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Abstract: The issue of counting independent sets of a graph, G, represented as i(G), is a significant
challenge within combinatorial mathematics. This problem finds practical applications across various
fields, including mathematics, computer science, physics, and chemistry. In chemistry, i(G) is
recognized as the Merrifield–Simmons (M-S) index for molecular graphs, which is one of the most
relevant topological indices related to the boiling point in chemical compounds. This article introduces
an innovative algorithm designed for tallying independent sets within grid-like structures. The
proposed algorithm is based on the ‘branch-and-bound’ technique and is applied to compute i(Gm,n)

for a square grid formed by m rows and n columns. The proposed approach incorporates the widely
recognized vertex reduction rule as the basis for splitting the current subgraph. The methodology
involves breaking down the initial grid iteratively until outerplanar graphs are achieved, serving as
the ’basic cases’ linked to the leaf nodes of the computation tree or when no neighborhood is incident
to a minimum of five rectangular internal faces. The time complexity of the branch-and-bound
algorithm speeds up the computation of i(Gm,n) compared to traditional methods, like the transfer
matrix method. Furthermore, the scope of the proposed algorithm is more general than the algorithms
focused on grids since it could be applied to process general mesh graphs.

Keywords: branch-and-bound algorithm; counting independent sets; Fibonacci recurrences; grid graphs

MSC: 05C85; 05A15; 68Q25

1. Introduction

While combinatorics has a rich history of addressing counting problems, complexity
theory has yielded fewer results in this line in comparison to decision problems. Currently,
there exist a limited number of graph counting problems that can be resolved within
polynomial time. The realm of combinatorial mathematics and complexity theory has seen
the rise of counting problems as a significant area of investigation. Counting algorithms
have proven instrumental in addressing real-world challenges across various disciplines
such as mathematics, physics, chemistry, and engineering.

There are several counting problems related to count structures in a grid graph,
e.g., perfect matching, spanning trees, k-coloring, Hamiltonian circuits, independent sets,
acyclic orientations, and so on. For example, one line of research has been the study of the
asymptotic Laplacian-energy-like invariant on square lattices. In [1], the authors show that
the asymptotic Laplacian-energy-like invariant LEL(G) for square lattices G is independent
of the three boundary conditions, which are the free, the cylindrical, and the toroidal
boundary conditions. Moreover, they present that the Laplacian-energy-like invariant per
vertex of lattices is independent of the boundary conditions.
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Determining the number of independent sets on a graph, G, represented as i(G), is
acknowledged as a challenging problem, even though specialized algorithms have been
developed to efficiently address this issue for certain graph topologies. In the context of
challenging counting problems, the calculation of i(G) for a graph, G, has played a crucial
role in delineating the boundary between the counting methods that are efficient and those
that are deemed intractable.

The computation of the number of independent sets in mesh structures is applied
in various contexts, for example, when a square grid graph, Gm,n (representing an initial
square grid with m rows and n columns), is considered. For instance, within the realm of
statistical physics, determining i(G) has proven valuable when examining the dynamics of
gas particles in a space represented by a grid structure. The calculation of i(G) has been
applied in the “hard square model” as a resource to derive the hard quadratic entropy
constant [2]. The “hard square model” is also utilized for enumerating configurations of q
particles in the Widow–Rowlinson system, extending to cases where q > 2 [3,4].

Various researchers have explored the challenge of design methods for counting the
number of independent sets on square grid graphs. Notably, researchers such as Calkin [5]
and Euler [6] have proposed a matrix-based technique for counting independent sets of a
grid, and this method is known as the “transfer matrix method”. This method has been
extended to compute i(G) on mesh structures [7].

However, it is believed that most counting problems related to square grids are in-
tractable, since they rely on the two-dimensional character of the grids as a set of unbounded
treewidth. Additionally, the author in [8] considers that counting matchings in square grids,
counting Hamiltonian cycles in square grids, and counting Clar sets in fullerene graphs are
all hard for the complexity class #P1.

A graph invariant is a function applied to a graph, independent of the vertex labeling.
A topological index, on the other hand, is a numerical value linked to either the chemical
structure or physical attributes of a molecular graph. In general, a topological index is
linked to chemical constitution, aiming to establish connections between chemical structure
and diverse physical properties, biological activities, or chemical reactivities. Since the
ground breaking contributions of Merrifield and Simmons [9], the connection between the
number of independent sets of a graph, G (denoted as i(G) and representing a chemical
compound), and the boiling point of the corresponding compound has been acknowledged.
Subsequent to the initial study mentioned earlier, extensive research has been conducted
in computational chemistry concerning the calculation of i(G) while exploring various
topologies for molecular graphs.

The branch and bound paradigm is a widely utilized approach for addressing prob-
lems characterized by intrinsic combinatorial exponential complexity. This method involves
branching the input problem into analogous subproblems with a reduced dimension (size)
concerning the original problem. The branching process leads to the formation of an
enumerative tree, with leaves representing base cases of the problem that can be solved effi-
ciently. This structured approach facilitates the efficient resolution of those base instances.

Different exponential algorithms have been designed to compute the M-S index on
square grids Gm,n, starting with the super-exponential algorithm based on the transfer
matrix method [5,6]. More recently, De Ita et al. [10] propose an exponential-time al-
gorithm based on the use of computing threads for computing i(Gm,n). Meanwhile,
in this work, a branch-and-bound algorithm is introduced, whose time complexity is
of order O((1.1939)(m−1)∗(n−1)∗poly(m, n)), where poly(m, n) represents a function with a
polynomial-time complexity, and m and n are the dimensions of the grid graph.

