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Abstract: This paper aims to address the exponential stability and stabilization problems for a class of
delayed nonlinear Markov jump systems under randomly occurring Denial-of-Service (DoS) attacks
and packet loss. Firstly, the stochastic characteristics of DoS attacks and packet loss are depicted by
the attack success rate and packet loss rate. Secondly, a Period Observation Window (POW) method
and a hybrid-input strategy are proposed to compensate for the impact of DoS attack and packet loss
on the system. Thirdly, A Dynamic Event-triggered Mechanism (DETM) is introduced to save more
network resources and ensure the security and reliability of the systems. Then, by constructing a
general common Lyapunov functional and combining it with the DETM and other inequality analysis
techniques, the less conservative stability and stabilization criteria for the underlying systems are
derived. In the end, the effectiveness of our result is verified through two examples.

Keywords: delayed nonlinear Markov jump systems; attack success rate; packet loss rate; Dynamic
Event-triggered Mechanism; exponential stability and stabilization
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1. Introduction

In recent decades, Markov Jump Systems (MJSs) have received widespread atten-
tion [1,2] due to their powerful ability to depict the mutation phenomenon that the pa-
rameter and structure of systems often encountered. It is worth mentioning that some
undesirable dynamic behaviors, such as cyber attack [3,4], packet loss [5,6], time delay [7,8],
non-linearity [9,10], often appear in the real systems, due to the openness of communi-
cation networks, limited bandwidth, external disturbance and signal propagation. As is
well known, the stability is a prerequisite to ensure the normal operation of the system.
However, such undesirable dynamic behaviors often lead to oscillation, chaos, and even
instability. Therefore, it is very interesting to study the stability and stabilization problems
of the Delayed Nonlinear MJSs (DNMJSs) under cyber attacks and packet loss.

Generally, there are two kinds of common cyber attack, named Denial-of-Service
(DoS) attack and deception attack. Compared with deception attacks, a DoS attack is
often launched by occupying communication resources to prevent the normal operation
of the network and poses strong aggressiveness and ease of implementation, so it has
become the most threatening form of cyber attack. Recently, many fruitful results on
the stability and stabilization problems of DNMJSs under DoS attack or packet loss have
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been achieved [11,12]. From the perspective of characterization methods, Bernoulli pro-
cesses [11–13] and Markov processes [14,15] are often used to model the stochastic prop-
erties of the DoS attack and packet loss. From the viewpoint of compensation strategies,
the hold-input strategy and zero-input strategy are often adopted to deal with the impacts
of DoS attacks and packet loss on the systems. The hold-input strategy is used to achieve
faster and smoother stability of the systems in [16,17]. The stochastic behaviors of the
packet loss are modeled by a Bernoulli process, and a zero-input strategy is adopted to
compensate for the impacts of packet loss in [12]. However, DoS attacks and packet loss
are rarely mentioned together, and few papers consider attack success rate and packet loss
rate, which will limit its applicability in practical applications. Therefore, it is necessary to
consider the impacts of attack success rate and packet loss rate on system performance at
the same time, which prompted this paper.

On the other hand, with the increasing pressure of network communication, especially
in the case of limited network resources, determining how to improve the resource utiliza-
tion rate has become the focus of many scholars. To this end, the traditional time-triggered
mechanisms, such as sampled-data control or impulsive control, have been widely used in
recent years [18]. However, they cannot determine the triggered time on demand, which
results in a waste of communication resources to a certain extent. For an event-triggered
mechanism, the signals are transmitted only when the system state meets the preset trig-
gered condition, which can effectively overcome the aforementioned obstacle. It is worth
noting that according to the type of triggered parameters, event-triggered mechanisms
are often divided into Static Event-Triggered Mechanisms (SETM) [19–22] and Dynamic
Event-Triggered Mechanisms (DETM) [23,24]. Based on the Adaptive Event-Triggered
Mechanism (AETM), ref. [19] considered the asynchronous stabilization problem of Markov
jump interval type-2 fuzzy systems with cyber attacks, ref. [20] studied the reliable sta-
bilization problem of Markovian jump complex dynamic networks with actuator faults.
By the Event-Triggered Impulsive Mechanism (ETIM), ref. [21] discussed the security sta-
bilization problem of stochastic networked control systems under cyber attacks, ref. [22]
addressed the stabilization problem for stochastic switched systems with input constraints.
Compared with the SETM, DETM contains a non-negative internal dynamic variable in the
event-triggered condition which relies on the system’s state and error state, which afford
DETM greater advantages in reducing communication costs. Thus, determining how to
use DETM to study the security control problem of delayed MJSs under a DoS attack and
packet loss shall be an interesting topic.

Based on the points discussed above, this paper will further study the dynamic event-
triggered security control problem for a class of DNMJSs under randomly occurring DoS
attacks and packet loss. The main contributions of this paper are summarized as follows:

1. Two independent Bernoulli processes are introduced to describe the stochastic char-
acteristics of attack success rate and packet loss rate during the action-period and
sleeping-period, respectively.

2. Considering the physical properties of a randomly occurring DoS attack and packet
loss, the POW method and hybrid-input strategy are proposed, which are very useful
to depict the evolution law of DoS attack and packet loss.

3. By constructing a general common Lyapunov functional, combining with DETM and
other inequality analysis techniques, the less conservative security stability criteria
are obtained.

