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Abstract: In edge computing environments, limited storage and computational resources pose
significant challenges to complex super-resolution network models. To address these challenges, we
propose an agile super-resolution network via intelligent path selection (ASRN) that utilizes a policy
network for dynamic path selection, thereby optimizing the inference process of super-resolution
network models. Its primary objective is to substantially reduce the computational burden while
maximally maintaining the super-resolution quality. To achieve this goal, a unique reward function is
proposed to guide the policy network towards identifying optimal policies. The proposed ASRN
not only streamlines the inference process but also significantly boosts inference speed on edge
devices without compromising the quality of super-resolution images. Extensive experiments across
multiple datasets confirm ASRN’s remarkable ability to accelerate inference speeds while maintaining
minimal performance degradation. Additionally, we explore the broad applicability and practical
value of ASRN in various edge computing scenarios, indicating its widespread potential in this
rapidly evolving domain.

Keywords: super resolution; edge computing; accelerated inference; resource-limited; policy network
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1. Introduction

Super-resolution technology [1–3] is particularly crucial in real-world applications
such as urban traffic monitoring, medical imaging, and satellite imaging. It enhances not
only the resolution of images but also their quality, providing clear and accurate visual
information for vehicle identification and traffic flow monitoring and ensuring traffic
safety. However, traditional super-resolution network models often require substantial
computational resources, presenting a major issue in resource-limited edge computing
environments. For example, the Internet of Things (IoT) is a typical scenario wherein
limitations on computational resources and storage are even more stringent. Therefore,
effectively reducing the computational complexity and inference time of these models
without sacrificing image super-resolution quality becomes an urgent problem.

To alleviate this problem, we propose an agile super-resolution network via intelligent
path selection (ASRN). ASRN incorporates a dynamic path selection mechanism and a
policy network to optimize the inference process of super-resolution network models
intelligently. The motivation of our method is that ResNet [4] has some redundancies [5–7]:
removing some layers would not cause severe performance degradation. Inspired by this,
we propose to skip some layers in the network to reduce the computational complexity. We
assign different inference paths for various input data. The characteristic of our method
is that it can dynamically choose the optimal inference paths in the network based on
input data and available computational resources on edge devices. We carefully designed a
reward mechanism for this purpose. It balances the complexity of the network structure
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with the performance of specific tasks, enhancing the efficiency of the inference process
while minimizing degradation in super-resolution quality.

We explore the applicability of ASRN in various edge computing application scenarios,
particularly focusing on its effectiveness in executing super-resolution tasks in resource-
limited environments. Compared to traditional lightweight model techniques, such as
pruning [8–10], quantization [11–13], low-rank factorization [14–16], and knowledge distil-
lation [17–19], ASRN shows greater flexibility and adaptability. Specifically, it maintains
efficient operation under resource-limited conditions and can restore model performance
by simply tuning one hyper-parameter once the edge devices’ resources are improved. The
main contributions of this research are as follows:

• We propose an agile super-resolution network via intelligent path selection (ASRN) for
edge computing environments. ASRN adopts a dynamic path selection mechanism
that utilizes a policy network to tailor computational pathways based on the real-time
data.

• We introduced a smart reward mechanism in ASRN that has been ingeniously crafted
to evaluate the policy network’s decisions. By comprehensively assessing the overall
performance of the model and the effectiveness of current policy, it directs the policy
network towards optimal choices, thereby marking a significant advancement for
super-resolution applications in edge-computing scenarios.

• Our extensive experiments across a variety of datasets confirmed the effectiveness of
the proposed ASRN. In particular, on the Div2k dataset [20], we reduced the average
number of residual blocks by 15.88% and the computational complexity (FLOPS) by
15.68% while maintaining performance close to baseline.

