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Abstract: Anthrax, a zoonotic disease with serious public health consequences, has been the subject
of rigorous mathematical and statistical modeling to better understand its dynamics and to devise
effective control techniques. In this study, we propose a novel mathematical risk-structured model
for anthrax disease spread that includes both qualitative and quantitative evaluations. Our research
focuses on the complex interplay between host–anthrax interactions and zoonotic transmission.
Our mathematical approach incorporates bifurcation analysis and stability considerations. We
investigate the dynamic behavior of the proposed model under various settings, shedding light on
the important parameters that determine anthrax transmission and persistence. The normalized
forward sensitivity analysis method is used to determine the parameters that are relevant to reducing
Rc and, by extension, disease spread. Through scenario simulation of our model, we identify
intervention techniques, such as enlightenment of the populace, that will effectively minimize
disease transmission. Our findings provide insights into anthrax epidemiology and emphasize the
importance of effective disease management. Bifurcation investigations reveal the existence and
stability of numerous equilibria, allowing for a better understanding of the behavior of the system
under various scenarios. This study adds to the field of anthrax modeling by providing a foundation
for informed decision-making regarding public health measures. The use of a mathematical modeling
approach improves our ability to anticipate and control anthrax epidemics, ultimately helping to
protect both human and animal populations.

Keywords: anthrax; zoonotic disease; sensitivity analysis; bifurcation theory; stability analysis

MSC: 93D05; 00A71

1. Introduction

Anthrax is caused by the bacterium Bacillus anthracis [1] and is a serious infectious
disease that affects both humans and animals worldwide. It is primarily transmitted to

Mathematics 2024, 12, 1014. https://doi.org/10.3390/math12071014 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12071014
https://doi.org/10.3390/math12071014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7306-7818
https://orcid.org/0000-0003-4598-8510
https://doi.org/10.3390/math12071014
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12071014?type=check_update&version=2


Mathematics 2024, 12, 1014 2 of 26

hosts through the ingestion of contaminated feed or water sources, inhalation of airborne
spores, or penetration via damaged skin. Once inside the body, spores germinate and
spread to internal organs [2], leading to the manifestation of the disease, which can be
fatal [3,4].

Anthrax is found worldwide, with certain regions, particularly in Asia and Africa [5],
considered to be the main reservoirs of the disease. Human and animal interactions as well
as climatic factors influenced by climate change contribute to the spread of anthrax and
other infectious diseases.

Climate change is recognized as a major driver of emerging infectious diseases, includ-
ing anthrax. Changes in temperature, precipitation patterns, and ecological conditions can
affect the distribution and prevalence of anthrax, thereby increasing the risk to vulnerable
populations [6,7].

Early detection and prevention programs are crucial for mitigating the threat of anthrax
and other emerging infectious diseases. Vaccination of animals, surveillance of high-risk
areas, and public health interventions to educate communities about preventive measures
are essential strategies to reduce the burden of anthrax.

While anthrax may not be considered among the most pressing public health concerns
globally, its potential for severe illness and fatality underscores the importance of effective
prevention and control measures. Given the threat of climate change and the interconnect-
edness of human and animal health, proactive efforts to monitor, prevent, and respond to
anthrax outbreaks are critical for safeguarding public health and mitigating the impacts of
emerging infectious diseases.

Mathematical and statistical models have been developed to study the transmission
dynamics of anthrax disease and have used several methodological approaches to under-
stand its spread in several countries [8]. Some of these methodological approaches have
also been used to study the transmission of Mpox disease by the authors in [9], Zika and
Dengue viruses in [10], and most recently, the highly contagious COVID-19 epidemic that
was experienced globally in [11]. We will attempt to review some of the articles in this
research direction and will state some of the gaps in the literature and our contribution to
the modeling of anthrax disease dynamics.

A systematic review and evaluation of mathematical models of human inhalation
anthrax for supporting public health policymaking, response, and proper deployment of
adequate resources were studied in [12]. In [13]; the mathematical modeling framework
presented to study anthrax dynamics incorporated novel components such as fast and
slow progression, carcass disposal, and a vector population. This research presented some
mathematical analyses and simulations that enabled the authors to suggest that appropriate
carcass disposal may significantly reduce the spread of anthrax. A mathematical model
to study anthrax transmission dynamics in animal populations, excluding the human
population, was studied in [14]. The research presented a general anthrax disease model
with sub-models for two categories of animals: that is, herbivore and carnivore models. It
was shown using numerical simulations and by way of seasonal variations due to various
environmental factors, such as cycles of heavy rainfall followed by periods of dry weather,
that oscillations in spore growth may drive oscillations in animal population dynamics.
However, the total number of infected animals remained constant, similar to spore growth.
Because climate change is one of the most significant factors contributing to the transmission
of anthrax disease, the research presented in [15] used Kenya as a case study to evaluate the
potential future distribution of anthrax outbreaks under multiple climate change scenarios.
This research proposed a prediction of the potential anthrax distribution under changing
climates that can inform anticipatory measures to prevent future anthrax risk.

In [16], a mathematical model to study anthrax transmission in both human and
animal populations was presented. The advantage of the model developed by the authors
over the existing models was that it compared the rates of infection and the rates of recovery
from anthrax disease in both human and animal populations, which was validated by the
numerical simulation results presented in the article. In [17], computer methods were used
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to study a compartmental model developed for anthrax transmissions. In [8,18], the authors
developed a mathematical model to study behavioral changes during an anthrax outbreak;
optimal control and cost-effectiveness analyses were performed on the anthrax epidemic
model. In [19], a compartmental model was developed to understand how environmental
and host population dynamics affect anthrax outbreaks. The authors found that disease
transmission was influenced more by the seasonality of environmental factors than by the
animal population. The authors in [20] developed deterministic models that incorporated a
vaccination compartment. Their study revealed that anthrax transmission within an animal
population can be controlled by implementing vaccination policies. Other models developed
in the literature by different researchers to study anthrax disease transmission dynamics using
several case studies and control measures can be found in [21–25]. Through our study, we
aim to make significant contributions to the existing literature on this topic by providing
valuable insights into the mathematical modeling of anthrax disease in human and animal
populations. The main objective is to investigate the influence of some of the introduced
model variables and parameters on the dynamics of the disease and to analyze the model
qualitatively and quantitatively. The scenarios presented offer better insights into anthrax
disease modeling. Available datasets recorded for anthrax disease are sparse; however, we
validate the theoretical aspect of our work using case–scenario numerical simulations.

In this research, we develop a mathematical model that explores risk exposure levels
for individuals and incorporates the loss of infection-acquired immunity by both popu-
lations and the release of pathogens into the environment by both infected animals and
carcasses of dead infected animals. This brings novelty to the work presented in this study;
hence, it is an extension of existing dynamical models for anthrax disease transmission. We
present some qualitative analyses of the model we developed and explore some scenarios
and simulations of the model.

The rest of the paper is organized as follows: The mathematical model formulation is
presented in Section 2, while the model analyses are carried out in Section 3. In Section 4, pa-
rameterization of the model, sensitivity analysis of the model threshold parameter, scenario
simulations, and interpretation and discussion of the results are presented. In Section 5, we
present our concluding remarks, limitations, and future work.