Notations: Throughout this paper, R, Z+ represent the set of real numbers and the set
of positive integer numbers, respectively. Rn, Rm×n and Sn×n

+ stand for a n-dimensional
Euclidean space, the set of m× n real matrices and the set of symmetric positive definite
matrices, respectively. The symbol ∗ denotes the symmetric entry in the symmetric matrix.
sym{G} = G + GT . ⟨x, y⟩ represents the inner product of vectors x, y ∈ Rn. (Ω,Ft,P)
denotes a complete probability space, where Ω is a sample space of events, Ft is a sigma-
algebra of events, P is a probability measure on Ft.
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2. Problem Formulation and Preliminary
2.1. System Description

Consider the following DNMJSs:

ẋ(t) = A
(
λ̄t
)
x(t) + Aq

(
λ̄t
)

x(t− q(t)) + f (t, x(t)) + B
(
λ̄t
)
u(t), (1)

where x(t) ∈ Rn is the state vector, q(t) denotes the time-varying delay that satisfies
0 ≤ q(t) ≤ q, 0 ≤ q̇(t) ≤ µ < 1, x(s) = φ(s), ∀s ∈ [−q, 0] is the initial condition, u(t) ∈ Rm

is the control input, A
(
λ̄t
)
∈ Rn×n, Aq

(
λ̄t
)
∈ Rn×n, B

(
λ̄t
)
∈ Rn×m are known constant

matrices, f (t, x(t)) is the external disturbance that satisfies Assumption 1,
{

λ̄t, t ≥ 0
}

denotes the right continuous homogeneous Markov jump process on the probability space
(Ω,Ft,P) and taken values in a finite set Γ = {1, 2, · · · , S} with the transition rate matrix
Πλ =

{
λij

}
given by

Pr
{

λ̄t+∆ = j|λ̄t = i
}
=

{
λij∆ + o(∆), i ̸= j

1 + λij∆ + o(∆), i = j
(2)

where ∆ > 0, lim
∆→0

o(∆)/∆ = 0. λij ≥ 0(i, j ∈ Γ, i ̸= j) represents the transition rate from

the mode i at time t to the mode j at time t + ∆, and λii = −∑S
j=1,j ̸=i λij. For convenience,

denote A
(
λ̄t
)
= Ai, Aq

(
λ̄t
)
= Aqi, B

(
λ̄t
)
= Bi, when λ̄t = i.

Assumption 1 ([25]). For x̂1, x̂2 ∈ Rn, f (t, x) satisfies one-sided Lipschitz:

⟨ f (t, x̂1)− f (t, x̂2), x̂1 − x̂2⟩ ≤ ρ0∥x̂1 − x̂2∥2,

where ρ0 ∈ R is one-sided Lipschitz constant.

Assumption 2 ([25]). For x̂1, x̂2 ∈ Rn, f (t, x) is quadratic inter-bounded, if

∥ f (t, x̂1)− f (t, x̂2)∥2 ≤ β0∥ f (t, x̂1)− f (t, x̂2)∥2 + α0⟨x̂1 − x̂2, f (t, x̂1)− f (t, x̂2)⟩

holds, where β0, α0 ∈ R are known constants.

Definition 1 ([9]). The system (1) is exponentially mean-square stable, if there are constants a > 0
and c > 0, such that

E
{
∥x(t)∥2

}
≤ ae−ct sup

−q≤s≤0
E
{
∥φ(s)∥2

}
.

Definition 2 ([9]). For the Lyapunov functional V
(
x(t), λ̄t

)
, its infinitesimal operator is defined

as follows:

LV
(

x(t), λ̄t
)
= lim

∆→0+

1
∆
[
E
{

V
(
x(t + ∆), λ̄t+∆

)∣∣ x(t), λ̄t
}
−V

(
x(t), λ̄t

)]
. (3)

Lemma 1 ([10]). For any vectors ζ1(t), ζ2(t), σ1(t), σ2(t) ∈ R satisfying σ1(t) + σ2(t) = 1,
and matrices Z ∈ Rn×n, ℵ1,ℵ2 ∈ Sn×n

+ , the following inequality holds

1
σ1(t)

ζT
1 (t)ℵ1ζ1(t) +

1
σ2(t)

ζT
2 (t)ℵ2ζ2(t) ≥

[
ζ1(t)
ζ2(t)

]T[ ℵ1 Z
∗ ℵ2

][
ζ1(t)
ζ2(t)

]
(4)

subject to
[
ℵ1 Z
∗ ℵ2

]
> 0.
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2.2. DoS Attack and Packet Loss

The openness and complexity of the communication network often leads to DoS
attacks and packet loss, which can reduce or even destroy the performance of the system.
Thus, this paper shall consider the DoS attack and packet loss in the communication
network between the zero-order holder (ZOH) and the actuator (as shown in Figure 1),
and the DoS attack and packet loss have the following characteristics: (1) the DoS attack
and packet loss will not occur in a same time interval; (2) the DoS attack and packet loss
will occur randomly.

Figure 1. The framework of system (1) under DoS attack and packet loss.

To depict such kind of DoS attack and packet loss more intuitively, a Periodic Obser-
vation Window (POW) method is proposed to model the first characteristic of DoS attack
and packet loss. Specifically, the nth POW is designed as [nℓ, (n + 1)ℓ), which can be di-
vided into

[
nℓ, nℓ+ ℓo f f

)
and

[
nℓ+ ℓo f f , (n + 1)ℓ

)
, where n ∈ {0,Z+}, ℓ is an observation

period.
[
nℓ, nℓ+ ℓo f f

)
is the sleeping-period of DoS attack,

[
nℓ+ ℓo f f , (n + 1)ℓ

)
is the

action-period of DoS attack, and DoS attack and packet loss will occur in the action-period
and sleeping-period, respectively. It is worth noting that during the sleeping-period, the con-
trol signal cannot be transmitted to the actuator if the packet loss occurs, and during the
action-period, the control signal cannot be transmitted to the actuator if the attack succeeds.

Furthermore, two random variables ςs(t) and ςa(t) are introduced to model the second
characteristic of DoS attack and packet loss, which are independent of each other and obey
the Bernoulli distribution, i.e.,

ςs(t) =

{
0, Packet losses
1, Packet does not loss

∀t ∈
[
nℓ, nℓ+ ℓo f f

)
,

ςa(t) =

{
0, Attack succeeds
1, Attack does not succeed

∀t ∈
[
nℓ+ ℓo f f , (n + 1)ℓ

)
.

From the property of Bernoulli distribution, it is easy to see that Pr{ςs(t) = 1} = ςs,
Pr{ςs(t) = 0} = 1− ςs, Pr{ςa(t) = 1} = ςa, Pr{ςa(t) = 0} = 1− ςa, where ςs, ςa ∈ (0, 1)
represent the expectation of random variables.

