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Abstract: This paper discusses a type of mixed-delay quaternion-valued neural networks (QVNNs)
under impulsive and stochastic disturbances. The considered QVNNs model are treated as a whole,
rather than as complex-valued neural networks (NNs) or four real-valued NNs. Using the vector
Lyapunov function method, some criteria are provided for securing the mean-square exponential
stability of the mixed-delay QVNNs under impulsive and stochastic disturbances. Furthermore, a
type of chaotic QVNNs under stochastic and impulsive disturbances is considered using a previ-
ously established stability analysis method. After the completion of designing the linear feedback
control law, some sufficient conditions are obtained using the vector Lyapunov function method
for determining the mean-square exponential synchronization of drive–response systems. Finally,
two examples are provided to demonstrate the correctness and feasibility of the main findings and
one example is provided to validate the use of QVNNs for image associative memory.

Keywords: quaternion-valued neural networks; impulsive disturbances; stochastic disturbances;
mixed delays; mean-square exponential stability; mean-square exponential synchronization

MSC: 34D23

1. Introduction

Neural networks (NNs) have been extensively used in medicine, biology, commu-
nication, and transportation because of their characteristics, such as nonlinear mapping,
associative memory, classification and recognition, optimal computing, and others. A
quaternion is a four-element vector in the class of hypercomplex numbers first described
by Hamilton in 1843 [1]. Because a quaternion with one real and three imaginary parts can
carry large amounts of information, it can handle multidimensional issues, such as associa-
tive memory for colored images [2], trajectory tracking control of a rotor missile [3], attitude
and altitude tracking of a quadrotor unmanned aerial vehicle [4], and cross-modal match-
ing [5] more effectively. Considering image associative memory as an example, a color
image can be depicted by a quaternion matrix with pure imaginary numbers of suitable
dimensionality, where the three imaginary parts correspond to the three basic monochro-
matic colors of red (R), green (G), and blue (B) in the RGB color space. This demonstrates
that a quaternion matrix can hold more data than a real or complex matrix. Accordingly,
a quaternion-valued neural network (QVNN) model is proposed. QVNNs combine the
benefits of NNs and quaternions and outperform real-valued NNs and complex-valued
NNs in solving three-dimensional and four-dimensional data problems; therefore, they
have attracted considerable research interest [2,4,6–29].

Mathematics 2024, 12, 917. https://doi.org/10.3390/math12060917 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060917
https://doi.org/10.3390/math12060917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12060917
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060917?type=check_update&version=2


Mathematics 2024, 12, 917 2 of 24

During the implementation of NNs, the delay phenomenon is inevitable owing to the
limitation of the switching speed of the amplifier or the signal transmission speed. The delay
phenomenon may reduce the convergence rate to equilibria of NNs and even cause consid-
erable damage to the stability of systems. The delay phenomena of NN models have been
examined in the literature, including fixed delays [30], variable delays [9–13,21–26,31–36],
infinitely distributed delays [21,33,34,36], and neutral delays [12]. Uncertain interference
factors are also unpreventable in NNs. Impulsive and stochastic disturbances are two types
of interference factors that are commonly found in practical systems, and they considerably
degrade the system’s stability. Therefore, incorporating them into NN models when exam-
ining the dynamic behavior of NNs is imperative. In [13], an impulsive disturbed QVNN
with time-varying delays was built. By decomposing the QVNNs into the equivalent
real-valued NNs, the exponential stability conditions of the delayed system were derived
using generalized norms. After stochastic disturbances were introduced into these models,
and without decomposing QVNNs, the researchers of [12] obtained relevant criteria to
ensure the mean-square stability of equilibria of a type of QVNNs with variable delays and
neutral delays using the fixed-point theorem.

Because synchronization of nonlinear complex systems can be applied to image en-
cryption, secure communication, associative memory, and many other fields [8], research
on the synchronization of these systems has always been a priority. Synchronization
has attracted considerable research interest in recent years because it is an important dy-
namic behavior of coupled chaotic NNs. Similar to the equilibria stability of NNs, the
delay phenomenon [6–8,15–17,19,20,28,29,37–48], impulsive disturbances [6,14,27], and
stochastic disturbances [38–40,43–46,48–53] should be considered when examining the
synchronization control of chaotic NNs. Currently, most research results [37–51,53–55] on
synchronization control are primarily applicable to NNs in the real number domain. How-
ever, research [6–8,14–20,27–29] on the synchronization control of NNs in the quaternion
domain is scarce. Studies [8,14,27,56] have only considered impulsive disturbances when
analyzing the synchronization of QVNNs. Other related studies [15–20,28,29] have not
considered the influence of uncertain interference factors on synchronization control.

Based on the abovementioned analysis of the existing literature, it is concluded that:

(1) Considering the existing uncertain QVNNs, studies [8,14,27,56] only considered im-
pulsive disturbances, and the researchers of [12,57] only investigated stochastic dis-
turbances. Furthermore, the stochastic disturbance introduced in the QVNNs in [12]
does not exert any influence on connecting neurons.

(2) Decomposition is a common method when dealing with multivalued NNs.
Studies [7,9–11,13,14,19–21,23–27] decomposed QVNNs and proposed relevant crite-
ria to ensure system stability or synchronization. However, decomposable quaternion
activation functions are rare, and the assumptions associated with decomposable
activation functions are strict.

(3) The scalar Lyapunov function method is the most commonly used method for investi-
gating the stability and synchronization of NNs [6–8,10,11,13–19,31–55,57]. Compared
with vector Lyapunov functions, scalar Lyapunov functions are difficult to construct
using this method.

(4) The synchronization analysis of chaotic NNs based on the concept of the drive-
response system is equivalent to the stability problem of a synchronization error
system. Only a few studies have simultaneously investigated the stability and syn-
chronization of QVNNs.

(5) Based on certain important conclusions on stability and synchronization reported in
the literature [6,8–19,21–25,27–29,31], examples are provided to validate the obtained
results. However, no examples are provided to demonstrate the use of QVNNs.
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To sum up, additional research on the dynamic behavior of delayed QVNNs under
stochastic and impulsive disturbances is required. Therefore, we further investigate the
aforementioned issues. The main contributions and advantages of this study are as follows:

(1) We will consider both impulsive and stochastic disturbances in mixed-delay QVNNs and
examine the interaction of connected neurons after introducing stochastic disturbances.

(2) The non-decomposition method, which retains the coupling characteristics of each
part of the quaternion, is used to conduct the research.

(3) To avoid the difficulty of constructing the scalar Lyapunov functions, this study
combines the vector Lyapunov function method with mathematical induction and
differential integration theory and proposes sufficient criteria to ensure the mean-
squared exponential stability of the equilibria of the system.

(4) For a type of chaotic QVNNs with mixed delays as well as impulsive and stochastic
disturbances, judgment conditions for ensuring the mean-square exponential synchro-
nization of the drive-response system with a linear feedback controller are obtained
using the established mean-square exponential stability conditions.

(5) In this study, the correctness and feasibility of the stability and synchronization criteria
are demonstrated in examples 1 and 2, respectively. Furthermore, the applicability of
the criterion for realizing image associative memory is validated via example 3.

This paper comprises six main sections. Section 2 presents a description of the model
and the associated assumptions. Sections 3 and 4 present theorems and corollaries related
to stability and synchronization judgments of QVNNs. Section 5 presents three simulation
examples. Finally, conclusions and an outlook for future work are presented in Section 6.

Table 1 lists some symbols used in this paper.

Table 1. Necessary notations and means throughout the paper.

