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1. Introduction

Consider an independent identically distributed random sample X1, X2, · · · , Xn from
a population with an unknown cumulative distribution function (CDF). For the empirical
distribution function Fn, defined as follows:

Fn(x) =
1
n

n

∑
i=1

I(Xi ≤ x), ∀x ∈ R1,

with I denoting the indicator function, the classical Glivenko–Cantelli theorem states that
Fn(x) converges almost surely (a.s.) to F(x) uniformly in x ∈ R1, i.e.,

sup
x∈R1

|Fn(x)− F(x)| → 0, a.s.

The extended Glivenko–Cantelli lemma (in Fabian and Hannan 1985, pp. 80–83 [1])
provides the strong uniform convergence rate as follows:

sup
x∈R

nα|Fn(x)− F(x)| → 0 a.s., for any 0 < α < 1/2. (1)

The law of the iterated logarithm (LIL) for Fn(t), i.e.,

lim sup
n→∞

√
n

2 log(log n)
sup

x

∣∣∣Fn(x)− F(x)
∣∣∣ = 1

2
a.s. (2)

was proven by Smirnov (1944) [2] and, independently, Chung (1949) [3].
Finkelstein (1971) [4] obtained the L2-version of the law of iterated logarithm,

lim sup
n→∞

√
n

2 log(log n)
[
∫ ∞

−∞
(Fn(x)− F(x))2dF(x)]1/2 =

1
π

a.s. (3)

For any p ≥ 1, setting

C(p) =
1
2
(

p(p + 2)
π

)1/2(
2

p + 2
)1/p Γ(1/p + 1

2 )

Γ(1/p)
, (4)
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the law of the iterated logarithm for Lp-norm of Fn(x),

lim sup
n→∞

√
n

2 log(log n)

[ ∫ ∞

−∞
|Fn(x)− F(x)|pdF(x)

]1/p
= C(p) a.s. (5)

was developped by Gajek, Kahszka, and Lenic (1996) [5]. It is easy to verify that

C(1) =
√

3
6

and C(2) =
1
π

.

And (3) is a special case of (5) corresponding to p = 2.
Notice that there is one serious discontinuity drawback of Fn, regardless of F being

continuous or discrete. To treat this deficiency of Fn, Yamato (1973) [6] proposed the
following kernel distribution estimator:

F̂(x) =
∫ x

−∞
n−1 ∑n

i=1 kh(u − Xi)du, x ∈ R, (6)

in which h = hn is the usual band width sequence of positive numbers tending to zero, k is
a probability density function(PDF) called kernel, and kh(u) = k(u/h)/h .

The aim of this paper is to provide certain conditions to guarantee the LIL of Lp-norm
of F̂. Some asymptotic properties of the smooth estimator F̂ have been established. For
example, in Yamato (1973) [6], the asymptotic normality and uniform strong consistency of
F̂ were obtained. In more general contexts, Winter (1979) [7] considered the convergence
rate of perturbed empirical distribution functions. Wang, Cheng, and Yang (2013) [8]
developed simultaneous confidence bands for F based on F̂. The strong convergence rate
of F̂ was considered by Cheng (2017) [9], which extended the extended Glivenko–Cantelli
Lemma (1) to the kernel estimator F̂.

Here, we shall continue to consider the strong convergence of a smooth estimator F̂
for F. More specifically, we are interested in extending the LIL of Lp-norm in (5) for Fn(t)
to the kernel estimator F̂.

The outline of this paper is as follows: Section 2 describes the basic assumptions and
main results : the strong uniform closeness between Fn and F̂, and the LIL of Lp-norm of F̂.
Detailed proofs are provided in Section 3.

Note that for the proof of the strong uniform closeness between Fn and F̂, we use the
Kiefer type approximation for the empirical process (see Csörgő and Révész (1981) [10]).

Throughout the following all limits are taken as the sample size n tending to ∞.

2. Assumptions and the Main Results

In this section, we start with the assumptions for the kernel function k.

Assumption 1. k: Functions k(x), xk(x) and x2k(x) are integrable on the whole real line and
satisfy the following properties:

k(x) ≥ 0,
∫ +∞

−∞
k(x)dx = 1,

∫ +∞

−∞
xk(x)dx = 0 and

∫ +∞

−∞
x2k(x)dx < ∞ .

