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Abstract: Implied volatility is known to have a string structure (smile curve) for a given time to
maturity and can be captured by the B-spline. The parameters characterizing the curves can change
over time, which complicates the modeling of the implied volatility surface. Although machine
learning models could improve the in-sample fitting, they ignore the structure in common over time
and might have poor prediction power. In response to these challenges, we propose a two-step
procedure to model the dynamic implied volatility surface (IVS). In the first step, we construct
the bivariate tensor-product B-spline (BTPB) basis to approximate cross-sectional structures, under
which the surface can be represented by a vector of coefficients. In the second step, we allow for
the time-dependent coefficients and model the dynamic coefficients with the tree-based method to
provide more flexibility. We show that our approach has better performance than the traditional
linear models (parametric models) and the tree-based machine learning methods (nonparametric
models). The simulation study confirms that the tensor-product B-spline is able to capture the classical
parametric model for IVS given different sample sizes and signal-to-noise ratios. The empirical study
shows that our two-step approach outperforms the traditional parametric benchmark, nonparametric
benchmark, and parametric benchmark with time-varying coefficients in predicting IVS for the S&P
500 index options in the US market.

Keywords: implied volatility surface; forecasting; tensor-product B-spline; tree-based machine
learning methods

MSC: 62P05

1. Introduction

Implied volatility is extracted from the Black–Scholes formula with the observed op-
tion price in the market. It represents the people’s belief about the market in the future.
Therefore, implied volatility can be used in pricing options and looking for the arbitrage op-
portunity. It is assumed that volatility is a constant in the Black–Scholes formula. However,
implied volatility actually can vary across different strikes and time to maturity, known as
the implied volatility surface (IVS). The curvature, observed when plotting the strike price
against the implied volatility of a group of options at a fixed time to maturity, is referred
to as volatility smile, and the dependence on the time to maturity is called volatility term
structure. IVS is a collection of extracted volatilities by inverting the Black–Scholes formula
given strike prices and time to maturities.

Researchers have been developing approaches to predict IVS. The most traditional
way is to consider parametric linear regression models in terms of moneyness and time to
maturity. Dumas et al. [1] compare several different linear functions for implied volatility
with respect to the strike price and expiration date. The authors argue that the quadratic
forms lead to robust empirical results because the Black–Scholes–implied volatilities for
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S&P 500 options tend to have a parabolic shape. They also notice the considerable variation
in the coefficient estimates from week to week. Similarly, Goncalves and Guidolin [2]
consider a regression model that involves a quadratic term of moneyness and interaction
term between moneyness and time to maturity to model the time series of the S&P 500 index
options’ implied volatility surface. A two-stage approach is proposed to model the surface
by a parametric linear model and model the dynamics of the coefficients by autoregression
models. Heston and Nandi [3] developed a GARCH model to capture the path dependence
in volatility, but the approach is less capable of fitting the volatility smile.

On the other hand, endeavors have been made to model the implied volatility surface
directly using machine learning methods. Aït-Sahalia and Lo [4] consider the kernel
estimation method for state price density that can be related to the implied volatility
function. Fengler et al. [5] analyze IVS using common principal component analysis (CPC)
and show that the dynamics of the surface can be traced back to a common eigenstructure.
Audrino and Colangelo [6] consider the regression trees to improve the prediction of
implied volatility from S&P 500. The authors implement a cross-validation strategy for
hyperparameter tuning. Das and Padhy [7] investigate the use of support vector regression
combined with the Black–Scholes option pricing model in option pricing. Hahn [8] adopts
the artificial neural network to model implied volatility in the Australian equity options
market before and after the global financial crisis.

Although the aforementioned nonparametric machine learning models provide more
flexibility and, therefore, more accurate fitting compared with parametric models, they
are not able to take the volatility smile and volatility term structure into consideration. To
maximize the prediction ability while keeping the shape constraints and dynamic structures
of IVS, we propose the penalized bivariate tensor product B-splines (BTPBs) with time-
varying coefficients. Specifically, we approximate IVS (i.e., implied volatility as a function
of strike and time to maturity) with a penalized bivariate tensor product B-spline basis
at each time point. Upon that, a tree-based machine learning method is implemented to
model the time dependence of the coefficients. The first step is also known as the bivariate
spline smoothing. The use of basis functions guarantees the consistency of the smile shape
and simplifies the prediction of future surfaces. Another attempt to pursue both fitting
accuracy and closed functional form is the application of symbolic regression (Luo and
Yu [9]). Symbolic regression is a machine learning approach that aims to identify the
relationship between input variables and output variables in a given dataset without a
predefined functional form. Although symbolic regression has the advantage of exploring
actual relationships between implied volatility and other variables, the fitted function
could be complicated and change over time. The proposed method differs from such
techniques by providing a simple and fixed basis in the functional space, which enables
dynamic forecasting.

In finance studies, the smoothing technique has been broadly applied, though limited
to univariate cases. Shimko [10] first proposes to interpolate the implied volatility smile
curves after converting the option prices to implied volatilities through a cubic spline.
Bliss and Panigirtzoglou [11] propose using a smoothing spline that achieves better fit by
imposing a penalty function on the wiggle and does not require the pass of all original
points exactly. Figlewski [12] modifies the smoothing techniques to take account of the
market’s bid–ask spread to extract the risk-neutral density from the S&P 500 index options.
Existing applications of smoothing techniques primarily focus on univariate splines, fitting
dynamic implied volatility surfaces (IVSs) by iterating over term structures and time points.
Orosi [13] proposes a nonparametric spline-based method for modeling IVS while ignoring
the dynamics of IVS. Our approach, however, utilizes bivariate B-splines to model IVs,
allowing coefficients to evolve over time. This method ensures the smooth structure of
the implied volatility surface, including the smile feature, while allowing flexibility with
dynamic coefficients. Additionally, we employ machine learning techniques to forecast
future dynamic coefficients, enabling the prediction of IVs.



Mathematics 2024, 12, 1100 3 of 30

In this paper, we extend this exercise in the financial area to a complicated bivariate
scenario. For bivariate spline smoothing, Eilers and Marx [14] propose the P-spline and its
extension to two-dimensional smoothing. Eilers and Marx [15] and Marx and Eilers [16]
consider the bivariate P-splines in signal regression. Wood [17] proposes the thin plate
spline smoothing for large data sets, and Wood [18] produces a framework for constructing
a “scale-invariant” tensor product using low-rank approximation. Xiao et al. [19] pro-
pose a sandwich smoother that accelerates the computation of a tensor product structure.
Price et al. [20] implement the penalized bivariate tensor product B-splines (BTPBs) to
calculate a conditional yield density and provide the large sample theories of the estimator.

We conduct a simulation study to examine the ability of the penalized BTPBs to fit
the implied volatility surface. We consider the underlying cross-sectional model for the
log implied volatility following Goncalves and Guidolin [2]. We calculate the root mean
square error under the combination of different sample sizes and coefficient of variance.
The simulation result suggests that BTPB is able to capture the curvature in the IVS surface
under all scenarios with a relative squared error ranging from 0.83% to 5.93%.

In our empirical study, we adopt the two-step procedure to predict the dynamic IVS
of S&P 500 options between January 2015 and April 2022. In the first step, we use the
bivariate B-spline to estimate coefficients of the B-spline bases for each day. In the second
step, we employ the gradient boosted trees method using the times series of estimated
coefficients and forecast the coefficients for the future days. Then the predicted IVs can
be obtained by applying those predicted coefficients on the B-spline bases. We consider a
rolling estimation scheme with a 60-day training period, a 20-day validation period, and a
1-day out-of-sample prediction period. We begin to make daily forecasts in March 2015 and
shift the estimation sample by 1 day at a time until the testing period reaches April 2022.
We utilize the Bayesian optimization with a Gaussian process in hyperparameter tuning.
We also consider three benchmark models: the parametric benchmark (i.e., the classical log
implied volatility model proposed in Goncalves and Guidolin [2]), a dynamic modification
of the parametric benchmark, and the nonparametric machine learning benchmark. Test
statistics (root mean squared error and relative root mean squared error) show that the
dynamic BTPB method provides a regular and accurate forecasting over the benchmarks.