2. Model Formulation

In this study, we considered both animal and human populations. The total human
population Nh is subdivided into four compartments: individuals at high risk of contracting
anthrax disease Sh, individuals at a reduced risk of contracting the anthrax disease Sl ,
the population of individuals infected with the disease Ih, and those who have recovered
from the disease Rh. The total animal population Na is divided into five compartments:
susceptible animals Sa, vaccinated animals Va, infected animals Ia, recovered animals Ra,
and animals (carcass) that died from the disease Ca. The density of the Bacillus anthracis
virus in the population environment is denoted by P. Summarily,

Nh = Sh + Sl + Ih + Rh and Na = Sa + Va + Ia + Ra + Ca

The following assumptions were made when designing the model:

1. There is no vertical transmission in both populations.
2. High-risk susceptibles can become low-risk susceptibles due to their adoption of

protective measures as a result of educational and enlightenment campaigns.
3. A fraction of the recruited animals are effectively vaccinated.
4. Susceptible humans and animals get infected by coming into contact with infected

livestock, infected carcasses, and spores.
5. There is no human-to-human infection.
6. Recovered humans and animals can lose infection-acquired immunity.
7. Animal vaccination is perfect.
8. Only healthy animals are recruited into the population.
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The total susceptible human population is increased by recruitment at a constant
rate Π. A portion z of these recruited individuals is at low risk of contracting the disease,
while the rest are at high risk. The population of susceptible high-risk individuals also
increases when recovered individuals lose their infection-acquired immunity at the rate
ϑh and become highly susceptible again. Education/enlightenment efforts, when adopted
by these high-risk individuals, reduce their risk and susceptibility to the disease, thereby
reducing their population at a rate of χ. Infection with the anthrax disease from infected
animals, carcasses, and the environment at a rate of β2 and death due to natural causes
at the rate of µh further diminish this population. Thus, the disease dynamics for high-risk
susceptible individuals are given by

dSh
dt

= (1 − z)Π − χSh − λ2Sh − µhSh + (1 − α)ϑhRh.

For low-risk susceptible individuals Sl , their population increases with enlightenment
and subsequent behavioral changes due to high-risk susceptibility and loss of infection-
acquired immunity by recovered individuals. It is decreased by death due to other causes
and infection with the disease at the rate (1 − ϕh)β2, where ϕh is a modification parameter
representing the behavioral dispositions adopted by these low-risk susceptibles to ensure
that they are significantly shielded from contracting anthrax disease. This is mathematically
expressed as

dSl
dt

= zΠ + χSh − (1 − ϕh)λ2Sl − µhSl + αϑhRh.

The description follows for infected humans Ih and recovered humans Rh. For the animal
population, there is constant recruitment at the rate Ω, where a portion of these animals
(1 − q) is fully susceptible to the disease Sa, while the remaining fraction q enters the popu-
lation already vaccinated Va. The susceptible animal population further increases when
the immunity of recovered animals wanes at the rate ϑa. Infection with anthrax disease
from carcasses and environmental spores at the rate of β1, effective animal vaccination at
the rate of θ, and death from other causes all serve to reduce the population of susceptible
animals. Epidemiologically, we write this as

dSa

dt
= (1 − q)Ω − λ1Sa − θSa − µaSa + ϑaRa.

When animals die from anthrax, their carcasses populate the Ca compartment. These
carcasses release Bacillus anthracis spores into the soil and environment at the rate ω as they
decay. Scavengers consume these carcasses at the rate τ, further reducing the number of
carcasses and becoming infected during the process. This is represented as

dCa

dt
= δa Ia − (τ + ω)Ca.

Infected animals release pathogens of the Bacillus anthracis virus into the environment at
the rate φ1, whereas decaying carcasses do the same at the rate φ2. Both activities increase
the density of the pathogen in the environment, while the pathogens are removed at a rate
of ξ. Hence, pathogen density dynamics in the environment are given by

dP
dt

= φ1 Ia + φ2Ca − ξP.

The transition description for the other compartments follows Equation (1). In general,
the model formulated for this research is represented by Equation (1), and the parameters
and variables are listed in Table 1. A schematic diagram of the proposed model is shown in
Figure 1.
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dSa

dt
= (1 − q)Ω − λ1Sa − θSa − µaSa + ϑaRa,

dVa

dt
= qΩ + θSa − µaVa,

dIa

dt
= λ1Sa − (γa + µa + δa)Ia,

dRa

dt
= γa Ia − µaRa − ϑaRa,

dCa

dt
= δa Ia − (τ + ω)Ca,

dP
dt

= φ1 Ia + φ2Ca − ξP,

dSh
dt

= (1 − z)Π − χSh − λ2Sh − µhSh + (1 − α)ϑhRh,

dSl
dt

= zΠ + χSh − (1 − ϕh)λ2Sl − µhSl + αϑhRh,

dIh
dt

= λ2Sh + (1 − ϕh)λ2Sl − (γh + µh + δh)Ih,

dRh
dt

= γh Ih − µhRh − ϑhRh,

(1)

where:
λ1 = β1(Ca + P), λ2 = β2(

Ia

Na
+ Ca + P).

Figure 1. Schematic diagram of Anthrax model (1).



Mathematics 2024, 12, 1014 6 of 26

Table 1. Description of model variables and parameters.

Variable Interpretation

Sa Population of susceptible animals
Va Population of vaccinated animals
Ia Population of infected animals
Ra Population of recovered animals
Ca Carcasses of dead animals
P Environmental spore density of Bacillus anthracis
Sh Population of susceptible high-risk individuals
Sl Population of susceptible low-risk individuals
Ih Population of infected individuals
Rh Population of recovered individuals

Parameter Interpretation

Ω, Π Recruitment rates into animal and human populations, respectively
β1, β2 Effective disease transmission rate for animals and humans, respectively
θ Effective vaccination rate of animals
α Proportion of recovered individuals that become low-risk susceptibles
z Fraction of recruited humans categorized to be low-risk
q Fraction of recruited animals that come into the population already vaccinated
τ Rate of carcass consumption by scavengers
ω Natural decomposition rate of carcasses
ϕh Modification parameter for behavioral dispositions of low-risk susceptibles
χ Enlightenment/educational campaign efforts at controlling the disease
ξ Removal / natural decay rate of spores
φ1, φ2 Pathogen release rate from infected animals and decaying carcasses, respectively
γh, γa Recovery rate for humans and animals, respectively
µh, µa Natural death rates of humans and animals
δh, δa Disease-induced death rates for humans and animals, respectively
ϑh, ϑa Rate of loss of infection-acquired immunity by individuals and animals, respectively

3. Analyses of the Model

In this section, some qualitative analyses of the model are performed. Firstly, we
demonstrate two basic properties of the model, which are the invariant region (depicting
the domain in which the solution of the model makes sense mathematically and epidemio-
logically) and the non-negativity of the model solution. After these, we proceed to more
rigorous investigations such as the existence and uniqueness of the model solution, analysis
of the model equilibria, the basic reproduction number, bifurcation analysis, and global
stability analysis.

3.1. Boundedness of Solutions

Theorem 1. The closed set
D = Dh ×Da ×Dp (2)

with Dh =
{

Sh, Sl , Ih, Rh ∈ R4
+ : Nh ≤ Π

µh

}
, Da =

{
Sa, Va, Ia, Ra, Ca ∈ R5

+ : Na ≤ Ω
µa

}
and

Dp =
{

P ∈ R1
+

}
is positively invariant with respect to the model (1).

Proof. The total animal population is denoted by Na and given by Na(t) = Sa(t) + Va(t) +
Ia(t) + Ra(t) + Ca(t) and is differentiated and summed together to obtain

dNa

dt
= Ω − µaNa − (τ + ω − µa)Ca. (3)

But µaCa = 0, so that by standard comparison and rearranging Equation (3), we obtain a
first-order differential inequality:

dNa

dt
+ µaNa ≤ Ω,
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which we solve by the integrating factor method to obtain

Na(t) ≤
Ω
µa

(
1 − e−µat)+ Na(0)e−µat, (4)

as t → ∞,
Na(t) ≤

Ω
µa

. (5)

Following a similar approach yields a similar result for the human population: Nh(t) ≤ Π
µh

.
Thus, we have shown that D is positively invariant and attracts all solutions of Equation (1)
in finite time. This guarantees that our investigations and analyses will be carried out in
a feasible region and that every solution of our model having initial conditions in D will
always remain in D for all t > 0.

3.2. Non-Negativity of Solutions

Next, we establish that every solution of the model Equation (1) will be non-negative
for all time t.