Remark 1. From the view of defense, the POW method can provide an effective way for defenders
to monitor the cyber attack, and also provide a feasible strategy for defenders to compensate for the
adverse impacts of Dos attack and packet loss. Furthermore, compared with the existing literature,
the characteristics of DoS attack and packet loss considered in this paper is more in line with the
actual situation.
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2.3. Dynamic Event-Triggered Mechanism

In order to further reduce the burden of network transmission, a DETM shall be
introduced in this section. To this end, it is assumed that the system state is sampled
with a fixed sampling period h, the mth sampling instant is denoted as sn

m and satisfies
sn

m+1 − sn
m = h. Furthermore, the kth triggering instant is denoted as tn

k and satisfies the
following DETM:

tn
k+1 = tn

k + min
jn∈Z+

{jnh | Fetc(tn
k + jnh) ≥ δϕ(tn

k + jnh)}, (5)

where Fetc(tn
k + jnh) = eT(tn

k + jnh
)
We

(
tn
k + jnh

)
− σxT(tn

k
)
Wx

(
tn
k
)
, σ ∈ (0, 1) is a trigger-

ing threshold, W is a weighting matrix to be determined, e
(
tn
k + jnh

)
= x(tn

k )− x
(
tn
k + jnh

)
stands for the error state between the current sampling state and the latest triggered state.
ϕ(t) is a dynamic variable that satisfies the following dynamic rule:

ϕ̇(t) = −2υ1ϕ(t)− δϕ(sn
m) + xT(sn

m)Ξx(sn
m), t ∈ [sn

m, sn
m+1) (6)

where υ1 > 0 and δ > 0 are the given constants, Ξ > 0 is a weighting matrix to be
determined. The initial condition is ϕ(0) = ϕ0 ≥ 0.

Remark 2. It is easy to see that {tn
k } ⊆ {s

n
m}, which implies the triggering interval tn

k+1 − tn
k ≥

h > 0, thus the DETM can avoid the Zeno behavior naturally. Furthermore, as reported in [25],
for the given constants ϕ0 ≥ 0, υ1 > 0, h > 0 and a weighting matrix Ξ > 0, there is always a
constant δ satisfying

0 < δ ≤ −2υ1 +
2υ1

1− e−2υ1h , (7)

such that the dynamic variable ϕ(t) satisfies ϕ(t) ≥ 0 for t ∈ [0, ∞). In addition, the DETM
designed in this paper relies on the current sampling states of system, and the dynamic variable can
be adjusted dynamically with the sampling instants, which results in the data transmission rate
being reduced to a large extent. The detailed algorithm of DETM is given in the Algorithm 1.

Algorithm 1 The algorithm of DETM
Step 1: Initialize the parameters ℓ, ℓo f f , γ, q, σ, δ, υ1, υ2, µ, α0, β0, ρ0, ϕ0;
Step 2: Compute matrices W, Ki by solving LMIs (40)–(43) in Theorem 2;
Step 3: Input the initial time t0 and the initial state x(t0) of systems;

For t ∈ [t0, tend) ∩
{[

Do f f
n , Don

n

)
∪
[

Don
n , Do f f

n+1

)}
;

Step 4: Update the system state x(tn
k + jnh) and the dynamic variable ϕ(tn

k + jnh);
Step 5: Compute the error state e(tn

k + jnh) and check the DETM;
If the triggering condition holds, go to Step 6:

Step 6: Update and save the triggering instant tn
k+1 ← tn

k + jnh, the triggering state
x(tk+1)← x(tn

k + jnh) ;
Else Update the sampling instant tn

k + (jn
k + 1)h, and return to Step 4:

End
End

2.4. Control Input Strategy

In order to compensate for the adverse influence on the systems from the DoS attack
and packet loss, this paper shall adopt the hybrid-input strategy, i.e., the zero-input strategy
is adopted when the DoS attack and packet loss occur, otherwise the hold-input strategy is
adopted. Then, combining with the DETM and the physical characteristics of DoS attack
and packet loss, the control input can be designed as
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u(t) =

 ςs(t)Kix
(
tn
k
)
, t ∈

[
tn
k , tn

k+1

)
∩
[
nℓ, nℓ+ ℓo f f

)
,

ςa(t)Kix
(
tn
k
)
, t ∈

[
tn
k , tn

k+1

)
∩
[
nℓ+ ℓo f f , (n + 1)ℓ

)
,

(8)

where Ki ∈ Rm×n is the controller gain matrix to be determined, k ∈ {1, · · · , kn
s , kn

s +
1, · · · , kn

a}, where kn
s ≜ max{k ∈ Z+ | tn

k < nℓ+ ℓo f f }, kn
a ≜ max{k ∈ Z+ | tn

k < (n + 1)ℓ}.

Remark 3. References [16,17] only adopt the hold-input strategy when the system is subjected to
DoS attack and packet loss. Compared to this case, the hybrid-input strategy adopted in this paper
can greatly combat the influence on system from randomly occurring DoS attack and packet loss.

2.5. Model Transformation

In this section, the input delay method and interval decomposition approach shall be
used to describe the control input under the randomly occurring DoS attack and packet
loss. Firstly, the relationship between the triggering instants tn

k and the sleeping-period and
action-period of POW should be discussed as follows:

(A) During the sleep-period
[
nℓ, nℓ+ ℓo f f

)
:

Πn
ιn1,1

=
[
nℓ+ ιn1,1h, nℓ+ (ιn1,1 + 1)h

)
, ιn1,1 = 0, 1, 2, · · · , (ι̌n1,1 − 1),

Πn
ιn1,k

=
[
tn
k + ιn1,kh, tn

k +
(

ιn1,k + 1
)

h
)

, ιn1,k = 0, 1, 2, · · · , (ι̌n1,k − 1),

Πn
ιn1
=
[
tn
kn

s
+ ιn1 h, tn

kn
s
+ (ιn1 + 1)h

)
, ιn1 = 0, 1, 2, · · · , (ι̌n1 − 1),

(9)

where ι̌n1,1 ≜ max{ιn1,1 ∈ {0,Z+} | nℓ + ιn1,1h ≤ tn
1}, ι̌n1,k ≜ max{ιn1,k ∈ {0,Z+} |

tn
k + ιn1,kh ≤ tn

k+1} and ι̌n1 ≜ max{ιn1 ∈ {0,Z+} | tn
kn

s
+ ιn1 h ≤ nℓ + ℓo f f }. Note that

if tn
1 = nℓ then Πn

ιn1,1
= {tn

1}, otherwise tn
1 = nℓ+ ιn1,1h. Similarly, tn

k+1 = tn
k + ι̌n1,kh,

nℓ+ ℓo f f = tn
kn

s
+ ι̌n1 h, and k = 1, 2, · · · , (kn

s − 1).