Notations Means Notations Means

R real number domain |z| |z| =
√
(z(0))2

+(z(1))2+(z(2))2+(z(3))2

C complex number domain Re(z) Re(z) = z(0)

Q skew field of quaternions Im(z) Im(z) = z(1) i + z(2) ι + z(3) κ

N natural number set z
conjugate of z ∈ Q defined as
z = z(0) − z(1) i − z(2) ι − z(3) κ

Λ set defined as
{1, 2, . . . , n} |z| modulus of vector z defined as

(|z1|, |z2|, . . . , |zn|)T

(·)T transpose of a vector
or matrix ∥z∥ norm of z defined as

√
∑n

m=1 |zm|2

i, ι, k imaginary unit |B| modulus of the matrix B ∈ Qn×n defined
as (|bmr |)n×n ∈ Rn×n

E(.) expectation function (Ω, F, P) complete probability space
z ∈ Q z = z(0) + z(1)i+ z(2) ι+ z(3)κ

2. Model Description and Preliminaries

A type of QVNNs with mixed delays as well as impulsive and stochastic disturbances
is presented in this section, which can be expressed as follows:

dzm(t) =
{
−ωmzm(t) +

n
∑

r=1
[amr fr(zr(t)) + bmrgr(zr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)hr(zr(s))ds]

}
dt+

n
∑

r=1
pmr(zr(t), zr(t − τmr(t)))dwr(t) + Jm(t), t ̸= tk,

∆zm(tk) = zm(t+k )− zm(t−k ), t = tk,

(1)

where: zm ∈ Q denotes the state of the m-th neuron, m ∈ Λ, and n denotes the number of
neurons. ∆zm(tk) represents an abrupt change in the system state at a discrete time tk, k ∈ N.
The discrete set {tk} satisfies 0 ≤ t0 < t1 < . . . < tk < . . ., and tk → ∞ when k → ∞ .
A = (amr)n×n.∈ Qn×n and B = (bmr)n×n ∈ Qn×n C = (cmr)n×n ∈ Qn×n are the weight ma-
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trices of the system (1) for no delay, variable delays, and infinite distributed delays between
neurons, respectively. The function P = (pmr)n×n ∈ Qn×n signifies the intensity of stochas-
tic disturbances among neurons. W(t) = (w1(t), w2(t), . . . , wn(t))

T represents the Brown
motion defined (Ω, F, P) with natural filtration {Ft}t≥0. J = (J1(t), J2(t), . . . , Jn(t))

T ∈ Qn

indicates the external input of the system. f(z) = ( f1(z1), f2(z2), . . . , fn(zn))
T,

g(z) = (g1(z1), g2(z2),. . . , gn(zn))T and h(z) = (h1(z1), h2(z2), . . . , hn(zn))T represent acti-
vation functions of the system (1) for no delays, variable delays, and infinite distributed
delays among neurons, respectively. The positive matrix ω = diag(ω1, ω2, . . . , ωn) ∈ Rn×n

denotes the self-feedback interconnected matrix.
Multiple assumptions are expressed for the system (1).

Assumption 1. The following assumptions are made for the delay part of the system (1).

(i) The variable time delay τmr(t) in model (1) is a bounded function
τ = maxm,r∈Λsupt≥0τmr(t).

(ii) The kernel function θmr:[0,+∞)→[0,+∞) in the infinite distributed delay is a piecewise
continuous function, and satisfies∫ +∞

0
eβsθmr(s)ds = µmr(β), m, r ∈ Λ, (2)

Here µmr(β) is a continuous function on [0, δ) with µmr(0) = 1 and δ > 0.

Assumption 2. It is presumed that activation functions fm(.) with fm(0) = 0 in system (1) satisfy
the Lipschitz condition, indicating that l f

m > 0 such that the inequalities | fm(zm)− fm(vm)| ≤
l f
m|zm − vm| are valid, here zm, vm ∈ Q, m ∈ Λ.

Remark 1. Note that the activation functions gm(.) and hm(.) with gm(0) = hm(0) = 0 in the
system (1) satisfy the Lipschitz condition. Only the notation f in the Assumption 2 is substituted
by g or h.

Here, let L f = diag(l f
1 , l f

2 , . . . , l f
n), Lg = diag(lg

1 , lg
2 , . . . , lg

n), and Lh = diag(lh
1 , lh

2 , . . . , lh
n).

Assumption 3. Suppose zm(tk) = zm(t+k ) and zm(t−k ) = limt→t−k
z(t), m ∈ Λ, k ∈ N. Let

∆zm(tk) =zm(t+k )− zm(t−k )= Ik
m(zm(t−k )), where Ik

m(.) with Ik
m(0) = 0 implying an impulsive

function. We assume that the inequalities |zm(t−k ) + Ik
m(zm(t−k ))|

2 ≤ η
(k)
m |zm(t−k )|

2 are valid for

all m ∈ Λ, k ∈ N. Let η(k) = maxm∈Λ

{
1, η

(k)
m

}
, k ∈ N.

Assumption 4. There exist positive numbers πmr and π
(τ)
mr such that all zr ̸= qr the weighted

functions of the stochastic term pmr with pmr(0, 0) = 0 (m, r ∈ Λ) satisfy the follow-up inequalities:

(pmr(zr(t), zr(t − τmr(t))))
2 − (pmr(qr(t), qr(t − τmr(t))))

2

≤ πmr|zr(t)− qr(t)|2 + π
(τ)
mr |zr(t − τmr(t))− qr(t − τmr(t))|2

(3)

Here, we denote Π = (πmr)n×n and Π(τ) = (π
(τ)
mr )n×n.

Remark 2. In studies [12,31,33,36,38–40,44,45,48–51,53,57], stochastic disturbances were in-
troduced into several NNs. As per the interaction of stochastic disturbance on each neuron, the
function pmr in (1) can be split into strong-coupling forms [31,33,38,48–50,53] and weak-coupling
types [36,40,44,45,51]. The research objects of the studies [31,33,36,38–40,44,45,48–51,53] are
real-valued NNs. Reference [12] investigated the stability of a class of QVNNs with firmly coupled
stochastic perturbations, but without considering the delay in the stochastic term. In this analysis,
the assumption conditions for stochastic disturbances involve not only strong coupling but also
delays. Obviously, Assumption 4 in this paper includes Hypothesis H2 in [12].



Mathematics 2024, 12, 917 5 of 24

Let φm(s) be the continuous function mapping from (−∞, 0] to Q, and zm(s) = φm(s)
be the original condition of the system (1), where s ∈ (−∞, 0] and m ∈ Λ.

The equilibria of model (1) are denoted as z# = (z#
1, z#

2, . . . , z#
n)

T.

Definition 1. If there exist constants λ > 0 and Γ > 0 such that E(||z(t)− z#||2)≤ Γsups∈(−∞,0]

E(||φ(s)− z#||2)e−λ(t−t0) hold for external input J ∈ Qn, the equilibria z# = (z#
1, z#

2, . . . , z#
n)

T of
system (1) are mean-square exponential stability,

where:

E(||z(t)− z#||2) = [E(|z1(t)− z1
#|2), E(|z2(t)− z2

#|2), . . . , E(|zn(t)− zn
#|2)]T, t > t0 ≥ 0,

E(||φ(s)− z#||2) = [E(|φ1(s)− z1
#|2), E(|φ2(s)− z2

#|2), . . . , E(|φn(s)− zn
#|2)]T, s ∈ (−∞, 0].

Lemma 1 ([58]). For a differentiable quaternionic function z(t) ∈ Q, the formula
d|z(t)|2

dt = 2Re
(

z(t) dz(t)
dt

)
is valid.

Lemma 2 ([59]). It is assumed that z(t) is an Itô process described by

dz(t) = f (t)dt + p(t)dw(t). (4)

V(t, z(t)) : [0, ∞)×Q → R is supposed an Itô process with second-order derivative respect
to z(t), then

dV(t, z(t)) =
∂V(t, z(t))

∂t
dt +

∂V(t, z(t))
∂z(t)

dz(t) +
1
2

∂2V(t, z(t))
∂z2(t)

(dz(t))2. (5)

Here (dz(t))2 = (dz(t))(dz(t)) is estimated using dt. dt = dt. dw(t) = dw(t).dt = 0
and dw(t). dw(t) = dt.