Theorem 2. Let (Sa(0), Va(0), Ia(0), Ra(0), Ca(0), P(0), Sh(0), Sl(0), Ih(0), Rh(0)) ≥ 0 be the
initial states of the model (1). Then every solution (Sa(t), Va(t), Ia(t), Ra(t), Ca(t), P(t), Sh(t),
Sl(t), Ih(t), Rh(t)) ≥ 0 for all time t > 0.

Proof. From the first equation of our model (1),

dSa

dt
= (1 − q)Ω − λ1Sa − θSa − µaSa + ϑaRa.

So by collecting like terms, we have

dSa

dt
+ (λ1 + θ + µa)Sa = (1 − q)Ω + ϑaRa

and
dSa

dt
+ (λ1 + θ + µa)Sa ≥ (1 − q)Ω. (6)

Solving Equation (6) by using the integrating factor method gives

d
dt

[
Sa exp{(θ + µa)t +

∫ t

0
λ1(ρ)dρ}

]
≥ (1 − q)Ω exp{(θ + µa)t +

∫ t

0
λ1(ρ)dρ}

∫ t f

0

(
d
dt

[
Sa exp{(θ + µa)t +

∫ t

0
λ1(ρ)dρ}

])
≥

∫ t f

0

(
(1 − q)Ω exp{(θ + µa)t +

∫ t

0
λ1(ρ)dρ}

)
,

Hence,

Sa(t f )

[
exp{(θ + µa)t f +

∫ t f

0
λ1(ρ)dρ}

]
− Sa(0) ≥ (1 − q)Ω

∫ t f

0

[
exp{(θ + µa)y +

∫ y

0
λ1(ρ)dρ}

]
dy,

so that

Sa(t f ) ≥ Sa(0) exp
[
−{(θ + µa)t f +

∫ t f

0
λ1(ρ)dρ}

]
(7)

+ exp
[
−{(θ + µa)t f +

∫ t f

0
λ1(ρ)dρ}

]
× (1 − q)Ω

∫ t f

0

[
exp{(θ + µa)y +

∫ y

0
λ1(ρ)dρ}

]
dy.

But Sa(0) > 0 for t > 0 =⇒ Sa(t f ) ≥ 0.
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Therefore, any solution of Sa with non-negative initial data will remain non-negative
∀ t > 0. In the same manner, it can be shown that Va(t) ≥ 0, Ia(t) ≥ 0, Ra(t) ≥ 0, Ca(t) ≥
0, P(t) ≥ 0, Sh(t) ≥ 0, Sl(t) ≥ 0, Ih(t) ≥ 0, Rh(t) ≥ 0.

3.3. Existence and Uniqueness of the Solution

Theorem 3. The model (1) defined by R10
+ ∈ D of (2) has a solution that exists, and the solution is

unique in the region (2) if ∀ t ≥ 0:

•
∣∣∣ ∂ fi

∂X

∣∣∣ < ∞, i = 1(1)10 and X = {Sa, Sh, Sl , Ia, Ih, Ca, P, Ra, Va, Rh};

• | f (t, X2)− f (t, X1)| ≤ M|X2 − X1|, where M is Lipschitz constant.

Proof. We write (1) as

f1 = (1 − q)Ω − λ1Sa − θSa − µaSa + ϑaRa,

f2 = qΩ + θSa − µaVa,

f3 = λ1Sa − (γa + µa + δa)Ia,

f4 = γa Ia − µaRa − ϑaRa,

f5 = δa Ia − (τ + ω)Ca,

f6 = φ1 Ia + φ2Ca − ξP,

f7 = (1 − z)Π − χSh − λ2Sh − µhSh + (1 − α)ϑhRh,

f8 = zΠ + χSh − (1 − ϕh)λ2Sl − µhSl + αϑhRh,

f9 = λ2Sh + (1 − ϕh)λ2Sl − (γh + µh + δh)Ih,

f10 = γh Ih − µhRh − ϑhRh,

where:
λ1 = β1(Ca + P), λ2 = β2(

Ia

Na
+ Ca + P).

Taking the partial derivative of f1 with respect to each state variable defined by X, we have

∂ f1

∂Sa
= −λ1 − θ − µa and

∣∣∣ ∂ f1

∂Sa

∣∣∣ = |λ1 + θ + µa| < ∞.

∂ f1

∂Ra
= ϑa,

∣∣∣∣ ∂ f1

∂Ra

∣∣∣∣ = |ϑa| < ∞.

∂ f1

∂Ca
= −β1Sa,

∣∣∣∣ ∂ f1

∂Ca

∣∣∣∣ = |β1Sa| < ∞.

∂ f1

∂P
= −β1Sa,

∣∣∣∣∂ f1

∂P

∣∣∣∣ = |β1Sa| < ∞.

However, ∣∣∣∣ ∂ f1

∂Va

∣∣∣∣ = ∣∣∣∣∂ f1

∂Ia

∣∣∣∣ = ∣∣∣∣ ∂ f1

∂Sh

∣∣∣∣ = ∣∣∣∣ ∂ f1

∂SI

∣∣∣∣ = ∣∣∣∣∂ f1

∂Ih

∣∣∣∣ = ∣∣∣∣ ∂ f1

∂Rh

∣∣∣∣ = 0 < ∞.

We repeat the same for other functions f2, f3, . . . , f10, and the first condition of the theorem
is satisfied.

For the second condition of the theorem, we let X1 and X2 be any two points in the
region D defined in (2) for the system (1), We check each variable of X at these points to
see if the system satisfies the Lipschitz condition, i.e., consider

f1 = (1 − q)Ω − λ1Sa − θSa − µaSa + ϑaRa;

this function at any two points of Sa is

f1 = (1 − q)Ω − (λ1 + θ + µa)S2
a + ϑaRa,
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f1 = (1 − q)Ω − (λ1 + θ + µa)S1
a + ϑaRa;

therefore,

| f1(t, S2
a)− f1(t, S1

a)| = |((1 − q)Ω − (λ1 + θ + µa)S2
a + ϑaRa)− ((1 − q)Ω − (λ1 + θ + µa)S1

a + ϑaRa)|
≤ | − λ1 − θ − µa||S2

a − S1
a |,

(8)

where M = λ1 + θ + µa and is the Lipschitz constant.
The process is repeated for the other variables of X ∈ f1 and functions, which estab-

lishes the Lipschitz condition. Hence, this completes the proof.

3.4. The Disease-Free Equilibrium (DFE)

In the absence of Bacillus anthracis (which is represented as E+) that causes infection,
there will be no infectious animal and corresponding human (i.e., Ia = 0 and Ih = 0), thus
reducing the model (1) to

(1 − q)Ω − (µa + θ)Sa = 0.

qΩ + θSa − µaVa = 0.

(1 − z)Π − (χ + µh)Sh = 0.

zΠ + χSh − µhSl = 0.

Solving this, we have

Ca = P = Ra = Rh = 0, S+
a = (1−q)Ω

µa+θ , V+
a = qΩ+θS+

a
µa

, S+
h = (1−z)Π

(χ+µh)
, and S+

l =
zΠ+χS+

h
µh

.

Therefore, the equilibrium point for the model at DFE is

E+ =

{
(S+

a , V+
a , I+a , R+

a , C+
a , P+, S+

h , S+
l , I+h , R+

h ) =
(1 − q)Ω

µa + θ
,

Ω(qµa + θ)

µa(µa + θ)
, 0, 0, 0, 0,

(1 − z)Π
χ + µh

,
Π(zµh + χ)

µh(χ + µh)
, 0, 0

}
. (9)

3.5. Effective Reproduction Number (Rc)

Using the next generation matrix method on our system of Equation (1) and following
the notations used in [26], the matrix Fi (of new infections) and the matrix Vi (of the transfer
of species between compartments) are given, respectively, by

F =



λ1Sa

0

0

λ2Sh + (1 − ϕh)λ2Sl


(10)

V =


(γa + µa + δa)Ia

−δa Ia + (τ + ω)Ca
−φ1 Ia − φ2Ca + ξP
(γh + µh + δh)Ih

 (11)

so that at DFE we obtain

F =


0 β1S∗

a β1S∗
a 0

0 0 0 0
0 0 0 0

β2(1−ϕh)S∗
l

S∗
a+V∗

a
+

β2S∗
h

S∗
a+V∗

a
β2(1 − ϕh)S∗

l + β2S∗
h β2(1 − ϕh)S∗

l + β2S∗
h 0

,



Mathematics 2024, 12, 1014 10 of 26

V =


γa + δa + µa 0 0 0

−δa τ + ω 0 0
−φ1 −φ2 ξ 0

0 0 0 γh + δh + µ h

,

and

V−1 =



(γa + µa + δa)
−1 0 0 0

δa
(γa+µa+δa)(τ+ω) (τ + ω)−1 0 0

ω φ1+τ φ1+δa φ2
(γa+µa+δa)(τ+ω)ξ

φ2
(τ+ω)ξ

ξ−1 0

0 0 0 (γh + µh + δh)
−1


.