About the band width h, we assume

h3/2 log(log n) → 0 and nh4/ log(log n) → 0, (7)

which are stronger than the assumption nh4 → 0 used in Cheng (2017) [9].
Under the above assumptions, we first state the result for evaluating the uniform

closeness between F̂ and Fn, which improves Theorem 2.1 in Cheng (2017) [9].
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Theorem 1. Assume that Assumption k and (7) hold. Then, for the continuous CDF F with
bounded second order derivative, we have

sup
x∈R

√
n

log(log n)
∣∣F̂(x)− Fn(x)

∣∣ → 0, a.s. (8)

Together with LIL in (2), the LIL can be extended to F̂, as follows:

Corollary 1. Under the assumptions of Theorem 1, for the continuous CDF F with bounded second
order derivative, we have

lim sup
n→∞

√
n

2 log(log n)
sup

x

∣∣∣F̂(x)− F(x)
∣∣∣ = 1

2
a.s. (9)

Remark 1. Using a different approach, (9) was verified in Winter (1979) [7].

Combining (8) with (5), the LIL for Lp-norm of Fn can be extended to F̂.

Theorem 2. Under the assumptions of Theorem 1, for any p ≥ 1 and the continuous CDF F with
bounded second order derivative, we have

lim sup
n→∞

√
n

2 log(log n)

[ ∫ ∞

−∞
|F̂(x)− F(x)|pdF(x)

]1/p
= C(p) a.s., (10)

where C(p) is defined in (4).

Remark 2. Applying the facts C(1) =
√

3
6 and C(2) = 1

π , Theorem 2 can result in the following
corollary:

Corollary 2. Under the assumptions of Theorem 1, for the continuous CDF F with bounded second
order derivative, we have

lim sup
n→∞

√
n

2 log(log n)

∫ ∞

−∞
|F̂n(x)− F(x)|dF(x) =

√
3

6
a.s.

and
lim sup

n→∞

√
n

2 log(log n)

[ ∫ ∞

−∞
|F̂n(x)− F(x)|2dF(x)

]1/2
=

1
π

a.s.

Detailed proofs of the above results are given below.

3. Proof

Set

Un(x) :=
1
n

n

∑
i=1

{I(Xi ≤ x)− F(x)}, x ∈ R.

Therefore, (2) guarantees that

lim sup
n→∞

√
n

log(log n)
sup

x

∣∣∣Un(x)
∣∣∣ = O(1) a.s. (11)

For independent uniform [0, 1] random variables: ξ1, ξ2, · · · , ξn, we define

Vn(v) :=
1
n

n

∑
i=1

[
I(ξi ≤ v)− v

]
, ∀ v ∈ [0, 1].
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Then, Vn(v) is a standardized uniform [0, 1] empirical process, and Un(x) has the same
distribution as Vn(F(x)). Using Theorem 4.4.3 and Theorem 1.15.2 in Csörgő and Révész
(1981) [10], applying the Kiefer type approximation of the empirical process, there exists a
Kiefer process {K(s; t) : 0 ≤ s ≤ 1, 0 ≤ t < ∞} such that

sup
x

|nUn(x)− K(F(x), n)| = O((log n)2) a.s., (12)

with Bn(v) = K(v, n)/
√

n, 0 ≤ v ≤ 1 being a Brownian bridge.
The Proof of Theorem 1 involves three parts: (i) applying the the triangular inequality

to the distribution functions, (ii) using the the Kiefer approximation of the empirical process,
and (iii) applying the the Taylor expansion. See below for details.