Remark 3. After substituting (4) into (5) and using Lemma 2, Equation (6) can be derived, which
will be employed in the subsequent proof of the theorems,

dV(t, z(t)) =
(

∂V(t,z(t))
∂t + ∂V(t,z(t))

∂z(t) f (t) + 1
2

∂2V(t,z(t))
∂z2(t) (p(t))2

)
dt+

∂V(t,z(t))
∂z(t) p(t)dw(t).

(6)

Lemma 3 ([21]). Let B = (bmr)n×n ∈ Rn×n be a matrix bmr ≤ 0 (m ̸= r, m, r ∈ Λ). If the
original parts of all eigenvalues in B are positive, then the conclusion that B is an M-matrix is
consistent with the conclusion that there is a positive vector ς ∈ Rn such that Bς > 0.

3. Main Results of Stability

Let q(t) = z(t)− z#. Accordingly, the system (1) is rewritten as follows:
dqm(t) =

{
−ωmqm(t) +

n
∑

r=1
[amr f̃r(qr(t)) + bmr g̃r(qr(t − τmr(t))) + cmr

∫ t
−∞ θmr(t − s)h̃r(qr(s))ds]

}
dt

+
n
∑

r=1
p̃mr(qr(t), qr(t − τmr(t)))dwr(t), t ̸= tk,

∆qm(tk) = qm(t+k )− qm(t−k ), t = tk,

(7)

where:
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f̃r(qr(t)) = fr(qr(t) + z#
r )− fr(z#

r ), h̃r(qr(s)) = hr(qr(s) + z#
r )− hr(z#

r ),

g̃r(qr(t − τmr(t))) = g̃r(qr(t − τmr(t)) + z#
r )− gr(z#

r ),

p̃mr(qr(t), qr(t − τmr(t))) = pmr(qr(t) + z#
r , qr(t − τmr(t)) + z#

r )− pmr(z#
r , z#

r ), m, r ∈ Λ.

The initial condition of the system (7) is ψm(s) = φm(s)− z#
m, m ∈ Λ, −∞ < s ≤ 0.

Apparently, the mean-square exponential stability of the zero solution of system (7)
indicates that the equilibria of system (1) show mean-square exponential stability. In what
follows, a theorem is suggested to determine the mean-square exponential stability of the
equilibria z# of (1).

Theorem 1. Suppose that Assumptions 1–4 hold. Let η = limk→∞

(
sup ln η(k)

tk−tk−1

)
. If there is a

positive constant λ > 0 with λ > η > 0 and a positive number ζm such that for all J ∈ Qn and
m ∈ Λ, the following inequalities (8) hold; accordingly, the equilibria z# of system (1) are mean-
square exponential stability, and the converge rate is λ − η,

ϑm(λ) =

[
(λ − wm) + 0.5

n
∑

r=1
(l f

r |amr|+ lg
r |bmr|+ lh

r |cmr|)
]

ζm+

n
∑

r=1

[
(0.5l f

r |amr|+ πmr) + (0.5lg
r |bmr|+ π

(τ)
mr )eλτ + 0.5lh

r |cmr|µmr(λ)
]
ζr< 0.

(8)

Proof. Selecting the candidate vector the Lyapunov function is as follows:

Vm(t) = eλt|qm(t)|2, m ∈ Λ.

When t ∈ (t0, t1), according to Lemmas 1 and 2, we obtain:

dVm(t)
= λeλt|qm(t)|2 + eλtd|qm(t)|2

= λeλt|qm(t)|2 + eλtRe
(

qm(t)dqm(t)
)

= λeλt|qm(t)|2 + eλt
{
−ωm|qm(t)|2 + Re

(
qm(t)

n
∑

r=1

[
amr

∼
f r(qr(t)) + bmr

∼
gr(qr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)

∼
hr(qr(s))ds

])
+

n
∑

r=1

(∼
pmr(qr(t), qr(t − τmr(t)))

)2
dwr(t)

}
dt+

eλtRe

(
qm(t)

n
∑

j=1

∼
pmr(qr(t), qr(t − τmr(t)))dwr(t)

)
, m ∈ Λ

(9)

In what follows, the Itô differential form of (9) will be modified to the Itô integral
form. Based on the theory of stochastic differential equations [59], after integrating both
sides of (9) are from t to t + ∆t for any ∆t > 0, and calculating the mathematical expectation
of (9), we derive:

E(Vm(t + ∆t))− E(Vm(t))

= eλtE
(∫ t+∆t

t

{
λ|qm(t)|2 − ωm|qm(t)|2 + Re

(
qm(t)

n
∑

r=1
[amr f̃r(qr(t)) + bmr g̃r(qr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)h̃r(qr(s))ds]

)
+

(
n
∑

r=1
p̃mr(qr(t), qr(t − τmr(t)))dwr(t)

)2
}

dt

)
+

eλtE
(∫ t+∆t

t Re
(

qm(t)
n
∑

r=1
p̃mr(qr(t), qr(t − τmr(t)))

)
dwr(t)

)
, m ∈ Λ.

(10)
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Given that the mathematical expectation of Itô process has continuity, Equation (10)
can be determined using the properties of Itô integral [59]. Furthermore, by using Holder
inequality and Young inequality, we have:

D+E(Vm(t))

= eλtE
(
(λ − ωm)|qm(t)|2 + Re

(
qm(t)

n
∑

r=1

[
amr f̃r(qr(t)) + bmr g̃r(qr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)h̃r(qr(s))ds

])
+

n
∑

r=1
( p̃mr(qr(t), qr(t − τmr(t))))

2
)

≤ eλtE
(
(λ − ωm)|qm(t)|2 + |qm(t)|

n
∑

r=1

[
l f
r |amr||qr(t)|+ lg

r |bmr||qr(t − τmr(t))|+

lh
r |cmr|

∫ t
−∞ θmr(t − s)|qr(s)|ds

])
+

n
∑

r=1

(
πmr|qr(t)|2 + π

(τ)
mr |qr(t − τmr(t))|2

))
≤ eλtE

(
(λ − ωm)|qm(t)|2 + 0.5

n
∑

r=1

[
l f
r |amr|

(
|qm(t)|2 + |qr(t)|2

)
+

lg
r |bmr|

(
|qm(t)|2 + |qr(t − τmr(t))|2

)
+

lh
r |cmr|

∫ t
−∞ θmr(t − s)

(
|qm(t)|2 + |qr(s)|2

)
ds
])

+
n
∑

r=1

(
πmr|qr(t)|2 + π

(τ)
mr |qr(t − τmr(t))|2

))
≤
[
(λ − ωm) + 0.5

n
∑

r=1

(
l f
r |amr|+ lg

r |bmr|+ lh
r |cmr|

)]
E
(

eλt|qm(t)|2
)
+

n
∑

r=1

[(
0.5l f

r |amr|+ πmr

)
E
(

eλt|qr(t)|2
)
+
(

0.5lg
r |bmr|+ π

(τ)
mr

)
eλτE

(
eλ(t−τmr(t))|qr(t − τmr(t))|2

)
+

0.5lh
r |cmr|

∫ t
−∞ θmr(t − s)eλ(t−s)E

(
eλs|qr(s)|2

)
ds
]

≤
[
(λ − ωm) + 0.5

n
∑

r=1

(
l f
r |amr|+ lg

r |bmr|+ lh
r |cmr|

)]
E(Vm(t))+

n
∑

r=1

[(
0.5l f

r |amr|+ πmr

)
E(Vr(t)) +

(
0.5lg

r |bmr|+ π
(τ)
mr

)
eλτE(Vr(t − τmr(t)))+

0.5lh
r |cmr|

∫ t
−∞ θmr(t − s)eλ(t−s)E(Vr(s))ds

]
, t0 ≤ t < t1, m ∈ Λ.