We contribute to the literature by applying the penalized bivariate tensor product
B-spline to the IVS forecast and combining the cross-sectional fitting with the time series
forecasting in a semiparametric manner. The proposed method allows for not only the
flexibility and the constraints of the shape of IVS but also the dynamics of IVS over time
by modeling the time-dependent coefficients. The simulation study shows that BTPB
is able to recover the classical parametric benchmark model under different cases and
the increase in the sample size improves the prediction of IVS. In the empirical study,
we show that our dynamic semiparametric model whose coefficients are modeled by
gradient boosted trees has the best performance in predicting IVS for the S&P 500 index
options, followed by the nonparametric benchmark, parametric benchmark, and dynamic
parametric benchmark model.

The rest of the paper is organized as follows: Section 2 details the proposed method.
Section 2.1 introduces the Black–Scholes formula and implied volatility surface and describes
the B-splines and penalized BTPB of moneyness and time to maturity. Section 2.2 describes
our general framework for modeling the implied volatility surface with dynamic BTPB.
The time-varying spline coefficients are modeled through tree-based machine learning
methods with a Gaussian process for tuning hyperparameters. Section 3 provides a simula-
tion study on the performance of our method in modeling the classical implied volatility
surface. Section 4 shows an empirical study that demonstrates the better performance of
our approach compared with three benchmark models.

2. Methodology

In this section, we propose the two-step modeling of the dynamic implied volatility
surface. In Section 2.1, we first introduce the implied volatility as a function of two
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key factors: moneyness and time to maturity. Based on this idea, we approximate this
surface with the bivariate tensor product B-spline basis (BTPB). We also briefly review
the formulation and mathematical properties of the BTPB basis. When the basis is fixed,
the dynamic change of the surface can be depicted and predicted by the time-varying
coefficients. In Section 2.2, we model these coefficients with gradient boosted regression
trees. Section 2.3 summarizes the two-step procedure proposed in this paper. Section 2.4
provides the details of hyperparameter tuning with Bayesian optimization. Section 2.5 lists
several benchmark models to demonstrate the advantage of combining semiparametric
modeling and machine learning methods.

2.1. Approximate Implied Volatility Surface with BTPB

The famous Black–Scholes formula (Black and Scholes [21]) prices the European call
and puts options and connects the price of an option contract to several characters: the
current underlying asset price St, the strike price K, the time to maturity τ = T − t (i.e.,
the expiration time T minus the current time t), the risk-free rate r, and the volatility σ.
Specifically, the Black–Scholes formula to price a call option Ci,t or a put option Pi,t at time
t is as follows :

CBS
i,t = N(dm)St − N(dτ)Ki,te−r(Ti,t−t)

PBS
i,t = N(−dτ)Ki,te−r(Ti,t−t) − N(−dm)St,

(1)

where dm =
ln(St/Ki,t)+(r+σ2/2)τi,t

σ
√

τi,t
, dτ = dm − σt

√
τi,t, and N(·) is the cumulative distribu-

tion function (cdf) of a standard normal distribution.
When other variants are fixed, Equation (1) suggests a one-to-one relationship between

the option price CBS
i,t (or PBS

i,t ) and the volatility parameter σ2. In practice, the volatility
parameter is unknown, while the option prices are observable from the market. Then for
every observed price Ci,t, the contract- and time-specific implied volatility σIV

i,t could be
numerically solved from the inverse of Equation (1):

CBS
i,t

(
St, Ki,t, τi,t, r, σIV

i,t

)
− Ci,t = 0. (2)

In the world of Black–Scholes, σ should be a constant number, which is violated by
the empirical data. Therefore, researchers allow σ to change while keeping the form of
Equation (2). In this sense, we are modeling the data pair (Ci,t, σIV

i,t ) as a function of other
variants in the equation.

Similarly, given the observed put option market price Pi,t, we can obtain σIV
i,t from

PBS
i,t

(
St, Ki,t, τi,t, r, σIV

i,t

)
− Pi,t = 0. Thus, the implied volatility is a representation of the

option market and reflects people’s beliefs about the future. The value of implied volatility
depends on the strike price Ki,t, time to maturity τi,t, and certain time-specific constants
(i.e., risk-free return and current asset price).

Researchers have been developing different models to extract curvatures and term
structures of the implied volatility surface. In this paper, we implement the penalized
bivariate tensor product B-splines (BTPBs) to approximate the implied volatility surface. We
use mi,t =

Ki,t
St

, known as the moneyness, to simplify the modeling and fit yi,t = log(σIV
i,t )

as a function of mi,t and τi,t. We follow the common practice in the literature to take
log transformation on implied volatility to reduce the impact of skewness and outliers
(Fengler et al. [22]). The rest of this subsection reviews B-spline basis functions and details
the construction of penalized BTPBs.

2.1.1. B-Spline Basis Functions

Splines are referred to as a class of functions that are able to produce flexible data
smoothing. Instead of fitting a single high-degree polynomial at once, the spline method
divides the support of data into intervals with knots and fits each subset of values with



Mathematics 2024, 12, 1100 5 of 30

a low-degree polynomial called spline. Each successive spline must have equal values,
derivatives, and second derivatives at their joining knots to produce smooth interpolation.

A univariate function f (X) in the B-spline basis space could be written as follows:

f (X) =
K+d+1

∑
k=1

γkBk(X). (3)

Bd
k (x) denotes the kth basis function of degree d, and the B-spline basis is defined

recursively as follows:

B0
k(x) =

{
1, ξk ≤ x < ξk+1,
0, otherwise

Bd
k (x) =

x− ξk
ξk+d − ξk

Bd−1
k (x)− ξk+d+1 − x

ξk+d+1 − ξk+1
Bd−1

k+1 (x),
(4)

k = 1, . . . , K + d + 1. Then f (X) is essentially a piecewise polynomial of degree d and
has continuous derivatives up to degree d− 2. With K knots, there are K + 1 polynomials
of degree d along with dK constraints, leading to (d + 1)(K + 1)− dK = K + d + 1 free
parameters. It is claimed that cubic splines are the lowest-order spline for which the
discontinuity at knots is invisible to the human eye. Therefore, we fix the degree at 3 and
ignore the superscript d in the rest of the paper.

2.1.2. Penalized Bivariate Tensor-Product B-Spline (BTPB)

The bivariate tensor product B-splines model provides a straightforward generaliza-
tion of the one-dimensional B-splines and becomes a flexible semiparametric approach in
two-dimensional space. At a fixed time point t, our goal is to approximate yi,t, the loga-
rithm of the implied volatility, with a bivariate function G(m, τ) that falls into the space
of B-spline space. That is, the representation of G(·, ·) in terms of tensor product B-spline
basis is provided by the following:

G(m, τ) = ∑
16km6Km+dm+1
16kτ6Kτ+dτ+1

αkm ,kτ
B1

km ,dm
(m)B2

kτ ,dτ
(τ), (5)

where B1
km ,dm

(m) and B2
kτ ,dτ

(τ) denote B-spline basis functions for moneyness m and time
to maturity τ, respectively, and αkm ,kτ

are the coefficients to be estimated. Km and Kτ are
the number of inner knots and dm and dτ are the degrees of the B-spline for m and τ. We
model the implied volatility yi,t of option i at time t as follows:

yi,t = G(mi,t, τi,t) + ei,t, (6)

where G(mi,t, τi,t) is defined as in Equation (5) and ei,t is an error term with mean 0. We use
α to denote the vector of length (Km + dm + 1)(Kτ + dτ + 1) that contains all the coefficients
αkm ,kτ

. The function G(m, τ) is fully determined by the choice of knots and the coefficient
vector α. Additionally, αt is a representation of the implied volatility surface at time point t
when knots are fixed.