(B) During the action-period
[
nℓ+ ℓo f f , (n + 1)ℓ

)
:


Πn

ιn2,1
=
[
nℓ+ ℓo f f + ιn2,1h, nℓ+ ℓo f f + (ιn2,1 + 1)h

)
, ιn2,1 = 0, 1, 2, · · · , (ι̌n2,1 − 1),

Πn
ιn2,k

=
[
tn
k + ιn2,kh, tn

k +
(

ιn2,k + 1
)

h
)

, ιn2,k = 0, 1, 2, · · · , (ι̌n2,k − 1),

Πn
ιn2
=
[
tn
kn

a
+ ιn2 h, tn

kn
a
+ (ιn2 + 1)h

)
, ιn2 = 0, 1, 2, · · · , (ι̌n2 − 1),

(10)

where ι̌n2,1 ≜ max{ιn2,1 ∈ {0,Z+} | nℓ+ ιn2,1h ≤ tn
kn

s +1}, ι̌n2,k ≜ max{ιn2,k ∈ {0,Z+} |
tn
k + ιn2,kh ≤ tn

k+1} and ι̌n2 ≜ max{ιn2 ∈ {0,Z+} | tn
kn

a
+ ιn2 h ≤ (n + 1)ℓ}. Note that if

tn
kn

s +1 = nℓ+ ℓo f f , then Πn
ιn2,1

= {tn
kn

s +1}, otherwise tn
kn

s +1 = nℓ+ ℓo f f + ι̌n2,1h. Similarly,

tn
k+1 = tn

k + ι̌n2,kh, (n + 1)ℓ = tn
kn

a
+ ι̌n2 h, and k = kn

s + 1, kn
s + 2, · · · , (kn

a − 1).

Based on the interval decomposition in (9) and (10), for ∀t ∈ [nℓ, (n + 1)ℓ), it follows
from the input delay method that

γn
k (t) =



t− tn−1
kn−1

a
− ι̂n−1

2 h, t ∈ Π̂n
1 , ι̂n−1

2 = ι̌n−1
2 + 1, · · · , ι̌n−1

2 + ι̌n1,1 − 1,

t− tn
1 − ι̂n1,kh, t ∈ Π̂n

2 , ι̂n1,k = 0, 1, · · · , ι̌n1,k − 1,

k = 1, 2, · · · , (kn
s − 1),

t− tn
kn

s
− ι̂n1 h, t ∈ Π̂n

3 , ι̂n1 = 0, 1, 2, · · · , ι̌n1 , ι̌n1 + 1, · · · , ι̌n1 + ι̌n2,1,

t− tn
kn

s +1 − ι̂n2,kh, t ∈ Π̂n
4 , ι̂n2,k = 0, 1, 2, · · · , ι̌n2,k − 1,

k = kn
s + 1, kn

s + 2, · · · , (kn
a − 1),

t− tn
kn

a
− ι̂n2 h, t ∈ Π̂n

5 , ι̂n2 = 0, 1, 2, · · · , ι̌n2 − 1,

(11)
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where Π̂n
1 = Πn−1

ι̌n−1
2 −1

⋃{⋃ι̌n1,1−1
ιn1,1=0 Πn

ιn1,1

}
, Π̂n

2 =
⋃ι̌n1,k−1

ιn1,k=0 Πn
ιn1,k

, Π̂n
3 =

{⋃ι̌n1−1
ιn1=0 Πn

ιn1

}⋃{⋃ι̌n2,1−1
ιn2,1=0 Πn

ιn2,1

}
, Π̂n

4 =⋃ι̌n2,k−1
ιn2,k=0 Πn

ιn2,k
, Π̂n

5 =
⋃ι̌n2−1

ιn2=0 Πn
ιn2

. It is easy to find that γn
k (t) is a piece-wise continuous function,

which satisfies 0 ≤ γn
k (t) < γ = h and

en
k (t) = x(tn

k )− x(t− γn
k (t)), ∀t ∈ Π̂n = ∪5

ιn=1Π̂n
ιn . (12)

Combining with (8) and (12), the DNMJSs (1) can be rewritten as the following
switched systems:

ẋ(t) =Aix(t) + Aqix(t− q(t)) + f (t, x) + us(t),

us(t) =ςs(t)BiKi(x(t− γn
k (t)) + en

k (t)), t ∈
[

Don
n , Do f f

n

)
,

ẋ(t) =Aix(t) + Aqix(t− q(t)) + f (t, x) + ua(t),

ua(t) =ςa(t)BiKi(x(t− γn
k (t)) + en

k (t)), t ∈
[

Do f f
n , Don

n+1

)
,

(13)

where
[

Do f f
n , Don

n

)
= Π̂n ∩

[
nℓ, nℓ+ ℓo f f

)
,
[

Don
n , Do f f

n+1

)
= Π̂n ∩

[
nℓ+ ℓo f f , (n + 1)ℓ

)
.

3. Main Results

Before presenting the main results, the following vectors need to be given.

ϖ(t) =col{x(t), x(t− q(t)), x(t− q), x(t− γn
k (t)), x(t− γ), f (t, x), en

k (t)},
Γ1i =Ai ē1 + Aqi ē2 + ςsBiKi(ē4 + ē7) + ē6,

Γ2i =Ai ē1 + Aqi ē2 + ςaBiKi(ē4 + ē7) + ē6,

Γ̄1i =AiΥi ē1 + AqiΥi ē2 + ςsBiYi(ē4 + ē7) + ē6,

Γ̄2i =AiΥi ē1 + AqiΥi ē2 + ςaBiYi(ē4 + ē7) + ē6,

Γ̂1i =AiΥi ē1 + BiYi(ē4 + ē7) + ē6, Γ̂2i = AiΥi ē1 + ē6,

Π1 =
[
ēT

1 − ēT
4 , ēT

4 − ēT
5

]T
, Π2 =

[
ēT

1 − ēT
2 , ēT

2 − ēT
3

]T
,

ēb =
[
0n×(b−1)n In 0n×(7−b)n

]
, b = 1, 2, · · · , 7.

