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Abstract: A nonlinear crime model is generalized by introducing self- and cross-diffusion terms. The
effect of diffusion on the stability of non-negative constant steady states is applied. In particular, the
cross-diffusion-driven instability, called Turing instability, is analyzed by linear stability analysis, and
several Turing patterns driven by the cross-diffusion are studied through numerical investigations.
When the Turing–Hopf conditions are satisfied, the type of instability highlighted in the ODE model
persists in the PDE system, still showing an oscillatory behavior.
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1. Introduction

Crime and criminal activities have a wide influence on society and its development.
Criminal activities not only endanger the safety of the population, but also slow down
the economic process of the community. Various factors contribute to committing crime,
for example, immigration of criminals and the learning of criminal behavior through
interactions between criminally predisposed individuals and delinquent individuals. It is
often observed that contact with criminal and delinquent individuals can produce criminal
behaviors in the individuals involved and stimulate them to commit a crime [1]. Numerous
scholars have conducted empirical and practical studies on various aspects of crime growth
and prevention. Just as some examples, in [2], the author examined and discussed the trend
and models of robbery and its various consequences in Ghana between 1982 and 1983;
in [3], the authors studied the socioeconomic and demographic factors that influenced the
spread of crime in Germany and found that higher economic well-being corresponds to
higher crime rates.

Economic investigations into the importance of the spread of crime in society took
off in the late 1960s when several economists (a small sampling includes [3–6]) turned
their attention to the field of crime. In [4], a model, based on the theory of deterrence,
predicted how changes in the probability and severity of sanctions may affect crime. In [3],
considering a time allocation model, a descriptive analysis of crime and the potential
factors contributing to crime in Germany are given. In [5], the relationship between
crime and geographic space is explored, in relation to property crimes and violence, using
population density in United States. The containment of the spread of crime in urban
societies remains a major challenge. Empirical evidence suggests that crimes may be
recurrent and proliferate if left unchecked; therefore, any kind of investigation can provide
information or tools that may prove useful in its prevention and control. Mathematical
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modeling is a powerful tool that has been employed and developed to examine the spread
of crime. One of the main targets to be achieved is to understand the conditions that allow
crime to disappear from or persist within a community. Recent research has highlighted that
applied mathematics may help us to understand criminal activity. Differential equations,
the self-exciting point process, agent-based modeling and adversarial evolutionary games
are different approaches to modeling crime activity. The study of the dynamics of the
spread of crime is not untouched by predator–prey dynamics. It is a well-known fact that
the interaction of criminally minded individuals with non-criminal individuals can be
represented as the interaction of a predatory population with a population of prey. There
are various useful studies that have dealt with quantitative models of crime which are
able to represent the behavior of interacting populations in relative societies [7–10]. In
particular, in [7], the authors analyzed a system of three ordinary differential equations to
account for the time evolution of three sociological species, called owners, criminals and
security guards. In [8], a model is constructed, based on the well-known predator–prey
model, to analyze the interaction between the criminal population and the non-criminal
one. Furthermore, a law enforcement term, an important part of any country’s political
and social systems, is incorporated in the model, and its effect is studied. The elimination
or the persistence of crime is discussed via two parameters, law enforcement and the
saturation constant. In [10], a diffusion-type differential equations model that captures
the dynamics that describe the behavior in time of serious and minor crime is studied,
and numerical solutions are compared with the crime data for the Greater Manchester
area, highlighting a satisfactory agreement. In [11], a deterministic mathematical model
based on nonlinear ordinary differential equations, considering education programs as
a valid means of estimating the population-level impact on crime prevalence, is studied.
The model is fitted with prison data (reported from July 2021 to June 2022) by the State of
Illinois in the United States.