Hence, the effective reproduction number (Rc) of the model (1) computed as the spectral
radius (ρ(FV−1)) of the matrix (FV−1) is obtained as

Rc =
β1(1 − q)Ω[(ξ + φ2)δa + φ1(τ + ω)]

ξ(τ + ω)(µa + θ)(γa + δa + µa)
. (12)

The effective reproduction number, Rc, is defined as the average number of secondary infec-
tions resulting from one primary case in an entirely susceptible population. Following [26],
we make the claim:

Lemma 1. The disease-free equilibrium (DFE) of the model (1) is locally asymptotically stable
(LAS) whenever the effective reproduction number Rc < 1 and is unstable when Rc > 1.

3.6. The Disease-Endemic Equilibrium (DEE)

By equating the left-hand side of each of the equations of the model (1) to zero
and solving for each of the state variables, we obtain the disease-endemic equilibrium point
as follows:

E∗ =

(
S∗

a , V∗
a , I∗a , R∗

a , C∗
a , P∗, S∗

h , S∗
l , I∗h , R∗

h

)
where

S∗
a =

k1l0l1
Z∗

1
,

V∗
a =

θ k1l0l1 + Z∗
1 l2

Z∗
1 µa

,

I∗a =
l1λ∗

1 l0
Z∗

1
,

C∗
a =

δal1λ∗
1 l0

Z∗
1 k2

,

R∗
a =

γal1λ∗
1

Z∗
1

,

P∗ =
l0(k2 φ1 + δa φ2)l1λ∗

1
Z∗

1 ξ k2
,

S∗
h =

((k3l7 − γhl6)l3 + l4l5γh)eλ∗
2 + k3l3l7µh

Z∗
2

,

S∗
l =

λ∗
2γh(l3l6 − l4l5) + l7((λ∗

2 + Q1)l4 + l3χ)k3

Z∗
2

,

I∗h =
eπ λ∗

2 + e(χ π + l4µh) + l3µh

Z∗
2

,

R∗
h =

γh I∗h
l0

,

(13)
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and

Z∗
1 =(k1l0 − γaϑa)λ

∗
1 + Q0k1l0,

Z∗
2 =e(k3l7 − γhϑh)λ

∗
2

2 + ((k3l7Q1 − χγhl5 − Q1γhl6)e + µh(k3l7 − γhl5))λ∗
2 + k3l7µhQ1,

l0 = µa + ϑa, l1 = (1 − q)Ω, l2 = qΩ, l3 = (1 − z)π, l4 = (1 − α)ϑh, l5 = zπ, l6 = αϑh,

l7 = µh + ϑh, k1 = γa + µa + δa, k2 = τ + ω, k3 = γh + µh + δh, e = 1 − ϕh,

λ∗
1 =

l0k1Q0(Rc − 1)
k1l0 − γaϑa

, and λ∗
2 = β2(

I∗a
N∗

a
+ Ca + P∗).

This result demonstrates the state of each of the population sub-classes when anthrax
disease persists in the given population. The dynamics of the proposed model (1) are at
DEE (13).

3.7. Bifurcation Analysis

Bifurcation analysis is the mathematical exploration of model dynamics (through its
components/parameters) responsible for passing through a critical value or threshold (also
known as a bifurcation point). Here, we investigate the model behavior under diverse
scenarios using bifurcation analysis.

The model Equation (1) is rewritten as

f1 =
dx1

dt
= l1 − β1(x5 + x6)x1 − Q0x1 + ϑax4,

f2 =
dx2

dt
= l2 + θx1 − µax2,

f3 =
dx3

dt
= β1(x5 + x6)x1 − k1x3,

f4 =
dx4

dt
= γax3 − l0x4,

f5 =
dx5

dt
= δax3 − k2x5,

f6 =
dx6

dt
= φ1x3 + φ2x5 − ξx6,

f7 =
dx7

dt
= l3 − χx7 − β2

(
x3

∑5
i=1 xi

+ x5 + x6

)
x7 − µhx7 + l5x10,

f8 =
dx8

dt
= l4 + χx7 − eβ2

(
x3

∑5
i=1 xi

+ x5 + x6

)
x8 − µhx8 + l6x10,

f9 =
dx9

dt
= β2

(
x3

∑5
i=1 xi

+ x5 + x6

)
(x7 + ex8)− k3x9,

f10 =
dx10

dt
= γhx9 − l7x10,

(14)

such that the state variables Sa, Va, Ia, Ra, Ca, P, Sh, Sl , Ih, Rh are replaced with x1, x2, . . . , x10,
respectively. The Jacobian matrix of (14) evaluated at disease-free equilibrium when
Rc = 1 gives
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J =



−Q0 0 0 ϑa − β∗
1 l1

Q0
− β∗

1 l1
Q0

0 0 0 0

θ −µa 0 0 0 0 0 0 0 0

0 0 −k1 0 β∗
1 l1

Q0

β∗
1 l1

Q0
0 0 0 0

0 0 γa −l0 0 0 0 0 0 0

0 0 δa 0 −k2 0 0 0 0 0

0 0 φ1 0 φ2 −ξ 0 0 0 0

0 0 − β2µaQ0 l3
((θ+µa)l1+l2Q0)Q1

0 − β2 l3
Q1

− β2 l3
Q1

−Q1 0 0 l5

0 0 − eβ2µaQ0(χl3+l4Q1)
µhQ1((θ+µa)l1+l2Q0)

0 − eβ2(χl3+l4Q1)
µhQ1

− eβ2(χl3+l4Q1)
µhQ1

χ −µh 0 l6

0 0 β2((eχ+µh)l3+eQ1 l4)µaQ0
µhQ1((θ+µa)l1+l2Q0)

0 β2(eχl3+eQ1 l4+l3µh)
µhQ1

β2(eχl3+eQ1 l4+l3µh)
µhQ1

0 0 −k3 0

0 0 0 0 0 0 0 0 γh −l7



(15)

where β∗
1 =

Q0k2k1ξ

l1(ξ δa + δa φ2 + k2 φ1)
.

Next, the left and right eigenvectors of (15) are obtained as V =
[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10] and W = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10]

T , where

v1 =v2 = v4 = v7 = v8 = v9 = v10 = 0, v5 =
v3β1l1(ξ + φ2)

ξ Q0k2
, v6 =

v3β1l1
ξ Q0

, v3 > 0 free

w1 =
w3(ξ Q0γak2ϑa − ξ β1δal0l1 − β1δal0l1 φ2 − β1k2l0l1 φ1)

ξ Q0
2k2l0

, w4 =
γaw3

l0
, w6 =

w3(δa φ2 + k2 φ1)

ξ k2

w2 =
θ w3(ξ Q0γak2ϑa − ξ β1δal0l1 − β1δal0l1 φ2 − β1k2l0l1 φ1)

ξ Q0
2k2l0µa

, w5 =
δaw3

k2
, w3 > 0 free and

wi+6 free ∀i = 1, . . . , 4.