Notice that all the above algorithms are of exponential order, and the last two algo-
rithms have a different way of measuring the hard exponential complexity of counting
independent sets on square grids, since the algorithm in [10] has an exponential growth
based on the number of squares by row (or by columns) in the grid. However, for the
algorithm presented here, the exponential growth depends on the number of applications of
the ramification vertex rule until achieving basic case subgrids. This algorithmic proposal is
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more general than the algorithms specifically designed to compute the Merrifield–Simmons
index in grid graphs since it can process more general topologies such as polygonal mesh
graphs due to the ramification vertex rule, which has a widespread application on all types
of graphs.

For example, the proposed algorithm offers an exact solution applicable to grids of
various types, including regular grids and those with an irregular number of faces by
rows. Notably, the time complexity function obtained in this work for calculating i(Gm,n)
exhibits significantly slower growth compared to the complexity function associated with
the classical transfer matrix method. This underscores the efficiency and versatility of the
proposed algorithm across different grid configurations.

This paper is structured as follows: Section 1 provides a general introduction. Section 2
introduces the preliminaries and the notation that will be employed. In Section 3, the main
technique used for designing counting algorithms on grids is presented. Section 4 introduces
three counting rules facilitating the processing of various basic cases in the enumerative tree.
Section 5 presents the enumerative tree constructed by the proposed algorithm. The final
section offers conclusions drawn from this work.

2. Preliminaries

Let G = (V, E) be an undirected simple graph, where V is the set of vertices and E
is the set of edges. It is assumed that G does not have loops or parallel edges. The edge
connecting the vertices u and v is denoted by uv, and sometimes {u, v} is used to denote
an edge uv.

The neighborhood of x ∈ V is the set N(x) = {y ∈ V : xy ∈ E}. Meanwhile, N[x] =
N(x) ∪ {x} denotes the closed neighborhood of x. The degree of a vertex x in the graph
G, denoted by δG(x), is |N(x)|. The degree of the graph G is ∆(G) = max{δG(x) : x ∈ V}.
Let |A| be the cardinality of the set A.

A subset of vertices S ⊆ V in a graph, G, is termed an “independent set” if for every
pair of vertices u and v in S, the edge {u, v} is not present in E(G). The notation I(G) is
employed to represent the collection of all independent sets in the graph G.

To specifically denote the independent sets in G containing the vertex v, the notation
Iv(G) is used. Conversely, I−v(G) represents the independent sets in G where the vertex v
is absent.

On the other hand, to denote the number of independent sets in the graph G, the no-
tation i(G) is used. Specifically, in this context, i(G) corresponds to the cardinality of the
set I(G). An independent set S ∈ I(G) is deemed a “maximal independent set” if it is not
a subset of any other independent set within G. Furthermore, if the length of set S is the
maximum among all elements in I(G), then S qualifies as a “maximum independent set”
(MIS of G).

The computation of i(G) is a #P-complete problem for graphs G, where ∆(G) ≥ 3 [3,11–13].
Calculating i(G) continues #P-complete, even under the constraint of three regular graphs [12].
Nevertheless, for certain graph topologies, G, there exist some polynomial methods to determine
i(G) under the condition that ∆(G) ≤ 2 [14–16].

Planar graphs hold significance in both graph theory and the realm of graph drawing.
A graph, G, is termed a planar graph when it can be represented as an embedding in the
plane. The regions enclosed by the vertices and edges are recognized as the internal faces
of the graph. Simultaneously, the unbounded face is identified as the outer face or external
face of the graph. An outerplanar graph is defined as a planar graph that can be depicted in
a manner where all its vertices are incident to the outer face. In the context of an embedding
of a planar graph, G, external vertices as those incident to the outer face are distinguished,
while the remaining vertices are considered internal vertices of G.

F(G) = { f1, . . . , fk} denotes the collection of non-intersecting internal faces, or simply
faces, of the planar graph G. Every face fi ∈ F(G) is defined by the set of edges that form
its boundary and encloses its interior. It is important to note that the outer face of the graph
is excluded from the set F(G). In the context of adjacency among faces in G, two distinct
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faces are considered adjacent if they share common edges. Conversely, when there are no
common edges, the relationship between two faces is described as that of independent
faces. Consequently, two independent faces may share common vertices but do not have
any edges in common.

A particular type of planar graph is referred to as a grid graph, and it is denoted
as Gm,n = (V, E) and it is a grid graph of size mxn; then, the vertex set is V = {(i, j) :
1 ≤ i ≤ m, 1 ≤ j ≤ n}, and the edge set is E = {((j, i), (j + 1, i))|1 ≤ j < m, 1 ≤ i ≤
n} ∪ {((j, i), (j, i + 1))|1 ≤ j < m, 1 ≤ i < n}. In this scenario, Gm,n denotes a square grid
graph with m rows and n columns. And let k = (m− 1)× (n− 1), which represents the
number of internal faces (tilings) of Gm,n.

Some studies on structures embedded within a grid graph have been conducted,
including Hamiltonian cycles, spanning trees, acyclic orientations, k-coloring, and inde-
pendent sets [5,6,17,18]. The enumeration of mathematics objects on grids extends to
various applications, such as tiling and the development of efficient coding schemes for
data storage [19].

A primary approach for counting independent sets on grid graphs Gm,n involves the
use of the transfer matrix method [5,6]. However, when applied to compute i(Gm,n), this
method exhibits a super-exponential time complexity with respect to the dimensions m and
n of the grid. Additionally, when extended to more general mesh structures, the resulting
algorithms experience a highly exponential increase in complexity over the computation
time [7,20].