2. Related Work
2.1. Super-Resolution Technology

The development of super-resolution technology commenced with early interpolation-
based methods, which primarily utilized linear techniques [21,22] to enhance image reso-
lution. However, these methods often led to blurred images that lacked detail. The field
experienced a significant transition with the advent of deep learning, particularly with the
introduction of convolutional neural networks (CNNs) [23]. CNNs revolutionized super-
resolution by enabling more complex and accurate image reconstruction, significantly
improving the quality of upsampled images. This era also saw the integration of advanced
techniques such as generative adversarial networks (GANs) [24], which introduced a com-
petitive aspect to model training, resulting in sharper and more realistic images. Attention
mechanisms [25,26], another significant advancement, allowed models to focus on specific
image regions, enhancing detail where most needed. Ongoing advancements in the field
are characterized by the exploration of novel deep learning architectures [27] and loss
functions [28] that are aimed at enhancing the precision of super-resolution outputs.

2.2. Deep Learning Applications in Edge Computing

Edge computing presents a unique set of challenges for deep learning applications,
primarily due to limitations in computational capacity and memory. The focus thus has
shifted towards developing models that are not only lightweight but also are capable of
achieving real-time performance. This is particularly critical for applications like video
surveillance, autonomous driving, and real-time data analysis. The recent progress in this
domain is to train models that are efficient both in terms of size and computational speed
while not compromising on performance. Techniques like model quantization and network
pruning [29,30] have been pivotal to achieving these goals. There is also an increasing trend
towards designing custom hardware accelerators [31,32] that are specifically optimized for
running deep learning models in resource-limited environments. This progress make edge
computing a viable platform for advanced deep learning applications.
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2.3. Lightweight Model Techniques

Efficient deployment of deep learning models on edge devices necessitates the reduc-
tion of their computational resource requirements without loss in performance. Lightweight
model techniques are pivotal to achieving this by compressing and accelerating models
while retaining their model performance. Each technique adopts a unique approach to
tackle the challenges of limited resources:

Model Pruning: Pruning is a technique that reduces the complexity of neural net-
works by removing less important parameters or connections. It effectively reduces the
model size and computational load without significantly impacting performance. Existing
pruning methods now include structured pruning (removing entire neurons, channels,
or layers) [33–35] and unstructured pruning (eliminating individual weights) [36]. Dy-
namic pruning, which adapts network complexity in real-time based on input data, is also
promising.

Quantization: Quantization involves reducing the bit-size of model parameters,
thereby lowering the model’s storage and computational demands. This process often
converts floating-point parameters into fixed-point formats. The latest trends include
mixed precision quantization [37,38], which applies different bit-widths to different parts
of the network. Integration with other model compression techniques, such as pruning [39],
enhances overall efficiency.

Knowledge Distillation: Knowledge distillation is a compression technique whereby a
smaller model (student) learns to replicate the behavior of a larger model (teacher). The
student model captures the essential information from the teacher, resulting in a compact
yet effective version. Beyond the classic teacher–student setup, mutual learning [40,41]
among multiple networks and cross-modal distillation [42,43] have been explored. These
methods allow leveraging diverse data modalities and unlabeled data to improve the
student model’s generalization.

Low-Rank Factorization: Low-rank factorization involves reducing the number of
parameters in a model by decomposing large weight matrices into lower-rank approxima-
tions. This technique is particularly effective for reducing redundancies in convolutional
layers. The focus is tensor decomposition methods like Candecomp/Parafac(CP) [44,45]
and Tucker decompositions [46,47] for convolutional layers. These approaches maintain
model performance while significantly reducing the parameter count.

Compared to existing lightweight model techniques, our proposed ASRN method
demonstrates significant advantages. By adjusting a single hyperparameter, ASRN allows
for flexible control over model performance, enabling efficient super-resolution processing
in edge computing environments. Long et al. [48] also propose a dynamic path selection
method by considering both the inference speed and the PSNR metric. This approach,
however, overlooks the texture and structural integrity of the images evaluated by the
SSIM metric. The proposed ASRN further improves Long’s work by taking the SSIM of the
images into consideration when choosing the inference path: thus, effectively improving
the quality of super-resolution performance. Our method achieves balanced optimization
by considering not only the pixel fidelity but also the perceptual quality, thereby rectifying
the bias and significantly enriching the model’s applicability to real-world scenarios. Unlike
other one-time optimization techniques, ASRN supports dynamic adjustment, enabling
the model to recover or further optimize its performance based on changes in available
computational resources. This augmented flexibility and reversibility, now with a more
comprehensive evaluation through PSNR and SSIM, are particularly crucial in edge comput-
ing scenarios faced with resource limitations and varying demands, proving the innovative
and practical value of ASRN in the field of deep learning model optimization.

