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Abstract: Motorbikes are an integral part of transportation in emerging countries, but unfortunately,
motorbike users are also one the most vulnerable road users (VRUs) and are engaged in a large
number of yearly accidents. So, motorbike detection is very important for proper traffic surveillance,
road safety, and security. Most of the work related to bike detection has been carried out to improve
accuracy. If this task is not performed in real-time then it loses practical significance, but little to
none has been reported for its real-time implementation. In this work, we have looked at multiple
real-time deployable cost-efficient solutions for motorbike detection using various state-of-the-art
embedded edge devices. This paper discusses an investigation of a proposed methodology on five
different embedded devices that include Jetson Nano, Jetson TX2, Jetson Xavier, Intel Compute
Stick, and Coral Dev Board. Running the highly compute-intensive object detection model on edge
devices (in real-time) is made possible by optimization. As a result, we have achieved inference
rates on different devices that are twice as high as GPUs, with only a marginal drop in accuracy.
Secondly, the baseline accuracy of motorbike detection has been improved by developing a custom
network based on YoloV5 by introducing sparsity and depth reduction. Dataset augmentation has
been applied at both image and object levels to enhance robustness of detection. We have achieved
99% accuracy as compared to the previously reported 97% accuracy, with better FPS. Additionally,
we have provided a performance comparison of motorbike detection on the different embedded edge
devices, for practical implementation.

Keywords: object detection; motorbike detection; edge devices; real-time; traffic surveillance

MSC: 68T45; 68T07

1. Introduction

Surveillance systems are a very important and essential part of the built environment
due to safety and security. One of the major applications of surveillance is traffic monitoring.
Traffic surveillance is an integral part of road safety and security. In terms of security, traffic
detection is useful to identify, track, and extract the license plate and behavior of vehicles.
Traditional surveillance systems are generally driven by human effort, i.e., a video is
captured and people are deployed to examine activity or security risks. However, this
approach has disadvantages like high labor costs, lower efficiency, human limitations, and
high resource requirements. With the rising trend of artificial intelligence, computer vision
and deep learning play a vital role in many advanced applications, ranging from security,
medical analysis, sports, military, and general surveillance. These techniques can replace
traditional monitoring systems with Intelligent Surveillance Systems (ISSs). This technique
takes the input from a camera, i.e., fixed CCTV, drones, or any other imaging source, and
helps to identify, track, or classify objects using deep learning algorithms.
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For traffic monitoring, road vehicles can be categorized into two main classes: two-
wheeled vehicles, and four-wheeled and above vehicles. In developed countries, cars
are the most popular means of urban transportation, but in developing nations, the most
popular and common means of transportation is motorbikes, mainly because they tend
to be more affordable and more easily accessible. However, motorbikes are also more
likely to result in fatal road accidents. The World Health Organization (WHO) declared
the motorbike as a vulnerable road user (VRU). Motorbikes are one the most venerable
road users (VRUs) and are engaged in a large annual number of accidents; therefore, traffic
monitoring systems need to detect them in real-time. Once detected, further processing
might involve tracking, the detection of rule violations, helmet-wearing compliance, license
plate reading, overloading, etc.

Most of the work that has been carried out on road surveillance is for four-wheelers
or over (cars, trucks, etc.). Although motorbike detection is equally important, it is much
more difficult due to their smaller size, higher occlusion (e.g., often due to the high density
of bikes), varying angles of capture, and rider variations. These factors have a high impact
on learning algorithms that lead to difficulty in detection. Furthermore, a major difficulty
is the unavailability of large datasets. Previous works that have been carried out for
motorbike detection have mainly focused on improving the accuracy of bike detection
against issues such as occlusion and environmental variations, but they are impractical
because of high computation costs, which makes them difficult to deploy in practice. So,
the potential challenge that we have identified is in determining how we can make a neural
network-based motorbike detection system more cost-efficient for real-time and practical
implementation, using off-the-shelf embedded hardware. Regarding bike number plate
recognition, it is worth noting that OCR (Optical Character Recognition) is a thoroughly
researched technique, as evidenced by numerous studies, e.g., [1–3]. While we recognize
the potential advantages of integrating number plate detection with OCR capabilities into
our research, our primary objective in this study was to enhance motorbike detection using
deep learning models specifically designed for edge devices that can be a precursor to
OCR-based plate recognition and association to a specific motorbike.

