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Abstract: The aim of this paper is to analyze a specific fourth-order matrix spectral problem involving
four potentials and two free nonzero parameters and construct an associated integrable hierarchy of
bi-Hamiltonian equations within the zero curvature formulation. A hereditary recursion operator
is explicitly computed, and the corresponding bi-Hamiltonian formulation is established by the
so-called trace identity, showing the Liouville integrability of the obtained hierarchy. Two illustrative
examples are novel generalized combined nonlinear Schrödinger equations and modified Korteweg–
de Vries equations with four components and two adjustable parameters.
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1. Introduction

Lax pairs of matrix spectral problems [1] play a central role in the study of math-
ematical integrability and soliton theory, providing powerful tools for understanding
and solving nonlinear partial differential equations arising in physics and mathemat-
ics [2,3]. Particularly, one can construct infinitely many symmetries and conserved quanti-
ties from associated Lax pairs. Integrable models arise in various areas of physics, including
classical mechanics, quantum mechanics, nonlinear optics, fluid dynamics and plasma
physics. Examples of integrable models include the Korteweg–de Vries equation, the
nonlinear Schrödinger equation, the sine-Gordon equation, and the Toda lattice equation,
among others.

Integrable models come in hierarchies and typical examples of integrable hierarchies
are the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy [4] and its various hierarchies
of integrable couplings [5]. Matrix Lie algebras are the key to formulate meaningful Lax
pairs [6,7], generating integrable models. In mathematics, it has always been intriguing
to identify and classify matrix spectral problems that yield integrable hierarchies. There
are many examples with one or two potentials but few examples with multiple potentials.
In this paper, we would like to present a new matrix spectral problem based on a specific
matrix Lie algeba and construct an associated integrable hierarchy with four potentials.

It is known that the zero curvature formulation is a powerful approach for constructing
integrable hierarchies, which is briefly stated as follows (see [7,8] for more details). In our
discussion, we denote the spectral parameter by λ and a q-dimensional column potential
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vector by u = (u1, · · · , uq)T . First, take a given loop matrix algebra g̃ with the loop
parameter λ, and formulate a spatial spectral matrix:

M = M(u, λ) = u1h1(λ) + · · ·+ uqhq(λ) + h0(λ), (1)

where the elements h1, · · · , hq are linear independent in g̃. We assume that the above
element h0 is pseudo-regular:

Im adh0 ⊕ Ker adh0 = g̃, [Ker adh0 , Ker adh0 ] = 0, (2)

where adh0 denotes the adjoint action of h0 on the Lie algebra g̃. This condition is helpful
in determining a Laurent series solution Y = ∑n≥0 λ−nY[n] to a stationary zero curvature
equation

Yx = [M, Y] (3)

in the underlying loop algebra g̃.
Second, we introduce an infinite sequence of temporal spectral matrices

N [m] = N [m](u, λ) = (λmY)+ + ∆r =
m

∑
n=0

λm−nY[n] + ∆m, m ≥ 0, (4)

where ∆m ∈ g̃, m ≥ 0, as the other parts of a sequence of Lax pairs, to generate a hierarchy
of integrable models:

utm = X[m] = X[m](u), m ≥ 0, (5)

via the zero curvature equations

Mtm −N [m]
x + [M,N [m]] = 0, m ≥ 0. (6)

These zero curvature equations represent the solvability conditions of the spatial and
temporal matrix spectral problems:

φx = M(u, λ)φ, φtm = N [m](u, λ)φ, m ≥ 0. (7)

Finally, we furnish Hamiltonain formulations by the so-called trace identity:

δ

δu

∫
tr
(
Y

∂M
∂λ

)
dx = λ−κ ∂

∂λ
λκtr

(
Y

∂M
∂u

)
, (8)

where δ
δu is the variational derivative with respect to u, and κ is a constant, independent of

λ, determined by

κ = −λ

2
∂

∂λ
ln |tr(Y2)|. (9)

for the resulting hierarchy (5). Further, a hereditary recursion operator Φ, which is deter-
mined from the recurstion relation X[m+1] = ΦX[m], enables us to establish a bi-Hamiltonian
formulation and show the Liouville integrability (see, e.g., [7,9]) for the obtained hierarchy (5).