3. Algorithm Proposal

A branch-and-bound algorithm involves two main phases. The first phase is the
branching process, which involves breaking down the graph into two subgraphs through
an iterative process, forming an enumeration tree. The second phase is the bound process.
This process begins by recognizing that the graph linked with the present node of the
enumeration tree acts as a base case for the counting process.

The proposed algorithm for counting independent sets requires a base case graph that
is a subgraph of a grid. To qualify as a base case, the subgraph Gs must meet the condition
that the closed neighborhood N[v] of any vertex v ∈ V(Gs) is not incident to at least five
different internal faces of Gs.

It is possible to process any graph associated with a base case in polynomial time
with respect to the size of the current graph. The first step in counting the number of
independent sets of the graph from a base case is to create a Hamiltonian path (Hp) on
the graph. Simultaneously with the execution of the Hamiltonian path, one of the three
fundamental rules specifically designed to maintain a partial count on the independent
sets is applied. This count is influenced by the vertices and edges already visited during
the tour.

In order to explain the counting process on graphs associated with the base cases,
the first step is to illustrate how the Hp is performed on the subgraphs that meet the
cut-off condition.

One of the most common ways for traversing a graph is to apply a depth-first search
(dfs). Let us consider that G has cycles. A depth-first search will be applied over G.
G0 = d f s(G) denotes to the graph resulting from the application of a dfs on G, and let T
be the spanning tree formed during the application of the dfs. The edges in T are called
tree edges. An edge e ∈ (E(G)− E(TG)) is called a frond edge (or a back edge when it is
related to the depth-first search).

Let e ∈ (E(G)− E(TG)) be a frond edge. The union of the path in T between the
endpoints of e with the edge e itself forms a simple cycle Ce; such a cycle is called a basic
cycle of G with respect to T.

The approach involves constructing a Hamiltonian path (Hp) for any subgrid formed
by decomposition of the input grid while simultaneously computing the number of inde-
pendent sets of the graph’s components in an incremental manner. The Hp will visit every
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vertex only once. Meanwhile, each edge in the subgrid is recognized as a tree edge or a
frond edge.

Except for the first and last vertices visited by the Hamiltonian path, the two edges
of the vertices of degree 2 are considered tree edges, and they will be processed by the
Fibonacci rule. Additionally, for vertices with a degree of 3, two of their edges are traversed
as tree edges, while the third edge is identified as a frond edge that is processed by the
subtracted rule. On the other hand, the vertices of degree 4 have two of its edges as tree
edges, and the remaining two edges are frond edges.

Although the problem of finding a Hamiltonian cycle for any graph is a classic NP-
Complete problem [21], in this case, the problem relaxes its constraints by considering
paths instead of cycles, which does not force a return to the same starting point of the path.
The most significant simplification occurs when considering grid graphs, as the challenge
of finding a Hamiltonian path transforms into a problem with linear time complexity. This
is because none of the vertices in grid graphs have a degree greater than 4.

For example, the Hp can be constructed using a traversing by columns (or by rows)
approach. It is important to ensure that each vertex is visited only once and that each edge
is identified as either a tree edge or a frond edge. In a traversing by columns, the direction
of the search in the Hp can be from bottom to top for the odd columns and from top to
bottom for the even columns. It is common for the last vertex visited in the Hp to have one
of its edges as a frond edge.

Two graphical symbols are introduced into a Hamiltonian path of a subgraph of G.
The symbol 7→ indicates the beginning of a Hamiltonian path. Meanwhile, the symbol→ |
indicates the end of the Hamiltonian path.

4. Counting Rules for Processing Grid Base Cases

Each node v ∈ V(G) is associated with a pair (αv, βv), called the charge of the vertex
v, and where αv = |I−v(G)| and βv = |Iv(G)|. The charge of a vertex v ∈ V(G) will be
computed at the time that v is visited during a traversing on G. Thus, the charge of v is an
auxiliary temporal pair used for computing the number of independent sets of G and such
that if vr is the last visited vertex during the traversing on G, then i(G) = αvr + βvr .

There are several methods for computing i(G) when G belongs to a reduced set of
simple graph topologies [14–16,22]. In this proposal, the main element is to compute the
charge (αv, βv) for each vertex v in the graph during a Hamiltonian walk on G. Different
counting rules could be applied to compute the charge of a vertex v, mainly depending on
the topology of the subgraph N[v], when v is visited during the Hamiltonian walking on G.

Three main counting rules to process any subgrid will be considered.

1. Fibonacci rule: used to process tree edges.
2. Subtracted rule: applied to process frond edges.
3. Product rule: used to converge different search lines.

4.1. The Fibonacci Rule

Let us consider the first simple basic topology of a graph. Let G be a path of size n,and
then G = Pn. In this case all edges of Pn can be denoted as ei = {i, i + 1}, i = 1, . . . , n− 1,
where V(Pn) = {1, 2, . . . , n}. Let us contemplate the family fi = {Gi}, i = 1, . . . , n where
each Gi = (Vi, Ei) represents the induced graph of G created solely from the first i vertices
of G.