3. Agile Super-Resolution Network via Intelligent Path Selection
3.1. Overall Framework

This paper presents a network architecture designed to address the challenges of
super-resolution tasks in edge computing environments. As illustrated in Figure 1, our
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network architecture comprises three key components: the backbone network, the policy
network, and the reward mechanism. These components work collaboratively to enhance
the efficiency and effectiveness of super-resolution processing, particularly in scenarios
with limited computational resources.
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Figure 1. Overview of ASRN: combines a backbone and a policy network with a specialized reward
function to selectively execute neural network blocks during inference.

3.2. Policy Network

In the proposed ASRN, the policy network plays a crucial role. Drawing on insights
from previous studies analyzing ResNet, we recognized that skipping certain blocks within
the network enhances inference efficiency without substantially affecting performance.
This understanding has laid a vital foundation for our policy network design. The primary
task of the policy network involves generating decision policies based on input data to
determine the network architecture or operations to be executed during the inference
process. Acting as an intelligent decision-maker, the policy network effectively selects the
optimal inference paths according to the characteristics of the input data and the current
computational resource limitations, thereby accelerating the inference process.

The policy generation process of the policy network is as follows:

m = fp(x, w), (1)

where fp represents the policy network parameterized by weights w, and m denotes the
output policy corresponding to the input image x. We have carefully designed a lightweight
policy network with far fewer parameters than the backbone network, ensuring minimal
computational cost.

Different from the sampling policies in traditional reinforcement learning [49], the
policy in our method is generated based on a k-dimensional Bernoulli distribution [50,51],
expressed as:

πw(u|x) =
K

∏
k=1

muk
k (1 − mk)

1−uk , (2)

m = (m1, m2, · · ·mk), (3)

where each element represents the decision to execute or skip the corresponding network
block. With the help of the policy network, ASRN can flexibly adjust the network structure
based on the complexity of the input images. This dynamic adjustment mechanism not
only enhances the model’s inference speed but also ensures the quality of super-resolution
images in resource-limited edge computing environments.
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3.2.1. Design Principles of the Policy Network

The policy network in ASRN is grounded in deep reinforcement learning principles
and continuously refines decision quality through iterative learning and optimization.
Adopting a lightweight architecture—specifically, a simplified ResNet variant with three
blocks—substantially reduces parameter count compared to the backbone network, ensur-
ing effective decision-making without overburdening the inference process.

This pivotal component of ASRN comprises three ResNet blocks that are responsible
for processing low-resolution images and generating a binary vector representing the
policy. Dynamically aligning with the backbone network’s block quantity, this binary
vector activates specific ResNet blocks during super-resolution, streamlining the inference
path.

3.2.2. Policy Generation Process

Policy generation is based on a k-dimensional Bernoulli distribution that is calculated
using Equations (2) and (3). Each element of the policy vector represents the decision to
execute or skip a corresponding network block. This method enables the policy network to
dynamically adjust the inference path according to different input data characteristics and
resource limitations.

3.2.3. Collaboration of the Policy Network with the Backbone Network

The policy network does not operate independently but works closely with the back-
bone network. It intelligently adjusts the execution path of the backbone network based on
the complexity of the input data. For instance, for relatively simple images, the policy net-
work may choose a shorter path, skipping some unnecessary network blocks to accelerate
processing.

3.2.4. Adaptability to Application Scenarios

We further explore the performance of the policy network in different application
scenarios, such as processing high-resolution traffic surveillance images on resource-limited
edge devices. In these scenarios, the policy network effectively adapts to various challenges,
such as limited computational power and urgent inference time requirements.