(16)

Since V · W = 1 gives v3

((
δa φ2k2 + φ1k2

2 + ξ δa(ξ + φ2)
)

l1β1 + ξ2Q0k2
2
)

w3 = ξ2Q0k2
2,

we therefore set v3 =
1

v3

((
δa φ2k2 + φ1k2

2 + ξ δa(ξ + φ2)
)

l1β1 + ξ2Q0k2
2
)

w3

and

w3 = ξ2Q0k2
2. The non-zero second-order derivatives of (14) at disease-free equilibrium give

∂2 f1

∂x1∂x5
=

∂2 f1

∂x5∂x1
=

∂2 f1

∂x1∂x6
=

∂2 f1

∂x6∂x1
= −β1,

∂2 f3

∂x1∂x5
=

∂2 f3

∂x5∂x1
=

∂2 f3

∂x1∂x6
=

∂2 f3

∂x6∂x1
= β1,

∂2 f7

∂x1∂x3
=

∂2 f7

∂x3∂x1
=

∂2 f7

∂x1∂x7
=

∂2 f7

∂x3∂x1
=

β2l3µa
2Q0

Ω Q1
.

(17)

The substitution of (16) and (17) into a = ∑10
k,i,j=1 vkwiwj

∂2 fk
∂xi∂xj

and b = ∑10
k,i=1 vkwi

∂2 fk
∂xi∂β1

yields

a =−
2β∗

1v3w3
2(µa(k1 + ϑa) + δaϑa)(ξ δa + δa φ2 + k2 φ1)

ξ2Q0
2k2

2l0
< 0,

b =
((ξ + φ2)δa + k2 φ1)v3w3l1

ξ k2Q0
> 0.

(18)

Since a < 0 and b > 0, then by item (iv) of Theorem 2.2 in [6], the model (1) is said to exhibit
forward bifurcation whenever Rc = 1.

Figure 2 illustrates the dynamics of the proposed model about Rc. When the effective
reproduction number (Rc) lies between [0, 1), we say the anthrax DFE is locally asymp-
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totically stable. For Rc > 1, then, the endemic equilibrium is stable. The interest of this
subsection is to understand what happens when Rc = 1, and Figure 2 shows that the point
of criticality for the stability of the disease is between DFE and disease-endemic equilibrium
(DEE). Hence, the result:
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Figure 2. Forward bifurcation plot.

Theorem 4. The proposed model exhibits forward bifurcation at Rc = 1, and the model is stable.

3.8. Global Stability Analysis

Theorem 5. The disease-free equilibrium is globally asymptotically stable whenever Rc ≤ 1 and is
unstable when Rc > 1.

Proof. The Lyapunov function Y shall be used to establish the global stability of (1) at
disease-free equilibrium and is expressed as

Y =
Rc

S+
a

Ia +
β1{ξ + φ2}

k2ξ
Ca +

β1

ξ
P. (19)

The time derivative of (19) gives

Ẏ =
Rc

S+
a

İa +
β1{ξ + φ2}

k2ξ
Ċa +

β1

ξ
Ṗ. (20)

Substitute the third, fifth, and sixth equation of the model in Equation (1) into the
system (20) gives

Ẏ =
Rc

S+
a
(β1(Ca + P)Sa − k1 Ia) +

β1{ξ + φ2}
k2ξ

(δa Ia + k2Ca) +
β1

ξ
(φ1 Ia + φ2Ca − ξP). (21)

Next, since Sa ≤ S+
a =

l1
Q0

, (21) gives
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Ẏ ≤
(
Rcβ1(Ca + P)− Rck1

S+
a

Ia

)
+

β1{ξ + φ2}
k2ξ

(δa Ia + k2Ca) +
β1

ξ
(φ1 Ia + φ2Ca − ξP). (22)

The simplification of (22) yields

Ẏ ≤ β1(Ca + P)(Rc − 1). (23)

Theorem 6. The endemic equilibrium (13) is globally asymptotically stable whenever Rc > 1 and
is unstable otherwise.

The proof is presented in Appendix A.

4. Parameterization and Scenario Simulations

In this section, we present the parameter values (see Table 2) used for the proposed
model and simulate various scenarios. This numerical simulation is aimed at validating
the qualitative analyses presented in the previous section.

Table 2. Base values of parameters for simulation.

S/N Parameter Values Source

1 β1 0.001–0.009 [25]
2 q 0.003 [24]
3 Ω 0.05 [25]
4 ξ 0.035 [25]
5 φ1 0.45 [18,21]
6 δa 0.6 [22]
7 φ2 0.001125 [22]
8 τ 0.025 [25]
9 ω 0.1 [17]
10 µa 0.0001 [18]
11 θ 0.004 [24]
12 Π 0.92 [18]
13 β2 0.0001 [8]
14 α 0.6 Assumed
15 z 0.6 Assumed
16 ϕh 0.6 [18]
17 χ [0, 0.9] Assumed & [8]
18 γh 0.04 [18]
19 µh 0.000042734 [27,28]
20 ϑh 0.5 [18]
21 ϑa 0.07 [24]
22 δh 0.02 [24]
23 γa 0.0025 [18]

4.1. Validation of the Qualitative Analysis

From Figure 3, it is observed that the population of infected animals converges to zero
(the DFE for the infected animal compartment) despite the variation in the initial conditions
at disease-free equilibrium (DFE). Therefore, DFE is globally asymptotically stable for the
infected animal compartment.

Figure 4 is the animal carcass compartment dynamics at DFE. This also converges to
zero with the corresponding variation of the initial conditions. The same global asymptotic
stability is observed for the environmental spore density of Bacillus anthracis, as shown in
(Figure 5), and the infected human compartment, as illustrated in (Figure 6).
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Figure 3. Diagram illustrating the global asymptotic stability of DFE for the infected animal
population.
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Figure 4. Visualization of global asymptotic stability of DFE for the animal carcass compartment.

0 20 40 60 80 100 120 140 160 180 200

Time

0

100

200

300

400

500

600

700

800

E
n

v
ir
o

n
m

e
n

ta
l 
S

p
o

re
s
 D

e
n

s
it
y
 o

f 
 B

a
c
il
lu

s
 a

n
th

ra
c
is

Figure 5. Global asymptotic stability of DFE for the environmental spores.
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Figure 6. Global asymptotic stability of DFE for the infected human compartment.

The global asymptotic stability simulation was performed at endemic equilibrium
(EE) for various compartments, and the results are presented in Figures 7–9. Simulation
indicated that the global asymptotic stability of the endemic equilibrium point for the
environmental spore density (Figure 10) would be achieved at about 1500 days, compared
to the disease-free equilibrium, which converges in about 200 days (Figure 5).
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Figure 7. GAS of the endemic equilibrium for the carcasses.

While the carcass population at DFE is globally asymptotically stable at around zero
in 50 days (Figure 4), the carcass population at EE was found to be globally stable at a point
within the same 50 days (Figure 7).
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Figure 8. Global asymptotic stability of endemic equilibrium for infected animals.

0 50 100 150 200 250 300

Time

0

1000

2000

3000

4000

5000

6000

7000

P
o

p
u

la
ti
o

n
 o

f 
In

fe
c
te

d
 I

n
d

iv
id

u
a

ls

Figure 9. Global stability of endemic equilibrium for infected humans.
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Figure 10. Global asymptotic stability of endemic equilibrium for spore density.
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4.2. Effect of Enlightenment Campaign on the Disease Dynamics

Figure 11 presents a simulation investigating the impact of efforts at enlightening the
human population χ in order to curtail disease incidence. It is observed that with an increase
in the enlightenment effort, the population of infected individuals decreases significantly.
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Figure 11. Variation of efforts for the enlightenment of the populace.