In this section, the exponential stability and stabilization criteria for the system (13)
under the randomly occurring DoS attack and packet loss are established in terms of LMIs.

Theorem 1. For given positive scalars ℓ, ℓo f f , q, σ, h, δ, υ1, υ2, ε1, ε2, µ, scalars α0, β0, ρ0, υ1 +
υ2 > 0 satisfying (7) and

−υ2ℓ+ (υ1 + υ2)ℓo f f > 0, (14)

if there exist matrices W1, W2, W3, J1, J2, W, Ξ, Pi ∈ Sn×n
+ , Ki ∈ Rm×n, and matrices M1, M2 ∈

Rn×n, such that the following LMIs hold:[
J1 M1
∗ J1

]
≥ 0, (15)[

J2 M2
∗ J2

]
≥ 0, (16)

Φ1i < 0, (17)

Φ2i < 0, (18)
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where

Φ1i =sym
{

ēT
1 PiΓ1i

}
+ ēT

1

(
2υ2Pi + ∑S

j=1 λijPj

)
ē1 + Φ0,

Φ2i =sym
{

ēT
1 PiΓ2i

}
+ ēT

1

(
−2υ2Pi + ∑S

j=1 λijPj

)
ē1 + Φ0,

Φ0 =sym
{
(ε1ρ0 + ε2β0)ēT

1 ē1 + (ε2α0 − ε1)ēT
1 ē6 − ε2 ēT

6 ē6

}
+ ēT

1 (W1 + W2 + W3)ē1 − e−2υ1γ ēT
5 W1 ē5 − e−2υ1q(1− µ)ēT

2 W2 ē2

− e−2υ1q ēT
3 W3 ē3 + ΓT

2i

(
γ2 J1 + q2 J2

)
Γ2i + ēT

4 Ξē4 + σ(ē4 + ē7)
TW(ē4 + ē7)

− ēT
7 Wē7 − e−2υ1γΠT

1

[
J1 M1
∗ J1

]
Π1 − e−2υ1qΠT

2

[
J2 M2
∗ J2

]
Π2.

then the system (13) is exponentially mean-square stable.

Proof of Theorem 1. Construct the following Lyapunov functional:

U
(
x(t), λ̄t, t

)
= V

(
x(t), λ̄t

)
+ ϕ(t), (19)

where

V
(

x(t), λ̄t
)
=xT(t)P

(
λ̄t
)
x(t) +

∫ t

t−γ
e−2υ1(t−ξ)xT(ξ)W1x(ξ)dξ

+
∫ t

t−q(t)
e−2υ1(t−ξ)xT(ξ)W2x(ξ)dξ

+
∫ t

t−q
e−2υ1(t−ξ)xT(ξ)W3x(ξ)dξ

+ γ
∫ t

t−γ

∫ t

s
e−2υ1(t−ξ) ẋT(ξ)J1 ẋ(ξ)dξds

+ q
∫ 0

−q

∫ t

t+s
e−2υ1(t−ξ) ẋT(ξ)J2 ẋ(ξ)dξds.

According to Definition 2, it follows:

LV
(

x(t), λ̄t
)
≤− 2υ1V

(
x(t), λ̄t

)
+ 2xT(t)Pi ẋ(t) + 2υ1xT(t)Pix(t)

+ xT(t)
(
∑S

j=1 λijPj

)
x(t) + xT(t)(W1 + W2 + W3)x(t)

− e−2υ1γxT(t− γ)W1x(t− γ)− e−2υ1qxT(t− q)W3x(t− q)

− e−2υ1q(1− µ)xT(t− q(t))W2x(t− q(t))

+ ẋT(t)
(

γ2 J1

)
ẋ(t)− γ

∫ t

t−γ
e−2υ1(t−ξ) ẋT(ξ)J1 ẋ(ξ)dξ

+ ẋT(t)
(

q2 J2

)
ẋ(t)− q

∫ t

t−q
e−2υ1(t−ξ) ẋT(ξ)J2 ẋ(ξ)dξ. (20)

By using the Jensen integral inequality in [10] and Lemma 1, with the help of (15) and
(16), the last two integral quadratic terms of (20) can be rewritten as:

− γ
∫ t

t−γ
e−2υ1(t−ξ) ẋT(ξ)J1 ẋ(ξ)dξ − q

∫ t

t−q
e−2υ1(t−ξ) ẋT(ξ)J2 ẋ(ξ)dξ

≤− e−2υ1γϖT(t)ΠT
1

[
J1 M1
∗ J1

]
Π1ϖ(t)− e−2υ1q ϖT(t)ΠT

2

[
J2 M2
∗ J2

]
Π2ϖ(t). (21)
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From Assumptions 1 and 2, we have

2ε2β0xT(t)x(t) + 2ε2α0xT(t) f (t, x)− 2ε2 f T(t, x) f (t, x),

+ 2ε1ρ0xT(t)x(t)− ε1xT(t) f (t, x)− ε1 f T(t, x)x(t) ≥ 0,
(22)

where the scalars ε1 > 0 and ε2 > 0.
Case A: During the sleeping-period [nℓ, nℓ+ ℓo f f ), one can obtain from (5) and (6)

that,

ϕ̇(t) ≤− 2υ1ϕ(t) + xT(t− γn
k (t))Ξx(t− γn

k (t))− (en
k (t))

TWen
k (t)

+ σ[x(t− γn
k (t)) + en

k (t)]
TW[x(t− γn

k (t)) + en
k (t)]. (23)

Combining with (20)–(23), we have

LU(t) ≤ −2υ1U(t) + ϖT(t){Φ1i}ϖ(t). (24)

Thus, it follows from (17) and (24) that,

LU(t) ≤ −2υ1U(t). (25)

Then, for t ∈
[

Do f f
n , Don

n

)
, one can obtain from (25) and Dynkin formula [2] that

EU(t) ≤e−2υ1

(
t−Do f f

n

)
EU

(
Do f f

n

)
≤e−2υ1(t−ℓon

n−1)+2(υ1+υ2)(ℓ−ℓo f f )EU
(

Don
n−1

)
≤e−2υ1

(
t−ℓo f f

n−1

)
+2(υ1+υ2)(ℓ−ℓo f f )EU

(
Do f f

n−1

)
...