Through this in-depth analysis, we demonstrate the key role of the policy network
within the ASRN framework and how it supports the efficient execution of super-resolution
tasks. This comprehensive and detailed discussion highlights the innovativeness and
practical value of our research.

3.3. Reward Mechanism

To optimize the training process of the policy network, we employed reinforcement
learning methods. In this process, the policy network makes decisions at each step of
inference based on the actions chosen by the current policy. The performance of these
decisions is evaluated through a carefully designed reward mechanism. The significance of
the reward mechanism lies in its direct guidance for the policy network to choose optimal
operations that simultaneously enhance inference speed and maintain super-resolution
quality. Through this continuous optimization process, the policy network progressively
becomes more intelligent and capable of generating increasingly effective inference policies.

The following reward function is defined for a backbone network with k residual
blocks:

R(u,p,s) =


p−t

(1−s)
(
|u|
k

)2 i f p − t > 0

−γ else

, (4)
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where u is a policy vector composed of binary values, where 1 represents the retention of
the corresponding residual block, and 0 indicates skipping it. The dimension of the vector

u is k, which is the total number of residual blocks in the network. The expression
(
|u|
k

)2

quantifies the degree to which individual blocks are incorporated into the overall network
architecture. The variables s and p represent the performance evaluation results of the
backbone network after applying the policy: specifically, they are the structural similarity
index (SSIM) and the peak signal-to-noise ratio (PSNR), respectively, where 0 < s < 1. The
variable t is a critical hyperparameter that represents a threshold value we set to determine
the application of rewards or penalties. Its specific value varies based on the employed
evaluation method and the range of p (PSNR). When p − t > 0, it indicates that the applied
policy is effective, and thus, we provide a reward. This reward is directly proportional to
the performance evaluation results after using the policy and inversely proportional to the
number of residual blocks used. That is, better performance and fewer blocks used lead to
larger rewards. Conversely, when p − t ≤ 0, it indicates that the policy is not effective, and
we impose a penalty using the parameter γ.

In this way, the reward mechanism enables the policy network to more accurately
adjust inference paths for samples of varying complexity, optimizing the performance and
efficiency of the entire network.

3.4. Optimization of the Policy Network

In the proposed ASRN, special attention was given to the optimization policy of the
policy network. Employing reinforcement learning methods, the policy network generates
specific policies for each test sample with the aim of enhancing inference efficiency while
maintaining super-resolution quality.

The optimization objective in Equation (5) is formulated to maximize the expected
reward, which is expressed as

J(θ) = Eπθ
[R(s, a)],

where J(θ) represents the optimization objective with respect to policy parameters θ, R(s, a)
denotes the reward for state s and action a, and πθ is the policy under parameters θ. This
formulation guides the policy network to efficiently manage computational resources
while enhancing or maintaining the quality of super-resolution. In accordance with the
principles of reinforcement learning, the policy network updates its strategy based on the
feedback loop of actions and rewards, iteratively improving its path selection decisions.
This mechanism is akin to the exploration–exploitation trade-off, where the policy network
explores various inference paths, learns from their performance outcomes, and exploits the
knowledge to make more efficient decisions over time.

3.4.1. Optimization Objective

Our objective in this study is to maximize the expected value J to derive the optimal
policy for the backbone model. Mathematically, this objective is expressed as:

J = Eu∼πW [R(u, p, s)]. (5)

This formula is in line with our goal of finding the most effective policy for super-
resolution tasks. Through this methodological approach, the policy network continuously
learns and improves across iterations, enabling the generation of more effective inference
paths for the backbone network.

3.4.2. Application of Gradient Optimization Techniques

To optimize Equation (5), we employed gradient optimization techniques, as refer-
enced in [52]. This involved substituting Equation (2) into Equation (5) to derive the
optimization formulation for J. However, due to the non-differentiability of Equation (6),
we resorted to the Monte Carlo [53,54] sampling method as an approximation technique to
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estimate the gradient of J. This approximation was achieved by using all available samples
within a given mini-batch. Gradient optimization is mathematically represented as follows:

Vθ J = E[R(u, p, s)∇θlogßθ(u|x)]

= E[R(u, p, s)∇θlog
K

∑
k=1

muk
k (1 − mk)

1−uk ]

= E[R(u, p, s)∇θ

K

∑
k=1

log [muk
k (1 − mk)

1−uk ]].