In recent years, there has been increasing interest in developing mathematical tools to
understand and predict the spatial patterns of urban crime [12–19]. Several researchers have
determined suitable models for analyzing intervention strategies that decrease delinquent
behavior and promote social development. As a first modeling step, the population is
spatially distributed over a geographical region in a homogeneous manner; only temporal
variability is considered under the scheme. The formation of crime clusters suggests that
criminally minded individuals do not always distribute themselves uniformly in space and
time but often congregate in small clusters. Many criminal events, such as those relating to
drugs, robberies, burglaries, etc., often originate from situations of aggregation or particular
distributions. In fact, the composition or the distribution of the population has a relevant
impact on the propagation of crime within the society. Although criminality is an aspect
now present in all societies, some places have a greater propensity for crime than others. For
example, data on residential burglaries show high-crime places bounded by low-crime areas.
Several studies indicate that crime in a place involves more crime in that and neighboring
places, leading to residential burglary hotspots; this finding emerged from real data. The
observation that residential burglaries are not spatially homogeneously distributed and
that certain neighborhoods have a greater propensity for crime than others led Short
et al. [15,16,20] to study the dynamics of residential burglary hotspots. In particular, starting
from the discrete system, the authors derived a continuum model; the two approaches are
in good quantitative agreement for large system sizes. Through a linear stability analysis,
they found the parameter values leading to the formation of stable hotspots.

Among the various approaches that can be found in the literature to describe the
distribution of different species, populations or groups of individuals in various contexts,
in space at different times, and due to local interaction and diffusion, are reaction–diffusion
models. In particular, reaction–diffusion equations are often used to model spatial effects
in many fields of applied mathematics, such as ecology [21–23], biology and medicine [24],
economics [25], epidemiology [26,27] and social sciences [28,29]. Though these various
fields and systems may seem completely different, the mathematics describing the pattern
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formation in them is surprisingly similar. The study of reaction–diffusion systems may
be faced using numerical or analytical methods from the theory of partial differential
equations and dynamic systems. In [30], the authors considered models representing social
interactions between ordinary individuals, drug users/dealers and policemen, starting
from a model proposed by Epstein in [31] and introducing two modified models. They
take into account an additional cross–diffusion term and some logistic effects. In the above
paper, they analyze the Turing instability from an analytical point of view and increase
some patterns, choosing the values of the parameters close enough to those used in [31].

In this paper, we follow this line of research, starting from the continuous model
of crime introduced in [12], which incorporates the law enforcement term. In [12], the
authors developed a model based on the prey–predator interaction in order to study the
dynamics between the criminal and non-criminal individuals living in a specific society.
More precisely, a predator–prey model with a Holling type II functional response and
logistic growth rate in the non-criminal population is introduced. The considered functional
response is characterized by a decelerating intake rate, which is derived from assuming
that the criminally minded individuals are prevented by their capacity from victimizing
the non-criminal individuals. Moreover, as law enforcement is the appropriate measure
for controlling the crime rate in a community, in [12], it is considered in the criminally
minded population. The role of population density in the reduction or increase in crime
has been the subject of debate for a long time [32]. Whenever social, political, economic
and environmental aspects are considered and observed, it is easy to find the interaction
between two different and contrasting mentalities (as, for example, in the case in question:
non-criminal mentality and criminal mentality) which, among other things, contributes to
the degradation of society. In a given place or country, modeling how different mentalities
influence criminality can be a valid starting point for scholars in the field. The basic
assumption in [12] is that the only way for new criminally minded individuals to emerge
is their interactions with existing criminally minded individuals. In this line of research,
we place our study. CP(t) denotes the criminally minded population density and NP(t)
the non-criminally minded population density at time t. In [12], the following system is
introduced: 

dNP
dt

= µ

(
1 − NP

K

)
NP − a

NPCP
σ + NP

,

dCP
dt

= −γCP + b
NPCP

σ + NP
− LCCP.

(1)

The parameters µ, a, b, γ, σ, K and LC, all positive, are defined as follows:

• µ: per capita growth rate (the intrinsic rate of increase) of non-criminal individuals in
the absence of criminal ones CP;

• a: the rate at which CP victimizes NP (i.e., maximum capture/predation rate);
• γ: natural mortality rate of CP in the absence of non-criminal individuals NP;
• b: conversion rate of non-criminal population NP into criminal population CP;
• σ: the half saturation constant (the value at which the half of the rate constant (a)

is attained);
• K: the carrying capacity of the non-criminal population in the absence of a criminal

one;
• LC: measure of the effect of the enforcement law on CP .