≤e−2υ1

(
t−ℓo f f

0

)
+2n(υ1+υ2)(ℓ−ℓo f f )EU

(
Do f f

0

)
, (26)

It follows from Do f f
0 = 0 that

EU(t) ≤ e−2υ1t+2n(υ1+υ2)(ℓ−ℓo f f )U(0), (27)

For t ≥ Do f f
n ≥ nℓ, from (14), we have

EU(t) ≤ e−2λnU(0), (28)

where λ = −υ1ℓ+ (υ1 + υ2)ℓo f f . And because of t ≤ Don
n = nℓ+ ℓo f f , then n ≥ t−ℓo f f

ℓ .
Thus,

EU(t) ≤ e2λ
ℓo f f
ℓ e−

2λ
ℓ tU(0). (29)

Case B: During the action-period [nℓ+ ℓo f f , (n + 1)ℓ), one can obtain from (5), (6) and
υ1 + υ2 > 0 that

ϕ̇(t) = −2υ1ϕ(t)− δϕ(t− γn
k (t)) + xT(t− γn

k (t))Ξx(t− γn
k (t))

≤ 2υ2ϕ(t) + xT(t− γn
k (t))Ξx(t− γn

k (t))− (en
k (t))

TWen
k (t)

+ σ[x(t− γn
k (t)) + en

k (t)]
TW[x(t− γn

k (t)) + en
k (t)], (30)
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Combining with (20), (21) and (30),

LU(t) ≤ 2υ2U(t) + ϖT(t)Φ2iϖ(t). (31)

According to (18) and (31), it follows that

LU(t) ≤ 2υ2U(t). (32)

Then, for t ∈
[

Don
n , Do f f

n+1

)
, one can obtain from (32) and Dynkin formula [2] that

EU(t) ≤e2υ2(t−Don
n )EU(Don

n )

≤e2υ2

(
t−Do f f

n

)
−2(υ1+υ2)ℓo f f EU

(
Do f f

n

)
≤e2υ2(t−ℓon

n−1)−2(υ1+υ2)ℓo f f EU
(

Don
n−1

)
...

≤e2υ2(t−ℓon
0 )−2n(υ1+υ2)ℓo f f EU(Don

0 )

≤e2υ2

(
t−ℓo f f

0

)
−2(n+1)(υ1+υ2)ℓo f f EU

(
Do f f

0

)
, (33)

From Do f f
0 = 0, we have

EU(t) ≤ e2υ2t−2(n+1)(υ1+υ2)ℓo f f U(0), (34)

For t ≤ Do f f
n+1 = (n + 1)ℓ, it can be obtained from (14)

EU(t) ≤ e−2λ(n+1)U(0), (35)

And because of t ≤ (n + 1)ℓ,

EU(t) ≤ e−
2λ
ℓ tU(0). (36)

Denote η1 = min
i∈{1,··· ,S}

{λmin(Pi)}, η2 = min
i∈{1,··· ,S}

{λmax(Pi)}, η3 = η2 + γλmax(W1) +

qλmax(W2) + qλmax(W3) + γ2λmax(J1) + q2λmax(J2) . From (29) and (36), there is a scalar
d > 1 satisfies

EU(t) ≥η1E
{
∥x(t)∥2

}
, (37)

U(0) ≤dη3E

{
sup
−γ≤s≤0

∥φ(s)∥2
γ

}
+ ∥ϕ(0)∥. (38)

Furthermore, for given φ and ϕ(0), there always exists a scalar η4 > 0 such that ∥ϕ(0)∥ ≤
η4E{ sup

−γ≤s≤0
∥φ(s)∥2

γ}. Thus, combining with (29) and (36)–(38), we have

E
{
∥x(t)∥2

}
≤ ϑη5

η1
e−

2λ
ℓ tE

{
sup
−γ≤s≤0

∥φ(s)∥2
γ

}
, (39)

where ϑ = max
{

e2λ
ℓo f f
ℓ , 1

}
and η5 = dη3 + η4. Therefore, system (13) is exponentially

mean-square stable. The proof is finished.

Next, based on Theorem 1, we shall to solve the controller gain matrix Ki and the
weighting matrices Ξi and Wi in the DETM.
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Theorem 2. For given positive scalars ℓ, ℓo f f , γ, q, σ, δ, υ1, υ2, ε1, ε2, µ, κ1, κ2, scalars α0, β0, ρ0,
and υ1 + υ2 > 0, satisfying (7) and (14), if there exist matrices W̄1i, W̄2i, W̄3i, J̄1i, J̄2i, Ξ̄i, W̄i, Υi ∈
Sn
+ and matrices M̄1i, M̄2i ∈ Rn×n, such that the following LMIs hold:[

J̄1i M̄1i
∗ J̄1i

]
≥ 0, (40)[

J̄2i M̄2i
∗ J̄2i

]
≥ 0, (41)

Φ̄1i ∗ ∗ ∗ ∗
γΓ̄1i −

(
2κ1Υi − κ2

1 J̄1i
)

∗ ∗ ∗
qΓ̄2i 0 −

(
2κ2Υi − κ2

2 J̄2i
)
∗ ∗

Φ̄14i 0 0 Φ̄44 ∗
Φ15 0 0 0 Φ55

 < 0, (42)