Many hierarchies of Liouville integrable models have been constructed via the zero
curvature formulation (see, e.g., [4–16]). When q = 2, namely, in the case of two potentials,
we have the AKNS hierarchy [4], the Heisenberg hierarchy [17], the Kaup–Newell hierar-
chy [18] and the Wadati–Konno–Ichikawa hierarchy [19]. All of the corresponding spectral
matrices are 2 × 2 and contain two potentials, whose spectral problems are of the second
order and solvable within the theory of special functions.

In this paper, we would like to construct an integrable hierarchy of combined Liouville
integrable models with four potentials via the zero curvature formulation. The key point
is to introduce a specific 4 × 4 matrix spectral problem. The corresponding Hamiltonian
formulations are established by an application of the so-called trace identity, and, further, a
hereditary recursion operator is computed and used to furnish a bi-Hamiltonian formula-
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tion and thus show the Liouville integrability for the resulting hierarchy. Two illustrative
examples of novel combined integrable nonlinear Schrödinger and modified Korteweg–de
Vries models are presented, together with their uncombined reductions. The final section
gives a conclusion and a few concluding remarks. An open question is how to generalize
the presented four-component integrable models to six-component or more-component
integrable Hamiltonian equation models.

2. A Matrix Spectral Problem and Its Four-Component Integrable Hierarchy

Let δ be an arbitrary constant, r an arbitrary natural number and T a square matrix of
order r, whose inverse is given by its negative. Obviously, a set g̃ of block matrices

g̃ =

{
A =

[
A1 A2
A3 A4

]
2r×2r

∣∣∣∣∣A4 = TA1T−1, A3 = δTA2T−1

}
(10)

forms a matrix Lie algebra, while the matrix commutator [A, B] = AB − BA is taken as its
Lie bracket. We will use a special case of this Lie algebra with r = 2 and

T =

[
0 −1
1 0

]
or

[
0 1
−1 0

]
(11)

to formulate a specific spectral matrix below.
Let u = u(x, t) = (u1, u2, u3, u4)

T (x, t ∈ R) be a four-component potential vector, and
α1, α2 and δ1, δ2, two pairs of arbitrary constants. Assume that

α = α1 + α2 ̸= 0, δ1δ2 ̸= 0. (12)

Motivated by recent studies on matrix spectral problems with four potentials (see,
e.g., [20–22] by us and [23,24] by other authors), let us introduce and consider a matrix
spectral problem of the form:

φx = Mφ = M(u, λ)φ, M =


0 δ1u1 u2 α1λ

δ1u3 0 α2λ u4
δ1δ2u4 −δ1δ2α2λ 0 −δ1u3

−δ1δ2α1λ δ1δ2u2 −δ1u1 0

, (13)

where λ is again the spectral parameter. This spectral matrix is from the matrix Lie algebra
previously defined, with r = 2 and T by (11). The spectral problem is not any reduction of
the matrix AKNS spectral problem (see, e.g., [25]), but it enables us to generate an integrable
hierarchy, each of which is bi-Hamiltonian and possesses a combined structure.

As usual, to construct an associated Liouville integrable hierarchy, we first solve the
corresponding stationary zero curvature Equation (3). A solution Y is assumed to be of
the form:

Y =


δ1a δ1b e f
δ1c −δ1a f g

δ1δ2g −δ1δ2 f −δ1a −δ1c
−δ1δ2 f δ1δ2e −δ1b δ1a

 = ∑
n≥0

λ−nY[n], (14)

where all basic objects are taken to be of Laurent series type:{
a = ∑n≥0 λ−na[n], b = ∑n≥0 λ−nb[n], c = ∑n≥0 λ−nc[n],

e = ∑n≥0 λ−ne[n], f = ∑n≥0 λ−n f [n], g = ∑n≥0 λ−ng[n].
(15)
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We take a solution of the above form, because this is the form that the commutator between
any matrix in g̃ and the spectral matrix M takes. Clearly, the corresponding stationary zero
curvature Equation (3) leads equivalently to

ax = δ1cu1 + δ2gu2 − δ1bu3 − δ2eu4,

bx = αδ2λe − 2δ1au1 − 2δ2 f u2,

cx = αδ2λg + 2δ1au3 − 2δ2 f u4,

(16)


ex = −αδ1λb − 2δ1au2 + 2δ1 f u1,

gx = −αδ1λc + 2δ1au4 + 2δ1 f u3,

fx = δ1gu1 − δ1cu2 + δ1eu3 − δ1bu4.