Moreover, the function Φ =
aNP

σ + NP
denotes the rate at which the criminal population

victimizes/captures the non-criminal one (the Holling type II functional response of CP).
In particular, in [12], the authors study the existence of equilibrium points and perform

analysis of linear stability. In addition, they investigate the direction and stability of Hopf
bifurcation. In this paper, we generalize (1) by introducing self- and cross-diffusion terms.
Self-diffusion terms model the random movements of individuals, which are conditioned
by the presence/scarcity of individuals belonging to the other population in an assigned
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domain. In order to include this aspect, spatial population models can contain cross-
diffusion terms. The experimental analysis has highlighted that cross-diffusion can play
an important role in pattern formation, also in models where self-diffusion alone does not
induce spatial instability. It must certainly be said, for the sake of completeness, that, in the
literature, there are various interesting models with various effects that allow for certain
dynamics to be better described, such as the effects of memory, as, for example, in [33,34],
by considering fractional-order models. Our aim, however, in this paper, is, starting from a
continuous predator–prey model already applied in the literature, to introduce the diffusion
terms and investigate the pattern formation using a simple linear stability analysis. In
some cases, the explicit introduction of a space variable can modify the forecasts of the
non-spatial counterpart model. The spatial diffusion plays a relevant role in the process of
population evolution and in many other fields of applied mathematics ([35–45]); spatial
patterns are of high relevance and importance as they may help to better describe the
spatial and temporal distribution of the involved populations, thus providing important
hints on the behavior of communities. Motivated by such considerations, we take into
account the following system:

∂NP
∂t

= µ

(
1 − NP

K

)
NP − a

NPCP
σ + NP

+ γ11∆NP + γ12∆CP

(x, t) ∈ Ω ×R+

∂CP
∂t

= −γCP + b
NPCP

σ + NP
− LCCP + γ21∆NP + γ22∆CP

(2)

where NP(x, t), CP(x, t) denote the non-criminally minded and the criminally minded
population densities, respectively; (x, t) are the space and time variables; Ω is a bounded
open subset of Rn(n = 1, 2, 3) with the internal cone property; ∆ is the Laplacian operator;
γij, i, j = 1, 2 are the (constant) diffusion coefficients with the coercivity condition

Γ := γ11γ22 − γ12γ21 > 0. (3)

The self-diffusion coefficients γ11 and γ22 are assumed as positive, while the cross-
diffusion coefficients γ12 and γ21 may be positive, negative or zero.

To (2), we append the initial conditions

NP(x, 0) = N0
P(x), CP(x, 0) = C0

P(x), x ∈ Ω, (4)

and the following homogeneous Neumann boundary conditions:

∇NP · n = ∇CP · n = 0 on ∂Ω ×R+ (5)

with n being the outward unit normal vector to ∂Ω.
In this paper, we focus our attention on the qualitative aspects of the mathematical

modeling of crime rather than quantitative ones with data.
The plan of the paper is the following: In Section 2, the existence of socially meaningful

constant steady states is analyzed, and the linear stability/instability is applied. In Section 3,
the action of self- and cross-diffusion on the stability of equilibria, highlighting both
the stabilizing and destabilizing effect, is investigated. The conditions guaranteeing the
occurrence of Turing instability are determined, and the Turing–Hopf instabilities are
investigated. Some numerical simulations, depicting the obtained results, are shown in
Section 4, highlighting the rich dynamics of population interactions. In the Conclusions
section (Section 5), a summary of the obtained results is presented. The paper ends with an
Appendix A in which sketches of the proof of the main theorems are given.
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2. Preliminaries

The constant steady solutions of (2) are the non-negative solutions of the following system:
NP

[
µ

(
1 − NP

K

)
− a

CP
σ + NP

]
= 0

CP

[
−γ + b

NP
σ + NP

− LC

]
= 0

(6)

System (6) admits the trivial equilibrium E0 = (0, 0), the crime-free equilibrium
E1 = (K, 0) and the internal equilibrium E∗ = (N∗