Φ̄2i ∗ ∗ ∗ ∗
γΓ̄1i −

(
2κ1Υi − κ2

1 J̄1i
)

∗ ∗ ∗
qΓ̄2i 0 −

(
2κ2Υi − κ2

2 J̄2i
)
∗ ∗

Φ̄14i 0 0 Φ̄44 ∗
Φ15 0 0 0 Φ55

 < 0, (43)

where

Φ̄1i =sym
{

ēT
1 Γ̄1i

}
+ ēT

1 (2υ1Υi + λiiΥi)ē1 + Φ̄0i,

Φ̄2i =sym
{

ēT
1 Γ̄2i

}
+ ēT

1 (−2υ2Υi + λiiΥi)ē1 + Φ̄0i,

Φ̄0i =sym
{
(ε2α0 − ε1)ēT

1 Υi ē6 − ε2 ēT
6 ē6

}
− e−2υ1γ ēT

5 W̄1i ē5

+ ēT
1 (W̄1i + W̄2i + W̄3i)ē1 − e−2υ1q(1− µ)ēT

2 W̄2i ē2

− e−2υ1q ēT
3 W̄3i ē3 + ēT

4 Ξi ē4 − ēT
7 W̄i ē7 + σ(ē4 + ē7)

TW̄i(ē4 + ē7)

− e−2υ1γ ΠT
1

[
J̄1i M̄1i
∗ J̄1i

]
Π1 − e−2υ1qΠT

2

[
J̄2i M̄2i
∗ J̄2i

]
Π2,

Φ̄14i =



√
λi1Υi 0 0 0 0 0 0

...
...

...
...

...
...

...√
λi(i−1)Υi 0 0 0 0 0 0√
λi(i+1)Υi 0 0 0 0 0 0

...
...

...
...

...
...

...√
λiSΥi 0 0 0 0 0 0


,

Φ̄44 =diag{−Υ1, · · · ,−Υi−1,−Υi+1, · · · ,−ΥS},

Φ15 =
[
(ε1ρ0 + ε2β0) 0 0 0 0 0 0

]
, Φ55 = −1

2
(ε1ρ0 + ε2β0).

then, the system (13) is exponentially mean-square stable. Moreover, we obtain Ki = YiΥ−1
i ,

Ξi = ΥT
i ΞΥi and Wi = ΥT

i WΥi.

Proof of Theorem 2. Denote Υi = P−1
i , Gi = ΥiGΥi, G ∈ {W1, W2, W3, J1, J2, Ξ, W,

N1, N2, M1, M2}, Yi = KiΥi, Gu = {Υi, Υi, Υi, Υi, Υi, In, Υi, In, In, Υ̂i, In} and Υ̂i =
diag {In, · · · , In}︸ ︷︷ ︸

S−1

. Pre- and post-multiplying (15) and (16) by Gu, we have (40) and (41). Pre-

and post-multiplying (17) and (18) by Gu, respectively, then by using−J−1
1 = −Υi J1i

−1Υi ≤
−2κ1Υi + κ2

1 J1i, −J−1
2 = −Υi J2i

−1Υi ≤ −2κ2Υi + κ2
2 J2i and Schur complement, we can

obtain (42) and (43), respectively.



Mathematics 2024, 12, 1064 12 of 19

Next, when the time-varying delay, packet loss and DoS occurring rate are excluded,
the system (13) can be rewritten as follows:

ẋ(t) =Aix(t) + f (t, x) + us(t),

us(t) =BiKi(x(t− γn
k (t)) + en

k (t)), t ∈
[

Don
n , Do f f

n

)
,

ẋ(t) =Aix(t) + f (t, x), t ∈
[

Do f f
n , Don

n+1

)
.

(44)

Then, by set the matrices W̄2i = W̄3i = J̄2i = M̄2i = 0 in Theorem 1, one can obtain the
following Corollary.

Corollary 1. For given positive scalars ℓ, ℓo f f , γ, q, σ, δ, υ1, υ2, ε1, ε2, µ, κ1, κ2, scalars α0, β0, ρ0,
and υ1 + υ2 > 0, satisfying (7) and (14), if there exist matrices W̄1i, J̄1i, Ξ̄i, W̄i, Υi ∈ Sn

+ and
matrices M̄1i ∈ Rn×n, such that the following LMIs hold: [

J̄1i M̄1i
∗ J̄1i

]
≥ 0, (45)

Φ̄1i ∗ ∗ ∗ ∗
γΓ̂1i −

(
2κ1Υi − κ2

1 J̄1i
)

∗ ∗ ∗
qΓ̂2i 0 −

(
2κ2Υi − κ2

2 J̄2i
)
∗ ∗

Φ̄14i 0 0 Φ̄44 ∗
Φ15 0 0 0 Φ55

 < 0, (46)


Φ̄2i ∗ ∗ ∗ ∗
γΓ̂1i −

(
2κ1Υi − κ2

1 J̄1i
)

∗ ∗ ∗
qΓ̂2i 0 −

(
2κ2Υi − κ2

2 J̄2i
)
∗ ∗

Φ̄14i 0 0 Φ̄44 ∗
Φ15 0 0 0 Φ55

 < 0, (47)

where

Φ̄1i =sym
{

ēT
1 Γ̂1i

}
+ ēT

1 (2υ1Υi + λiiΥi)ē1 + Φ̄0i + Φ̂i,

Φ̄2i =sym
{

ēT
1 Γ̂2i

}
+ ēT

1 (−2υ2Υi + λiiΥi)ē1 + Φ̄0i,

Φ̄0i =sym
{
(ε2α0 − ε1)ēT

1 Υi ē6 − ε2 ēT
6 ē6

}
− e−2υ1γ ēT

5 W̄1i ē5 + ēT
1 (W̄1i)ē1 + ēT

4 Ξi ē4,

Φ̂i =− ēT
7 W̄i ē7 + σ(ē4 + ē7)

TW̄i(ē4 + ē7),

Φ̄14i =



√
λi1Υi 0 0 0 0 0 0

...
...

...
...

...
...

...√
λi(i−1)Υi 0 0 0 0 0 0√
λi(i+1)Υi 0 0 0 0 0 0

...
...

...
...

...
...