(6)

3.4.3. Policy for Reducing Variance

While the gradient approximation is unbiased, it is prone to cause significant variance,
as noted in [49]. To mitigate this issue, we introduced a self-critical baseline R(û, p) as a
technique for variance reduction. This approach leads to the reformulation of Equation (6).
The modified equation for gradient optimization, incorporating the self-critical baseline, is
represented as follows:

∇θJ = E[R(u, p, s)− R(û, p, s)]∇θ

K

∑
k=1

log
[
muk

k (1 − mk)
1−uk

]
. (7)

In Equation (7), û represents the most likely policy under the current policy probability
mk. Here, the binary variable ui = 1 when mi > 0.5; conversely, when mi ≤ 0.5, ui = 0. This
reformulation helps to reduce the variance of the gradient estimation, thereby enhancing
the reliability of the optimization process.

3.4.4. Incentive Mechanism for Policy Exploration

To encourage the exploration of more optimal policies by the policy network and
reduce the risk of policy saturation, we introduced the parameter α. This parameter is used
to adjust the range of the policy vector m′, ensuring it stays within the interval [1 − α, α].
Such an adjustment is crucial to maintain the policy network’s exploratory capabilities
while preventing it from straying too far from the boundaries of desirable policies. The
adjustment of the policy vector is mathematically expressed as:

m′ = αm + (1 − α)(1 − m). (8)

3.4.5. Parameter Sensitivity Analysis

We evaluated the sensitivity of the ASRN model on the Set5 dataset to the reward
function parameters γ (gamma) and t (threshold) and report the results in Table 1. The
optimal settings of γ = −10 and t = 30 yield the highest PSNR of 37.450 while using
only 26 blocks, indicating that precise parameter tuning can significantly enhance super-
resolution quality. On the contrary, extreme values like γ = −100 with t = 100 or t = 10,
despite maintaining competitive PSNR levels, require using more blocks, reducing network
efficiency.

Intermediate values such as γ = −50 and t = 30 achieve a PSNR of 37.380 and use 27
blocks, showing the sensitivity of the ASRN model to its reward function parameters and
emphasizing the importance of careful calibration to strike an optimal balance between
super-resolution quality and computational efficiency.

In summary, sensitivity analysis, as depicted in Table 1, is crucial for optimizing the
performance of the ASRN model, particularly in resource-constrained edge computing
environments, and enables a strategic balance between high-quality super-resolution and
efficient computational usage.
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Table 1. Sensitivity analysis of reward function parameters.

γ t PSNR Blocks Used

−100 30 37.364 28
−50 30 37.380 27
−10 30 37.450 26
−100 100 37.415 30
−100 50 37.402 29
−100 10 37.421 25

By employing these optimization policies, the ASRN demonstrates impressive per-
formance and efficiency across various datasets and application scenarios. This section is
dedicated to exploring the optimization process of the policy network and underscoring its
vital contribution to enhancing the efficiency of the super-resolution network model. The
strategic balance achieved by this mechanism facilitates the discovery of effective inference
policies, thereby augmenting the model’s overall robustness and adaptability in different
computing environments.

4. Experiments

In this section, we provide a detailed account of the integration of the policy network
into the EDSR [55] backbone network and assess the effectiveness of our approach across
five different datasets. Our primary goal is to significantly reduce the inference time of the
network while maintaining super-resolution performance, with a particular focus on edge
devices limited by storage and computational resources.

This comprehensive evaluation aims to demonstrate the practical applicability and
efficiency of our method in diverse scenarios, highlighting its potential in addressing the
challenges faced in edge computing environments, where resource optimization is crucial.