P, C∗
P) given by

N∗
P =

σ(γ + LC)

b − (γ + LC)
, C∗

P =
µσ

a

[
1 − σ(γ + LC)

K[b − (γ + LC)]

][
b

b − (γ + LC)

]
. (7)

The condition
(γ + LC) <

Kb
K + σ

(8)

ensures that the internal equilibrium E∗ is feasible.
By introducing the perturbation (N, C) to the generic spatially homogeneous equilib-

rium Ē = (N̄P, C̄P) as
N = NP − N̄P, C = CP − C̄P, (9)

from (2), the following perturbation equations can be obtained:
∂N
∂t

= µ

(
1 − 2N̄P

K

)
N − a

(
N̄P

σ + N̄P

)
C + γ11∆N + γ12∆C + g1,

∂C
∂t

=
σbC̄P

(σ + N̄P)2 N +

[
b
(

N̄P

σ + N̄P

)
− (γ + LC)

]
C + γ21∆N + γ22∆C + g2

(10)

with

g1 = −µN2

K
− a(C + C̄P) f1, g2 = b f1

[
C − C̄PN

(σ + N̄P)

]
(11)

and
f1 =

σN
(σ + N + N̄P)(σ + N̄P)

. (12)

Disregarding the nonlinear terms in (10), we obtain the linearized system in the
neighborhood of Ē = (N̄P, C̄P) as follows:

∂

∂t

(
N
C

)
=

(
a11 a12
a21 a22

)(
N
C

)
+

(
γ11 γ12
γ21 γ22

)
∆
(

N
C

)
(13)

where 
a11 = µ

(
1 − 2N̄P

K

)
, a12 = −a

(
N̄P

σ + N̄P

)

a21 =
σbC̄P

(σ + N̄P)2 , a22 =

[
b
(

N̄P

σ + N̄P

)
− (γ + LC)

]
,

(14)

and (
N
C

)
=

(
NP

k

CP
k

)
exp(λt + ik · x) (15)
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with k = (kx, ky), k = |k| =
√

k2
x + k2

y wavenumber. To (13), we append the following
conditions: 

N(x, 0) = N0(x), C(x, 0) = C0(x), x ∈ Ω

∇C · n = ∇N · n = 0, on ∂Ω ×R+ .
(16)

When the diffusion is absent, denoted by

I0
1 = a11 + a22, I0

2 = a11a22 − a12a21, (17)

the necessary and sufficient conditions ensuring the linear stability of the generic equilib-
rium Ē are as follows [46]:

I0
1 < 0, I0

2 > 0 . (18)

Remark 1. Let us remark that the constant steady states of (2) are the steady states of (1).

The stability analysis and the conditions ensuring the stability of all the equilibria
of (1) can be found in [12]. For the sake of completeness, such stability conditions can be
summarized in the following proposition.

Proposition 1. For system (1), the following apply:

(i) E0 is always unstable;

(ii) E1 is stable if LC > −γ +
Kb

K + σ
;

(iii) If we assume (8) holds, then E∗ exists, and it is stable if LC > −γ +
Kb

K + 2σ
, while it is

unstable if LC < −γ +
Kb

K + 2σ
.

Moreover, the Hopf bifurcation occurs at point E∗ in system (1) when

LC = −γ +
Kb

K + 2σ
. (19)

Remark 2. It is worth highlighting that the stability condition for E1 implies the non-existence of
the internal equilibrium E∗.

Remark 3. Using (14), evaluated for E∗, it follows that a22 = 0. Then, I0
2 (E∗) = −a12a21 > 0

for all values of parameters, ensuring the existence of the internal equilibrium. The necessary and
sufficient condition for linear stability of E∗ reduces to I0

1 (E∗) = a11 < 0 according to Proposition 1.

Remark 4. In view of (iii) of Proposition 1 and Remark 3, the spatially homogeneous equilibrium
E∗, (linearly) stable for I0

1 (E∗) < 0, loses its stability when I0
1 (E∗) = 0, and a limit cycle can

arise surrounding the unstable steady state for 0 < I0
1 (E∗) << 1. The periodic solution has period

T = 2π
ω , where ω =

√
I0
2 (E∗) is the angular frequency.