...√
λiSΥi 0 0 0 0 0 0


,

Φ̄44 =diag{−Υ1, · · · ,−Υi−1,−Υi+1, · · · ,−ΥS},

Φ15 =
[
(ε1ρ0 + ε2β0) 0 0 0 0 0 0

]
, Φ55 = −1

2
(ε1ρ0 + ε2β0).

then, the system (13) is exponentially mean-square stable. Moreover, we obtain Ki = YiΥ−1
i ,

Ξi = ΥT
i ΞΥi and Wi = ΥT

i WΥi.
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4. Numerical Example

Example 1. Consider the system (13) with the following parameters:

A1 =

[
−1 0
0.8 −1.4

]
, Aq1 =

[
0.85 1.75

0 −1.6

]
, B1 =

[
0.7
0.4

]
,

A2 =

[
1 0.8
0 −1.2

]
, Aq2 =

[
−0.49 0
−1.45 −0.19

]
, B2 =

[
0.4
0.7

]
,

and other parameters are given as ℓ = 2, h = 0.05, υ1 = 0.2, υ2 = 0.5, σ = 0.1, δ = 0.5,
ε1 = 0.1, ε2 = 0.6, α0 = −0.2, β0 = 0.1, ρ0 = −0.4, µ = 0.68, κ1 = 0.17, κ2 = 0.15, q = 0.02,
the attack success rate and packet loss rate are set as ςs = 0.7, ςa = 0.3, respectively. The mode

transition rate is given as Πλ =

[
−3 3
5 −5

]
.

Based on the above parameters, by using the LMI toolbox of Matlab 2018a to solve the
LMIs in Theorem 2, we can obtain: ℓo f f = 1.7s and

K1 =[−5.8501 − 3.0855], K2 = [−4.5665 − 2.7979],

W1 =

[
75.0127 16.2939
16.2939 37.2556

]
, W2 =

[
38.0562 14.8402
14.8402 41.0452

]
,

Ξ1 =

[
5.4950 −0.0791
−0.0791 7.4208

]
, Ξ2 =

[
3.4657 1.5007
1.5007 7.6517

]
.

Furthermore, let the nonlinear function f (t, x) = −0.2 sin(−1.2x(t)), the initial condi-
tion x(0) = col{0.5,−0.5}, ϕ0 = 2, combining with the above gain matrices, the simulation
results of systems (13) are given in the following figures. As shown in Figure 2, system (13)
cannot achieve stability without control. As shown in Figure 3, the system state gradually
reaches the stable state under DETM. Figure 4 is the control input of system (13) under
DETM. Figure 5 shows the relationship between triggered instants and intervals. In sum-
mary, this example demonstrates that DETM (5) can not only stabilize the system under the
influence of DoS attack and packet loss, but also alleviate network communication pressure
to a certain extent.

Figure 2. The state response of system (13) without control.
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Figure 3. The state response of system (13) under DETM.

Figure 4. The control input of system (13) under DETM.
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Figure 5. The release instants and intervals of DETM.
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Example 2. Consider the system (44) with the following parameters [25]:

A1 =

[
−1.4 0

1 −1

]
, B1 =

[
0.8
0.5

]
, A2 =

[
1 0.5
0 −1.5

]
, B2 =

[
0.5
0.8

]
,

and other parameters are given as ℓ = 2, h = 0.1, υ1 = 0.1, υ2 = 0.7, σ = 0.1, δ = 0.5, ε1 = 0.1,
ε2 = 0.6, α0 = −0.3, β0 = 0.1, ρ0 = −0.3, µ = 0.1,, respectively. The mode transition rate is

given as Πλ =

[
−3 3
5 −5

]
. It is worth noting that the above parameters come from a practical

system, named robot arm system of single-link rigid robot. The simplified diagram is shown in
Figure 6 and the detailed model transformation can be found in [25].

Based on the above parameters, by using the Matlab LMI toolbox to solve the LMIs in
Theorem 1, we can obtain: ℓo f f = 1.5s and

K1 =[−1.2103 − 0.5742], K2 = [−2.3486 − 0.7193],

W1 =

[
13.2459 2.3973
2.3973 9.9921

]
, W2 =

[
10.8423 1.8592
1.8592 10.0822

]
,

Ξ1 =

[
1.2945 −0.5230
−0.5230 2.2985

]
, Ξ2 =

[
1.1017 −0.3870
−0.3870 2.8863

]
.

Figure 6. Robot arm system of single-link rigid robot.

Furthermore, let the nonlinear function f (t, x) = 0.6 sin(x(t)), the initial condition
x(0) = col{0.3,−0.5}, ϕ0 = 2, combining with the above gain matrices, the simulation
results of systems (13) are given in the following figures. As shown in Figure 7, system (44)
cannot achieve stability without control. As shown in Figures 8 and 9, the system state both
gradually reaches the stable state under DETM and SETM, respectively. Figures 10 and 11
are the control input of system (44) under DETM and SETM, respectively. Figures 12 and 13
show the relationship between triggered instants and intervals of DETM and SETM, re-
spectively. In summary, this example demonstrates that DETM (5) can not only stabilize
the system under the influence of DoS attack, but also alleviate network communication
pressure to a larger extent.
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Figure 7. The state response of system (44) without control.

Figure 8. The state response of system (44) under DETM.

Figure 9. The state response of system (44) under SETM.
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Figure 10. The control input of system (44) under DETM.
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Figure 11. The control input of system (44) under SETM.
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Figure 13. The release instants and intervals of SETM.

5. Conclusions

This paper has studied the exponential stability and stabilization problems of a class
of DNMJSs under randomly occurring DoS attacks and packet loss. The attack success
rate and packet loss rate have been introduced to describe the stochastic characteristics of
DoS attacks and packet loss. The POW method has been proposed to depict the switching
property of DoS attacks and packet loss. Furthermore, the hybrid-input strategy have been
adopted to compensate for the impacts of DoS attacks and packet loss on the systems.
By constructing a general common Lyapunov functional, and combining with the DETM,
and other analysis approaches, the less conservative stability criteria are derived in the
form of linear matrix inequality. Finally, a numerical example and a practical example were
used to verify the validity of our results. In the future, the results obtained in this paper
shall be applied to investigate other analyses and syntheses problems of Markov jump
systems under cyber attacks and packet loss.
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