4.1. Experimental Setup
4.1.1. Dataset

The Div2k dataset is a widely used benchmark in super-resolution research and
comprises 800 high-quality training images and 100 validation images. Different super-
resolution tasks share some similarities in pixel statistics. Therefore, based on the phi-
losophy of transfer learning, we initialize the parameters through a model pretrained
on the Div2k training set (just like initializing the classification models through a model
pretrained on ImageNet [56]). To comprehensively assess the effectiveness and adaptability
of our method, tests were conducted not only on the Div2k validation set but also on
four additional benchmark datasets, including Set5 [57], Set14 [58], B100 [59], and Ur-
ban100 [60]. These experiments were designed to validate the generalization ability of the
policy network across different image characteristics and real-world scenarios.

4.1.2. Network Architecture Components

We selected the EDSR network as the backbone for our super-resolution task; the
EDSR network consists of a head, body, and tail, with the body comprising 32 residual
blocks. The network model was trained from scratch using the first 800 images from the
Div2k dataset, ensuring that the model could adequately learn and adapt to a variety of
image features.

We use a ResNet with three blocks (equivalently, ResNet-8), with the aim of minimizing
the computational overhead introduced. This lightweight design allows the policy network
to effectively support the backbone network without becoming a computational bottleneck.
Its smaller scale compared to the backbone network ensures that it plays a supportive role
in our overall approach, allowing us to allocate more computational resources to the actual
super-resolution task while benefiting from the intelligent guidance provided by the policy
network. During training, we employ the ADAM optimizer with a learning rate of 1 × 10−4

and betas of (0.9, 0.999). To enhance convergence and stability, step decay on the learning
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rate is utilized, with a decay interval of 200 epochs and a decay factor of 0.5. Notably, the
policy network’s training integrates reinforcement learning, with rewards derived from
the backbone network’s output, ensuring alignment between super-resolution quality and
computational efficiency.

Next, we will present the experimental results on these datasets and analyze the
performance of our method on different datasets and with different settings. Specifically,
we will focus on discussing the adaptability of the policy network to various scenarios and
its ability to balance inference speed and image quality.

4.2. Balancing Speed and Quality

In this study, we focused particularly on balancing the speed and image quality of the
super-resolution model. To this end, we compared the performance of our ASRN model
with the original EDSR model and other popular super-resolution models such as A+ [61],
SRCNN [62], VDSR [63], and SRResNet [64].

4.2.1. Performance Comparison Analysis

Upon analysis of Figures 2–4, we illustrate the dynamic selection process employed
by our policy network across different datasets, highlighting its capacity to adjust the
computational depth in accordance with the complexity of input images. This process
emphasizes the policy network’s adaptability, ensuring computational efficiency and main-
taining super-resolution quality. For simpler images, fewer neural network blocks are
required, whereas complex images necessitate a more extensive computational effort.
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Further insights are provided in Tables 2–4, which detail the FLOPS reduction for
representative examples, demonstrating our approach’s effectiveness at varying degrees of
model simplification. This approach underscores our model’s flexibility in balancing the
demand for high-quality super-resolution against the constraints of limited computational
resources, marking a significant advancement in the field of super-resolution within edge
computing environments.

Table 2. Representative examples of FLOPS (109) reduction in B100 dataset.

Image ID Baseline Ours Reduction Speedup

33 45.3 42.47 2.83 6.35%
38 45.3 41.05 4.25 9.38%
43 45.3 39.64 5.66 12.49%
74 45.3 33.97 11.33 25.00%
35 45.3 32.56 12.74 28.12%

Table 3. Representative examples of FLOPS (109) reduction in Urban100 dataset.

Image ID Baseline Ours Reduction Speedup

43 202.94 183.91 19.03 9.38%
50 205.96 180.21 25.75 12.50%
58 209.58 170.28 39.3 18.75%
67 205.35 154.01 51.34 25.00%
86 231.93 152.2 79.73 34.38%

Table 4. Representative examples of FLOPS (109) reduction in Div2k dataset.