Notice that (α1, β1) = (1, 1) given that the induced subgraph G1 = {v1}, I(G1) =
{∅, {v1}}. If the values for (αi, βi) for any i < n are known, when the subsequent induced
subgraph Gi+1 is constructed from Gi by adding the vertex vi+1 and the edge {vi, vi+1}, it
becomes apparent that the pair (αi+1, βi+1) is derived from (αi, βi) through the following
recurrence relation:

Fibonacci rule: αi+1 = αi + βi ; βi+1 = αi (1)
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The series (αi,βi), i=1, . . . ,n, built from recurrence (1), leads to i(Gi) = αi + βi, i =
1, . . . , n. Then, the computation of i(G) relies on the step-by-step calculation of i(Gi), i =
1, . . . , n. The application of recurrence ( 1) is denoted as → between the pairs (αi, βi)
and (αi+1, βi+1). The application of the previous recurrence will be called a Fibonacci rule
recurrence, since when they are applied on a path, Pn, the following identity i(Pn) =
αi+1 + βi+1 = Fn+1 + Fn = Fn+2 is obtained, where Fn is the nth−Fibonacci number.

For example, the computation of i(P5) is given as: (1, 1)→ (2, 1)→ (3, 2)→ (5, 3)→
(8, 5). The series (αi, βi), i = 1, . . . , n (formed during the computation of i(Pn)) is called a
computing thread (or just a thread). Notice that each temporal charge (αi, βi) can be stored in
a structure associated with each vertex vi.

4.2. The Subtracted Rule

Another helpful basic counting rule during a Hamiltonian walk on the grid is applied
when visiting a frond edge. In this method, frond edges are processed in two phases. Let
{v, w} be a frond edge of a graph, G.

In the first phase of this counting rule, when the vertex v of the frond edge is visited, it
is necessary to duplicate the number of active threads. Assuming that (αv, βv)i is the pair
associated with the active thread Li at the time of visiting the vertex v, a new thread Lvw_i
is created. This thread is subordinated to the master thread Li and has an initial associated
pair (0, βv)vw_i. For every active thread Li where βv > 0, a new thread Lvw_i is created. The
label vw_i from Lvw_i is then used as a pointer to its master thread Li.

The second phase in the processing of the frond edge {v, w} occurs when the search
visits the vertex w, while v has already been marked as a visited vertex. At this point,
the control of the search is kept on the vertex w, which helps avoid visiting any vertex of
the graph more than once.

Given the charges (αw, βw)i and (αvw, βvw)vw_i for the vertex w in the master thread Li
and subordinated thread Lvw_i, respectively, the subtracted counting rule can be used to
update the charge of w in Li.

Subtracted rule: (αw, βw)i = (αw, βw − βvw)i (2)

After applying the subtracted rule for the frond edge {v, w}, all subordinated threads
Lvw_i are closed, leading to a decrease in the number of active threads. When illustrating a
Hamiltonian path on a subgrid, ⊣ will symbolize the beginning of the path and→ | the end
of the path; the processing of a tree edge is symbolized by a dashed line or by − →, and the
processing of a frond edge, vw, is symbolized by a curved arrow between the vertices v and
w. Those previous counting rules are applied while G is traversed by a Hamiltonian path.

Additionally, the Fibonacci and subtracted rules are enough to process any row of tiles
in a grid. For example, the following figures illustrate how the Fibonacci and subtracted
rules can be applied to process the number of independent sets on subgrids.

In the following tables of the computation of the charges of the vertices of the illus-
trated graphs, the subindex x after the pair of charges indicates that those computing
threads are closed. Meanwhile, the symbol = at the beginning of a charge indicates that the
subtracted rule was applied to the two previous pairs.

The order of the Hamiltonian path is presented by the order of the columns in Tables 1–3.
Moreover, each row describes the current charge for the vertex of its corresponding column.
The first value in each row is the label describing the name of the corresponding computing
thread. The last charge in the row corresponding to Lp will give you the total value for i(G) for
the graphs shown in Figures 1 and 2. For the example in Figure 1, i(G) = 1009+ 439 = 1448.
Meanwhile, for Figure 2, i(G) = 42+ 21 = 63.
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Figure 1. Proccesing an outerplanar subgrid.

Table 1. Counting independent sets from Figure 1 (first part).

Vertex 2 1 3 5 6 4↶ C2C1 8 7↶ C3 9

LP: (1,1) (2,1) (3,2) (5,3) (8,5) (13,8)− (0,2)− (0,2) =
(13,4)

(17,13) (30,17) − (0,5)
= (30,12)

(42,30)

C1: (0,1) (1,0) (1,1) (2,1) (3,2) (5,3) − (0,1) = (5,2)x
C2Lp: (0,2) (2,0) (2,2) (4,2)x
C2C1: (0,1) (1,0) (1,1) (2,1)x

C3Lp: (0,5) (5,0) (5,5) (10,5)x
C3C1: (0,2) (2,0)x
C3C2Lp: (0,2) (2,0)x
C3C2C1: (0,1) (1,0)x

C4Lp: (0,13) (13,0) (13,13)
C4C3Lp: (0,5) (5,0)x

C5Lp: (0,30)
C4C5Lp: (0,13)

Table 2. Counting independent sets from Figure 1 (second part).

10↶ C4 13 15 16 14↶ C7 12↶ C6 11↶ C5

LP : (72,42) − (0,13) = (72,29) (101,72) (173,101) (274,173) (447,274) − (0,72) = (447,202) (549,447) − (0,87) = (649,360) (1009,649) − (0,210) = (1009,439)
C4 Lp : (26,13)x
C5 Lp : (30,0) (30,30) (60,30) (90,60) (150,90) − (0,30) = (150,60) (210,150) (360,210)x
C5C4 Lp : (13,0)x
C6 LP : (0,29) (29,0) (29,29) (58,29) (87,58) (145,87)x
C7 LP : (0,72) (72,0) (72,72) (144,72)x
C7C5 LP : (0,30) (30,0) (30,30) (60,30)x

De Ita et al. [10] show how calculating the number of independent sets of a grid is
possible by taking the Hamiltonian path as a guide while the two counting rules, the
Fibonacci rule and the subtracted rule, are applied. Nevertheless, the time complexity of
the aforementioned process is exponentially proportional to the maximum number of frond
edges in any row of the grid. This is attributed to the necessity of keeping a substantial
number of computing lines active during the processing of open cycles in each row of
the grid.