(17)

These equations exactly generate the initial conditions

a[0]x = 0, b[0] = c[0] = e[0] = g[0] = 0, f [0]x = 0, (18)

and the recursion relations to determine the Laurent series solution Y b[n+1] = 1
αδ1

(−e[n]x − 2δ1a[n]u2 + 2δ1 f [n]u1),

c[n+1] = 1
αδ1

(−g[n]x + 2δ1a[n]u4 + 2δ1 f [n]u3),
(19)

 e[n+1] = 1
αδ2

(b[n]x + 2δ2 f [n]u2 + 2δ1a[n]u1),

g[n+1] = 1
αδ2

(c[n]x + 2δ2 f [n]u4 − 2δ1a[n]u3),
(20)

 a[n+1]
x = δ1c[n+1]u1 + δ2g[n+1]u2 − δ1b[n+1]u3 − δ2e[n+1]u4,

f [n+1]
x = δ1g[n+1]u1 − δ1c[n+1]u2 + δ1e[n+1]u3 − δ1b[n+1]u4,

(21)

where n ≥ 0. To compute the Laurent series solution concretely, let us take the initial data

a[0] =
1
2

β, f [0] =
1
2

γ, (22)

where β and γ are a pair of arbitrary constants, and assume the constants of integration to
be zero

a[n]|u=0 = 0, f [n]|u=0 = 0, n ≥ 1. (23)

Under those restrictions, one can work out that
b[1] = 1

α (γu1 − βu2), c[1] = 1
α (γu3 + βu4),

e[1] = 1
αδ2

(δ1βu1 + δ2γu2), g[1] = 1
αδ2

(−δ1βu3 + δ2γu4),

a[1] = f [1] = 0; b[2] = − 1
α2δ1δ2

(δ1βu1,x + δ2γu2,x), c[2] = 1
α2δ1δ2

(δ1βu3,x − δ2γu4,x),

e[2] = 1
α2δ2

(γu1,x − βu2,x), g[2] = 1
α2δ2

(γu3,x + βu4,x), a[2] = 1
α2δ2

[(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2],

f [2] = 1
α2δ2

[δ1(γu1 − βu2)u3 + (δ1βu1 + δ2γu2)u4];



Mathematics 2024, 12, 927 5 of 12



b[3] = 1
α3δ1δ2

[−γu1,xx + βu2,xx + 2δ1(γu3 + βu4)(δ1u2
1 − δ2u2

2)

−4δ1(δ1βu3 − δ2γu4)u1u2],

c[3] = 1
α3δ1δ2

[−γu3,xx − βu4,xx + 2δ1(γu1 − βu2)(δ1u2
3 − δ2u2

4)

+4δ1(δ1βu1 + δ2γu2)u3u4],



e[3] = 1
α3δ1δ2

2
[−δ1βu1,xx − δ2γu2,xx + 2δ1(δ1βu3 − δ2γu4)(δ1u2

1 − δ2u2
2)

+4δ2
1δ2(γu3 + βu4)u1u2],

g[3] = 1
α3δ1δ2

2
[δ1βu3,xx − δ2γu4,xx − 2δ1(δ1βu1 + δ2γu2)(δ1u2

3 − δ2u2
4)

+4δ2
1δ2(γu1 − βu2)u3u4],

a[3] = 1
α3δ1δ2

[δ1(γu3 + βu4)u1,x − (δ1βu3 − δ2γu4)u2,x

−δ1(γu1 − βu2)u3,x − (δ1βu1 + δ2γu2)u4,x],

f [3] = 1
α3δ2

2
[−(δ1βu3 − δ2γu4)u1,x − δ2(γu3 + βu4)u2,x

+(δ1βu1 + δ2γu2)u3,x − δ2(γu1 − βu2)u4,x];

and

b[4] = 1
α4δ2

1 δ2
2
{δ1βu1,xxx + δ2γu2,xxx − 6δ1[δ1(δ1βu3 − δ2γu4)u1

+δ2(γu3 + βu4)u2]u1,x − 6δ1δ2[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u2,x},

c[4] = 1
α4δ2

1 δ2
2

{
−δ1βu3,xxx + δ2γu4,xxx + 6δ2

1 [(δ1βu3 − δ2γu4)u1

+δ2(γu3 + βu4)u2]u3,x − 6δ1δ2[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u4,x},

e[4] = 1
α4δ1δ2

2
{−γu1,xxx + βu2,xxx + 6δ1[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u1,x