Using the data observed at day t, we estimate αt by minimizing the loss function below:

α̂t = arg min
α

T

∑
t=1

Nt

∑
i=1

yi,t − ∑
16km6Km+dm+1
16kτ6Kτ+dτ+1

αkm ,kτ
B1

kτ ,dm
(mi,t)B2

kτ ,dτ
(τi,t)


2

+ αTPα. (7)
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The penalty matrix P in Equation (7) is defined following Xiao et al. [19]:

P = λ1BT
2 B2 ⊗DT

1 D1 + λ2DT
2 D2 ⊗ BT

1 B1 + λ1λ2DT
2 D2 ⊗DT

1 D1, (8)

where λ1 and λ2 are the smoothing parameters for m and τ, respectively; B1 and B2 are
defined as B1 = B1

km ,dm
(mi,t)16i6Nt ,16km6Km+dm+1

, B2 = B2
kτ ,dτ

(τi,t)16i6Nt ,16kτ6Kτ+dτ+1
;

and the matrices D1 and D2 are the difference matrices of difference orders m1 and m2
(Price et al. [20]). The difference penalty is used to remove computational difficulty when
the penalty term is defined through an integral, and it controls the smoothness to reduce
overfitting (Yoshida [23]). Xiao et al. [19] show that the tensor product structure of the
sandwich smoother accelerates the computation and smoothing parameter selection.

2.2. Time-Varying Coefficients with Tree-Based Machine Learning Method

It is implied in the previous section that the implied volatility surface is changing over
time. In this section, we model the time series of the time-varying coefficient αt with a
tree-based machine learning model and obtain the forecast of a future implied volatility
surface by plugging the predicted coefficients into a BTPB basis. We assume that αt depends
on xt, a vector of known predicting features at time t. In our practice, we consider xt to
include the historical coefficients up to a lag of 5, i.e., αt−1, αt−2, αt−3, αt−4, and αt−5.

For the tree-based method, we consider the gradient boosted regression trees (GBRTs).
The motivation for boosting is to combine the outputs of many weak learners to produce
a powerful committee, where a weak learner is one whose error rate is only slightly
better than random guessing. Boosting trees is a boosting procedure using the simple
decision trees as the weak learners. In this paper, we use T(x; Θ) = ∑J

j=1 γj I(x ∈ RJ) to
represent a decision tree. That is, a decision tree splits the space into J regions and assigns
the value γj to all data points in area j. The number of J usually depends on the max
depth of the decision tree, which effectively changes the model complexity and is one of
the hyperparameters to tune. Θ is the tree parameters consisting of the split variables
and split points. In a boosting tree, the combination expands the target sequentially as
α̂t(xt) = α̂

(M)
t (xt) = ∑M

m=1 T(xt; Θm), where M is the number of week learners, and Θm
determines the shape of each tree. These models are fitted by minimizing a loss function
L(·, ·) averaged over training data:

L =
T

∑
t=1

L(αt,
M

∑
m=1

T(xt; Θm)).

As a member of the boosted tree family, gradient boosting regression trees apply
loss function L(·, ·) that is suitable for a regression problem and adding new learners in
a gradient decent way (Hastie et al. [24]). Algorithm 1 provides the details for gradient
boosted regression trees under squared error loss function L(αt, α̂t) = (αt − α̂t)

2. In each
step m, the residual ε

(m)
t = − ∂

∂α̂ L(αt, α̂) is calculated. The algorithm fits a new decision tree
T(xt; Θ̂m) to this residual and adds T(xt; Θ̂m) to the existing trees. In this way, the fitted tree
moves towards the negative gradient direction by amount ν, where ν usually represents
the learning rate.

The performance of the machine learning method largely depends on the choice of
hyperparameters. When the number of hyperparameters exceeds one, the computation
burden of hyperparameter tuning increases exponentially. To solve this problem, we
identify two hyperparameters (i.e., the max depth of a simple decision tree and the learning
rate) and use the Gaussian process Bayesian optimization to tune the hyperparameters.
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Algorithm 1 Gradient Boosted Regression Trees (GBRTs)

Start with α̂
(0)
t = ᾱt =

1
T ∑T

t=1 αt
for m from 1 to M do

ε
(m)
t = − ∂

∂α̂ L(αt, α̂)
|α̂=α̂

(m−1)
t

= αt − α̂
(m−1)
t

T(xt; Θ̂m) = arg minΘm ∑T
t=1

(
ε
(m)
t − T(xt; Θm)

)2

Set α̂
(m)
t (xt) = α̂

(m−1)
t (xt) + νT(xt; Θ̂m)

end for
α̂t(xt) = α̂

(M)
t (xt)

2.3. Two-Step Procedure: BTPB + GBRT

In this section, we propose a two-step procedure to predict IVS and allow for the
dynamics of IVS by modeling the time-dependent coefficients on a rolling basis. In the first
step, we construct a bivariate B-spline basis and calculate the coefficients αt using call (or
put) option prices observed at time t. In the second step, we use the historical information
xt to predict the future coefficients and fit the gradient boosted regression trees (GBRTs) on
a rolling basis. The two-step procedure could be summarized as follows:
Step 0. For each estimation window, divide the time series into three consecutive subsets:
the training period (Itrain), the validation period (Ival), and the test period (Itest). Figure 1
provides an illustration of the first three windows.
Step 1. Fit penalized tensor-product B-splines to the call (or put) option data in the training
and validation period time (i.e., t ∈ Itrain ∪ Ival) and obtain αt’s.
Step 2.

(i) Fit a GBRT model on the data pairs {xt, αt}t∈Itrain
in the training period by min-

imizing the squared error loss. Choose optimal hyperparameters (i.e., the max
depth of the decision tree and the learning rate in boosting) based on the model
performance in the validation period {xt, αt}t∈Ival

. The predictors in xt include
(αt−1, αt−2, αt−3, αt−4, αt−5).

(ii) Predict αt for the test period with xt. The predicted log implied volatility of the
options on the test period t ∈ Itest is

ŷi,t = ∑
16km6Km+dm+1
16kτ6Kτ+dτ+1

α̂km ,kτ ,tB1
km ,dm

(mi,t)B2
kτ ,dτ

(τi,t),

where α̂km ,kτ ,t is the predicted future coefficient using GBRT, and i = 1, 2, . . . , Nt.

Figure 1. Split data into training period, validation period, and test period on a rolling basis. For each
rolling (colored bars), one BTPB is fit on the training period, and the validation period is used
for hyperparameter tuning. Black bars indicate the historical period that is not included in the
current windows.
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2.4. Hyperparameter Tuning via Bayesian Optimization

Bayesian optimization is used for solving black-box optimization problems where the
objective function is unknown or difficult to evaluate. Bayesian optimization replaces the
objective function by a Gaussian process (GP) so that we can use a sequence of optimizations
to approximate the original problem.

The hyperparameter tuning in machine learning can be treated as a Bayesian opti-
mization problem where we want to maximize the metric on the validation set with respect
to the hyperparameters. In the context of hyperparameter tuning in machine learning,
the response variable is the metric value f (ω) on the validation set, and covariates are ω,
the hyperparameters of machine learning methods.

Bayesian optimization with a Gaussian process takes two steps to find ω that max-
imizes f (ω). In the first step, construct a surrogate model through a Gaussian process
prior; i.e., we impose a Gaussian prior on f (ω) and have a posterior predictive distribution
for f (ω) after incorporating the observed samples from f (ω). Because the posterior of a
Gaussian process is still a Gaussian distribution, a Gaussian process is one of the popu-
lar surrogate priors. In the second step, we pick a new point ω∗ based on the so-called
acquisition function (or utility function) under the posterior distribution from the first step.
The objective function f (ω) is then evaluated at the new point ω∗ with the potential of
achieving a higher objective function value. Incorporate the new sample to the sample
data and update the posterior predictive distribution. The second step is repeated until
the desired maximum of the objective function is approximated. Appendix A provides
more details.

The grid search of hyperparameters is completely uninformed by past evaluations,
and hence spends a significant amount of time evaluating “unpromising” hyperparameters.
Bayesian optimization with GP, however, attempts to solve the black-box problem by impos-
ing a Gaussian prior on the unknown objective function and proposing more “promising”
points that can yield a higher value of the objective function through the acquisition func-
tion. Therefore, a Bayesian optimization approach updates the hyperparameter in a more
appropriate direction with the knowledge of past observations based on the correlation
imposed by a covariance structure, thus locating the optimal hyperparameter more effi-
ciently. More importantly, because the observations (metric values on a validation set in our
context) are noisy, i.e., v = f (ω) + ε, it is difficult to find ω that maximizes the underlying
function f (·) directly using v, which is contaminated with error. Bayesian optimization
with GP creates a way of approximating the true underlying f (·) and produces a posterior
predictive distribution that is also Gaussian such that the problem becomes tractable.

