.9183 × 10−1 (1.32 × 10−3)
LIRCMOP7 2.1642 × 10−1 (1.13 × 10−2) + 1.4293 × 10−1 (7.74 × 10−2) − 4.2776 × 10−3 (2.34 × 10−2) − 2.1168 × 10−1 (5.83 × 10−2)
LIRCMOP8 2.0367 × 10−1 (1.07 × 10−2) = 4.6456 × 10−2 (7.33 × 10−2) − 0.0000 × 10+0 (0.00 × 10+0) − 1.3642 × 10−1 (9.86 × 10−2)
LIRCMOP9 1.6996 × 10−1 (7.00 × 10−2) − 1.7749 × 10−1 (1.06 × 10−1) − 2.5966 × 10−1 (6.40 × 10−2) = 2.5944 × 10−1 (7.32 × 10−2)
LIRCMOP10 8.4000 × 10−2 (2.52 × 10−2) − 6.2384 × 10−2 (2.41 × 10−2) − 1.3664 × 10−1 (7.23 × 10−2) = 1.9340 × 10−1 (1.40 × 10−1)
LIRCMOP11 1.9344 × 10−1 (3.97 × 10−2) − 1.5943 × 10−1 (6.25 × 10−2) − 2.0644 × 10−1 (1.02 × 10−1) − 2.7786 × 10−1 (8.43 × 10−2)
LIRCMOP12 3.4834 × 10−1 (5.79 × 10−2) − 3.2052 × 10−1 (6.36 × 10−2) − 2.7427 × 10−1 (6.43 × 10−2) − 4.0423 × 10−1 (7.72 × 10−2)
LIRCMOP13 5.4827 × 10−2 (7.41 × 10−2) + 2.6023 × 10−2 (5.53 × 10−2) + 3.5855 × 10−5 (8.81 × 10−5) + 0.0000 × 10+0 (0.00 × 10+0)
LIRCMOP14 5.1190 × 10−2 (7.33 × 10−2) + 2.2962 × 10−2 (4.48 × 10−2) + 2.2361 × 10−4 (2.69 × 10−4) + 1.7358 × 10−5 (5.94 × 10−5)

MW1 infeasible infeasible infeasible 1.4722 × 10−1 (1.30 × 10−1)
MW2 4.2862 × 10−1 (5.85 × 10−2) = 4.3252 × 10−1 (5.50 × 10−2) = infeasible 3.8124 × 10−1 (1.29 × 10−1)
MW3 4.2942 × 10−1 (1.84 × 10−2) − 4.2029 × 10−1 (2.10 × 10−2) − 1.3968 × 10−1 (0.00 × 10+0) = 5.0566 × 10−1 (1.43 × 10−2)
MW4 infeasible infeasible infeasible 4.3348 × 10−1 (5.15 × 10−2)
MW5 infeasible infeasible infeasible 1.1962 × 10−1 (7.62 × 10−2)
MW6 3.1386 × 10−1 (1.20 × 10−2) + 3.1343 × 10−1 (1.26 × 10−2) + 8.1863 × 10−2 (4.78 × 10−2) − 2.9226 × 10−1 (1.89 × 10−2)
MW7 4.0831 × 10−1 (9.17 × 10−4) + 4.0742 × 10−1 (1.21 × 10−3) + 4.0216 × 10−1 (4.37 × 10−3) = 4.0304 × 10−1 (1.59 × 10−3)
MW8 5.2629 × 10−1 (9.09 × 10−3) + 5.2888 × 10−1 (9.52 × 10−3) + 3.1607 × 10−1 (7.02 × 10−2) − 4.8872 × 10−1 (2.38 × 10−2)
MW9 infeasible infeasible infeasible 1.3763 × 10−1 (1.70 × 10−1)
MW10 1.6516 × 10−1 (6.00 × 10−2) − 1.4508 × 10−1 (5.25 × 10−2) − infeasible 2.2475 × 10−1 (9.60 × 10−2)
MW11 4.3417 × 10−1 (4.16 × 10−3) − 4.0024 × 10−1 (4.32 × 10−2) − infeasible 4.3830 × 10−1 (1.25 × 10−3)
MW12 infeasible infeasible infeasible 1.4185 × 10−1 (2.45 × 10−1)
MW13 2.0227 × 10−1 (7.81 × 10−2) − 2.1554 × 10−1 (7.95 × 10−2) − 0.0000 × 10+0 (0.00 × 10+0) − 2.9592 × 10−1 (8.84 × 10−2)
MW14 1.7216 × 10−2 (2.06 × 10−3) − 1.6526 × 10−2 (1.52 × 10−3) − 1.3666 × 10−2 (9.90 × 10−4) − 1.1746 × 10−1 (4.12 × 10−2)
+/−/= 14/36/7 14/37/5 13/33/5