−6δ1[(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2]u2,x},

g[4] = 1
α4δ1δ2

2
{−γu3,xxx − βu4,xxx + 6δ1[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u3,x

+6δ1[(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2]u4,x},

a[4] = 1
α4δ1δ2

2
[−(δ1βu3 − δ2γu4)u1,xx − δ2(γu3 + βu4)u2,xx − (δ1βu1 + δ2γu2)u3,xx

+δ2(γu1 − βu2)u4,xx + (δ1βu3,x − δ2γu4,x)u1,x + δ2(γu3,x + βu4,x))u2,x

+3δ2
1(δ1βu2

3 − 2δ2γu3u4 − δ2βu2
4)u

2
1 + 6δ1δ2(δ1γu2

3 + 2δ1βu3u4 − δ2γu2
4)u1u2

−3δ1δ2(δ1βu2
3 − 2δ2γu3u4 − δ2βu2

4)u
2
2],

f [4] = 1
α4δ1δ2

2
[−δ1(γu3 + βu4)u1,xx + (δ1βu3 − δ2γu4)u2,xx − δ1(γu1 − βu2)u3,xx

−(δ1βu1 + δ2γu2)u4,xx + δ1(γu3,x + βu4,x)u1,x − (δ1βu3,x − δ2γu4,x))u2,x

+3δ2
1(δ1γu2

3 + 2δ1βu3u4 − δ2γu2
4)u

2
1 − 6δ2

1(δ1βu2
3 − 2δ2γu3u4 − δ2βu2

4)u1u2

−3δ1δ2(δ1γu2
3 − 2δ1βu3u4 − δ2γu2

4)u
2
2].

All these computations allow us to impose ∆r = 0, m ≥ 0, to introduce

φtm = N [m]φ = N [m](u, λ)φ, N [m] = (λmY)+ =
m

∑
n=0

λnY[m−n], m ≥ 0, (24)
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which are the temporal matrix spectral problems within the zero curvature formulation.
The conditions that guarantee the solvability of the spatial and temporal matrix spectral
problems in (13) and (24) are the zero curvature equations in (6). They lead to a hierarchy
of integrable models with four potentials:

utm = X[m] = X[m](u) := (αδ2e[m+1],−αδ1b[m+1], αδ2g[m+1],−αδ1c[m+1])T , m ≥ 0, (25)

or more precisely,

u1,tm = αδ2e[m+1], u2,tm = −αδ1b[m+1], u3,tm = αδ2g[m+1], u4,tm = −αδ1c[m+1], m ≥ 0. (26)

Taking advantage of the previous derivations, we can present some particular exam-
ples. The first nonlinear example is the model of combined integrable nonlinear Schrödinger
equations:

u1,t2 = 1
α2δ1δ2

[−δ1βu1,xx − δ2γu2,xx + 2δ1(δ1βu3 − δ2γu4)(δ1u2
1 − δ2u2

2)

+4δ2
1δ2(γu3 + βu4)u1u2],

u2,t2 = 1
α2δ2

[γu1,xx + βu2,xx − 2δ1(γu3 + βu4)(δ1u2
1 − δ2u2

2)

+4δ1(δ1βu3 − δ2γu4)u1u2],

u3,t2 = 1
α2δ1δ2

[δ1βu3,xx − δ2γu4,xx − 2δ1(δ1βu1 + δ2γu2)(δ1u2
3 − δ2u2

4)

+4δ2
1δ2(γu1 − βu2)u3u4],

u4,t2 = 1
α2δ2

[γu3,xx + βu4,xx − 2δ1(γu1 − βu2)(δ1u2
3 − δ2u2

4)

+4δ1(δ1βu1 + δ2γu2)u3u4],

(27)

and the second one is the model of combined integrable modified Korteweg–de Vries
equations:

u1,t3 = 1
α3δ1δ2

{−γu1,xxx + βu2,xxx + 6δ1[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u1,x

−6δ1[(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2]u2,x},

u2,t3 = 1
α3δ1δ2

2

{
−δ1βu1,xxx − δ2γu2,xxx + 6δ2

1 [(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2]u1,x

+6δ1δ2[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u2,x},

u3,t3 = − 1
α3δ1δ2

{−γu3,xxx − βu4,xxx + 6δ1[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u3,x

+6δ1[(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2]u4,x},

u4,t3 = 1
α3δ1δ2

2

{
δ1βu3,xxx − δ2γu4,xxx − 6δ2

1 [(δ1βu3 − δ2γu4)u1 + δ2(γu3 + βu4)u2]u3,x

+6δ1δ2[δ1(γu3 + βu4)u1 − (δ1βu3 − δ2γu4)u2]u4,x}.