4.3. Sensitivity Analysis

In this section, we investigate the sensitivity indexes of the effective reproduction
number with regard to its constituent parameters. This procedure can be seen in [8].
The sensitivity index of Rc with respect to the parameter y is given by

γRc
y =

y
Rc

· ∂Rc

∂y

for

Rc =
(1 − q)Ω ((ξ + φ2)δa + φ1(τ + ω))β1

(µa + θ)(γa + µa + δa)(τ + ω)ξ
, (24)

γRc
q = −Ω (ω φ1 + τ φ1 + ξ δa + δa φ2)β1

(µa + θ)(γa + µa + δa)(τ + ω)ξ
,

γRc
δa

=
(1 − q)Ω (ξ + φ2)β1

(µa + θ)(γa + µa + δa)(τ + ω)ξ
− (1 − q)Ω (ω φ1 + τ φ1 + ξ δa + δa φ2)β1

(µa + θ)(γa + µa + δa)
2(τ + ω)ξ

,

γRc
ξ =

(1 − q)Ω δaβ1

(µa + θ)(γa + µa + δa)(τ + ω)ξ
− (1 − q)Ω (ω φ1 + τ φ1 + ξ δa + δa φ2)β1

(µa + θ)(γa + µa + δa)(τ + ω)ξ2 .

In Table 3 and Figure 12, we present the normalized forward sensitivity analysis
result for Rc. We can deduce that the effective disease transmission rate for animals (β1),
pathogen release rate from infected animals (φ1), and the recruitment rate into the animal
population (Ω) are positively correlated to the effective reproduction number and are
also statistically very significant in anthrax disease dynamics. Mitigation measure(s) that
decrease these parameters will most definitely reduce the appearance of new infections in
the population (both human and animal populations).
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Table 3. Normalized forward sensitivity index values for Rc.

Parameter Sensitivity Index

β1 1
q −0.0030
Ω 1
ξ −0.7305
φ1 0.7218
φ2 −0.7175
τ −0.0556
ω −0.2225
µa −0.0246
γa −0.0041
δa −0.7175
θ −0.9756

Figure 12. Normalized forward sensitivity analysis result visualization for Rc.

In Table 4, we present the normal sensitivity index values for Rc = 1.796887703 > 1
using the various animal population compartments as response functions at endemic
equilibrium, and in Figure 13, we present the visualization result for Rc = 1.796887703 > 1
for the endemicity (animal infected population).

Table 4. Normalized forward sensitivity index values using the various indicated populations as
response function at endemic equilibrium (Rc = 1.796887703 > 1).

Par S∗
a V∗

a I∗a R∗
a C∗

a P∗

β1 −0.9993 −0.9867 0.3280 0.3280 0.3286 0.3281
q −0.6003 × 10−6 −1.2343 × 10−2 −3.0999 × 10−3 −3.998 × 10−3 −3.998 × 10−3 −3.999 × 10−3

Ω 6.672 × 104 1.277 × 10−2 1.329 1.327 1.327 1.330
ξ 0.9275 0.9159 −0.3036 −0.3051 −0.3057 −1.304
φ1 −0.9248 −0.9134 0.3036 0.3041 0.3029 1.301
φ2 2.304 × 10−3 2.276 × 10−3 7.530 × 10−4 7.555 × 10−4 7.559 × 10−4 3.236 × 10−3

δa 8.238 × 10−6 1.502 × 10−5 8.239 × 10−6 8.232 × 10−6 3.441 × 10−3 8.231 × 10−6

τ 0.1999 0.1973 −0.2697 −0.2695 −2.698 × 10−1 −0.2695
ω 0.7996 0.7893 −1.079 −1.077 −1.080 −1.030
µa 1.301 × 10−5 −0.999 −8.022 × 10−3 −9.440 × 10−3 −8.191 × 10−3 −8.022 × 10−3

θ 4.116 × 10−5 −0.9876 −0.3195 −0.3195 −0.3195 −0.3195
ϑa 4.671 × 10−4 0 −6.854 × 10−4 -0.9959 2.296 × 10−4 8.859 × 10−4

γa 3.180 × 10−4 3.144 × 10−4 2.030 × 10−2 1.019 1.616 2.028 × 10−2
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Figure 13. Sensitivity index using animal infected compartment as response function at endemicity.

In Table 5, we present the normal sensitivity index values for Rc = 1.796887703 > 1
for the endemicity (human population), and in Figure 14, we present the visualization
result for Rc = 1.796887703 > 1 for the endemicity (human infected population). What we
can deduce is that the effective disease transmission rate for animals and humans (β1, β2),
the rate of loss of infection-acquired immunity by animals (ϑa), the pathogen release rate
from infected animals and decaying carcasses (φ1, φ2), and the recruitment rate into animal
and human populations (Ω, Π) are not negatively correlated to the basic reproduction
number and that they are statistically significant. Therefore, mitigation measure(s) that
decrease these parameters will most definitely reduce the appearance of new infections in
the populations.

Table 5. Normalized forward sensitivity index values using the various human population compart-
ments as response functions at endemic equilibrium (Rc = 1.796887703 > 1).

Par S∗
h S∗

l I∗h R∗
h

β1 0.6474 0.3845 0.7137 0.7137
q −7.881 × 10−3 −4.684 × 10−3 −8.694 × 10−3 −8.694 × 10−3

Ω 2.611 1.550 2.880 2.880
ξ −2.427 −1.443 −2.679 −2.677
φ1 2.418 1.436 2.666 2.665
φ2 6.008 × 10−3 3.565 × 10−3 6.623 × 10−3 6.623 × 10−3

δa 1.503 × 10−5 8.924 × 10−6 1.656 × 10−5 1.656 × 10−5

τ −0.5314 −0.3157 −0.5858 −0.5853
ω −2.125 −1.263 −2.343 −2.343
µa −1.471 × 10−2 −8.737 × 10−3 −1.622 × 10−2 −1.622 × 10−2

θ −0.6297 −0.3740 −6.944 × 10−1 −6.944 × 10−1

ϑa 1.618 × 10−3 9.614 × 10−4 1.784 × 10−3 1.784 × 10−3

γa 3.933 × 10−2 2.338 × 10−2 4.336 × 10−2 4.338 × 10−2

δh −3.257 −3.255 −3.588 −3.588
Π 7.330 6.976 6.976 6.976
β2 1.968 1.168 2.169 2.168
α 2.641 2.909 2.910 2.910
z 5.628 5.355 5.361 5.355

ϕh −2.945 −1.746 −3.245 −3.245
χ −1.008 7.217 × 10−3 8.624 × 10−3 −8.014 × 10−3

γh 3.257 3.257 2.590 3.589
µh −1.976 −2.176 −2.179 −2.178
ϑh −6.329 −5.981 −5.981 −6.976



Mathematics 2024, 12, 1014 21 of 26

1 q

\v
ar

ph
i_
1 a

\v
ar

ph
i_
2 a 2 z h h h h a h a

Parameters in I
h
*

-8

-6

-4

-2

0

2

4

6

8

S
e

n
s
it
iv

it
y
 i
n
d

e
x
e
s
 w

it
h
 r

e
s
p
e
c
t 
to

 I
h*

Figure 14. Sensitivity index using the human infected compartment at endemic equilibrium as the
response function.

5. Conclusions

In conclusion, our study delves into the mathematical modeling of anthrax disease spread
by employing epidemiological tools to gain insights into the dynamics of this zoonotic disease.
Through our analyses, we present both qualitative and quantitative results that contribute to
the understanding of anthrax transmission within animal and human populations.

We begin by developing a model to understand anthrax dynamics then present some
mathematical analysis such as the boundedness, positivity, existence, and uniqueness of
the model. We also present some equilibrium points of the model: that is, DFE and EE.
The threshold parameter (Rc) of the model is obtained and examined using bifurcation
theory. Our forward bifurcation analysis reveals a nuanced threshold behavior, indicating a
qualitative change in the disease dynamics as Rc surpasses critical values. This knowledge
is invaluable for informing strategies aimed at controlling and preventing anthrax outbreaks
in both animal and human populations and how resources can be deployed for public
health policy.

Furthermore, we present the global stability analysis of the equilibrium points, and
the analytical results are validated with some scenarios simulation. We also establish
the importance of an enlightenment campaign on disease dynamics. To determine the
parameters that are relevant for reducing disease spread, we perform a normalized forward
sensitivity analysis on Rc. The analysis allows us to determine parameters for the effective
reproduction number Rc for both populations and at the level of different compartments
for animal populations and then human populations at endemic equilibrium.