In this proposal, a basic case is a subgrid, GG, where each vertex v ∈ GG satisfies
the condition that N[v] is not part of more than five grid faces, and then the computa-
tion of i(GG) can be performed of polynomial order over the size of GG; this is of order
O(poly(|GG|)), where poly is a polynomial function.

However, the previous rules, the Fibonacci and subtracted rules, are not enough to
compute i(G) when G is a subgrid, as is illustrated in Figure 3. For this case, a new rule
called the product rule is introduced.
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Figure 2. A basic case of 4 tiles.

Table 3. Counting independent sets from Figure 2.

Vertex 5 3 1 2 4↶ C2 6↶ C1 9 8↶ C4 7

Lp (1,1) (2,1) (3,2) (5,3) (8,5) −
(0,1)

(12,8)
− (5,3) (17,12) (29,17)

− (0,4)
(42,29)
− (0,8)

=(8,4) (=(12,5) =(29,13) =(42,21)

C1LP (0,1) (1,0) (1,1) (2,1) (3,2) (5,3)x
C2Lp (0,1) (1,0) (1,1) (2,1)x

C3LP (0,3) (3,0) (3,3) −
(0,1) (5,3) (8,5) (13,8)x

=(3,2)

C3C1LP (0,1) (1,0) (1,1)x
C3C2Lp (0,1) (1,0)x

C4Lp (0,4) (4,0) (4,4) (8,4)x
C4C1Lp (0,2) (2,0)x

4.3. The Product Rule

When multiple path searches converge at a meeting vertex, the product rule is used to
calculate the interaction between each pair of active threads on one path line and all pairs
of active threads on the second path line.

For example, let us consider that there are two computing threads Li and Lj which
have associated the charges (αv, βv) and (αw, βw), respectively. Furthermore, the edges
{v, u} and {w, u}, with common vertex u, are the next ones to be visited by the Hamiltonian
path. In this case, the following multiplicative rule is applied in order to compute the
charge for the vertex u.

Product rule: (αu, βu) = (αv · αw, βv · βw) (3)

The product rule can be generalized for the Hp that has more than two line searches.
Suppose there are child nodes u1, u2, . . . , uk of v, and all these child nodes have already
been visited. In this case, each pair (αuj , βuj) for j = 1, ..., k associated with these child
nodes have been previously explored. Therefore, each pair has been established using
recurrence (Equation (1)). Then, the charge for v can be computed as: αv = ∏k

j=1 αvj and

βv = ∏k
j=1 βvj . The symbol ⊙ will be used to denote when a product rule is applied on the

active threads.
The Fibonacci, subtracted, and product rules are enough to compute i(G) for any

subgrid that is recognized as an outerplanar graph. Moreover, these rules can also be
applied to compute i(G) for some subgrids G where G is not outerplanar, but it is planar.
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The product rule is a useful tool that allows us to establish varying starting points for the
Hp. This leads to the convergence of some of the search lines at meeting vertices, resulting
in the walking reaching a single end point at the end of the Hp.

Let us illustrate how those previous rules are applied to compute i(G) for the following
subgrid G.

1 2

3 4

5 6

7

8 9

10

11 12 13

14

15

C1

C2

Figure 3. Applying the product rule.

In Table 4, the order of the Hamiltonian path is determined by the order of the columns.
However, it is important to note that this Hp has different start points that are expressed
by the number of the vertex in the corresponding row of the table. Additionally, the first
value in each row serves as a label that describes the name of the corresponding computing
thread. Whenever you see the symbols “–” and “=” in the table, the subtracted rule is
applied. On the other hand, when you see the symbols “*” and “=”, this expresses that the
product rule is being applied between two charges.

Table 4. Counting independent sets from Figure 3.

Start 10 8 7 5 6 4

10 (1,1) (2,1) * (2,1) =
(4,1) (5,4) (9,5) (14,9) (23,14)

9 (1,1) (2,1)
C1 (0,5) (5,0) (5,5)

C2LP (0,14)
C2C1 (0,5)

Start 3↶ C1 1 2↶ C2 11 12 13

Lp
(37,23) − (0,5)

= (37,18) (55,37)
(92,55) −
(0.14) =
(92,41)

(133,92)
(225,133) *

(3,2) =
(675,266)

(941,675)

C1 (10,5)x
C2LP (14,0) (14,14) (28,14)x
C2C1 (5,0)X

15 (1,1) (2,1) (3,2)
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5. Building the Enumerative Tree

Two prevalent rules govern the counting of combinatorial objects on graphs, enabling
us to break down the graph either by the selection of a vertex or by the selection of an edge.

1. The counting rule based on a vertex—the vertex division: let v ∈ V(G),

i(G) = i(G− v) + i(G− (N[v]))

2. The counting rule based on an edge—the edge division: let e = {x, y} ∈ E(G),

i(G) = i(G− e)− i(G− (N[x] ∪ N[y]))

An alternative rule for decomposing the counting of independent sets is to treat
each connected component of the graph independently. For example, let us consider that
Gi, i = 1, . . . , k are the connected components of G, and then i(G) = ∏k

i=1 i(Gi). In this case,
the overall time complexity for calculating i(G) is T(i(G)) = max{T(i(Gi)), where Gi is a
connected component of G}. Thus, it is common to consider the connected components of
the graph as its first decomposition.