2.5. Benchmark Models

We consider three types of benchmark models to evaluate the performance of the
proposed method. Section 2.5.1 introduces the typical parametric benchmark model in
the literature. Section 2.5.2 considers the time-varying coefficients for the parametric
benchmark model by following the same two-step procedure used for BTPB. Section 2.5.3
describes the machine learning model (gradient boosted trees) in modeling IVS.

2.5.1. Parametric Benchmark Model

Goncalves and Guidolin [2] argue that a cross-sectional model specified as in Equation (9)
below provides the best fit among the alternative specifications, such as models in which IVS
is only a function of moneyness and models without interactions.

Consider the underlying cross-sectional model at time t for the log implied volatility
as follows:

yi,t = ln σi,t = β0,t + β1,tmi,t + β2,tm2
i,t + β3,tτi,t + β4,t(mi,t × τi,t) + εi,t, (9)

where εi,t is the standard normal error with zero mean, t ∈ Itest, i = 1, . . . , Nt. βt =
(β0,t, β1,t, β2,t, β3,t) are estimated on a rolling basis as in Figure 1. Note that because we do
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not have hyperparameters in the model, the estimation of the coefficients is based on the
corresponding training and validation set, i.e., Itrain ∪ Ivali for each rolling.

2.5.2. Dynamic Parametric Benchmark Model

In Equation (9), we assume that the coefficients are updated on a rolling basis. Another
way of forecasting is to follow the same two-step procedure as in BTPB with time-dependent
coefficients modeled by tree-based machine learning methods. Instead of αt, we now
focus on the estimated βt from the training and validation set. The two-step procedure
now becomes as follows:

1. Fit a benchmark model (9) to the option data at time t ∈ Itrain ∪ Ivali, i.e., the training
and validation period, and obtain the following:

βt = (β0,t, β1,t, β2,t, β3,t, β4,t)

2. For β j,t ∈ βt, j = 0, 1, 2, 3, 4,

(a) Fit a tree-based machine learning model on the data pairs in the training period(
β j,t, xβt

)
, t ∈ Itrain by minimizing the squared error loss ∑t∈Itrain

(β j,t − β̂ j,t)
2,

and the hyperparameter tuning is based on data pairs in the validation period(
β j,t, xβt

)
, t ∈ Ival . xβt = (βt−1, βt−2, βt−3, βt−4, βt−5). The Gaussian process

Bayesian optimization is also implemented to tune the hyperparameters.
(b) Obtain prediction β̂ j,t on the test set with xβt, t ∈ Itest.

The predicted implied volatility of the options on the test period t ∈ Itest are s follows:

yi,t = β̂0,t + β̂1,tmi,t + β̂2,tm2
i,t + β̂3,tτi,t + β̂4,t(mi,t × τi,t) + εi,t,

where t = 1, 2, . . . , Nt.

2.5.3. Nonparametric Machine Learning Benchmark Models

Following the general framework of a machine learning problem, we consider the
model for the log implied volatility of option i at time t, ln σi,t, as follows:

yi,t = ln σi,t = G(xi,t) + ei,t, (10)

where G(·) is an unknown complex function, ei,t is the noise term of option i at time t, and
xi,t = (mi,t, τi,t) is a vector of predictors of option i at time t with i = 1, . . . , Nt. Nt is the
number of options at time t. The Bayesian optimization with a Gaussian process is used in
hyperparameter tuning.

3. Simulation

In this section, we evaluate the approximation performance of BTPB based on a
theoretical implied volatility surface. We consider the underlying cross-sectional model for
the log implied volatility proposed by Goncalves and Guidolin [2] and demonstrate the
result under different combinations of sample size and signal-to-noise ratio.

For some specific time t, the implied volatility for the ith option is generated by the
following:

ln σi = β0 + β1mi + β2m2
i + β3τi + β4(mi × τi) + εi, i = 1, . . . , N, (11)

where mi∼N(0.6, 1) is truncated at 0 and 1.2, τi ∼ 1
365 BetaBin(365, 1, 2) and εi ∼ N(0, ω2).

(β0, β1, β2, β3, β4) are specified in a similar manner as in Goncalves and Guidolin [2] to
have appropriate curvature. ω is set to adjust for different signal-to-noise ratios. Define
the coefficient of variation (CV) as the standard deviation of εi over the empirical mean of
|β0 + β1mi + β2m2

i + β3τi + β4(mi × τi)|, i.e., ω
1
N ∑N

i=1 |β0+β1mi+β2m2
i +β3τi+β4(mi×τi)|

. Once N

and CV are fixed, ω is determined accordingly.
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We consider four different cases with N = 200 and 1000, CV = 0.02 and 0.1. Then, fit
penalized tensor-product B-splines for each case with Km = Kτ = 3, dm = 3, and dτ = 2.
Lower order is considered for τ because the data are more sparse in the direction of τ.
Table 1 shows the relative root mean squared error (RMSE) ( RMSE

1
n ∑ |yi |

) for each case. There is

no significant difference in the relative RMSE between the different sample sizes under the
same CV level.

Table 1. Relative RMSE for four cases of two sample sizes and two CV levels. There is no signifi-
cant difference between the different sample sizes under the same CV level. Therefore, the model
performance on the sample is not too sensitive to the sample size.

CV = 0.02 CV = 0.1

N = 200 0.0169 0.0860
N = 1000 0.0196 0.0991

To further examine the fit of the surface, we construct a 100 by 50 grid with 100 equal-
spaced breaks for m ∈ (0, 1.2) and 50 equal-spaced breaks for τ ∈ (0, 1). For each case,
we evaluate the model on the 100 by 50 grid, i.e., 5000 points in total, and compare the

prediction to the underlying true means on the grid. Define RMSEg =

√
∑

Ng
j=1(ŷj−µj)2

Ng
and

relative RMSEg =
RMSEg

1
Ng ∑

Ng
j=1 |µi |

to measure the difference between the predictions and the

underlying means of the 5000 points on the grid where Ng = 5000. Table 2 shows the
relative RMSEg based on the predictions and underlying means of the grid. Notice that
the relative RMSEg is significantly lower when we have N = 1000 compared with N = 200
under the same CV level because the more data, the better fit to the underlying true surface.

Table 2. Relative RMSEg on grid for four cases of two sample sizes and two CV levels. Notice that
the relative RMSEg is significantly lower when we have N = 1000 compared with N = 200 under the
same CV level because the more data, the better fit to the underlying true surface.

CV = 0.02 CV = 0.1

N = 200 0.0178 0.0593
N = 1000 0.0083 0.0134

Figure 2 shows the 3D surface plots where we plot the predictions on the grid, the true
means on the grid, and the simulated observations. Figures 3–6 are the 2D cross-section plots
conditional on a specific τ or m. For the 2D cross-section plots conditional on τ, we split the
range of τ into eight equal-sized groups. The predictions and true means are plotted across m
conditional on the centers of the groups. Simulated observations falling into the corresponding
group are scattered green dots. Plots for the first, third, fifth, and eighth group are shown. A
similar procedure is applied to have the 2D cross-section plots conditional on m.

(a) (b)
Figure 2. Cont.
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(c) (d)
Figure 2. Three-dimensional surface plots under four cases. We consider the finer grids 100 and 50
for m ∈ (0, 1.2) and τ ∈ (0, 1) respectively. The true means, simulated observations, and predicted
values are plotted on the finer grids as well as the simulated observations. (a) N = 200, CV = 0.02;
(b) N = 1000, CV = 0.02; (c) N = 200, CV = 0.1; (d) N = 1000, CV = 0.1.