Proof of Theorem 1. Rewrite F̂(x),

F̂(x) = n−1
n

∑
i=1

∫ x

−∞
kh(u − εi)du = n−1

n

∑
i=1

G
(

x − εi
h

)
, (13)

where G(x) =
∫ x
−∞ k(u)du. By the definition of Fn(x), performing integration by parts and

a change of variable u = x−t
h , we can continue to rewrite F̂(x), as follows:

F̂(x) =
∫ +∞

−∞
G
(

x − t
h

)
dFn(t)

= G
(

x − t
h

)
Fn(t)

∣∣∣+∞

−∞
+

∫ +∞

−∞
Fn(t)k

(
x − t

h

)
1
h

dt

=
∫ +∞

−∞
Fn(t)

1
h

k
(

x − t
h

)
dt =

∫ +∞

−∞
Fn(x − hu)k(u)du. (14)

Combining (14) with the properties k(u) ≥ 0 and
∫ +∞
−∞ k(u)du = 1, and applying the

triangular inequality, we have that∣∣∣F̂(x)− Fn(x)
∣∣∣ = ∣∣∣ ∫ +∞

−∞
[Fn(x − hu)− Fn(x)]k(u)du

∣∣∣
≤

∣∣∣ ∫ +∞

−∞

{
[Fn(x − hu)− F(x − hu)]− [Fn(x)− F(x)]

}
k(u)du

∣∣∣
+

∣∣∣∣∫ +∞

−∞
[F(x − hu)− F(x)]k(u)du

∣∣∣∣
=

∣∣∣ ∫ +∞

−∞
[Un(x − hu)− Un(x)]k(u)du

∣∣∣+ ∣∣∣∣∫ +∞

−∞
[F(x − hu)− F(x)]k(u)du

∣∣∣∣.
Moreover, this results in

sup
x

∣∣∣F̂(x)− Fn(x)
∣∣∣

≤ sup
x

∣∣∣ ∫ +∞

−∞
[Un(x − hu)− Un(x)]k(u)du

∣∣∣+ sup
x

∣∣∣∣∫ +∞

−∞
[F(x − hu)− F(x)]k(u)du

∣∣∣∣
=: D1n + D2n, say.

Thus, to show Theorem 1, it is sufficient to verify that

lim sup
n→∞

√
n

log(log n)
D1n = 0 and lim

n→∞

√
n

log(log n)
D2n = 0 a.s. (15)
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By log(logn) → ∞ and the integrability of k(u), it follows that

( ∫ +∞

log(logn)
+

∫ −log(logn)

−∞

)
k(u)du = o(1). (16)

Partitioning the integral in D1n into three parts, and using the triangular inequality, we can
obtain

D1n = sup
x

∣∣∣( ∫ −log(logn)

−∞
+

∫ +∞

log(logn)
+

∫ −log(logn)

−log(logn)

)
[Un(x − hu)− Un(x)]k(u)du

∣∣∣
≤ sup

x

( ∫ −log(logn)

−∞
+

∫ +∞

log(logn)
+

∫ log(logn)

−log(logn)

)∣∣∣Un(x − hu)− Un(t)
∣∣∣k(u)du

≤ 2
(

sup
x

|Un(x)|
)( ∫ −log(logn)

−∞
+

∫ +∞

log(logn)

)
k(u)du+ sup

x

∫ log(logn)

−log(logn)

∣∣∣Un(x − hu)− Un(x)
∣∣∣k(u)du

=: D11n + D12n, say. (17)

It is easy to see that (11) and (16) imply that

lim sup
n→∞

√
n

log(log n)
D11n = 0 a.s. (18)

As for D12n, with the triangular inequality, (12),
∫ log(logn)
−log(logn) k(u)du ≤ 1 and the continuity

of modulus of Bn(F(x)) = K(F(x), n)/
√

n, we have

D12n

≤ sup
x

1
n

∣∣∣ ∫ log(logn)

−log(logn)

{
[nUn(x − hu)− K(F(x − hu), n)]− [nUn(x)− K(F(x), n)]

}
k(u)du

∣∣∣
+ sup

x

1
n

∣∣∣ ∫ log(logn)

−log(logn)
[K(F(x − hu), n)− K(F(x), n)]k(u)du

∣∣∣
≤ 2

n

(
sup

x

∣∣∣nUn(x)− K(F(x), n)
∣∣∣)+ O(h log(log n)

√
h log(log n)/

√
n

= O(
(log n)2

n
) + O

(
h log(log n)

√
h log(log n)/

√
n
)

a.s.