For real-time implementation, a brute force approach with powerful hardware can
complete the work, but another critical challenge is how to make the detection system
practical. So, an ideal system should be a small form factor embedded solution for using
the model in a real-world scenario. Both solutions are shown in Figure 1.
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Figure 1. Comparison between traditional surveillance methods and edge deployable surveillance
solutions.
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This work has studied multiple cost-effective solutions for motor bike detection in real-
time as deployable solutions and provides a performance analysis of popular object detection
models for this task on different embedded hardware. It has the following contributions:

Improved Baseline Accuracy: Achieved 99% accuracy with custom YoloV5 and aug-
mented dataset, surpassing previous results.

Optimization Analysis: Conducted a comprehensive analysis, comparing motorbike
object detection performance on various embedded edge devices, benchmarking results
and optimizations.

Edge Deployable Real-Time Systems: Developed real-time motorbike detection models
on GPUs, optimized for deployment on NVIDIA, Intel, and Google embedded edge devices.

The rest of the paper is structured as follows: Section 2 describes related work on
real-time motorbike detection models for embedded edge devices. Section 3 presents the
methodology adopted in this study. Section 4 presents and analyzes the experimental
results. Finally, Section 5 provides the conclusions drawn from the study and outlines
potential future work.

2. Related Work

Traditionally, motorbike detection has comprised two main steps. Initially, features are
detected, followed by classification to distinguish between motorbikes and non-motorbikes,
as well as to identify specific features like helmets and license plates. The Circular Hough
Transform (CHT) serves as a valuable tool for localizing regions of interest (ROI), as utilized
by Silva et al. [4] in helmet detection and by Mukhtar et al. [5] for detecting helmets and
headlights on motorbikes. Harr-like features, known for their real-time performance, are
employed by Wonghabut et al. [6] and Gavadi et al. [7] in motorbike helmet detection.
However, Harr-like features are susceptible to factors such as capture angle and proximity,
rendering them less robust for surveillance applications. Moreover, Histogram of Oriented
Gradient (HOG) feature extraction is employed by Ghonge et al. [8] to detect license plates
of riders without helmets, and also by Dahiya et al. [9] and Singh et al. [10] for a compara-
tive analysis of feature extraction techniques in motorbike and helmet detection. At the time
of these studies, HOG was considered one of the most effective feature extractors, alongside
SWIFT [11]. In terms of classification, various methods such as Support Vector Machine
(SVM), decision trees, random forests, and k-nearest neighbor (KNN) algorithms are em-
ployed. Mukhtar et al. [5] and Barics et al. [12] explored SVM classifiers. Shuo et al. [13]
utilized SVM with Harr-like features. In contrast, Dupuis et al. [14] employed decision trees
for motorcycle classification, combined with manually labeled blobs to mitigate overfitting.
Le et al. [15] enhanced classification accuracy by combining random forests with other meth-
ods to classify different motorbike components. Waranusast et al. [16] employed K-nearest
neighbors (KNNs) for motorcycle classification and helmet detection, while Barics et al. [12]
integrated classifiers with hybrid camera systems to achieve improved accuracy.

The paper [17] employs a deep learning approach in conjunction with traditional
methods for motorbike detection. They combine a Convolutional Neural Network (CNN)
with Histogram of Gradient (HOG) and Support Vector Machine (SVM) for classification
and detection. To address false detections, they categorize data into four classes, achieving
84% precision. However, their accuracy significantly decreases in occluded scenarios, and
the processing time of two minutes per image renders it unsuitable for real-time implemen-
tation. Occlusion poses a significant challenge in motorbike detection. In [18], the authors
introduce the annotated dataset MB7500 to handle occlusion, employing a Faster R-CNN-
based network with a custom two-layer CNN. Despite these efforts, detection remains
irregular, with accuracy dropping to 20% in heavily occluded scenes. The low frame rate
per second (fps) of Faster R-CNN makes real-time application challenging. In [19], a four-
layer CNN feature extractor serves as the backbone for Faster R-CNN, augmented with the
Markov Decision Process (MDP) for tracking on the MB1000 dataset, achieving 88% mean
average precision (mAP) in occluded scenarios. However, the compute-intensive two-step
detection process results in high inference time, making it impractical for real-time deploy-