(28)

These provide two typical coupled integrable models, which extend the category of coupled
integrable models of nonlinear Schrödinger equations and modified Korteweg–de Vries
equations, presented recently (see, e.g., [21,26,27]). One interesting characteristic is that
every model contains two linear derivative terms of the highest order, and so, we call them
combined models.

Two special cases of β = 1, γ = 0 and β = 0, γ = 1 in the obtained hierarchy are of
interest and produce reduced hierarchies of uncombined integrable models.
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If we take α = −δ1 = δ2 = 1, β = 1 and γ = 0 in the model (27), we obtain a coupled
integrable nonlinear Schrödinger-type model:

u1,t2 = −u1,xx + 2u3(u2
1 + u2

2)− 4u1u2u4,

u2,t2 = −u2,xx − 2u4(u2
1 + u2

2) + 4u1u2u3,

u3,t2 = u3,xx − 2u1(u2
3 + u2

4) + 4u2u3u4,

u4,t2 = u4,xx + 2u2(u2
3 + u2

4)− 4u1u3u4.

(29)

If we take α = −δ1 = δ2 = 1, β = 0 and γ = 1 in the model (27), we obtain another coupled
integrable nonlinear Schrödinger-type model:

u1,t2 = u2,xx + 2u4(u2
1 + u2

2)− 4u1u2u3,

u2,t2 = u1,xx − 2u3(u2
1 + u2

2) + 4u1u2u4,

u3,t2 = u4,xx + 2u2(u2
3 + u2

4)− 4u1u3u4,

u4,t2 = u3,xx − 2u1(u2
3 + u2

4) + 4u2u3u4.

(30)

Similarly, if we take α = −δ1 = δ2 = 1, β = 1 and γ = 0 in the model (28), we obtain a
coupled integrable modified Korteweg–de Vries-type model:

u1,t3 = −u2,xxx − 6(u1u4 − u2u3)u1,x + 6(u1u3 − u2u4)u2,x,

u2,t3 = −u1,xxx + 6(u1u3 − u2u4)u1,x − 6(u1u4 − u2u3)u2,x,

u3,t3 = u4,xxx − 6(u1u4 − u2u3)u3,x − 6(u1u3 − u2u4)u4,x,

u4,t3 = u3,xxx − 6(u1u3 − u2u4)u3,x − 6(u1u4 − u2u3)u4,x.

(31)

If we take α = −δ1 = δ2 = 1, β = 0 and γ = 1 in the model (28), we obtain another coupled
integrable modified Korteweg–de Vries-type model:

u1,t3 = u1,xxx − 6(u1u3 − u2u4)u1,x + 6(u1u4 − u2u3)u2,x,

u2,t3 = u2,xxx + 6(u1u4 − u2u3)u1,x − 6(u1u3 − u2u4)u2,x,

u3,t3 = u3,xxx − 6(u1u3 − u2u4)u3,x − 6(u1u4 − u2u3)u4,x,

u4,t3 = u4,xxx − 6(u1u4 − u2u3)u3,x − 6(u1u3 − u2u4)u4,x.

(32)

These models are different from the vector AKNS integrable models [25]. In each pair,
the two models just exchange the first component with the second component, carrying
two sign changes, and the third component with the fourth component, carrying no sign
change, in the vector fields on the right hand sides. Moreover, all those four models still
commute with each other and so they are symmetries to each other.