In general, BTPB is able to capture the curvature in the IVS surface in all cases, although
in the 2D cross-section plots, we notice that the model is not performing well close to the
boundary. When N = 200, CV = 0.1, we have the largest (relative) RMSE on the grid due
to the small sample size and high CV ratio. Figure 5 shows poor fit in the 2D cross-section
plots conditional on τ. However, the increase in the sample size mitigates the issue, and
the model recovers the IVS surface better when N = 1000 for both CV ratios.

(a) (b)

(c) (d)
Figure 3. Cont.
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(e) (f)

(g) (h)
Figure 3. Two-dimensional plots for different conditional on different τ and m under N = 200,
CV = 0.02. Plots for the 1st, 3rd, 5th, and 8th group are shown conditional on τ and m, respectively.
(a) Two-dimensional plots conditional on the center of the 1st group of τ; (b) 2D plots conditional on
the center of the 3rd group of τ; (c) 2D plots conditional on the center of the 5th group of τ; (d) 2D
plots conditional on the center of the 8th group of τ; (e) 2D plots conditional on the center of the 1st
group of m; (f) 2D plots conditional on the center of the 3rd group of m; (g) 2D plots conditional on
the center of the 5th group of m; (h) 2D plots conditional on the center of the 8th group of m.

(a) (b)

(c) (d)
Figure 4. Cont.
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(e) (f)

(g) (h)
Figure 4. Two-dimensional plots for different conditional on different τ and m under N = 1000,
CV = 0.02. Plots for the 1st, 3rd, 5th, and 8th group are shown conditional on τ and m, respectively.
(a) Two-dimensional plots conditional on the center of the 1st group of τ; (b) 2D plots conditional on
the center of the 3rd group of τ; (c) 2D plots conditional on the center of the 5th group of τ; (d) 2D
plots conditional on the center of the 8th group of τ; (e) 2D plots conditional on the center of the 1st
group of m; (f) 2D plots conditional on the center of the 3rd group of m; (g) 2D plots conditional on
the center of the 5th group of m; (h) 2D plots conditional on the center of the 8th group of m.

(a) (b)

(c) (d)
Figure 5. Cont.
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(e) (f)

(g) (h)
Figure 5. Two-dimensional plots for different conditional on different τ and m under N = 200,
CV = 0.1. Plots for the 1st, 3rd, 5th, and 8th group are shown conditional on τ and m, respectively.
(a) Two-dimensional plots conditional on the center of the 1st group of τ; (b) 2D plots conditional on
the center of the 3rd group of τ; (c) 2D plots conditional on the center of the 5th group of τ; (d) 2D
plots conditional on the center of the 8th group of τ; (e) 2D plots conditional on the center of the 1st
group of m; (f) 2D plots conditional on the center of the 3rd group of m; (g) 2D plots conditional on
the center of the 5th group of m; (h) 2D plots conditional on the center of the 8th group of m.

(a) (b)

(c) (d)
Figure 6. Cont.
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(e) (f)

(g) (h)
Figure 6. Two-dimensional plots for different conditional on different τ and m under N = 1000,
CV = 0.1. Plots for the 1st, 3rd, 5th, and 8th group are shown conditional on τ and m, respectively.
(a) Two-dimensional plots conditional on the center of the 1st group of τ; (b) 2D plots conditional on
the center of the 3rd group of τ; (c) 2D plots conditional on the center of the 5th group of τ; (d) 2D
plots conditional on the center of the 8th group of τ; (e) 2D plots conditional on the center of the 1st
group of m; (f) 2D plots conditional on the center of the 3rd group of m; (g) 2D plots conditional on
the center of the 5th group of m; (h) 2D plots conditional on the center of the 8th group of m.

4. Empirical Study

In this section, we aim to demonstrate the effectiveness of the two steps using in-
sample and out-sample performance, respectively. Section 4.1 introduces the option data.
Section 4.2 introduces the additive B-spline model, a special case of BTPB, to incorporate
the overidentification problem in practice. Section 4.3 provides the in-sample result to show
the fitting accuracy of the proposed method. Section 4.4 highlights the forecasting ability
based on the dynamic coefficients framework and the gradient boosted regression trees on
a rolling scheme.

The construction of BTPB is implemented in R(4.3.2), where the package mgcv(v1.9)
can construct and fit a B-spline basis under a general additive model. BRT is implemented
in Python(3.9). The code for implementing the proposed two-step method can be found
in GitHub (accessed on 20 March 2024) (YuyangLi0606/Dynamic-IVS/tree/main).

4.1. Data

We obtain daily option prices for S&P 500 that starts in January 2015 and ends in April
2022 following Gao et al. [25]. These options cover a large range of time to maturities from
1 to 1872 calendar days, as well as a large range of absolute moneyness ( Ki,t

St
− 1) from−0.98

to 1.40. The implied volatility from the BS formula uses the interbank borrowing rates as
the discount rate. It is a common practice to filter the biased option data according to certain
criteria (Orosi [13], Kim [26]). Specifically, we only keep options with volume greater than
5, open interest greater than 5, best bid greater than USD 3.8, implied volatility greater
than 0, and time to maturity greater than 6 days but less than 365 days. We also discard
options with absolute moneyness greater than 0.1 or less than −0.1, i.e., the options with
absolute moneyness in excess of 10%. We predict the IVS for call options and put options
separately. Although the implied volatility surface could be different for call options and

https://github.com/YuyangLi0606/Dynamic-IVS/tree/main
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put options, this paper focuses on the results based on call options since the put options tell
a similar story. Table 3 shows the summary statistics for all call options. Notably, the time
to maturity has the largest skewness and kurtosis, indicating the heavy tail distribution.

Table 3. This table shows summary statistics for call options in the real data. Note that the time to
maturity has the largest skewness and kurtosis, indicating the heavy tail distribution.

Mean Volatility Skewness Kurtosis Min Max

Implied volatility −1.9106 0.3827 0.4528 0.5749 −3.2729 0.1913
Moneyness 1.0086 0.0329 −0.0294 0.5207 0.8780 1.0998
Time to maturity 0.1439 0.1620 2.7109 8.4048 0.0164 1.0000

4.2. Additive B-Splines Model

We have introduced the bivariate tensor-product B-splines (BTPBs) and how the time-
varying coefficients can be modeled with tree-based machine learning methods. However,
because Equation (5) does not necessarily provide a full-rank model matrix, the existence
of extreme coefficients due to multicollinearity becomes a problem when modeling the
coefficients through the tree-based machine learning method gradient boosted trees using
the lagged coefficients.

Therefore, instead of BTPB, we consider the additive B-splines in the empirical study.
Define the additive B-spline as follows:

∑
16km6Km+dm+1

αkm ,1B1
km ,dm

(m) + ∑
16kτ6Kτ+dτ+1

αkτ ,2B2
kτ ,dτ

(τ), (12)

and Equation (6) becomes as follows:

yi,t = G(mi,t, τi,t) + ei,t = α0 + f1(mi,t) + f2(τi,t) + ei,t, (13)

where f1(mi,t) = ∑16km6Km+dm+1 αkm ,1B1
km ,dm

(mi,t), f2(τi,t) = ∑16kτ6Kτ+dτ+1 αkτ ,2B2
kτ ,dτ

(τi,t).

Define αadditive to be a vector of length (Km + dm + 1) + (Kτ + dτ + 1) + 1 that contains
all the coefficients, i.e., αadditive = (α0, α1,1, α2,1, . . . , αkm ,1, . . . , α1,2, α2,2, . . . , αkτ ,2). Our goal
is to the estimator αadditive by minimizing the loss function below:

arg min
α

T

∑
t=1

Nt

∑
i=1

(yi,t − (α0 + f1(mi,t) + f2(τi,t)))
2 +

[
λ1

∫ bm

am
( f ′′1 (mi,t))

2dm + λ1

∫ bτ

aτ

( f ′′2 (τi,t))
2dτ

]
, (14)

where yi,t is the implied volatility on a log scale of the ith option at time t; the smoothing
parameter λ1, λ2 selection is implemented in R package mgcv. Note that we consider the
derivative-based penalty in Equation (14) because it consists of essentially two univariate
smoothing B-splines and does not have heavy computation cost in integral.