Despite the advancements made in our study, certain limitations warrant acknowledg-
ment. A significant constraint is the unavailability of robust data. Insufficient data hinders
our ability to calibrate and validate the model, thus impacting the precision of parameter
values used for model simulation of different scenarios to validate our qualitative analy-
sis and further quantitatively analyze the developed model. This limitation underscores
the challenges inherent in obtaining comprehensive datasets for infectious diseases with
complex transmission patterns, like anthrax.

Addressing the limitations of our current study opens avenues for future research in
modeling anthrax disease. To enhance the accuracy of our model predictions, efforts should
be directed towards acquiring more extensive and high-quality data encompassing diverse
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geographical regions and host species. Additionally, incorporating real-time surveillance
data can bolster the predictive power of the models, facilitating more reliable simulations
of anthrax dynamics.

Future research endeavors could explore the integration of advanced statistical tech-
niques and machine learning algorithms to handle uncertainties associated with parameter
estimation and model predictions. Furthermore, investigating the impact of environmental
factors such as climate and land use on anthrax transmission dynamics could contribute to
a more holistic understanding of anthrax disease ecology. Another future work could use a
meta-population model to examine the model at different spatial scales by incorporating
mobility, which is an important driver of disease transmission.

We also intend, as an extension of this paper, to consider the maximum Lyapunov
exponent (MLE) and analyze the time series for the model we developed in this article,
which will enable us to determine the set of parameter values and initial conditions that will
make the system chaotic. When these are obtained, the MLE will be solved and simulated
numerically. Because the presence of a positive Lyapunov exponent implies that the system
is chaotic, more than one implies that the system is hyperchaotic. Thus, the MLE will be
used to determine whether the model system is chaotic.

In conclusion, our research lays the foundation for further investigations into anthrax
disease modeling and emphasizes the importance of continuous data collection, model
refinement, and multidisciplinary collaboration. By addressing these challenges and build-
ing on the insights gained, future research endeavors can contribute to the development of
effective strategies for anthrax disease control and prevention.
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Appendix A

Proof. Let M be a Lyapunov function defined as

M = g
( Sa

S∗
a

)
+ g
( Va

V∗
a

)
+ g
( Ia

I∗a

)
+ A1g

(Ca

C∗
a

)
+ A2g

( Pa

P∗
a

)
+ A3

[
g(

Sh
S∗

h
) + g

(
Sl
S∗

l

)
+ g
(

Ih
I∗h

)]
, (A1)

where Ai > 0 for i = 1, 2, 3, and g(x) = x − 1 − ln x is a positive function. Then the time
derivative of M is obtained as

Ṁ =
(

1 − S∗
a

Sa

)
Ṡa +

(
1 − V∗

a
Va

)
V̇a +

(
1 − I∗a

Ia

)
İa + A1

(
1 − C∗

a
Ca

)
Ċa + A2

(
1 − P∗

a
Pa

)
Ṗa

+ A3

(
1 −

S∗
h

Sh

)
Ṡh + A3

(
1 −

S∗
l

Sl

)
Ṡl + A3

(
1 −

I∗h
Ih

)
İh.

(A2)

Substituting (1) into (A2) when ϑa = ϑh = 0, θS∗
a ≤ µaV∗

a , χS∗
h ≤ (β2e(Ia + Ca + P) +

µh)Sl , k1 I∗ = β1(C∗
a + P∗)S∗

a gives
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Ṁ =
(

1 − S∗
a

Sa

)(
l1 − β1(Ca + P)Sa − (θ + µa)Sa

)
+
(

1 − V∗
a

Va

)(
l2 + θSa − µaVa

)
+
(

1 − I∗a
Ia

)(
β1(Ca + P)Sa − k1 Ia

)
+ A3

(
1 −

S∗
l

Sl

)(
l4 + χSh − (β2e(Ia + Ca + P) + µh)Sl

)
+ A3

(
1 −

S∗
h

Sh

)(
l3 − β2(Ia + Ca + P)Sh − (χ + µh)Sh

)
+ A1

(
1 − C∗

a
Ca

)
(δa Ia − k2Ca)

+ A3

(
1 −

I∗h
Ih

)(
β2(Ia + Ca + P)(Sh + eSl)− k3 Ih

)
+ A2

(
1 − P∗

P

)(
φ1 Ia + φ2Ca − ξP

)
.

(A3)

Ṁ ≤ µaS∗
a

[
2 − S∗

a
Sa

− Sa

S∗
a

]
+ µaV∗

a

[
3 − V∗

a Sa

VaS∗
a
− S∗

a
Sa

− Va

V∗
a

]
+ β1C∗

a S∗
a

[
1 − S∗

a
Sa

]
+ β1P∗S∗

a

[
1 − S∗

a
Sa

]

β1(C∗
a + P∗)S∗

a − β1CaSa
I∗a
Ia

− β1PSa
I∗a
Ia

+ A1k2C∗
a

[
1 − IaC∗

a
I∗a Ca

]
+ A2

[
− φ1

IaP∗

P
− φ2

CaP∗

P
+ εP∗

]

+ A3µhS∗
h

[
2 −

S∗
h

Sh
− Sh

S∗
h

]
+ A3µhS∗

l

[
4 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Sl

S∗
l

]
+ A3β2eS∗

l

[
η I∗a + C∗

a + P∗
]

×
[

2 −
S∗

h
Sh

− Sh
S∗

h

]
+ A3β2eS∗

l I∗a

[
1 −

S∗
l

Sl

]
+ A3β2eS∗

l C∗
a

[
1 −

S∗
l

Sl

]
+ A3β2eS∗

l P∗
[

1 −
S∗

l
Sl

]

+ A3

[
− k3 Ih − ηβ2 Ia

I∗h Sh

Ih
− β2CaSh

I∗h
Ih

− β2PSh
I∗h
Ih

− ηβ2 IaSl
Ia I∗h
Ih

− β2eSlCa
I∗h
Ih

− β2eSl P
I∗h
Ih

+ k3 I∗h

]
,

(A4)

such that the positive constants A1, A2, and A3 satisfy the following equations:

−k1 + A1δa + A2 φ1 + A3β2(S∗
h + eS∗

l ) = 0, (A5)

−A2ξ + β1S∗
a + A3β2(S∗

h + eS∗
l ) = 0, (A6)

−A1k2 + A2 φ2 + β1S∗
a + A3β2(S∗

h + eS∗
l ) = 0. (A7)

Next, substituting

k3 =
A3β2(η I∗a + C∗

a + P∗)(S∗
h + eS∗

l )

I∗h
, P∗ =

φ1 I∗a + φ2C∗
a

ξ
, and A1 =

A3β2(S∗
h + eS∗

l ) + β1S∗
a + A2 φ2

k2

into (A4) yields

Ṁ ≤ µaS∗
a

[
2 − S∗

a
Sa

− Sa

S∗
a

]
+ µaV∗

a

[
3 − V∗

a Sa

VaS∗
a
− S∗

a
Sa

− Va

V∗
a

]
+ A3µhS∗

h

[
2 −

S∗
h

Sh
− Sh

S∗
h

]

+ A3µhS∗
l

[
4 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Sl

S∗
l

]
+ β1C∗

a S∗
a

[
3 − S∗

a
Sa

− SaCa I∗a
S∗

a C∗
a Ia

− IaC∗
a

I∗a Ca

]

+
β1 φ1S∗

a I∗a
ξ

[
3 − S∗

a
Sa

− SaPI∗a
S∗

a P∗ Ia
− IaP∗

I∗a Pa

]
+

β1 φ2C∗
a S∗

a
ξ

+

[
4 − S∗

a
Sa

− SaPI∗a
S∗

a P∗ Ia
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

]

+ A3β2S∗
h I∗a

[
2 −

S∗
h

Sh
− Ia

I∗h
−

Sh Ia I∗h
S∗

h I∗a Ih

]
+

A3β2 φ2C∗
a S∗

h
ξ

+

[
4 −

S∗
h

Sh
− Ih

I∗h
−

ShPI∗h
S∗

h P∗ Ih
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

]

+
A3 φ1β2S∗

h I∗a
ξ

[
3 −

S∗
h

Sh
− Ih

I∗h
−

ShPI∗h
S∗

h P∗ Ih
− IaP∗

I∗a P

]
+ A3β2S∗

hC∗
a

[
3 −

S∗
h

Sh
− Ih

I∗h
−

ShCa I∗h
S∗

hC∗
a Ih

− IaC∗
a

I∗a Ca

]

+ A3β2eS∗
l I∗a

[
4 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

Sl Ia I∗h
S∗

l I∗a Ih

]
+ A3β2eS∗

l C∗
a

[
5 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

SlCa I∗h
S∗

l C∗
a Ih

− IaC∗
a

I∗a Ca

]

+
A3β2eφ1S∗

l I∗a
ξ

[
5 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

PSl I∗h
P∗S∗

l Ih
− IaP∗

I∗a P

]

+
A3β2eφ2S∗

l C∗
a

ξ

[
6 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

PSl I∗h
P∗S∗

l Ih
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

]
.