3. Recursion Operator and Bi-Hamiltonian Formulation

To establish a bi-Hamiltonian formulation [28,29] and show the Liouville integrabil-
ity for the resulting hierarchy (26), one can make use of the so-called trace identity (8)
associated with the spatial matrix spectral problem (13). Substituting the spectral matrix
M by (13) and the Laurent series solution Y determined by (14) into the trace identity
engenders

− δ

δu

∫
λ−(n+1)αδ2 f [n+1] dx = λ−κ ∂

∂λ
λκ−n(δ1c[n], δ2g[n], δ1b[n], δ2e[n])T , n ≥ 0, (33)

since we have

tr
(
Y

∂M
∂λ

)
= −2αδ1δ2 f , tr

(
Y

∂M
∂u

)
= (2δ2

1c, 2δ1δ2g, 2δ2
1b, 2δ1δ2e)T . (34)
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Checking with n = 2 determines κ = 0, and consequently, one arrives at

δ

δu
H[n] = (δ1c[n+1], δ2g[n+1], δ1b[n+1], δ2e[n+1])T , n ≥ 0, (35)

where the Hamiltonian functionals are computed as follows:

H[n] =
∫

αδ2

n + 1
f [n+2] dx, n ≥ 0. (36)

This enables us to furnish the folllowing Hamiltonian formulations for the resulting
hierarchy (26):

utm = X[m] = J1
δH[m]

δu
, m ≥ 0, (37)

where J1 is the Hamiltonian operator:

J1 =

 0
0 α
−α 0

0 α
−α 0

0

, (38)

and H[m] are the functionals given by (36). It follows from the Hamiltonian theory that
there exists an interrelation S = J1

δH
δu between a symmetry S and a conserved functional H

of the same model.
It is a common characteristic property that the vector fields X[n] consitutes an

abelian algebra:

[[X[n1], X[n2]]] := X[n1] ′(u)[X[n2]]− X[n2] ′(u)[X[n1]] = 0, n1, n2 ≥ 0, (39)

which can be derived from an abelian algebra of Lax operators:

[[N [n1],N [n2]]] := N [n1] ′(u)[X[n2]]−N [n2] ′(u)[X[n1]] + [N [n1],N [n2]] = 0, n1, n2 ≥ 0. (40)

Such a commutative property of vector fields still holds true under reciprocal transfor-
mations [30], and more discussions about the isospectral zero curvature equations is given
in [31].

Furthermore, based on the recursion relations in (19)–(21), directly from the recursion
relation X[m+1] = ΦX[m], where X[m], m ≥ 0, are defined by (25), we can derive a hereditary
recursion operator Φ = (Φjk)4×4 [29] for the hierarchy (26) as follows:

{
Φ11 = 1

α (−2δ1u1∂−1u4 + 2δ1u2∂−1u3), Φ12 = 1
α (−

1
δ1

∂x + 2δ1u1∂−1u3 + 2δ2u2∂−1u4,

Φ13 = 1
α (2δ1u1∂−1u2 + 2δ1u2∂−1u1), Φ14 = 1

α (−2δ1u1∂−1u1 + 2δ2u2∂−1u2);
(41)

Φ21 = 1
α (

1
δ2

∂x −
2δ2

1
δ2

u1∂−1u3 − 2δ1u2∂−1u4), Φ22 = 1
α (−2δ1u1∂−1u4 + 2δ1u2∂−1u3),

Φ23 = 1
α (−

2δ2
1

δ2
u1∂−1u1 + 2δ1u2∂−1u2), Φ24 = 1

α (−2δ1u1∂−1u2 − 2δ1u2∂−1u1);
(42)

{
Φ31 = 1

α (2δ1u3∂−1u4 + 2δ1u4∂−1u3), Φ32 = 1
α (−2δ1u3∂−1u3 + 2δ2u4∂−1u4),

Φ33 = 1
α (−2δ1u3∂−1u2 + 2δ1u4∂−1u1), Φ34 = 1

α (−
1
δ1

∂x + 2δ1u3∂−1u1 + 2δ2u4∂−1u2);
(43)

Φ41 = 1
α (−

2δ2
1

δ2
u3∂−1u3 + 2δ1u4∂−1u4), Φ42 = 1

α (−2δ1u3∂−1u4 − 2δ1u4∂−1u3),

Φ43 = 1
α (

1
δ2

∂x −
2δ2

1
δ2

u3∂−1u1 − 2δ1u4∂−1u2), Φ44 = 1
α (−2δ1u3∂−1u2 + 2δ1u4∂−1u1).