To allow for time-varying coefficients, the two-step procedure is now applied to
αadditive accordingly. In the following sections, we consider Km = Kτ = 3, dm = dτ = 3 for
additive B-splines.

4.3. In-Sample Model Performance

In this subsection, we look at the in-sample performance as it is also of research interest
for IVS calibration (Audrino and Colangelo [6]). We compare the additive B-splines model
with the traditional parametric benchmark model. Specifically, each of these two models is
used to fit the IVS for each trade date, and we aggregate the results across all trade dates.

Table 4 provides the RMSE and the relative RMSE ( RMSE
1
n ∑ |yi |

) as the measure of goodness

of fit for two models. The additive B-splines model has significantly lower (relative) RMSE
and hence provides a better fit of the IVS than the parametric benchmark model.

A call option is in-the-money (ITM) when m > 1 and out-of-the-money (OTM) when
m < 1, and there is no at-the-money (m = 1) option in our data. The option is overvalued
when the predicted implied volatility is greater than the observed implied volatility and
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undervalued the other way around. Table 5 compares the RMSE in terms of moneyness,
and Table 6 compares the RMSE between the overvalued options and undervalued options
for both models. The additive B-splines model has consistently performed better than the
parametric benchmark.

Table 4. The RMSE and relative RMSE are provided for the additive B-splines model and the
parametric benchmark model. The additive B-splines model has significantly lower (relative) RMSE
and hence provides a better fit of the IVS than the parametric benchmark model.

Additive B-Splines Parametric Benchmark

RMSE 0.0532 0.0702
Relative RMSE 0.0279 0.0368

Table 5. Calculate the RMSE for the in-the-money (ITM) options and out-of-money options (OTM)
under two models. The additive B-splines model has consistently smaller RMSE.

Additive B-Splines Parametric Benchmark

ITM (m < 1) 0.0424 0.0665
OTM (m > 1) 0.0665 0.0756

Table 6. Calculate the RMSE for the overvalued options and undervalued options under two models.
The additive B-splines model has consistently smaller RMSE.

Additive B-Splines Parametric Benchmark

Overvalued 0.0564 0.0742
Undervalued 0.0502 0.0663

To examine the in-sample fit performance among different moneynesses and time to
maturities, Figure 7 provides the heatmaps of RMSEs based on a 15 by 15 grid determined
by equal-spaced percentiles in moneyness and time to maturity. The parametric benchmark
model has a darker area than additive B-splines in the bottom, indicating a poorer fit when
the moneyness is close its lower boundary. To further visualize a comparison, we focus on the
date 5 February 2021. Figures 8 and 9 show 3D plots from four different angles to compare the
performances of the parametric benchmark model and the additive B-splines model. Similarly,
Figures 10 and 11 show 2D plots conditional on four different levels of τ that corresponds to
the 20th, 35th, 65th, and 80th percentiles. Overall, the additive B-splines model has a better fit
than the parametric benchmark model due to its flexibility.

(a) (b)
Figure 7. Two heatmaps are based on a 15 by 15 grid determined by equal-spaced percentiles in
moneyness and time to maturity. The parametric benchmark model has a darker area than the
additive B-splines model in the bottom, indicating a poorer fit when the moneyness is close its
lower boundary. (a) Parametric benchmark; (b) additive B-spline.
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(a) (b)

(c) (d)
Figure 8. Four 3D plots with angle 1 and angle 2 compare the in-sample fit of IVS from the parametric
benchmark and additive B-splines model on the date 5 February 2021. The additive B-splines model
has a better fit to the data. (a) Angle 1 for parametric benchmark, (b) angle 1 for additive B-splines,
(c) angle 2 for parametric benchmark, and (d) Angle 2 for additive B-splines.

(a) (b)

(c) (d)
Figure 9. Four 3D plots with angle 3 and angle 4 compare the in-sample fit of IVS from the parametric
benchmark and additive B-splines model on the date 5 February 2021. The additive B-splines model
has a better fit to the data. (a) Angle 3 for parametric benchmark, (b) angle 3 for additive B-splines,
(c) angle 4 for parametric benchmark, and (d) angle 4 for additive B-splines.
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(a) (b)

(c) (d)
Figure 10. Four 2D plots conditional on the 20th and 35th percentile of τ compare the in-sample
fit of IVS from the parametric benchmark and additive B-splines model on the date 5 February
2021. The additive B-splines model has a better fit to the data. (a) Parametric benchmark model fit
conditional on the 20th percentile, (b) additive B-splines model fit conditional on the 20th percentile,
(c) parametric benchmark model fit conditional on the 35th percentile, and (d) additive B-splines
model fit conditional on the 35th percentile.

4.4. Out-of-Sample Model Performance

In this subsection, we compare the out-of-sample results for the additive B-splines
model with time-varying coefficients (dynamic additive B-splines), parametric benchmark
model, nonparametric benchmark model, and dynamic parametric benchmark model
based on the rolling scheme.

We start the rolling scheme in March 2015. Figure 1 shows the first three rolling of the
two-step procedure. We consider the training period to be 60 days, the validation period
20 days, and the test period 1 day.

Similar to in-sample results, Table 7 provides the RMSE and relative RMSE ( RMSE
1
n ∑ |yi |

) as

the measure of goodness of fit for the four models. The dynamic additive B-splines model
has the lowest (relative) RMSE, followed by the nonparametric benchmark, parametric
benchmark, and dynamic parametric benchmark model, and hence provides the best fit of
the IVS among the four models. Table 8 compares the RMSE in terms of the moneyness,
and Table 9 compares the RMSE between the overvalued options and undervalued options.
The dynamic additive B-splines model has consistently performed better than the other
three benchmarks.

To examine the prediction performance among different moneynesses and time to
maturities, Figure 12 provides the heatmaps of RMSEs based on a 15 by 15 grid determined
by equal-spaced percentiles in moneyness and time to maturity. The dynamic parametric
benchmark has the darkest heatmap, while the dynamic additive B-splines model has the
brightest, indicating the best fit among the four models. Figure 13 compares the RMSE time
series across the trade date for the four models. The dynamic additive B-splines model
has the most stable time series with the narrowest band and fewest extremes, while the
dynamic parametric benchmark has the largest spread. To further visualize a comparison,
we focus on the date 4 February 2016. Figures 14–17 show 3D plots from four different
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angles to compare their performance. Similarly, Figures 18–21 show 2D plots conditional
on four different levels of τ that corresponds to the 20th, 35th, 45th, and 65th percentiles.
Overall, the dynamic additive B-splines model has a better fit than the other three models.
We notice that the nonparametric benchmark gives an irregular and uneven predicted
implied volatility surface, and this can be due to the lack of constraints on the shape of
IVS. For the parametric benchmark, because it is too restrictive on the shape and there is a
risk of model mis-specification, it is not flexible enough to account for the spread of the
data. Therefore, the estimated coefficients as predictors in dynamic parametric benchmarks
are fundamentally bad predictors that worsen the prediction of the IVS. The risk of mis-
specification and inaccurate predictions of the coefficients leads to the poorest performance
of the dynamic parametric benchmark.

(a) (b)

(c) (d)
Figure 11. Four 2D plots conditional on the 65th and 80th percentile of τ compare the in-sample
fit of IVS from the parametric benchmark and additive B-splines model on the date 5 February
2021. The additive B-splines model has a better fit to the data. (a) Parametric benchmark model fit
conditional on the 65th percentile, (b) additive B-splines model fit conditional on the 65th percentile,
(c) parametric benchmark model fit conditional on the 80th percentile, and (d) additive B-splines
model fit conditional on the 80th percentile.

Table 7. The RMSE and relative RMSE are provided for the dynamic additive B-splines, nonparamet-
ric benchmark, parametric benchmark, and dynamic parametric benchmark model. The dynamic
additive B-splines model has lowest (relative) RMSE, followed by the nonparametric benchmark,
parametric benchmark, and dynamic parametric benchmark model.