3. Diffusion-Driven Stability/Instability

Now, we consider system (2) with diffusion. In particular, we refer to the perturbation
systems (13)–(16) linearized around Ē.

The characteristic equation which provides the eigenvalue λ as a function of the
wavenumber k is

λ2 − I1λ + I2 = 0 (20)

with 
I1 = I0

1 − k2(γ11 + γ22)

I2 = Γk4 + qĒk2 + I0
2

(21)
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and
qĒ = γ21a12 + γ12a21 − γ22a11 − γ11a22. (22)

The effect of self- and cross-diffusion on the stability of E0, E1 is summarized in the
following theorems.

For the sake of completeness, a sketch of the proofs of all the following theorems is
given in Appendix A.

Theorem 1. E0, unstable in the absence of diffusion, is stabilized by the action of self- and cross-
diffusion if and only if

k2(γ11 + γ22) + (γ + LC) > µ

Γk4 + [(γ + LC)γ11 − µγ22]k2 − µ(γ + LC) > 0
(23)

Theorem 2. E1, stable in the absence of diffusion when LC > −γ +
Kb

K + σ
, is destabilized by the

action of self- and cross-diffusion if and only if

Γk4 +

[
µγ22 − γ11(−γ − LC +

bK
K + σ

)− γ21
aK

K + σ

]
k2 − µ(−γ − LC +

bK
σ + K

) < 0. (24)

Remark 5. Let us remark that a necessary condition ensuring that (24) is satisfied is γ21 > 0. In
addition, from (24), it is evident that self-diffusion alone does not induce instability.

Let us observe that, if LC is sufficiently large, according to (ii) of Proposition 1, E1 is

stable. Therefore, Lthr
C = −γ +

Kb
K + σ

can be seen as a threshold value above which the

crime-free equilibrium is stable. Figure 1 highlights the behavior of NP (solid lines) and CP
(dashed lines) as a function of time for different values of the measure of the enforcement
law LC. Here, model parameters are as in Table 1, and E1 ≡ (6, 0), and Lthr

C = 0.58.

Figure 1. Plots of NP (solid lines) and CP(t) (dashed lines) as function of time for different values
of the measure of the enforcement law LC > Lthr

C = 0.58. Here, NP(0) = 7, and CP(0) = 5. Model
parameters are as in Table 1, and E1 ≡ (6, 0).

Table 1. Fixed values for some model parameters in numerical simulations.

Parameters µ K σ a γ b LC

Values 8 6 1 0.9 0.23 0.95 0.46
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From this point on, we consider the internal equilibrium E∗. Evaluated for E∗, (22) becomes

qE∗ = −µ
Kb − (γ + LC)(K + 2σ)

K[b − (γ + LC)]
γ22 +

µγ12

K
[Kb− (γ+ LC)(K+σ)]− aγ21

b
(γ+ LC). (25)

The following theorem holds.

Theorem 3. Let us assume that (8) holds. Then, E∗, unstable in the absence of diffusion for

LC < −γ +
Kb

K + 2σ
, is stabilized by the action of self- and cross-diffusion if and only if


k2(γ11 + γ22) > µ

Kb − (γ + LC)(K + 2σ)

K[b − (γ + LC)]

Γk4 + qE∗k2 + I0
2 (E∗) > 0

(26)

where qE∗ is given by (25).

Remark 6. Since I0
2 (E∗) > 0, then qE∗ > 0 is a sufficient condition ensuring that (26)2 is

satisfied.

In view of Remark 6, denoted by

A1 =
µ

K
[Kb − (γ + LC)(K + σ)]

γ12

γ22
− a

b
(γ + LC)

γ21

γ22
, B1 = k2 (γ11 + γ22)

γ22
, (27)

the following theorem holds.