(11)

Define curve
ζ = {ω(χ) : ωm = ζmχ, χ > 0, m ∈ Λ}

and set
Ω(ω) = {v : 0 ≤ v ≤ ω, ω ∈ ξ}.

When χ > χ′ we have Ω(ω(χ)) ⊃ Ω(ω(χ′)). Let ζmax = maxm∈Λ{ζm}, ζmin =

minm∈Λ{ζm}, χ0 = (1+δ)E(|ψm(s)|2)
ζmin

, where δ > 0 is a constant. Then{
V(s) : V(s) = E

(
eλs||ψ(s)||2

)
, −∞ < s ≤ 0

}
⊂ Ω(ω0(χ0)),

which means E(Vm(s)) = E
(

eλs|ψm(s)|2
)
< ζmχ0, −∞ < s ≤ 0, m ∈ Λ.

Furthermore, inequalities E(Vm(t)) < ζmχ0 are necessarily valid, here m ∈ Λ and
0 < t < t1. If E(Vm(t)) < ζmχ0 does not hold, then there will be some m at the time instant
t∗(0 < t∗ < t1), such that E(Vm(t∗)) = ζmχ0, D+E(Vm(t∗)) ≥ 0 and E(Vr(t∗)) ≤ ζrχ0,
here m, r ∈ Λ. By substituting these assumptions in (9) and considering (7), the following
is obtained:
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D+E(Vm(t∗))

≤
[
(λ − ωm) + 0.5

n
∑

r=1

(
l f
r |amr|+ lg

r |bmr|+ lh
r |cmr|

)]
E(Vm(t∗))+

n
∑

r=1

[(
0.5l f

r |amr|+ πmr

)
E(Vr(t∗)) +

(
0.5lg

r |bmr|+ π
(τ)
mr

)
eλτE(Vr(t ∗ −τmr(t∗)))+

0.5lh
r |cmr|

∫ t∗
−∞ θmr(t ∗ −s)eλ(t∗−s)E(Vr(s))ds

]
≤
[
(λ − ωm) + 0.5

n
∑

r=1

(
l f
r |amr|+ lg

r |bmr|+ lh
r |cmr|

)]
ζmχ0+

n
∑

r=1

[(
0.5l f

r |amr|+ πmr

)
+
(

0.5lg
r |bmr|+ π

(τ)
mr

)
eλτ +0.5lh

r |cmr|µmr(λ)
]
ζrχ0

< 0, m ∈ Λ.

The preceding analysis D+E(Vm(t∗)) < 0 disproves the assumption D+E(Vm(t∗)) ≥ 0.
Furthermore, we have E(Vm(t)) < ζmχ0, which equals to

E
(
|qm(t)|2

)
< e−λtζmχ0, m ∈ Λ, 0 < t < t1. (12)

Next, according to mathematical induction, we prove the follow-up inequalities
(13) hold:

E(|qm(t)|2) < η(0)η(1)η(2) . . . η(k−1)ζmχ0e−λt, m ∈ Λ, tk−1 ≤ t < tk, k ∈ N. (13)

When k = 1, it follows from (12) that E(|qm(t)|2) < η
(0)
m ζmχ0e−λt holds for m ∈ Λ,

t0 ≤ t < t1, where η(0) = 1.
Suppose the follow-up inequalities (14) are true, then

E(|qm(t)|2) < η(0)η(1)η(2) . . . η(v−1)ζmχ0e−λt, m ∈ Λ, tv−1 ≤ t < tv and v = 1, 2, . . . , k. (14)

When t = tk using Assumption 2, we derive:

|qm(t+k )|
2 = |qm(t−k ) + Ik

m(qm(t−k ))|
2 ≤ η

(k)
m |qm(t−k )|

2 ≤ η(k)|qm(t−k )|
2. (15)

Because η(k) ≥ 1 inequalities (14) are modified as follows:

E(|qm(t)|2) < η(0)η(1)η(2) . . . η(k−1)ζmχ0e−λt, m ∈ Λ, tk−1 − τ ≤ t ≤ tk, k ∈ N. (16)

Therefore, it is also possible that the following inequalities exist:

E(|qm(t)|2) < η(0)η(1)η(2) . . . η(k−1)η(k)ζmχ0e−λt, m ∈ Λ, tk ≤ t < tk+1, k ∈ N. (17)

The proof by contradiction method will be used to demonstrate that inequalities (17)
are true. If inequalities (17) do not hold, there will be some m′ and time instant t′, in which
D+E(Vm′(t′)) ≥ 0, equality (18) and inequalities (19) hold,

E(|qm′(t′)|2) = η(0)η(1)η(2) . . . η(k−1)η(k)ζm′χ0e−λt′ , tk ≤ t′ < tk+1, (18)

E(|qr(t)|2) < η(0)η(1)η(2) . . . η(k−1)η(k)ζrχ0e−λt, tk − τ < t ≤ t′, r ∈ Λ. (19)

Substituting equality (18) and inequalities (19) into inequalities (11), and considering
inequalities (9), we obtain
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D+E(Vm′(t′))

≤
[
(λ − ωm′) + 0.5

n
∑

r=1
(l f

r |am′r|+ lg
r |bm′r|+ lh

r |cm′r|)
]

E(Vm′(t′))+
n
∑

r=1

[
(0.5l f

r |am′r|+ πm′r)E(Vr(t′)) + (0.5lg
r |bm′r|+ π

(τ)
m′r)e

λτE(Vr(t′ − τm′r(t′)))+

0.5lh
r |cm′r|

∫ t′
−∞ θm′r(t′ − s)eλ(t′−s)E(Vr(s))ds

]
≤
[
(λ − ωm) + 0.5

n
∑

r=1
(l f

r |am′r|+ lg
r |bm′r|+ lh

r |cm′r|)
]

η(0)η(1)η(2) . . . η(k−1)η(k)ζm′χ0e−λt′+

n
∑

r=1

[
(0.5l f

r |am′r|+ πm′r) + (0.5lg
r |bm′r|+ π

(τ)
m′r)e

λτ + 0.5lh
r |cm′r|µm′r(λ)

]
×

η(0)η(1)η(2) . . . η(k−1)η(k)ζrχ0e−λt′

< 0, m′ ∈ Λ, tk ≤ t′ < tk+1, k ∈ N.

(20)

This conclusion D+E(Vm′(t′)) < 0 is inconsistent with the assumption D+Vm′(t′) ≥ 0.
Therefore, we can deduce that inequalities (17) are always true for all m ∈ Λ, tk ≤ t < tk+1,
k ∈ N.

According to the mathematical induction method, we derive that the inequalities
(21) hold,

E(|qm(t)|2) < η(0)η(1)η(2) . . . η(k−1)ζmχ0e−λt, m ∈ Λ, tk−1 ≤ t < tk, and k ∈ N. (21)

It follows from the condition η = limk→∞

(
sup ln η(k)

tk−tk−1

)
in Theorem 1 that η(k) ≤

eη(tk−tk−1), k ∈ N. Substituting it into inequalities (21), we obtain

E(|qm(t)|2)

< η(0)η(1)η(2) . . . η(k−1)ζmχ0e−λt ≤ eη(t1−t0)eη(t2−t1) · · · eη(tk−1−tk−2)ζmχ0e−λt

≤ ζmχ0e−(λ−η)(t−t0), tk−1 ≤ t < tk, k ∈ N.