Image ID Baseline Ours Reduction Speedup

10 924.09 837.46 86.63 9.37%
42 815.80 662.84 152.96 18.75%
78 1046.82 785.11 261.71 25.00%
19 815.80 586.35 229.54 28.13%
30 490.92 337.51 153.41 31.25%

By analyzing Table 5, it is evident that there is an average enhancement in inference
speed of 9.41% to 15.93% across various datasets without any significant alteration in image
quality following super-resolution processing. This observation leads us to further explore
the comparative performance of different super-resolution models.
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Table 5. Analysis of our method regarding usage blocks and flops across various datasets.

Evaluation (avg.) Set5 Set14 B100 Urban100 Div2k

PSNR/SSIM
Baseline

Ours
38.11/0.9601
38.02/0.9586

33.92/0.9195
33.74/0.9166

32.32/0.9013
32.24/0.9018

32.93/0.9351
32.28/0.9274

35.03/0.9695
34.73/0.9676

BLOCKS
Baseline

Ours
Speedup

32
28.99
9.41%

32
28.13

12.09%

32
27.48

14.14%

32
27.46

14.19%

32
26.90

15.93%

FLOPS (109)
Baseline

Ours
Speedup

33.47
30.33
9.37%

67.86
58.64

13.58%

45.3
38.86

14.21%

228.59
195.70
14.39%

836.09
704.57
15.73%

4.2.2. Significant Reduction in Inference Time

By analyzing Table 6, it is observed that our ASRN model consistently surpasses other
models with regard to super-resolution performance across all datasets. Despite a marginal
decrement in performance metrics, the model significantly reduces computational complex-
ity (FLOPS), thereby directly speeding up the inference time. This noteworthy reduction in
computational overhead not only demonstrates a groundbreaking methodology for the
efficient execution of super-resolution tasks but also highlights the model’s crucial role in
edge computing settings, where computational resources and storage capacities are limited.
Such outcomes offer new possibilities for efficiently handling super-resolution tasks in
environments that demand swift and resource-conscious processing.

Table 6. Comparative analysis of experimental results (PSNR and SSIM) on different datasets. (Block
utilization rates for our model are: Set5 90.59%, Set14 87.91%, B100 85.86%, Urban100 85.81%, and
Div2k 84.07%).

Dataset Block Usage Scale
Bicubic A+ SRCNN VDSR Ours EDSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5 90.59%
X2 33.66 0.9229 36.54 0.9544 36.66 0.9542 37.53 0.9587 38.02 0.9586 38.11 0.9601
X3 30.39 0.8682 32.58 0.9088 32.75 0.9090 33.66 0.9213 34.59 0.9263 34.65 0.9282
X4 28.42 0.8104 30.28 0.8603 30.48 0.8628 31.35 0.8838 32.37 0.8945 32.46 0.8968

Set14 87.91%
X2 30.24 0.8688 32.28 0.9056 32.42 0.9063 33.03 0.9124 33.74 0.9166 33.92 0.9195
X3 27.55 0.7742 29.13 0.8188 29.28 0.8209 29.77 0.8314 30.34 0.8426 30.52 0.8462
X4 26.00 0.7027 27.32 0.7491 27.49 0.7503 28.01 0.7674 28.64 0.7843 28.80 0.7876

B100 85.86%
X2 29.56 0.8431 31.21 0.8863 31.36 0.8879 31.90 0.8960 32.24 0.9018 32.32 0.9013
X3 27.21 0.7385 28.29 0.7835 28.41 0.7863 28.82 0.7976 29.08 0.8074 29.25 0.8093
X4 25.96 0.6675 26.82 0.7087 26.90 0.7101 27.29 0.7251 27.62 0.7363 27.71 0.7420

Urban100 85.81%
X2 26.88 0.8403 29.20 0.8938 29.50 0.8946 30.76 0.9140 32.28 0.9274 32.93 0.9351
X3 24.46 0.7349 26.03 0.7973 26.24 0.7989 27.14 0.8279 28.33 0.8562 28.80 0.8653
X4 23.14 0.6577 24.32 0.7183 24.52 0.7221 25.18 0.7524 26.24 0.7931 26.64 0.8033