(A8)
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Next, we multiply (A5) and the fifth equation of (1) at endemic equilibrium by I∗a and
A1, respectively, to get

−k1 I∗a + A1δa I∗a + A3β2(S∗
h + eS∗

l )I∗a + A2 φ1 I∗a = 0. (A9)

A1δa I∗a − A1k2C∗
a = 0. (A10)

Solving (A9) and (A10), we obtain

A1k2C∗
a − k1 I∗a + A2 φ1 I∗a + A3β2(S∗

h + eS∗
l )I∗a = 0. (A11)

Further simplification of (A11) yields

A3β2(S∗
h + eS∗

l )

[
I∗a + C∗

a +
φ1 I∗a

ξ
+

φ2C∗
a

ξ

]
= 0, (A12)

Hence, it follows that (A12) becomes

A3β2(S∗
h + eS∗

l )

[
I∗a + C∗

a +
φ1 I∗a

ξ
+

φ2C∗
a

ξ

]
FD(x) = 0, (A13)

where FD(x) is a function of the state variables, and the components of the endemic
equilibrium are to be determined.

Substituting (A13) into (A8) gives

Ṁ ≤ µaS∗
a

[
2 − S∗

a
Sa

− Sa

S∗
a

]
+ µaV∗

a

[
3 − V∗

a Sa

VaS∗
a
− S∗

a
Sa

− Va

V∗
a

]
+ A3µhS∗

h

[
2 −

S∗
h

Sh
− Sh

S∗
h

]

+ A3µhS∗
l

[
4 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Sl

S∗
l

]
+ β1C∗

a S∗
a

[
3 − S∗

a
Sa

− SaCa I∗a
S∗

a C∗
a Ia

− IaC∗
a

I∗a Ca

]

+
β1 φ1S∗

a I∗a
ξ

[
3 − S∗

a
Sa

− SaPI∗a
S∗

a P∗ Ia
− IaP∗

I∗a Pa

]
+

β1 φ2C∗
a S∗

a
ξ

[
4 − S∗

a
Sa

− SaPI∗a
S∗

a P∗ Ia
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

]

+ A3β2S∗
h I∗a

[
2 −

S∗
h

Sh
− Ih

I∗h
−

Sh Ia I∗h
S∗

h I∗a Ih
− FD(x)

]
+

A3 φ1β2S∗
h I∗a

ξ

[
3 −

S∗
h

Sh
− Ih

I∗h
−

ShPI∗h
S∗

h P∗ Ih
− IaP∗

I∗a P
− FD(x)

]

+
A3β2 φ2C∗

a S∗
h

ξ

[
4 −

S∗
h

Sh
− Ih

I∗h
−

ShPI∗h
S∗

h P∗ Ih
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

− FD(x)

]
+ A3β2S∗

hC∗
a

[
3 −

S∗
h

Sh
− Ih

I∗h
−

ShCa I∗h
S∗

hC∗
a Ih

− IaC∗
a

I∗a Ca
− FD(x)

]
+ A3β2eS∗

l I∗a

[
4 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

Sl Ia I∗h
S∗

l I∗a Ih
− FD(x)

]
+

A3β2eφ1S∗
l I∗a

ξ

[
5 −

S∗
h

Sh

− Sh
S∗

h
−

S∗
l

Sl
− Ih

I∗h
−

PSl I∗h
P∗S∗

l Ih
− IaP∗

I∗a P
− FD(x)

]
+

A3β2eφ2S∗
l C∗

a
ξ

[
6 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

PSl I∗h
P∗S∗

l Ih

− IaC∗
a

I∗a Ca
− CaP∗

C∗
a P

− FD(x)

]
.

(A14)

We choose FD(x) =
(

I∗a
Ia
− 2
)

so that the arithmetic–geometric mean inequality is satisfied.
Then (A14) becomes
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Ṁ ≤ µaS∗
a

[
2 − S∗

a
Sa

− Sa

S∗
a

]
+ µaV∗

a

[
3 − V∗

a Sa

VaS∗
a
− S∗

a
Sa

− Va

V∗
a

]
+ A3µhS∗

h

[
2 −

S∗
h

Sh
− Sh

S∗
h

]

+ A3µhS∗
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[
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S∗
h

Sh
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S∗
h
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S∗
l

Sl
− Sl

S∗
l

]
+ β1C∗

a S∗
a

[
3 − S∗

a
Sa

− SaCa I∗a
S∗

a C∗
a Ia

− IaC∗
a

I∗a Ca

]

+
β1 φ1S∗

a I∗a
ξ

[
3 − S∗

a
Sa

− SaPI∗a
S∗

a P∗ Ia
− IaP∗

I∗a Pa

]
+

β1 φ2C∗
a S∗

a
ξ

[
4 − S∗

a
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− SaPI∗a
S∗

a P∗ Ia
− IaC∗

a
I∗a Ca
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C∗
a P
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+ A3β2S∗
h I∗a

[
4 −

S∗
h

Sh
− Ih

I∗h
−

Sh Ia I∗h
S∗

h I∗a Ih
− I∗a

Ia

]
+

A3β2 φ2C∗
a S∗

h
ξ

[
6 −

S∗
h

Sh
− Ih

I∗h
−

ShPI∗h
S∗

h P∗ Ih
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

− I∗

Ia

]

+
A3 φ1β2S∗

h I∗a
ξ

[
5 −

S∗
h

Sh
− Ih

I∗h
−

ShPI∗h
S∗

h P∗ Ih
− IaP∗

I∗a P
− I∗a

Ia

]
+ A3β2S∗

hC∗
a

[
5 −

S∗
h

Sh
− Ih

I∗h
−

ShCa I∗h
S∗

hC∗
a Ih

− IaC∗
a

I∗a Ca
− I∗a

Ia

]

+ A3β2eS∗
l I∗a

[
6 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

Sl Ia I∗h
S∗

l I∗a Ih
− I∗a

Ia

]
+

A3β2eφ1S∗
l I∗a

ξ

[
7 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

PSl I∗h
P∗S∗

l Ih

− IaP∗

I∗a P
− I∗a

Ia

]
+

A3β2eφ2S∗
l C∗

a
ξ

[
8 −

S∗
h

Sh
− Sh

S∗
h
−

S∗
l

Sl
− Ih

I∗h
−

PSl I∗h
P∗S∗

l Ih
− IaC∗

a
I∗a Ca

− CaP∗

C∗
a P

− I∗a
Ia

]
.

(A15)

Considering the arithmetic–geometric mean inequality, the expressions in the braces are negative;
thus, dM

dt ≤ 0. More so, the application of LaSalle’s invariance principle [29] on the model (1)
indicates that the solution at endemic equilibrium converges to the same point for Rc > 1.

Therefore, we use numerical simulation in Section 4 to verify this claim. Hence, the end
of the proof.
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