Furthermore, for all tk−1 ≤ t < tk, m ∈ Λ, k ∈ N, we obtain

E(|qm(t)|2) <
(1 + δ)E(|ψm(s)|2)

ζmin
ζme−(λ−η)(t−t0) = ΓE(|ψm(s)|2)e−(λ−η)(t−t0),

which denotes E(||q(t)||2) < (1+δ)E(||ψ(s)||2)
ζmin

ζme−(λ−η)(t−t0) = ΓE(||ψ(s)||2)e−(λ−η)(t−t0)

hold, where Γ = (1+δ)ζmax
ζmin

.
Based on Definition 1, we can infer that the solution q = 0 of system (7) demonstrates

mean-square exponential stability. That implies that the equilibria z# of system (1) are
exponentially stable in the mean square. □

When only stochastic disturbances are evaluated in the model (1), and no impulsive
disturbances are considered, the corresponding corollary can be derived as follows.

Corollary 1. Suppose that Assumptions 1, 2, and 4 hold. If for all J ∈ Qn and m ∈ Λ, the
matrix Ψ is an M-matrix, then the equilibria z# of system (1) are mean-square exponential stability,

Ψmm = ωm − 0.5
n

∑
r=1

(l f
r |amr|+ lg

r |bmr|+ lh
r |cmr|),

Ψmr =
n

∑
r=1

[
(0.5l f

r |amr|+ πmr) + (0.5lg
r |bmr|+ π

(τ)
mr ) + 0.5lh

r |cmr|
]
.
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Proof. Because Ψ is an M-matrix, it follows from Lemma 3 that there is a positive vector ζ
such that all inequalities (22) hold,[

−ωm + 0.5
n
∑

r=1
(l f

r |amr|+ lg
r |bmr|+ lh

r |cmr|)
]

ζm+

n
∑

r=1

[
(0.5l f

r |amr|+ πmr) + (0.5lg
r |bmr|+ π

(τ)
mr ) + 0.5lh

r |cmr|
]
ζr< 0, m ∈ Λ.

(22)

The functions related to the system (1) are constructed as follows:

Fm(ε)

=

[
(ε − ωm) + 0.5

n
∑

r=1
(l f

r |amr|+ lg
r |bmr|+ lh

r |cmr|)
]

ζm+

n
∑

r=1

[
(0.5l f

r |amr|+ πmr) + (0.5lg
r |bmr|+ π

(τ)
mr )eλε + 0.5lh

r |cmr|µmr(ε)
]
ζr, m ∈ Λ.

(23)

It is evident that Fm(ε) is a continuous function on ε, Fm(ε) < 0, m ∈ Λ. Therefore,
there is a constant λ > 0 such that Fm(λ) < 0 (m ∈ Λ) holds. The left part of the proof for
Corollary 1 can be obtained directly using the same procedure as that used for proving
Theorem 1. □

When only impulsive disturbances are incorporated in model (1) and no stochastic
disturbances are considered, the corresponding corollary is as follows.

Corollary 2. Suppose that Assumptions 1–3 hold. Let η = limk→∞

(
sup ln η(k)

tk−tk−1

)
, k ∈ N. If there

is a positive constant λ > 0 with λ > η > 0 and a positive number ζm such that for all J ∈ Qn

and m ∈ Λ, the following inequalities hold, then the equilibria z# of system (1) are exponentially
stable, and the converge rate is λ − η,

ϑm(λ) = (λ − ωm)ζm+
n

∑
r=1

[
l f
r |amr|+ lg

r |bmr|eλτ + lh
r |cmr|µmr(λ)

]
ζr< 0. (24)

Because Corollary 2 can be obtained directly by proving Theorem 1 in a similar manner,
we skip the proof of Corollary 2.

When there is no disturbance in model (1), the corollary is as follows.

Corollary 3. It is supposed that Assumptions 1 and 2 hold. If the matrix Ψ is an M-matrix,

where Ψmm = ωm, Ψmr =
n
∑

r=1

[
(l f

r |amr|+ lg
r |bmr| + lh

r |cmr|
]
, m, r ∈ Λ, then the equilibria z# of

system (1) show exponential stability for all J ∈ Qn.

Remark 4. Selecting an activation function is one of the most difficult problems in study-
ing the dynamic behavior of NNs. Currently, boundedness and the Lipschitz conditions are
the two most common assumptions. In studies [31,32,35,37,42,45–47,51] and [10], the activa-
tion functions are assumed to be in the real number field and quaternion field, respectively. In
studies [30,33,36,38,39,41,43,44,48,49,53] and [14–22,26,29,34], the activation functions are as-
sumed to meet the Lipschitz condition in the real field and quaternion field, respectively. Table 2
summarizes the review of existing work. According to this table, the existing results that the
activation function satisfies the boundedness are very rare among the research results on the dynamic
behavior of QVNNs.
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Table 2. Literature summary of assumption for quaternion activation functions and study method.

Types of Assumption Decomposition Method Non-Decomposition Method

Lipschitz condition 9, 11, 13, 14, 19–21, 26 8, 12, 15–18, 22
Boundedness 10, 24 none

Table 2 illustrates that almost no study has been conducted on the dynamic behavior
of QVNNs using the non-decomposition method under the assumption that the quaternion
activation function satisfies boundedness. Subsequently, Assumption 5 is used when the
activation function in model (1) satisfies boundedness.

Assumption 5. The neuron activation functions fm(.) with fm(0) = 0 in the system (1) satisfy

the condition l f
m ≤ fm(zm)− fm(vm)

zm−vm
≤ l

f
m for any zm, vm ∈ Q, m ∈ Λ, where the l f

m and l
f
m

are constants.

Remark 1 also applies to Assumption 5; therefore, we exclude it herein.

Remark 5. Note that the constants l f
m and l

f
m in Assumption 5 are allowed to be positive, negative,

or zero. If we take l f
m = max

{
|l f

m|, |l
f
m|
}

, Assumption 5 implies that | fm(zm) − fm(vm)| ≤

l f
m|zm − vm|. The previously employed Lipschitz condition can be considered as a unique case of

Assumption 5. According to this, we can directly derive the stability criteria when the activation
function satisfies Assumption 5. The corresponding stability criteria will not be replicated here.

4. Main Results of Synchronization

As stated earlier, the synchronization control problem of chaotic systems can be
modified into a stability problem of synchronization error systems to be analyzed. In this
section, we will implement the stability study method presented in Section 3 to assess
the mean square exponential synchronization problem by developing a linear feedback
controller for a class of chaotic QVNNs with mixed time delays, stochastic disturbances,
and impulsive disturbances.

First, the models are provided for chaotic QVNNs based on the drive-response con-
ception.

The drive systems of chaotic QVNNs are defined as follows:
dxm(t) =

{
−ωmxm(t) +

n
∑

r=1

[
amr fr(xr(t)) + bmrgr(xr(t − τmr(t))) + cmr

∫ t
−∞ θmr(t − s)hr(xr(s))ds

]}
dt+

n
∑

r=1
pmr(xr(t), xr(t − τmr(t)))dwr(t) + Jm(t), t ̸= tk, m ∈ Λ , k ∈ N,

∆xm(tk) = xm(t+k )− xm(t−k ), t = tk, m ∈ Λ , k ∈ N.

(25)

The response systems of chaotic QVNNs are described as follows:
dym(t) =

{
−ωmym(t) +

n
∑

r=1

[
amr fr(yr(t)) + bmrgr(yr(t − τmr(t))) + cmr

∫ t
−∞ θmr(t − s)hr(yr(s))ds

]}
dt+

n
∑

r=1
pm r(yr(t), yr(t − τmr(t)))dwr(t) + Jm(t)− um(t), t ̸= tk, m ∈ Λ , k ∈ N,

∆ym(tk) = ym(t+k )− ym(t−k ), t = tk, m ∈ Λ.