4.5.3. Sensitivity Analysis of Key Parameters

To better set the parameters in our algorithm, the influence of key parameters on
algorithm performance are tested with different parameters setting. α, γ, and ε control the
update of current reward to Q-table, prediction ability of reward, and ε greedy, respectively.
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Hence, we set the value of α with 0.001, 0.005, 0.01, 0.015, and 0.02, respectively. γ changes
from 0.1 to 0.5 with an interval of 0.1, ε changes from 0.5 to 0.9 with an interval of 0.1.
Each version of IDCNSGA-III is run 30 times on MW, LIRCMOP, and TREE test suites
independently. All versions of IDCNSGA-III are compared with each other using Friedman
test, and the ranking results of IDCNSGA-III on α, γ, and ε are presented in Tables 6–8,
respectively. For α, α = 0.005 has the best ranking, while α = 0.001 and α = 0.01 have similar
performance. That means α = 0.005 is a promising setting. For γ, a relatively small setting
is better. γ = 0.2 shows the best performance than γ = 0.3, 0.4, and 0.5. For ε, ε = 0.8 is a
good choice, which surpasses ε = 0.5, 0.6, 0.7, and 0.9.

Table 6. Average rankings of the algorithms with different α value (Friedman).

Algorithm Ranking

IDCNSGA-III (α = 0.005) 2.6029

IDCNSGA-III (α = 0.02) 3.0294

IDCNSGA-III (α = 0.01) 3.0735

IDCNSGA-III (α = 0.015) 3.1471

IDCNSGA-III (α = 0.001) 3.1471

Table 7. Average rankings of the algorithms with different γ value (Friedman).

Algorithm Ranking

IDCNSGA-III (γ = 0.2) 2.8382

IDCNSGA-III (γ = 0.3) 2.9118

IDCNSGA-III (γ = 0.4) 3.0147

IDCNSGA-III (γ = 0.5) 3.1471

IDCNSGA-III (γ = 0.1) 3.2059

Table 8. Average rankings of the algorithms with different ε value (Friedman).

Algorithm Ranking

IDCNSGA-III (ε = 0.8) 2.6618

IDCNSGA-III (ε = 0.5) 2.8382

IDCNSGA-III (ε = 0.9) 3.0294

IDCNSGA-III (ε = 0.6) 3.1618

IDCNSGA-III (ε = 0.7) 3.3088

5. Conclusions

We propose a population feasibility state guided autonomous evolutionary optimiza-
tion method for handling constrained multi-objective optimization problems. Taking
DCNSGA-III as an example, our proposed method significantly improves its performance
on four test suites, demonstrating the effectiveness of our approach. In addition, the com-
parison of IDCNSGA-III with five state-of-the-art constrained multi-objective optimization
algorithms and three ε-feasibility based constrained multi-objective optimization algo-
rithms also demonstrates the effectiveness of our approach. The significant performance
of the RWMOP benchmark suite illustrate the scalability of our algorithm in dealing with
real-world problems.

However, our method does not significantly improve the performance of the embed-
ded algorithm for test problems with high-dimensional objectives and non-closed constraint
shapes. To further enhance performance, we will investigate the following issues in our
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future work: (1) Designing new methods for describing population state. (2) Integrating
new reproduction operator.
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