Dynamic
Additive
B-Splines

Nonparametric
Benchmark

Parametric
Benchmark

Dynamic
Parametric
Benchmark

RMSE 0.2016 0.2455 0.2962 3.8606
Relative RMSE 0.1057 0.1287 0.1553 2.0242



Mathematics 2024, 12, 1100 21 of 30

Table 8. Calculate the RMSE for the in-the-money (ITM) options and out-of-money options (OTM)
under the four models. The dynamic additive B-splines model consistently has the lowest RMSE.

Dynamic Additive
B-Splines

Nonparametric
Benchmark

Parametric
Benchmark

Dynamic Parametric
Benchmark

ITM (m < 1) 0.2011 0.2588 0.30971 3.7824
OTM (m > 1) 0.2022 0.2234 0.2742 3.9781

Table 9. Calculate the RMSE for the overvalued options and undervalued options under two models.
The dynamic additive B-splines model has a consistently smaller RMSE. The option is overvalued
when the predicted implied volatility is greater than the observed implied volatility.

Dynamic Additive
B-Splines

Nonparametric
Benchmark

Parametric
Benchmark

Dynamic Parametric
Benchmark

Overvalued 0.1813 0.2319 0.2193 3.8242
Undervalued 0.2303 0.2733 0.3669 3.9086

(a) (b)

(c) (d)
Figure 12. Four heatmaps are based on a 15 by 15 grid determined by equal-spaced percentiles in
moneyness and time to maturity. The dynamic parametric benchmark has the darkest heatmap, while
the dynamic additive B-splines model has the brightest, indicating the best fit among the four models.
(a) Dynamic additive B-splines model, (b) nonparametric benchmark, (c) parametric benchmark, and
(d) dynamic parametric benchmark.

(a) (b)
Figure 13. Cont.
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(c) (d)
Figure 13. Compare the RMSE time series across the trade date for the four models. The dynamic
additive B-splines model has the most stable time series with the narrowest band and fewest extremes,
while the dynamic parametric benchmark has the largest spread. (a) RMSE time series for dynamic
additive B-splines, (b) RMSE time series for nonparametric benchmark, (c) RMSE time series for
parametric benchmark, and (d) RMSE time series for dynamic parametric benchmark.

(a) (b)

(c) (d)
Figure 14. Four 3D plots with angle 1 compare the in-sample fit of IVS from four models on the date
24 February 2016. The dynamic additive B-splines model has the best fit to the data. (a) Angle 1
for the dynamic additive B-splines model, (b) angle 1 for nonparametric benchmark, (c) angle 1 for
parametric benchmark, and (d) angle 1 for dynamic parametric benchmark.
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(a) (b)

(c) (d)
Figure 15. Four 3D plots with angle 2 compare the in-sample fit of IVS from four models on the
date 24 February 2016. The additive B-splines model has the best fit to the data. (a) Angle 2 for
the dynamic additive B-splines model, (b) angle 2 for nonparametric benchmark, (c) angle 2 for
parametric benchmark, and (d) angle 2 for dynamic parametric benchmark.

(a) (b)

(c) (d)
Figure 16. Four 3D plots with angle 3 compare the in-sample fit of IVS from four models on the date
24 February 2016. The dynamic additive B-splines model has the best fit to the data. (a) Angle 3
for the dynamic additive B-splines model, (b) angle 3 for nonparametric benchmark, (c) angle 3 for
parametric benchmark, and (d) angle 3 for dynamic parametric benchmark.
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(a) (b)

(c) (d)
Figure 17. Four 3D plots with angle 4 compare the in-sample fit of IVS from four models on the date
24 February 2016. The dynamic additive B-splines model has the best fit to the data. (a) Angle 4
for the dynamic additive B-splines model, (b) angle 4 for nonparametric benchmark, (c) angle 4 for
parametric benchmark, and (d) angle 4 for dynamic parametric benchmark.

(a) (b)

(c) (d)
Figure 18. Four 2D plots conditional on the 20th percentile of τ compare the out-of-sample fit of IVS
from four models on the date 24 February 2016. The dynamic additive B-splines model has the best fit
to the data. (a) Dynamic additive B-splines model fit conditional on the 20th percentile, (b) parametric
benchmark model fit conditional on the 20th percentile, (c) nonparametric benchmark model fit
conditional on the 20th percentile, and (d) dynamic parametric benchmark model fit conditional on
the 20th percentile.
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(a) (b)

(c) (d)
Figure 19. Four 2D plots conditional on the 35th percentile of τ compare the out-of-sample fit of IVS
from four models on the date 24 February 2016. The dynamic additive B-splines model has the best fit
to the data. (a) Dynamic additive B-splines model fit conditional on the 35th percentile, (b) parametric
benchmark model fit conditional on the 35th percentile, (c) nonparametric benchmark model fit
conditional on the 35th percentile, and (d) dynamic parametric benchmark model fit conditional on
the 35th percentile.

(a) (b)

(c) (d)
Figure 20. Four 2D plots conditional on the 45th percentile of τ compare the out-of-sample fit of IVS
from four models on the date 24 February 2016. The dynamic additive B-splines model has the best fit
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to the data. (a) Dynamic additive B-splines model fit conditional on the 45th percentile, (b) parametric
benchmark model fit conditional on the 45th percentile, (c) nonparametric benchmark model fit
conditional on the 45th percentile, and (d) dynamic parametric benchmark model fit conditional on
the 45th percentile.

(a) (b)

(c) (d)
Figure 21. Four 2D plots conditional on the 65th percentile of τ compare the out-of-sample fit of IVS
from four models on the date 24 February 2016. The dynamic additive B-splines model has the best fit
to the data. (a) Dynamic additive B-splines model fit conditional on the 65th percentile, (b) parametric
benchmark model fit conditional on the 65th percentile, (c) nonparametric benchmark model fit
conditional on the 65th percentile, and (d) dynamic parametric benchmark model fit conditional on
the 65th percentile.

5. Conclusions and Future Work

Traditional parametric models for IVS are too restrictive on the form of the model,
while the nonparametric model using machine learning provides more flexibility but fails
to take the volatility smile structure into account. In this paper, we propose a dynamic
semiparametric approach that combines the use of tensor-product B-splines and tree-based
machine learning methods that allow for not only the flexibility and the constraints of
the shape of IVS but also the dynamics of the IVS over time by considering the time-
dependent coefficients.

The simulation study shows that BTPB is able to recover the classical parametric
benchmark model under different cases, and the increase in sample size improves the
prediction of the IVS. In the empirical study, we show that our dynamic semiparametric
model, whose coefficients are modeled by gradient boosting trees, has the best performance
in predicting the IVS for the S&P 500 index options, followed by the nonparametric
benchmark, parametric benchmark, and dynamic parametric benchmark model.

In the future, we will consider the arbitrage opportunity by constructing portfolios
based on the directions of the predicted implied volatility; i.e., if we predict that the implied
volatility for an option is to increase in the next trade date, we are going to be long on the
option and short on the underlying stock because the increase in implied volatility causes
the increase in option price.
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Appendix A

Bayesian optimization is used for solving black-box optimization problems where the
objective function is unknown or difficult to evaluate. Bayesian optimization replaces the
objective function by a Gaussian process so that we can use a sequence of optimizations to
approximate the original problem.

The hyperparameter tuning in machine learning can be treated as a Bayesian op-
timization problem where we want to maximize the metric on the validation set with
respect to the hyperparameters. In the context of hyperparameter tuning in machine learn-
ing, the response variable is the metric value on the validation set and covariates are the
hyperparameters of machine learning methods. The meanings of notations are as follows:

vi = i th value of metric on validation set where i = 1, 2, . . . , n.

v = (v1,v2, . . . , vn)
′.

ωij = i th value of hyperparameter j where i = 1, 2, . . . , n and j = 1, 2, . . . , q.

ωj = (ω1j, ω2j, . . . , ωnj)
′.

ωi = (ωi1, ωi2, . . . , ωiq)
′.

Ω = n× q matrix with ij th element ωij.

f (ω) = the true underlying function for the metric on validation set w.r.t. hyperparameters.

We denote as n the number of grids in grid search or the number of iteration in a Bayesian
approach, and q is the number of hyperparameters to tune. For example, in principal com-
ponent regression, the number of components that selected M is the only hyperparameter,
and hence, we have one covariate, i.e., q = 1. If we use R2 as the metric, then R2 on the
validation set is the response variable.