In this work, a standard branch-and-bound algorithm was developed, denoted as the
BB Algorithm 1, for counting the number of independent sets in a grid graph. The BB
algorithm constructs a computation tree, and during the branching processes, it focuses on
two key aspects: the criteria for selecting a vertex v (when employing the vertex division
rule) and a stopping criterion to cease branching at any node within the computation tree.
According to the pseudo-code shown, the proposed algorithm can be implemented in any
high-level language that allows recursive processes.

Algorithm 1 BB algorithm

Input: a grid graph G
Output: base cases f rom the grid graph G

1: procedure SelectingNode(G)
2: n← |V(G)|
3: for i← 1, n do
4: x ← G[i] ▷ x is a vertex from G
5: if (N[x] incide >= 5 internal f aces) then
6: return x
7: end if
8: end for
9: return 0

10: end procedure
11: procedure Branching(G)
12: v← SelectingNode(G)
13: if (v = 0) then
14: Processing Base_Case(G)
15: else
16: Branching(G− v) ▷ vertex v is removed from G
17: Branching(G− N[v]) ▷ the neighborhood (N[v]) is removed from G
18: end if
19: end procedure

The selected vertex v from the current subgraph, chosen for the application of the
vertex division rule, meets the following criteria:

• The neighborhood of v has to be incident with at least five internal faces.
• One of the internal faces incident to N[v] either possesses the maximum size within

the current subgraph, or it shares edges with the outer face.
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Applying the vertex division rule to v results in the creation of two new child nodes
for the enumerative tree, v1 and v2, which branch out from the current node. The subgraph
linked to v1 is defined as G1 = (G− v). Meanwhile, the subgraph linked to v2 is defined as
G2 = (G− N[v]).

At this point, a comparable problem to the original problem for each subgraph Gi, i =
1, 2 is built, akin to the issue faced with the original grid G. If the problem is solved
recursively and its solution denoted as ri, then the overall solution for r = i(G) is given
by r = r1 + r2. The described process establishes an enumerative tree, where the leaves
represent base subgraph instances.

This branching process continues until a subgraph associated with a child-node-based
instance Gp is obtained. A primary feature of any base instance Gp is the absence of a
vertex u ∈ V(Gp) that is incident to four internal faces, except in the case where the
subgraph is made up of exactly four adjacent tiles. In this scenario, the current subgraphs
are recognized as a base case that will be associated with a child node of the enumerative
tree. In Figure 4, the enumerative tree built by the BB algorithm when it is applied to the
grid G6,6 is illustrated.

Figure 4. Processing the grid G6,6.

In the previous section, it has been shown how the computation of i(Gp) for the
fundamental prime graph Gp can be achieved in linear time with respect to its number
of edges. This is possible because these fundamental prime graphs can be considered as
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outerplanar graphs, as mentioned in [22,23]. Let k = (n− 1) · (m− 1) be the number of
internal square faces of the input grid Gm,n, and let H(BG) = {Gp : Gp represent the graph
linked to a leaf node in the enumerative tree.}. After BG has been built, the following value
is computed: i(G) = ΣGp∈H(BG)

i(Gp).
Since the computation for each i(Gp) can be carried out in linear time, the overall

time complexity of i(G) is contingent upon the number of nodes in the enumerative tree.
The time complexity of the branch-and-bound procedure results from the number of
nodes formed by the recurrence i(G) = i(G − {u}) + i(G − N[u]). The branching rule
encompasses different scenarios depending on the number of internal faces incident to the
vertices in N[u]. In the best-case scenario, N[u] may be incident to eight tiling faces. In such
cases, the decomposition rule, determined by the number of rectangles being decomposed,
follows the recurrence: T(k) = T(k− 8) + T(k− 3).

Nevertheless, in the worst-case scenario, if G does not align with an optimal case,
then N[u] must be incident to at least five internal faces. In such situations, the vertex
division rule, as expressed by the number of rectangles being decomposed, is defined by
the following recurrence:

T(k) = T(k− 5) + T(k− 3) (4)

The aim is to find a solution in the form of xk = T(k). Upon substituting this expression
into the preceding recurrence relation (4), the characteristic polynomial P(x) = x5 − x2 − 1
is obtained. The five roots ri, i = 1, . . . , 5 of this polynomial correspond to solutions in the
form of T(k) = rk

i .
Given the focus is on the asymptotic behavior of the recurrence T(k), the real root

r1 is exclusively considered with the condition |r1| ≥ |ri|, i = 2, . . . , 5. In this scenario,
the maximum real root is approximately r1 ≈ 1.194. Consequently, a worst-case upper
bound of O(rk

1 · poly(k)) is derived, where the expression poly(k) is a polynomial function
accounting for the time processing of the basic case in the proposal. Therefore, the total
time complexity for the branch-and-bound approach has an upper bound of O(1.1939k ·
poly(k)) = O(1.1939(m−1)·(n−1) · poly(m, n)).