(26)

In systems (25) and (26), xm(t) and ym(t) denote the neuronal states of the drive system
and the response system, respectively, and um(t) denotes the driving signal or synchronous
control signal of the response system. The definitions of other symbols and functions are
entirely coherent with the relevant definitions in system (1), which are excluded here.
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The synchronization error signal is characterized as εm(t) = xm(t)− ym(t), m ∈ Λ.
The synchronization errors of drive-response systems are expressed as (27),

dεm(t) =
{
−ωmεm(t) +

n
∑

r=1
[amr f̂r(εr(t)) + bmr ĝr(εr(t − τmr(t))) + cmr

∫ t
−∞ θmr(t − s)ĥr(εr(s))ds]

}
dt

+
n
∑

r=1
p̂mr(εr(t), εr(t − τmr(t)))dwr(t) + um(t), t ̸= tk, k ∈ N,

∆εm(tk) = εm(t+k )− εm(t−k ), t = tk, k ∈ N,

(27)

where:
f̂r(εr(t)) = fr(xr(t))− fr(yr(t)), ĥr(εr(s)) = hr(xr(s))− hr(yr(s)),

ĝr(εr(t − τmr(t))) = gr(xr(t − τmr(t)))− gr(yr(t − τmr(t))),

p̂mr(εr(t), εr(t − τmr(t))) = pmr(xr(t), xr(t − τmr(t)))− pmr(yr(t), yr(t − τmr(t))), m, r ∈ Λ.

Here, we use the coupling of each neuron output signal as the synchronization control
signal in the following form:

um(t) =
n

∑
r=1

ϖmr[ fr(xr(t))− fr(yr(t))], m ∈ Λ. (28)

Let:

x(t) = [x1(t), x2(t), . . . , xn(t)]
T, y(t) = [y1(t), y2(t), . . . , yn(t)]

T, u(t) = [u1(t), u2(t), . . . , un(t)]
T.

The definition of mean-square exponential synchronization is stated below.

Definition 2. The response state y(t) of system (26) is exponentially synchronized in the
mean square sense with the drive state x(t) of system (25) under the control signal u(t) with
the form of (28), if there are constants λ > 0 and Γ > 0 such that E(||x(t) − y(t)||2) ≤
Γsups∈(−∞,0]E(||x(s)− y(s)||2)e−λ(t−t0) hold,

where

E(||x(t)− y(t)||2) = [E(|x1(t)− y1(t)|2), E(|x2(t)− y2(t)|2), . . . , E(|xn(t)− yn(t)|2)]
T

, t > t0 ≥ 0,

E(||x(s)− y(s)||2) = [E(|x1(s)− y1(s)|2), E(|x2(s)− y2(s)|2), . . . , E(|xn(s)− yn(s)|2)]
T

,

here s ∈ (−∞, 0].

By substituting (28) into (27), the error of the synchronization system is rewritten
as follows:

dεm(t) =
{
−ωmεm(t) +

n
∑

r=1
[(amr + ϖmr) f̂r(εr(t)) + bmr ĝr(εr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)ĥr(εr(s))ds]

}
dt +

n
∑

r=1
p̂mr(εr(t), εr(t − τmr(t)))dwr(t), t ̸= tk, k ∈ N,

∆εm(tk) = εm(t+k )− εm(t−k ), t = tk, k ∈ N.

(29)

Remark 6. As an extended application of Theorem 1, assume that the delay parts of the error
system (29) satisfy Assumption 1, the activation functions f̂r, ĝr and ĥr satisfy Assumption 2, the
impulsive parts ∆εm(tk) satisfy Assumption 3, and the stochastic coupling functions p̂mr satisfy
Assumption 4.

Theorem 2. Suppose that Assumptions 1–4 hold. Let η = limk→∞

(
sup ln η(k)

tk−tk−1

)
. If there is a

positive constant λ with λ > η > 0 and a positive number ζm such that the follow-up inequalities
(30) hold, then the response state y(t) of system (26) can determine mean-square exponential
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synchronization with the drive state x(t) of system (25) under the control signal u(t) designed as
(28), and the converge rate of synchronization error system is λ − η,

Fm(λ)

=

{
(λ − ωm) + 0.5

n
∑

r=1

[
l f
r (|amr|+ |ϖmr|) + lg

r |bmr|+ lh
r |cmr|

]}
ζm+

n
∑

r=1

[(
0.5l f

r (|amr|+ |ϖmr|) + πmr

)
+
(

0.5lg
r |bmr|+ π

(τ)
mr

)
eλτ + 0.5lh

r |cmr|µmr(λ)
]
ζr

< 0, m ∈ Λ.

(30)

Proof. Selecting vector Lyapunov functions as follows:

Vm(t) = eλt|εm(t)|2, m ∈ Λ.

When t ∈ (t0, t1), according to Lemmas 1 and 2, we obtain:

dVm(t)
= d

(
eλt|εm(t)|2

)
= λeλt|εm(t)|2 + eλt

{
−ωm|εm(t)|2 + Re

(
εm(t)

n
∑

r=1
[(amr + ϖmr) f̂r(εr(t)) + bmr ĝr(εr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)ĥr(εr(s))ds]

)
+

n
∑

r=1
( p̂mr(εr(t), εr(t − τmr(t))))

2dwr(t)
}

dt+

eλtRe
(

εm(t)
n
∑

r=1
p̂mr(εr(t), εr(t − τmr(t)))dwr(t)

)
, m ∈ Λ.

(31)

Subsequently, the Itô differential form of (31) is transposed to the Itô integral form.
Based on the theory of stochastic differential equations [59], after integrating both sides of
(31) are from t to t + ∆t for any ∆t > 0 and calculating the expectation of (31), we obtain:

E(Vm(t + ∆t))− E(Vm(t))

= eλtE
(∫ t+∆t

t

{
(λ − ωm)|εm(t)|2 + Re

(
εm(t)

n
∑

r=1
[(amr + ϖmr) f̂r(εr(t)) + bmr ĝr(εr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)ĥr(εr(s))ds]

)
+

(
n
∑

r=1
p̂mr(εr(t), εr(t − τmr(t)))dwr(t)

)2
}

dt+

eλtE
(∫ t+∆t

t Re
(

εm(t)
n
∑

r=1
p̂mr(εr(t), εr(t − τmr(t)))

)
dwr(t)

)
, m ∈ Λ.

(32)

Given that the math expectation of Itô process has continuity, Equation (32) can
be determined using the properties of Itô integral [59]. Furthermore, by using Holder
inequality and Young inequality, we have:

D+E(Vm(t))

= eλtE
(
(λ − ωm)|εm(t)|2 + Re

(
εm(t)

n
∑

r=1

[
(amr + ϖmr) f̂r(εr(t)) + bmr ĝr(εr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)ĥr(εr(s))ds

])
+

(
n
∑

r=1
p̂mr(εr(t), εr(t − τmr(t)))dwr(t)

)2
)

≤
{
(λ − ωm) + 0.5

n
∑

r=1

[
l f
r (|amr|+ |ϖmr|) + lg

r |bmr|+ lh
r |cmr|

]}
E(Vm(t))+

n
∑

r=1

[(
0.5l f

r (|amr|+ |ϖmr|) + πmr

)
E(Vr(t)) +

(
0.5lg

r |bmr|+ π
(τ)
mr

)
eλτE(Vr(t − τmr(t)))+

0.5lh
r |cmr|

∫ t
−∞ θmr(t − s)eλ(t−s)E(Vr(s))ds

]
, t0 ≤ t < t1, m ∈ Λ.