Hence, combining the above bound with (log n)2√
n log(logn)

→ 0 and the assumption h3/2 log(log n) →
0, it follows that

lim sup
n→∞

√
n

log(log n)
D12n = 0. a.s. (19)

Next, we proceed to evaluate D2n. Using the Taylor expansion with integral remainder, the
properties

∫ +∞
−∞ uk(u)du = 0,

∫ +∞
−∞ u2k(u)du < ∞, supt | f

′
(t)| < ∞ and nh4/ log(log n) →

0, we obtain
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F(x − hu)− F(x) = −hu f (x) +
∫ x−hu

x
f
′
(s)(x − hu − s)ds

= −hu f (x) +
∫ −hu

0
f
′
(x − hu − t)tdt,

D2n = sup
x

∣∣∣∣∫ +∞

−∞
[
∫ −hu

0
f
′
(x − hu − t)tdt]k(u)du

∣∣∣∣
≤ sup

x
| f

′
(x)|

∫ +∞

−∞

1
2

h2u2k(u)du = O(h2),

√
n

log(log n)
D2n = O(

√
nh4

log(log n)
) → 0. (20)

Therefore, (15) can be produced from (17)–(20). We have completed the proof of Theo-
rem 1.

Proof of Corollary 1. Decomposing F̂(x)− F(x) into two parts and using the triangular
inequality, we have∣∣F̂(x)− F(x)

∣∣ =
∣∣F̂(x)− Fn(x) + Fn(x)− F(x)

∣∣
≤

∣∣F̂(x)− Fn(x)
∣∣+ ∣∣Fn(x)− F(x)

∣∣,∣∣F̂(x)− F(x)
∣∣ ≥ −

∣∣F̂(x)− Fn(x)
∣∣+ ∣∣Fn(x)− F(x)

∣∣.
Then, it follows that

sup
x∈R

∣∣F̂(x)− F(x)
∣∣ ≤ sup

x∈R

∣∣F̂(x)− Fn(x)
∣∣+ sup

x∈R

∣∣Fn(x)− F(x)
∣∣

and

sup
x∈R

∣∣F̂(x)− F(x)
∣∣ ≥ − sup

x∈R

∣∣F̂(x)− Fn(x)
∣∣+ sup

x∈R

∣∣Fn(x)− F(x)
∣∣.

Combining the above inequalities with (8) and (2), this guarantees that

lim sup
n→∞

√
n

2 log(log n)
sup

x

∣∣∣F̂(x)− F(x)
∣∣∣ = 1

2
a.s.

Thus, we have finished the proof of Theorem 1.

Proof of Theorem 2. For any p ≥ 1, using the triangular inequality and the fact that∫ ∞
−∞ 1dF(x) = 1 , we have that[ ∫ ∞

−∞
|F̂(x)− F(x)|pdF(x)

]1/p

≤
[ ∫ ∞

−∞
|F̂(x)− Fn(x)|pdF(x)

]1/p
+

[ ∫ ∞

−∞
|Fn(x)− F(x)|pdF(x)

]1/p

≤ sup
x∈R

|F̂(x)− Fn(x)|+
[ ∫ ∞

−∞
|Fn(x)− F(x)|pdF(x)

]1/p
(21)
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and [ ∫ ∞

−∞
|F̂(x)− F(x)|pdF(x)

]1/p

≥ −
[ ∫ ∞

−∞
|F̂(x)−Fn(x)|pdF(x)

]1/p
+

[ ∫ ∞

−∞
|Fn(x)− F(x)|pdF(x)

]1/p

≥ − sup
x∈R

|F̂(x)− Fn(x)|+
[ ∫ ∞

−∞
|Fn(x)− F(x)|pdF(x)

]1/p
. (22)

Note that we have proven

sup
x∈R

√
n

log(log n)
∣∣F̂(x)− Fn(x)

∣∣ → 0, a.s.

in Theorem 1. Thus, combining it with (21), (22) and the law of the iterated logarithm for
Lp-norm of Fn(x) in (5), it follows that

lim sup
n→∞

√
n

2 log(log n)

[ ∫ ∞

−∞
|F̂(x)− F(x)|pdF(x)

]1/p
= C(p) a.s.

Therefore, we have finished the proof of Theorem 2.

Proof of Corollary 2. Corollary 2 is the special case of results of Theorem 2 with p = 1, 2.
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