Theorem 4. Let us assume that (8) holds. Then, if LC < −γ +
Kb

K + 2σ
, a sufficient condition

guaranteeing that E∗, unstable in the absence of diffusion, is stabilized by the action of self- and
cross-diffusion is given by

µ
Kb − (γ + LC)(K + 2σ)

K[b − (γ + LC)]
< min{A1, B1}, (28)

with A1, B1 defined as in (27).

Now we are looking for conditions ensuring that the coexistence equilibrium E∗, stable
when the diffusion is absent, becomes unstable when the effect of diffusion is considered.

We observe that the self-diffusion alone (γ12 = γ21 = 0) does not lead to the occurrence
of Turing instability.

Since I0
1 (E∗) < 0 implies I1(E∗) < 0 for all k, Turing instability may occur only if

I2(E∗) < 0 for mode k ̸= 0. A necessary condition for the occurrence of Turing instability is
qE∗ < 0.

The condition for the marginal stability at k2 = k2
cr is min(I2(k2

cr)) = 0. Such a

minimum value of I2(k2) is reached at k2
cr = − qE∗

2Γ
.

In addition, I2(k2
cr) < 0 gives q2

E∗ − 4ΓI0
2 (E∗) > 0. Then, the conditions for the oc-

currence of cross-diffusion-driven instability for E∗ can be summarized in the following
main theorem.

Theorem 5. Let us assume that (8) and (3) hold. The conditions for cross-diffusion-driven instabil-
ity of the homogeneous steady state E∗ are given by

a11 < 0, a12γ21 + a21γ12 − a11γ22 < 0,

(a12γ21 + a21γ12 − a11γ22)
2 > −4(γ11γ22 − γ12γ21)a12a21.

(29)
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The above inequalities (29) define a region where the coexistence equilibrium E*
is unstable. When choosing γ12 as bifurcation parameter and γ12 = γcr

12 as the Turing
threshold, bifurcation happens at the critical value

γcr
12 =

a12γ21 + a11γ22 + 2
√

a12γ22(a11γ21 − a21γ11)

a21
(30)

corresponding with the critical wavenumber

k2
cr =

√
− a12a21

γ11γ22 − γ12γ21
̸= 0. (31)

For γ12 > γcr
12, the unstable wavenumbers stay in between the roots k2

−, k2
+, the roots

of I2(k2) = 0. We conclude this section by highlighting the existence of the Turing–Hopf
bifurcation at the point of intersection of the Hopf and Turing bifurcation curves. In
the vicinity of this point, it is possible to observe both the formation of inhomogeneous
stationary patterns generated by Turing instabilities and the occurrence of homogeneous
oscillations generated by the Hopf bifurcation. This coexistence can lead to the eventual
appearance of an interesting class of spatio-temporal behaviors. When the kinetics of system
(1) exhibits a Hopf bifurcation (0 < I0

1 (E∗) << 1), highlighting a limit cycle, if I1(E∗) < 0,
I2(E∗) < 0, then weak Turing–Hopf instabilities appear. These instabilities are represented
as slight oscillations which have the frequency of the cycle solution superimposed on a
predominantly inhomogeneous pattern. It is observed that these oscillations increase with
increasing amplitude of the limit cycle, that is, with increasing I0

1 (E∗).

4. Numerical Simulations

In this paper, an analytical study of the interaction of two spatially distributed popu-
lations, the criminally minded population and the non-criminally minded one, has been
performed. In order to show the theoretical results and highlight the effect of diffusion on
the behavior of populations, in this section, we provide some numerical simulations. First,
we fix values to γ11, γ22 and γ21. We choose γ12 as a bifurcation parameter. According to
Theorem 5, from (30), we obtain γcr

12 as the minimum value for Turing instability to occur.
Figure 2 depicts the plots of I2(k2) for different values of the bifurcating parameter γ12.
Specifically, we have chosen γ11 = 0.8, γ22 = 2, γ21 = 3 and other parameter values as
shown in Table 1. In this case, γcr

12 ≈ −4.445. As we can see, for γ12 = −4.0 > γcr
12, the

graph shows that the curve does not intersect the horizontal axis, and, consequently, there
are no unstable modes. As γ12 decreases, the interval of unstable modes increases as well.
Analogously, as the bifurcation parameter decreases, the real part of the corresponding
eigenvalue λ(k) becomes positive (right panel of Figure 2).
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Figure 2. Left panel: plots of I2(k2) as function of the wavenumber for various values of the
bifurcation parameter γ12; right panel: plots of the real part of the eigenvalue λ(k), defined in (20) as
function of the wavenumber for various values of γ12. Here, γ11 = 0.8, γ22 = 2, γ21 = 3 and other
parameters as shown in Table 1.