On the other hand, the classic transfer matrix approach involves constructing an initial
matrix with dimensions of Fm+2 rows and Fm+2 columns, where Fm+2 denotes the (m + 2)-
th Fibonacci number. The rows and columns are labeled with (m + 1)-vectors consisting
of zeros and ones. Let S be an independent set of an input grid of m rows and n columns
(Gm,n), and let Cm be the set of all (m + 1) vectors v of zeroes and ones, in which two
consecutive ones are prohibited, and where a one indicates that its corresponding vertex
is in S, and a zero indicates that the vertex is not in S. The cardinality of the set of these
vectors is Fm+2, where Fm+2 corresponds with the m + 2-th Fibonacci number.

Consider Tm as a symmetric matrix with dimensions Fm+2 × Fm+2, comprising ele-
ments of zeroes and ones. The indexing of both rows and columns of Tm are based on the
vectors from Cm.

The requirement for vectors u and v within Cm to constitute a potential consecutive
pair of columns in an independent set of Gm,n is precisely defined by the absence of shared
positions containing the value 1. In other words, it is necessary that the dot product of u
and v equals 0, employing the conventional dot product of vectors over the real numbers.
Then, the entry of Tm in position (u, v) is 1, if u · v = 0; otherwise, it is 0. Tm is called the
transfer matrix of Gm,n. Then, Tm has Fm+2 · Fm+2 inputs with values of zeroes and ones.

The number of independent sets of the grid graph Gm,n is the result of the sum of
all entries of the n-th power matrix Tn

m , i.e., i(Gm,n) = 1tTn
m1, where 1 is the Fm+2 vector

whose entries are all ones.
Analyzing the complexity time of the computation of 1tTn

m1, the generation of the
initial matrix Tm exclusively entails an order of O((Fm+2)

2 · (m + 1)) dot products involv-
ing m + 1-vectors across the real number domain. Afterward, the computation of Tn

m
request of an order of O((Fm+2)

3n) multiplications among integers, and if the asymptotic
behavior of the Fibonacci numbers is considered, the previous upper bound is rewritten as
O(((1.618)(m+2)·(3n)) multiplications among integers, considering and approximation to
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the golden ratio of (1.618). The aforementioned upper bound complexity can be diminished
to O((1.618)(m+2)·(2.81n)) integer multiplications through the utilization of the Strassen
matrix-multiplication algorithm. In any case, the application of the transfer matrix method
for computing i(Gm,n) results in an exponential upper bound on both dimensions m and n
of the grid.

When contrasting the upper bound of the time complexity derived from both ap-
proaches, the transfer matrix method and the branch-and-bound method, it is evident
that the branch-and-bound method has significantly enhanced the time complexity in
computing the M-S index on grid graphs. This improvement is attributed to the reduction
in the base value as well as the exponentiated function’s superscript values being notably
reduced compared to those associated with the transfer matrix method.

While the branch-and-bound method is applicable to any graph, its application specif-
ically to square grid graphs results in an accelerated computational time for computing the
M-S index of the input graph. This is achieved by judiciously selecting the vertex in the
grid to implement the vertex division rule. Furthermore, the computational time analysis
presented here focuses on input instances comprising only grid graphs as input to the
branch and bound algorithm.

Indeed, the branch-and-bound method can operate seamlessly on irregular grids or
variations of grids, such as the Aztec diamond graphs [7], which is a graph with vertices
incident to more than three internal faces. However, while the proposal still exhibits an
exponential time complexity, it lacks the explosive combinatorial nature associated with
the classic transfer matrix method, a method that was specially designed to compute the
number of independent sets in grid graphs.

6. Conclusions

A branch-and-bound algorithm to calculate i(Gm,n) for grid graphs where m represents
the number of rows and n represents the number of columns has been designed. The
selected branching rule is widely recognized as the vertex reduction rule. The vertex v
chosen for the reduction rule within the current subgraph of Gm,n must meet the criterion of
having N[v] incident to a minimum of five internal faces. This strategy entails decomposing
the initial grid until reaching the basic cases of the original problem. These basic cases
may be either outerplanar subgraphs or subgrids where no neighborhood is incident to a
minimum of five internal faces.

Three fundamental counting rules that enable the counting of independent sets in
polynomial time for basic graph topologies have been established. These rules work as long
as the basic graph is traversed by a Hamiltonian path. Indeed, these counting rules can
be applied to compute the number of independent sets for more general topologies than
grid graphs. The time complexity of the resulting algorithm for computing the Merrifield–
Simmons index in grid graphs is significantly lower compared to the traditional transfer
matrix method, which is specifically tailored for computing the number of independent
sets in such graphs.

Furthermore, the proposed algorithm exhibits more widespread applicability than
those algorithms designed exclusively for calculating the Merrifield–Simmons index in grid
graphs, such as the transfer matrix method or more recent thread-based proposals. Indeed,
the algorithmic approach developed in this work can be extended to various grid-like
graph classes, including irregular grids, general polygonal face grids, and Aztec diamond
graphs, or to processing benzenoid systems. This versatility is attributed to the general
application of the ramification vertex rule across all classes of graphs.

Author Contributions: G.D.I.L. contributed to the conceptualization, methodology and writing—
review and editing of this article; P.B.L. contributed to the validation, programming and writing—
review and editing of the proposal; R.M.-R. contributed to the validation, the formal analysis and
writing—review and editing the article. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.