(33)

The other part of the proof of Theorem 2 conforms with Theorem 1; therefore, it is
omitted herein.
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Furthermore, we can determine that the follow-up conclusion covers all tk−1 ≤ t < tk,
m ∈ Λ, k ∈ N,

E(||ε(t)||2) <
(1 + δ)E

(
||ε(s)||2

)
ζmin

ζme−(λ−η)(t−t0) = ΓE
(
||ε(s)||2

)
e−(λ−η)(t−t0), m ∈ Λ,

which implies

E(||x(t)− y(t)||2) <
(1 + δ)E

(
||x(s)− y(s)||2

)
ζmin

ζme−(λ−η)(t−t0) = ΓE
(
||x(s)− y(s)||2

)
e−(λ−η)(t−t0),

where Γ = (1+δ)ζmax
ζmin

and δ > 0.
Definition 2 infers that the zero solution ε(t) = 0 of the error system (29) demonstrates

mean-square exponential stability, which indicates that the neuron E(x(t)) of drive system
(25) can be exponentially synchronized in the mean-square sense with the neuron E(y(t))
of response system (26). □

Because Corollary 1–3 regarding the stability discussion in section three applies to the
synchronization discussion as well, it will not be restated here.

Notably, most researchers [6–8,10,11,13–19,31–55,57] have used the scalar Lyapunov
function method for the stability analysis of the synchronization error of chaotic NNs. By ob-
serving the scalar Lyapunov functions constructed in literature [6–8,10,11,13–19,31–55,57],
it is clear that the form of the scalar Lyapunov function is rather complicated. In addition,
when the system being analyzed is an infinite dimensional system, the convergence of the
scalar Lyapunov function must be analyzed first, which leads to a complicated research
process. The vector Lyapunov function method with simple forms is employed herein to
investigate infinite dimensional error systems (27) in a manner that avoids the convergence
analysis of this function.

5. Examples
5.1. Example 1

Consider the following system:

dzm(t) = {−9zm(t)+
2
∑

r=1
[amrtanh(zr(t)) + bmrtanh(zr(t − τmr(t)))+

cmr
∫ t
−∞ exp(−(t − s))tanh(zr(s))ds]}dt+

2
∑

r=1
pmr(zr(t), zr(t − τmr(t)))dwr(t), t ̸= tk, m, r = 1, 2,

zm(tk) = zm(t+k )− zm(t−k ) = zm(t−k ), tk = 2k, k ∈ N.

(34)

It is assumed that the quaternion matrices are as follows:

A =

[
0.1 − 0.8i − 0.6ι + 0.4κ 0.8 − 0.2i − 0.7ι + 0.1κ
0.9 − 0.3i + 0.6ι − 0.7κ 0.1 − 0.6i + 0.5ι − 0.2κ

]
,

B =

[
0.6 − 0.4i − 0.1ι + 0.3κ 0.2 − 0.5i − 0.7ι + 0.1κ
0.3 − 0.6i + 0.5ι + 0.9κ 0.7 − 0.4i + 0.2ι + 0.1κ

]
,

C =

[
0.7 − 0.2i + 0.7ι − 0.5κ 0.4 − 0.6i + 0.4ι + 0.2κ
0.1 − 0.3i − 0.6ι + 0.2κ 0.2 − 0.3i − 0.4ι + 0.7κ

]
.

Here, let the delays in the model (34) be τ1r(t) = 0.3 + 0.1 sin t, τ2r(t) = 0.2 + 0.1 cos t,
r = 1, 2, and t ≥ 0. Let λ = 0.5 and ξ = [1, 1]T.

Let:
p1r(z1r(t), z1r(t − τ1r(t))) = 0.3z1r(t) + 0.15z1r(t − τ1r(t)),

p2r(z2r(t), z2r(t − τ2r(t))) = 0.2z2r(t)− 0.03z2r(t − τ2r(t)).
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After computation, we acquire L f = Lg = Lh = diag(1, 1), π = [0.18, 0.18; 0.08, 0.08].
π(τ) = [0.045, 0.045; 0.0018, 0.0018], η = 0.35, τ = 0.4.

After substituting the above-assumed conditions into (8), we acquire ϑ1 = −1.08 < 0,
ϑ1 = −1.54 < 0, which implies that Theorem 1 holds. Based on Theorem 1, the zero solution
(0, 0)T of the model (34) shows mean-square exponential stability, and the convergence rate
is λ − η = 0.15.

Furthermore, we estimate that the matrix outlined in Corollary 3 is
Ψ = [−9, 5.82; 5.79, −9]. Evidently, the matrix Ψ is an M-matrix, and thus Corollary
3 holds.

As the external inputs in the model (34) are J1 = J2 = 0, it follows from Theorem 1 that
the equilibria of the system (34) are zero with mean-square exponential stability. The state
trajectories of z1(t) and z2(t) in model (34) without and with disturbances are depicted
in Figures 1 and 2 with the same initial conditions ψ1(s) = −1.7 + 1.6i − 2.6ι + 2.2κ and
ψ2(s) = −1.1 + 1.9i+2.7ι − 2.8κ, respectively. Figure 1 shows that the equilibria of the
system (34) without disturbances are zero solution and unique, and that these equilibria
are convergent. When there are impulsive disturbances and stochastic disturbances in
the system (34), it can be seen from Figure 2 that the equilibria of system (34) converge to
zero, but the convergence speed becomes slower relative to that shown in Figure 1. The
simulation results prove the correctness of Theorem 1.
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5.2. Example 2

Considering the following chaotic QVNNs as a drive system:

dxm(t) =
{
−ωmxm(t) +

n
∑

r=1
[amrtanh(xr(t)) + bmrtanh(xr(t − τmr(t)))

+cmr
∫ t
−∞ θmr(t − s)tanh(xr(s))ds

]}
dt

+
n
∑

r=1
[0.01xmr(t) + 0.02xmr(t − τmr(t))]dwr(t), t ̸= tk,

∆xm(t+k ) = xm(t+k )− xm(t−k ) = 0.4xm(t−k ), tk= 3, 6, 9, 12 . . .

(35)

Considering the following chaotic QVNNs as a response system:

dym(t) =
{
−ωmym(t) +

n
∑

r=1
[amrtanh(yr(t)) + bmrtanh(yr(t − τmr(t)))+

cmr
∫ t
−∞ θmr(t − s)tanh(yr(s))ds

]}
dt

+
n
∑

r=1
[0.01xmr(t) + 0.02xmr(t − τmr(t))]dwr(t) +

n
∑

r=1
ϖmr[xr(t)− yr(t)], t ̸= tk,

∆ym(tk) = ym(t+k )− ym(t−k ) = 0.4ym(t−k ), tk= 3, 6, 9, 12 . . .

(36)

Let W = diag(1.1, 1.5). The following are believed to be the interconnected matrices
and control parameters:

A =

[
− 1.32 + 0.06i − 0.67ι − 0.06κ − 0.03 − 0.88i − 0.42ι − 0.59κ
− 1.34 − 0.51i − 1.65ι − 1.57κ − 0.52 + 0.51i − 1.25ι+0.54κ

]
,

B =

[
0.18 − 0.04i+0.10ι + 0.16κ 0.02 − 1.25i − 1.17ι+0.04κ
−0.26 + 0.40i − 0.55ι − 0.51κ − 0.02 + 0.65i − 0.01ι − 1.11κ

]
,

C =

[
0.31 − 0.47i − 0.63ι − 1.19κ − 1.43 − 1.26i+0.70ι − 1.53κ
−0.25 − 1.08i − 0.29ι − 0.74κ − 1.26 − 1.40i+0.53ι − 0.02κ

]
,

ϖ =

[
−0.6400 + 0.0045i+0.0010ι+0.0060κ − 0.0015 − 0.0320i − 0.0335ι + 0.0125κ
−0.0479 − 0.0026i+0.0006ι+0.0003κ − 0.0105 − 0.0004i − 0.0006ι − 0.0008κ

]
. (37)

Furthermore, the other parameters of the systems (35) and (36) are consistent with
those of the system (34).

After substituting the above-assumed conditions into inequality (8), we acquire
ϑ1 = −0.979 < 0 and ϑ1 = −1.458 < 0. Based on verification, the conditions of The-
orem 2 hold. It follows from Theorem 2 that the mean square exponential synchronization
of the drive and response systems can be realized, and the convergence rate is λ− η = 0.388.