(44)
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The hereditariness of the operator Φ [32] means that Φ satisfies

LΦXΦ = ΦLXΦ, (45)

where the Lie derivative LXΦ is defined by

(LXΦ)Z = Φ[[X, Z]]− [[X, ΦZ]], (46)

in which X and Z are arbitrary vector fields. Oberve that an operator Ψ = Ψ(x, t, u, ux, · · · )
is a recursion operator of an evolution equation ut = X(u) [33] if and only if the operator
Ψ needs to satisfy

∂Ψ
∂t

+ LXΨ = 0. (47)

In the above example, we can easily verify that the autonomous operator Φ is a recursion
operator of the first model ut0 = X[0], i.e., we have LX[0]Φ = 0. Then, based on these two
facts, we can have

LX[m]Φ = LΦX[m−1]Φ = ΦLX[m−1]Φ = · · · = ΦmLX[0]Φ = 0, m ≥ 1. (48)

It then follows that Φ provides a common recursion operator for all models in the obtained
hierarchy (26).

With some additional analysis, we can see that J1 and J2 = ΦJ1 constitute a Hamilto-
nian pair. This means that an arbitrary linear combination of J1 and J2 is again Hamiltonian,
i.e., it satisfies ∫

(Z[1])T J′(u)[JZ[2]]Z[3]dx + cycle(Z[1], Z[2], Z[3]) = 0, (49)

where Z[1], Z[2] and Z[3] are arbitrary vector fields, and thus the hierarchy (26) possesses a
bi-Hamiltonian formulation [28]:

utm = X[m] = J1
δH[m]

δu
= J2

δH[m−1]

δu
, m ≥ 1. (50)

Moreover, we can observe that the associated Hamiltonian functionals also commute with
each other under the corresponding two Poisson brackets [7]:

{H[n1],H[n2]}J1 =
∫ ( δH[n1]

δu
)T J1

δH[n2]

δu
dx = 0, n1, n2 ≥ 0, (51)

and

{H[n1],H[n2]}J2 =
∫ ( δH[n1]

δp
)T J2

δH[n2]

δu
dx = 0, n1, n2 ≥ 0. (52)

In summary, each model in the obtained hierarchy (26) is bi-Hamiltonian and Liouville
integrable, possessing infinitely many commuting symmetries {X[n]}∞

n=0 and conserved
functionals {H[n]}∞

n=0. Two specific examples of such novel nonlinear combined Liouville
integrable Hamiltonian models are the two models in (27) and (28), which involve two
pairs of arbitrary constants.

4. Concluding Remarks

A Liouville integrable hierarchy with four potentials has been derived from a spe-
cific 4 × 4 matrix spectral problem, along with its hereditary recursion operator and bi-
Hamiltonian formulation. The success comes from a particular Laurent series solution of
the corresponding stationary zero curvature equation. The resulting integrable models
involve two arbitrary constants and contain diverse specific four-component examples of
integrable models, both combined and uncombined. However, it is still open to us how
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to generalize the presented 4 × 4 matrix spectral problem so that integrable models with
more potentials can be generated.

Studying algebraic or geometric structures of soliton solutions is a fascinating area
of research with wide-ranging implications in mathematics and physics. The resulting
integrable models should possess diverse soliton solutions, due to their nice integrable
properties. One can try to apply different powerful and effective approaches, such as
the Riemann–Hilbert technique [34], the Zakharov–Shabat dressing method [35], the Dar-
boux transformation [36–40], the algebrao–geometric method [41–45], the decomposition
method [46–53] and the determinant approach [54]. In addition to solitons, other kinds
of interesting nonlonear wave solutions such as lump, kink, breather and rogue wave
solutions, including their interaction solutions (see, e.g., [55–64]), are also of great interest,
and one can often compute those nonlinear wave solutions from solitons by taking special
wave number reductions. Moreover, conducting nonlocal group reductions or equivalently
similarity transformations, for matrix spectral problems, one can derive nonlocal reduced
integrable models as well as study their soliton solutions (see, e.g., [65–68]).

Integrable models and Lax pairs are closely related. There is a huge diversity of
multi-component integrable models, which have close connections to various areas of
mathematics, including algebraic geometry, Lie groups, Lie algebras and Riemann surfaces.
Identifying and classifying multi-component integrable models from Lax pairs is crucial for
advancing our understanding of complex nonlinear mathematical and physical problems.
It enables us to uncover dynamical behaviors of nonlinear waves and gain insights into a
wide range of nonlinear phenomena across different branches of science and mathematics.
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