We have solved system (2) in the domain Ω = [0, 40]× [0, 40] with initial conditions (4)
and homogeneous Neumann boundary conditions (5). The initial data have been chosen as
a random perturbation of the coexistence equilibrium. For the spatial discretization, we use
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finite differences with step h = 0.2. For the time discretization, we use the explicit Euler’s
method, with the time step varying from 10−4 to 10−5 depending on the parameters. We
have considered the model parameters shown in Table 1. Figures 3–6 show snapshots of
patterns which depict different possible scenarios. In every pattern, the blue color represents
the low density of the population, and the yellow color represents the high density of that
population. By various numerical simulations, we have observed that both populations are
distributed predominantly over the entire domain, with some very low-density patches,
generating predominantly spot patterns. Socially, yellow spots on a blue background
(see Figure 6) represent that the criminally minded population exists in isolated regions
with high density, motivated, for example, by the need to cooperate with other criminal
individuals. For Figures 3 and 4, we have chosen negative cross-diffusion coefficients
(γ12 = −0.8, γ21 = −0.1 and γ12 = −3, γ21 = −1, respectively) and other diffusion
coefficients (γ11 = 0.3, γ22 = 0.5 and γ11 = 2, γ22 = 2, respectively). In such figures, as the
spread of individuals from both populations increases, it is observed that the disposition of
the spots becomes more regular. For Figure 5, we have chosen a negative cross-diffusion
coefficient γ12 = −5 and other diffusion coefficients as follows: γ11 = 0.8, γ22 = 2, γ21 = 3,
satisfying the conditions of the Turing instability region. For Figure 6, we have chosen
positive cross-diffusion coefficients γ12 = 1, γ21 = 3.9 and other diffusion coefficients
as follows: γ11 = 2, γ22 = 2, satisfying the conditions of the Turing instability region.
This choice of positive γ12 (γ21) depicts the social scenario in which the non-criminally
minded population (criminally minded population) gravitates towards regions with a
lower concentration of criminally minded individuals (non-criminally minded population).

It is interesting to note that, in this last case (Figure 6), it is possible to observe a duality,
wherein non-criminally minded individuals live in regions without criminally minded
individuals and vice versa. Instead, in the other cases (Figures 3–5), the patterns share the
property wherein both criminally minded and non-criminally minded individuals coexist
in the same region.

Figure 3. Snapshots of patterns of the non-criminally minded population and criminally minded
population with γ11 = 0.3, γ22 = 0.5, γ21 = −0.1, γ12 = −0.8 and other parameters as in Table 1.

Figure 4. Snapshots of patterns of the non-criminally minded population and criminally minded
population with γ11 = 2, γ22 = 2, γ21 = −1, γ12 = −3 and other parameters as shown in Table 1.
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Figure 5. Snapshots of patterns of the non-criminally minded population and criminally minded
population with γ11 = 0.8, γ22 = 2, γ21 = 3, γ12 = −5 and other parameters as shown in Table 1.

Figure 6. Snapshots of patterns of the non-criminally minded population and criminally minded
population with γ11 = 2, γ22 = 2, γ21 = 3.9, γ12 = 1 and other parameters as shown in Table 1.

We end this section by considering the region around the Turing–Hopf bifurcation.
We perform simulations for a parameter set of interest. When we choose LC = 0.4 and
set other parameters as shown in Table 1, (19) is satisfied, and the coexistence equilibrium
E∗ = (1.97, 17.73) is oscillatory, exhibiting limit cycles. In Figure 7 (right panel), a plot
of the limit cycle in the phase plane (with initial conditions (NP(0), CP(0)) = (0.5, 5)) is
shown. The left panel of the same figure shows the time evolution of both criminally
minded and non-criminally minded populations.