Mathematics 2024, 12, 922 14 of 14

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The authors acknowledge and thank the SNII-CONAHCYT for the grants to
support their work. The authors would like to thank the anonymous reviewers for their contributions
to this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liu, J.-B.; Pan, X.-F.; Hu, F.-T.; Hu, F.-F. Asymptotic Laplacian-energy-like invariant of lattices. Appl. Math. Comput. 2015, 253,

205–214. [CrossRef]
2. Baxter, R.J. Planar lattice gases with nearest-neighbor exclusion. Ann. Comb. 1999, 3, 191–203. [CrossRef]
3. Vadhan, S.P. The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM J. Comput. 2001, 31, 398–427. [CrossRef]
4. Dyer, M.E.; Greenhill, C.S. Corrigendum: The complexity of counting graph homomorphisms. Random Struct. Algorithms 2004,

25, 346–352. [CrossRef]
5. Calkin, N.J.; Wilf, H.S. The Number of Independent Sets in a Grid Graph. SIAM J. Discret. Math. 1998, 11, 54–60. [CrossRef]
6. Euler, R. The Fibonacci number of a grid graph and a new class of integer sequences. J. Integer Seq. 2005, 8, 1–16.
7. Zhang, Z. Merrifield-Simmons index of generalized Aztec diamond and related graphs. MATCH Commun. Math. Comput. Chem.

2006, 56, 625–636.
8. Montoya, J.A. On the Counting Complexity of Mathematical Nanosciences. MATCH Commun. Math. Comput. Chem. 2021,

86, 453–488.
9. Merrifield, R.E.; Simmons, H.E. Topological Methods in Chemistry; Wiley: New York, NY, USA, 1989.
10. De Ita, G.; Tovar, M.; Bernabé, B. A Novel Method for Counting Independent Sets in a Grid Graph. Int. J. Comb. Optim. Probl.

Inform. 2023, 14, 11–18.
11. Valiant, L.G. The complexity of computing the permanent. Theor. Comput. Sci. 1979, 8, 189–201. [CrossRef]
12. Greenhill, C.S. The complexity of counting colourings and independent sets in sparse graphs and hypergraphs. Comput. Complex.

2000, 9, 52–72. [CrossRef]
13. Luby, M.; Vigoda, E. Approximately Counting up to Four (Extended Abstract). In Proceedings of the Twenty-Ninth Annual ACM

Symposium on Theory of Computing: STOC ’97, El Paso, TX, USA, 4–6 May 1997; pp. 682–687. [CrossRef]
14. Bubley, R. Randomized Algorithms: Approximation, Generation, and Counting; Springer: Berlin/Heidelberg, Germany, 2001.
15. Dahllöf, V.; Jonsson, P. An Algorithm for Counting Maximum Weighted Independent Sets and Its Applications. In Proceedings of

the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms: SODA ’02, San Francisco, CA, USA, 6–8 January 2002;
pp. 292–298.

16. Roth, D. On the hardness of approximate reasoning. Artif. Intell. 1996, 82, 273–302. [CrossRef]
17. Golin, M.J.; Leung, Y.; Wang, Y.; Yong, X. Counting Structures in Grid Graphs, Cylinders and Tori Using Transfer Matrices:

Survey and New Results. In Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the Second
Workshop on Analytic Algorithmics and Combinatorics, ALENEX/ANALCO 2005, Vancouver, BC, Canada, 22 January 2005; pp.
250–258.

18. Guillen, C.; Lopez, A.L.; DeIta, G. Computing #2-SAT of Grids, Grid-Cylinders and Grid-Tori Boolean Formulas. In Proceedings
of the 15th RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion,
Udine, Italy, 12–13 December 2008; CEUR-WS.org; Volume 451, pp. 152–167.

19. Roth, R.; Siegel, P.; Wolf, J. Efficient coding schemes for the hard-square model. IEEE Trans. Inf. Theory 2001, 47, 1166–1176.
[CrossRef]

20. Zhang, Z. Merrifield-Simmons index and its entropy of the 4-8-8 lattice. J. Stat. Phys. 2014, 154, 1113–1123. [CrossRef]
21. Karp, R.M. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations; Miller, R.E., Thatcher, J.W.,

Bohlinger, J.D., Eds.; Plenum: New York, NY, USA, 1972; pp. 85–103. ISBN 978-1-4684-2003-6. [CrossRef]
22. De Ita, G.; Rodríguez, M.; Bello, P.; Contreras, M. Basic Pattern Graphs for the Efficient Computation of Its Number of Independent

Sets. In Proceedings of the Pattern Recognition—12th Mexican Conference, MCPR 2020, Morelia, Mexico, 24–27 June 2020;
Volume 12088, pp. 57–66. [CrossRef]

23. Medina, M.A.L.; Marcial-Romero, J.R.; Luna, G.D.I.; Moyao, Y. A Linear Time Algorithm for Computing #2SAT for Outerplanar
2-CNF Formulas. In Proceedings of the Pattern Recognition—10th Mexican Conference, MCPR 2018, Puebla, Mexico, 27–30 June
2018; Volume 10880, pp. 72–81. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.amc.2014.12.035
http://dx.doi.org/10.1007/BF01608783
http://dx.doi.org/10.1137/S0097539797321602
http://dx.doi.org/10.1002/rsa.20036
http://dx.doi.org/10.1137/S089548019528993X
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1007/PL00001601
http://dx.doi.org/10.1145/258533.258663
http://dx.doi.org/10.1016/0004-3702(94)00092-1
http://dx.doi.org/10.1109/18.915673
http://dx.doi.org/10.1007/s10955-013-0883-9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-3-030-49076-8_6
http://dx.doi.org/10.1007/978-3-319-92198-3_8

	Introduction
	Preliminaries
	Algorithm Proposal
	Counting Rules for Processing Grid Base Cases
	The Fibonacci Rule
	The Subtracted Rule
	The Product Rule

	Building the Enumerative Tree
	Conclusions
	References