The initial conditions of the drive system (35) and response system (36) are
x1(s) = −2.5 − 1i + 2.2ι + 1.8κ, x2(s) = −1.9 + 1.1i + 1.7ι − 2.4κ, y1(s) = 1.6 + 1.3i −
1.8ι − 1.9κ and y2(s) = −2.7 + 1.9i + 1.7ι − 2.2κ, here s ∈ (−∞, 0].

When there are no disturbances, the phase plane of drive system (35) shows that the
states of system (35) are in chaos (Figure 3). The state trajectories of the response and
drive systems with impulsive and stochastic disturbances as well as their error curves
are depicted in Figures 4 and 5, where the blue and red curves represent the state curves
of the drive and response systems, respectively, and the black curves represent their
synchronization error curves. The error curves shown in Figures 4 and 5 show that
the response system will eventually synchronize with the drive system, which further
verifies the correctability of the synchronization determination conditions established in
Theorem 2.
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5.3. Example 3

Here, a representative Lena image is selected for testing, which is widely used in
image processing–related research owing to its complete inclusion of flat areas, shadows,
textures and other details. The original Lena image used is shown in Figure 6, which is
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a color image with dimensions of 128 pixels × 128 pixels. Because of the limitation of
the research group’s computer processing power, this study only evaluates time-varying
delays and not the infinite distributed delays when designing QVNNs to implement color
image associative memory. The designed model is defined as follows:

dzm(t)
dt =

{
−zm(t) +

16384
∑

r=1
[amr fr(zr(t)) + bmrgr(zr(t − τmr(t)))] + Jm

}
dt+

16384
∑

r=1
pmr(zr(t), zr(t − τmr(t)))dwr(t), t ̸= tk, k ∈ N,

∆zm(tk) = zm(t+k )− zm(t−k ), t = tk, k ∈ N.

(38)

wherein: the activation functions are expressed as fr = gr = |zr + 2| − |zr + 1|. It is
assumed that W = diag(−1,−1, . . . ,−1), and the interconnected matrices are:

amr =

{
0.63 − 0.17i − 0.75ι + 0.87κ, m = r
0 + 0i + 0ι − 0κ, m ̸= r

, bmr =

{
−1.5 + 0.85i − 0.3ι − 0.2κ, m = r
0 + 0i + 0ι − 0κ, m ̸= r

,

where m, r = 1, 2, . . . , 16384.
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Figure 6. Original color image of size 128 × 128 pixels.

As the associative memory process based on NNs is simulated on electronic devices,
which is characterized by a complex structure as well as large amounts of data and cal-
culation, the associative memory process will inevitably be affected by the impulsive
disturbances of electronic devices, which will reduce the efficiency of the associative mem-
ory of the color image and even lead to erroneous associative memory results directly.
Therefore, impulsive disturbances are considered in system (37).

Figure 6 comprises 128 pixels × 128 pixels = 16,384 pixels in total. When QVNNs are
used for associative memory, each pixel corresponds to a neuron. The value of RGB three
channels of each pixel is assigned to the three imaginary parts of the quaternion in turn,
as the initial state of each neuron of QVNNs. For easy observation, we arbitrarily select
the state curves of five neurons in model (37) to be shown, i.e., z1802(t)z3722(t), z5642(t),
z7562(t) and z9482(t). For subsequent comparison, Figure 7 shows the state curves of each
part of the five neurons selected without considering any disturbances. As illustrated in
Figure 7, the states of each neuron eventually shift to their equilibria, respectively. Notably,
because the RGB requires only three parts of the quaternion, the three imaginary parts of
the quaternion neuron are used in the simulation.
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Figure 7. State curves of five neurons chosen randomly in the model (37) without impulsive and
stochastic disturbances.

To compare the effects comprehensively, we conducted simulations for both cases
of weak stochastic disturbances and strong stochastic disturbances. Here, it is assumed
that zm(t+k ) = [1, 1.5]zm(t−k ) where the intensity of the impulsive disturbance to each
neuron is taken randomly in the interval of [1, 1.5], where m = 1, 2, . . . , 16384 and
tk = {3s, 6s, . . . , 18s}.

Case 1. Weak stochastic disturbances:
Taking pmr(zr(t), zr(t−τmr(t))) = 0.12zmr(t)+0.09zmr(t−τmr(t)), m, r = 1, 2, . . . , 16384.
Case 2. Strong stochastic disturbances:
Taking pmr(zr(t), zr(t − τmr(t))) = zmr(t) + zmr(t − τmr(t)), m, r = 1, 2, . . . , 16384.
The simulations are depicted in Figures 8–11, where Figure 8 (under the weak stochas-

tic disturbances) and Figure 10 (under the strong stochastic disturbances) show the state
curves of five randomly selected neurons, and Figure 9 (under the weak stochastic dis-
turbances) and Figure 11 (under the strong stochastic disturbances) depict the image
association memory process based on the designed QVNNs implemented in (37).
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Figure 11. Simulation results of retrieving the color image, where (a–f) are the retrieved image
without disturbances, and (A–F) are the ones with disturbances under case 2.

For case 1 (weak interference) and case 2 (strong interference), several simulation
experiments demonstrate that the average PSNR value of case 2 is 11.1% lower than that of
case 1 when the simulation time is taken as 20 s and the simulation step size is 0.1 s. This
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indicates that the greater the intensity of the stochastic disturbance, the greater the impact
of QVNNs on the image associative memory. These simulation results further validate the
correctness of the conclusions of this paper.

Remark 7. The magnitude of stochastic disturbance strength exerts a direct effect on the undulation
intensity of gray value data at each pixel in the image. The stronger the stochastic disturbance, the
stronger the fluctuation of gray value data of each pixel in the image. However, it is difficult to
directly observe the influence of stochastic disturbance strength on the quality of image restoration
from the visual perspective of Figures 9 and 11. To measure the effect of stochastic disturbance
strength on the efficiency of image recovery during neural network associative memory, the peak
signal noise ratio (PSNR), a frequently employed image evaluation metric, was selected to examine
the image quality. The higher the value of PSNR, the closer the current image is to the original
image. Table 3 demonstrates the recovery quality of the images at the corresponding moments in
Figures 9 and 11 for different stochastic disturbance strength through PSNR data. By comparing
the PSNR data in Table 3, we conclude that: (1) the stability of the neural network in any of the
three cases is not destroyed, and (2) the PSNR values in the strong stochastic disturbance case are
lower than those in the weak stochastic disturbance case at the same moments.

Table 3. PSNR values of images in three cases.

Three Cases
PSNR Value (dB) at Different Times (s)

t = 0 t = 1 t = 3 t = 5 t = 10 t = 20

case 0 (only impulsive
disturbances) 8.662 17.348 34.720 52.091 95.521 182.380

case 1 (weak stochastic
disturbances) 8.662 17.266 16.880 31.904 24.492 31.141

case 2 (strong stochastic
disturbances) 8.662 16.302 15.969 21.953 20.914 21.573

6. Conclusions and Future Work

For a type of mixed-delay QVNNs with stochastic and impulsive disturbances, several
conditions are proposed to determine the mean-square exponential stability of the system
in light of the nondecomposition method. This research is being expanded to include the
synchronization control of chaotic QVNNs using stochastic and impulsive disturbances.
By designing a linear feedback controller and using the previously established stability
analysis method, some sufficient conditions were obtained for realizing/determining the
mean-square exponential synchronization of the drive–response system. The correctness
and feasibility of the main results were validated using two numerical examples. Further-
more, the associative memory of color images by designing an appropriate QVNNs was
achieved. Motivated by the studies [60–62], our approach in this paper will be applied to
further discuss the stability of discrete QVNNs with variable coefficients and Markovian
jumping parameters.
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