100 200 300 400
t

5

10

15

20

1 2 3 4 5
NP

5

10

15

20

CP

Figure 7. In the left panel, trajectories of system (1) with LC = 0.4 guarantee that (19) holds, and other
parameters are set as shown in Table 1. Blue and red lines represent NP(t) and CP(t), respectively, as a
function of time t. Here, the system shows persistent oscillations. In the right panel, the corresponding
phase plane plot clearly shows the limit cycle.

Keeping the same parameter values as in Figure 7, we simulate the corresponding
diffusive model (2). For the sake of completeness, it should be clarified that both 1D and
2D experiments have been performed, but we prefer to show only the results for the 1D
setting with the intention of highlighting the complete trajectories of both populations
since the graphs for the 2D setting could only be obtained at certain fixed instants of
time. Various numerical experiments with different sets of diffusion coefficients (satisfying
the Turing conditions) allowed us to observe that the same type of instability observed
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in the ODE model persists, and the system still shows an oscillatory behavior. Figure 8
reports the trajectories for the non-criminally minded and criminally minded populations
up to T = 800, with γ11 = 0.5, γ22 = 2, γ12 = 0.4, γ21 = −1.5. As evidenced by the
numerical simulations conducted, spatial diffusion can deeply influence the behavior of
social dynamics.

Figure 8. Numerical simulation of system (2) in presence of diffusion (γ11 = 0.5, γ22 = 2, γ12 = 0.4,
γ21 = −1.5), satisfying the Turing–Hopf conditions. Here, LC = 0.4, and other parameters are set
as shown in Table 1. Complete trajectory of non-criminally minded population (left panel) and
criminally minded population (right panel) up to T = 800.

5. Conclusions

In this paper, a generalized crime model is introduced to describe the interaction
between non-criminally minded and criminally minded populations. In particular, random
movement of both populations is allowed. The more general case in which the diffusion
of one population depends on the movement of the other population is analyzed (cross-
diffusion system). This study shows the importance of considering population movement
and spatial heterogeneity (which is nowadays well known and recognized in many fields)
in the analysis of social interactions. In some cases, the explicit introduction of spatial
diffusion can modify the forecasts of the non-spatial counterpart model. A linear instability
analysis of the coexistence equilibrium (when it exists) is performed. In particular, condi-
tions guaranteeing cross-diffusion-induced instability have been determined. Numerical
simulations performed on the obtained results are shown. In particular, by varying the
values of the diffusion coefficients, Turing patterns emerge, representing a spatial redistri-
bution of the population in the environment. Destabilizing mechanisms of the coexistence
equilibrium and some investigations for the possible oscillatory phenomena are applied.
Extensive numerical simulations highlighting such interesting dynamics are performed.
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Appendix A

Proof of Theorem 1. Evaluating (14) in E0, it follows that
a12(E0) = a21(E0) = 0,

a11(E0) = µ, a22(E0) = −(γ + LC).
(A1)

By using the Routh–Hurwitz conditions, the thesis is immediately obtained from
(21)–(22).

Proof of Theorem 2. Since I0
1 (E1) < 0 implies I1(E1) < 0, instability in presence of self-

and cross-diffusion occurs only if I2(E1) < 0. Evaluating (14) in E1, one obtains
a11(E1) = −µ, a12(E1) = −a

K
σ + K

,

a12(E1) = 0, a22(E1) =
bK

σ + K
− (γ + LC),

(A2)

and the Condition (24) immediately follows.

Proof of Theorem 3. Evaluating (14) in E∗, one obtains
a11(E∗) = µ

(
1 − 2σ(γ + LC)

K(b − (γ + LC))

)
, a12(E∗) = − a

b
(γ + LC),

a21(E∗) =
µ

K
[Kb − (γ + LC)(k + σ)], a22(E∗) = 0,

(A3)

and, by using Routh–Hurwitz conditions, the proof immediately follows.

Proof of Theorem 4. The thesis immediately follows from Theorem 3 and Remark 6.
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