A Gaussian process is a collection { f (ω), ω ∈ Rq} where any point ω ∈ Rq is assigned
a random variable f (ω) and the joint distribution of a finite number n ∈ N of these variables
f = ( f (ω1), . . . , f (ωn)) satisfies a Gaussian distribution Williams and Rasmussen [27]:

f|ω ∼ N(µ, K), (A1)

where µ = (m( f (ω1)), . . . , m( f (ωn))) and Ki,j = cov( f (ωi), f (ωj)). For i = 1, 2, . . . , n,
m(ωi) = E[ f (ωi)] is the mean function, and it is common to use m(ωi) = 0 without loss
of generality. K is the covariance matrix (kernel) that defines the shape of the Gaussian
process. One popular kernel is the Matern kernel, given by the following:

K(ωi,ωj) =
1

Γ(ρ)2ρ−1 (

√
2ρ

κ
d(ωi,ωj))

ρkρ(

√
2ρ

κ
d(ωi,ωj)), (A2)

where d(., .) is the Euclidean distance, kρ(.) is the modified Bessel function, and ρ, κ are
two positive parameters that control the smoothness, with default values ρ = 1.5, κ = 1.0.

https://optionmetrics.com/
https://optionmetrics.com/
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For data {(ωi,vi)}n
i=1, the goal of Gaussian process regression (GPR) is to predict

f∗ ≡ f (Ω∗) given new inputs ω∗ ∈ Rn∗×q Gonzalvez et al. [28]. Assume v = f + ε,
where f = f (Ω) = ( f (ω1), . . . , f (ωn)) and ε ∼ N(0n, σ2In). Then the joint distribution of
observed v and prediction f∗ is as follows:(

v
f∗

)
∼ N(0n+n∗ ,

(
K(Ω, Ω) + σ2In K(Ω, Ω∗)

K(Ω∗, Ω) K(Ω∗, Ω∗)

)
),

where K(Ω, Ω) is a n × n matrix, K(Ω∗, Ω) is a n∗ × n matrix, and K(Ω∗, Ω∗) is a n∗ ×
n∗ matrix.

A Gaussian prior p(f|Ω) can be converted into a Gaussian posterior p(f|Ω, v) after
having observed {(ωi,vi)}n

i=1. The posterior p(f|Ω, v) ∝ p(f|Ω)p(v|Ω, f) can then be used
to make predictions for a given new input Ω∗ through (Williams and Rasmussen [27]):

p(f∗|Ω∗, Ω, v) =
∫

p(f∗|Ω∗, f)p(f|Ω, v)df, (A3)

i.e., the posterior predictive distribution. By the rules of conditional distribution of two
Gaussian distributions, the predictive distribution is as follows:

p(f∗|Ω∗, Ω, v) = N(µ∗, Σ∗), (A4)

where µ∗ = µ∗(Ω∗) = K(Ω∗, Ω)(K(Ω, Ω) + σ2In)−1v and Σ∗ = Σ∗(Ω∗) = K(Ω∗, Ω∗)−
K(Ω∗, Ω)(K(Ω, Ω) + σ2In)−1K(Ω, Ω∗). The deduced prediction is the conditional expec-
tation µ∗.

Bayesian optimization with a Gaussian process takes two steps to find ω that max-
imizes f (ω). In the first step, construct a surrogate model through a Gaussian process
prior; i.e., we impose a Gaussian prior on f (ω) and have a posterior predictive distribution
for f (ω) after incorporating the observed samples from f (ω). Because the posterior of a
Gaussian process is still a Gaussian distribution, Gaussian process is one of the popular
surrogate priors. In the second step, we pick a new point ω∗ based on the so-called ac-
quisition function (or utility function) under the posterior distribution from the first step.
The objective function f (ω) is then evaluated at the new point ω∗ with the potential of
achieving a higher objective function value. Incorporate the new sample to the sample data
and update the posterior predictive distribution. The second step is repeated until a desired
maximum of the objective function is approximated. Algorithm A1 provides the details.

Algorithm A1 Bayesian optimization with a Gaussian process

Initialize a data sample set D1 of size n1 where n1 is a fixed number.
for k = 1, 2, . . . do

Find the next ωk+1 as:

ωk+1 = arg maxωak(ω)

Augment the observed sample by including {(ωk+1, vk+1)}

Dk+1 = Dk ∪ {(ωk+1,vk+1)}

end for
return Dk+1

An acquisition function directs the sampling to areas where there is a potential im-
provement over the current best observation. In Equation (A4), we show that the posterior
predictive distribution is p(f∗|Ω∗, Ω, v) = N(µ∗, Σ∗) for new inputs Ω∗.

The acquisition function proposes new sampling locations in an iterative way. Denote
the sample data at iteration k as Dk. Let f∗k = fk(Ω

∗) ∼ N(µ∗k , Σ∗k ) denote the prediction
whose posterior distribution is obtained after incorporating the observed sample Dk. Let
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ak(ω) be the acquisition function associated with Dk. The goal is to find a new point ωk+1
through the acquisition function that maximizes ak(ω):

ωk+1 = arg maxωak(ω), (A5)

and then use Dk+1 = Dk ∪ {(ωk+1,vk+1)} to update the posterior predictive distribution of
f∗k+1. The posterior distribution is then used for the evaluation of the acquisition function.

One popular choice of acquisition function is expected improvement Mockus et al. [29],
Snoek et al. [30]:

EI(ω) = E(max( f (ω)− v+k ), 0), (A6)

where v+k is the highest value in current samples. The EI is trying to find a new point with
a higher objective function value. In our context, denote (ω+

k , v+k ) as the optimal in the
observed samples Dk; i.e., v+k takes the maximum response value in Dk. We pick ωk+1
as follows:

ωk+1 = arg max
ω

EIk(ω) = arg max
ω

E(max( fk(ω)− v+k ), 0). (A7)

It can be shown as follows:

EIk(ω) = (µ∗k (ω)− v+k ))Φ(
µ∗k (ω)− v+k )√

Σ∗k (ω)
) +

√
Σ∗k (ω)φ(

µ∗k (ω)− v+k )√
Σ∗k (ω)

), (A8)

where Φ(.) and φ(.) represent the cumulative distribution function and density function of
a standard normal distribution, respectively.

It is also likely to consider a parameter ξ that balances the exploration and exploitation
Jones et al. [31]:

EIk(ω) =

{
(µ∗k (ω)− v+k )− ξ)Φ(C) +

√
Σ∗k φ(C)

0
Σ∗k (ω) > 0
Σ∗k (ω) = 0

, (A9)

where C =


µ∗k (ω)−v+k −ξ)√

Σ∗k (ω)

0

Σ∗k (ω) > 0
Σ∗k (ω) = 0

.

The first term in Equation (A9) is the exploitation term, and the second term in Equa-
tion (A9) is the exploration term. Parameter ξ determines the amount of exploration during
optimization, and higher ξ values lead to more exploration. With increasing ξ values,
the importance of potential improvements from the GP posterior mean decreases relative to
the importance of potential improvements in regions of high prediction uncertainty, which
is represented by a large covariance value Σ∗k .

The grid search of hyperparameters is completely uninformed by past evaluations,
and hence spends a significant amount of time evaluating “unpromising” hyperparame-
ters. Bayesian optimization with GP, however, attempts to solve the black-box problem
by imposing a Gaussian prior on the unknown objective function and proposing more
“promising” points that can yield a higher value of the objective function through the
acquisition function. Therefore, a Bayesian optimization approach updates the hyperpa-
rameter in a more appropriate direction with the knowledge of past observations based
on the correlation imposed by a covariance structure, thus locating the optimal hyperpa-
rameter more efficiently. More importantly, because the observations (metric values on a
validation set in our context) are noisy, i.e., v = f (ω) + ε, it is difficult to find the ω that
maximizes the underlying function f (·) directly using v, which is contaminated with error.
Bayesian optimization with GP creates a way of approximating the true underlying f (·)
and produces a posterior predictive distribution that is also Gaussian such that the problem
becomes tractable.
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