Mathematics 2024, 12, 1103 4 of 17

ment, especially on edge devices. Addressing false detections, missed detections, and small
objects with complex backgrounds, the authors od [20] propose a customized technique
alongside a Fast R-CNN-based deep neural network. Despite achieving high accuracy,
reaching 90.8% and 88.6% for low and high difficulty sets, respectively, the computational
costs are considerable, prioritizing detection robustness over real-time applicability. In [21],
Faster R-CNN with Inception-ResNet backbone performs well, with the single-stage SSD
network with Inception outperforming others in accuracy with preprocessing techniques.
However, real-time applications are not considered, posing challenges for embedded solu-
tions. The work in [22] utilizes deep learning for traffic surveillance, extending to detect
traffic violations. They incorporate the “DhakaAI” dataset with their images, enhancing it
with 17 vehicle types, including around 4200 motorbike images. While achieving 15–20 fps
using YoloV4 and 24–30 with 72.02% mAP using YoloV4-tiny, real-time deployment on
edge devices is hindered by low mAP and fps. In [23], a custom network based on SSD
is proposed for detecting complex traffic scenarios, achieving an mAP of 89.05% and an
overall speed of 32 fps. While meeting real-time criteria, challenges persist in deployment
on embedded platforms. Proposing a methodology for motorbike rider detection with and
without helmets, the paper [24] trains two models using Faster R-CNN with the Inception
V2 model, achieving 93.37% accuracy overall. However, the fps is not discussed, suggesting
potential difficulties in real-time operation and deployment on embedded platforms.

Regarding datasets, detecting two-wheeled vehicles presents a challenging task, pri-
marily due to the scarcity of comprehensive datasets. Despite the critical nature of this
issue, there exists no single dataset that sufficiently covers all aspects and variations es-
sential for benchmarking two-wheeled vehicle detection. This lack of availability of a
comprehensive dataset has been underscored by the authors of [25]. One contributing
factor to this scarcity could be the smaller contribution of motorbikes to traffic in devel-
oped nations compared to the developing world. Several benchmark datasets include the
motorbike category, albeit with various limitations. For instance, the dataset introduced
in [26] comprises five videos and 3880 annotated images, encompassing diverse traffic
scenarios. However, it lacks motorbike category annotations and is more suited for au-
tonomous car applications rather than wide-area surveillance. Similarly, the CBCL street
scenes database [27], containing 8000 images with annotations across nine object classes,
is relevant for street scene understanding but lacks motorbike images in urban settings.
KITTI [28], renowned in autonomous vehicle research, offers datasets for optical flow, stereo,
3D object detection, tracking, and semantic segmentation. Despite its versatility, KITTI does
not include a motorbike category. The PASCAL VOC dataset, a popular benchmark for
detection, segmentation, and classification tasks, includes the motorbike category but with
only 713 annotated images by 2012 [29,30]. Its limited size raises concerns about overfitting,
and its focus on detection makes it less suitable for surveillance applications. The Caltech
dataset [31] features 30,607 images spanning 256 object categories, including the motorbike
category with 798 images. However, its limitation lies in the absence of frontal views,
rendering it less suitable for surveillance purposes. Some researchers resort to custom
datasets, which unfortunately are not publicly available. These include datasets used
by [4,13,14,32–37]. The public MB7500 dataset, published by the authors of [38], stands out
for its coverage of occlusion and representative surveillance viewpoints, making it a valu-
able resource for two-wheeled detection datasets. To encapsulate the diverse approaches
employed by various authors in motorbike detection, it is evident that different methods
and models have been utilized. Among these, the approach outlined by the authors of [19]
stands out prominently, boasting an exceptionally high mean average precision (96%). This
work suggests that SSD Mobilenet emerges as the optimal choice for motorbike detection
among available methods. Shifting the focus to dataset comparisons, it becomes apparent
that MB7500 holds a position of prominence. This dataset stands out as the most suitable
for motorbike detection, particularly from a surveillance perspective. Not only is MB7500
publicly accessible, but it also stands as the most frequently utilized dataset for motorbike
detection in prior research publications.
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3. Methodology