Div2k 84.07%
X2 31.01 0.9393 32.89 0.9570 33.05 0.9581 33.66 0.9625 34.73 0.9676 35.03 0.9695
X3 28.22 0.8906 29.50 0.9116 29.64 0.9138 30.09 0.9208 30.92 0.9307 31.26 0.9340
X4 26.66 0.8521 27.70 0.8736 27.78 0.8753 28.17 0.8841 28.97 0.8987 29.25 0.9017

Our analyses further reveal a direct correlation between image complexity and the
computational efficiency achieved by ASRN. Specifically, Figures 5–7 illustrate that simpler
images necessitate fewer processing blocks, while more complex images require a greater
number. This adaptive behavior underscores the ASRN’s capacity to dynamically adjust its
processing policy according to the image’s complexity, ensuring optimal resource utilization
and faster inference speeds across varied scenarios.
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Figure 5. Visualization of representative images in B100 passing through different numbers of block
units. Without the guidance of the path selection policy, each sample needs to go through the
complete path in the network, i.e., 32 blocks.

Figure 6. Visualization of representative images in Urban100 passing through different numbers of
block units. Without the guidance of the path selection policy, each sample needs to go through the
complete path in the network, i.e., 32 blocks.

Figure 7. Visualization of representative images in Div2k passing through different numbers of
block units. Without the guidance of the path selection policy, each sample needs to go through the
complete path in the network, i.e., 32 blocks.

4.2.3. Scalability Testing

We conducted scalability tests of ASRN on edge computing devices with different
computational capabilities. On a Texas Instruments MSP432P401R, ASRN reduced the
average inference time from 156.490 s to 146.159 s, while on an ARM Cortex-M7, the
inference time decreased from 62.596 s to 58.464 s. From the data presented in Tables 7 and 8,
these results demonstrate the scalability of ASRN across different edge devices, further
validating its effectiveness in diverse edge computing environments and emphasizing its
potential to enhance super-resolution tasks across a variety of computing resources.

Table 7. Texas Instruments MSP432P401R: 100 MHz (inference time).

Data 0 Data 1 Data 2 Data 3 Data 4 Average

Baseline 384.626 s 106.37 s 92.334 s 96.162 s 102.96 s 156.490 s
Ours 370.942 s 92.994 s 73.700 s 90.772 s 102.388 s 146.159 s
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Table 8. ARM Cortex-M7: 250 MHz (inference time).

Data 0 Data 1 Data 2 Data 3 Data 4 Average

Baseline 153.850 s 42.548 s 36.934 s 38.465 s 41.184 s 62.596 s
Ours 148.377 s 37.198 s 29.480 s 36.309 s 40.955 s 58.464 s

4.2.4. Application Insights and Future Perspectives

The experimental results proved the effectiveness of the policy network for optimiz-
ing resource usage. With minimal or no degradation in performance, ASRN achieved a
significant reduction in computational load and storage requirements. This provides a
practical solution for super-resolution applications on edge devices, especially in scenarios
with strict requirements for inference speed and efficiency.

Furthermore, our work offers valuable insights for future research and applications
in the field of edge computing, particularly for resource optimization and real-time data
processing. ASRN demonstrates the tremendous potential of super-resolution technology
in edge computing environments.

In summary, our research has not only made significant technical progress but also
provides important references and directions for future studies and applications in similar
fields.

5. Conclusions

In this paper, we proposed an agile super-resolution network via intelligent path selec-
tion (ASRN): an efficient super-resolution model tailored to edge computing environments.
ASRN aims to significantly reduce the inference time of super-resolution network models
on edge devices while maintaining high-quality performance. By incorporating a policy
network, ASRN dynamically selects the most efficient inference paths based on input data
and available computational resources. The key to our approach is the intelligent reward
function, which refines the decision-making process by evaluating the effectiveness of
chosen paths, thus optimizing both the speed and quality of super-resolution outcomes.

Our research not only demonstrates the effectiveness of the policy network for han-
dling super-resolution tasks but also reveals its extensive potential for accelerating inference
processes across various edge device applications. The significant technical progress made
by ASRN offers fresh perspectives and possibilities for future research and practical appli-
cations in this rapidly evolving field.
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