The main purpose of this work is to investigate motorbike detection using state-
of-the-art neural networks on low-power, embedded edge devices in real-time. Several
steps are applied to accomplish this task. A detailed flow of all these steps is depicted in
Figure 2. In the first step, a dataset is chosen and prepared for the application. Secondly, an
appropriate model is selected and trained. Lastly, a suitable edge device is selected and
model optimization is applied to generate the final inference model file for deployment.
All these steps are discussed in more detail in the following sections.
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Figure 2. Optimization flow for deploying a deep learning algorithm on edge devices: illustrating
the process of tailoring a model for efficient execution on edge devices.

3.1. Dataset and Augmentation

The performance of a deep learning model heavily depends upon the quality and
quantity of the dataset. As discussed earlier, for motorbike detection, MB7500 is the
most suitable current dataset. However, it has some issues, such as a lack of variability,
i.e., lighting condition, angle of capture, and other environmental conditions that are
not covered in the dataset. To enhance the quantity and introduce variability in the
dataset, image level and object level augmentation are performed. Image level is a type
of augmentation that is applied on the entire image and object level augmentation is
applied only within the object bounding box. In total, 14 different types of augmentations
are applied that include flip, crop, 90◦rotation, minor rotations, grayscale, saturation,
brightness, blur, and mosaic for image level and flip, crop, 90◦rotation: clockwise and
anticlockwise, minor rotations, and brightness for object level augmentation. As a result,
the dataset size is increased from 7500 images to 15,000 images. Figure 3 depicts the
augmentation types.
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Figure 3. Augmentation techniques applied at image and object levels: depicting crop, flip, rotate,
and brightness adjustments for enhanced object detection performance.

Augmentations not only help to increase the dataset but also help introduce a more
difficult scenario to improve accuracy on the different datasets. To make the model less
sensitive to camera orientation, roll-robustness, position, and subject translation are per-
formed by rotation, flip, 90◦ rotation, rotation of the frame (30◦ rotation in this case), and
by cropping the frames randomly.

3.2. Model Selection

Motorbike detection is an object detection task with several models available for
this purpose, as pointed out earlier. Paper [21] reports several experiments with over
50 networks to identify the best model for motorbike detection and concludes that SSD
with a Resnet backbone works best for this application. This work also uses the SSD
architecture, but its Resnet backbone is replaced with Mobilenet V2. This is because
Resnet can only perform on a GPU-based system and is not suitable for edge devices,
while Mobilenet V2 is specialized for edge devices. Then, since motorbike detection is a
surveillance application and Yolo models are well suited for this task and are suitable for
edge devices, we also studied the use of YoloV5 for this task.

3.2.1. Single Shot Detection (SSD)

Mobilenet V2 backbone acts as a feature extractor; it is comparatively faster than
other backbone architectures and is a popular choice for real-time applications on edge
devices. For this reason, SSD Mobilenet V2 is supported by all of the major edge devices’
optimization engines. In this work, the SSD Mobilenet V2 with the augmented images of
the MB7500 dataset has been trained for 1000 epochs on a GPU.

3.2.2. Customized YoloV5

For most surveillance applications, Yolo architectures are used. Not too long ago,
YoloV5 was released which outperformed all its predecessors. YoloV5 offers the flexibility
of customizing the architecture according to the available computation resources, which can
be very advantageous for real-time applications and edge deployment. Another advantage
of YoloV5 is that it is known to generate very stable inference results in traffic surveillance
with high mAP. The architecture used here is customized according to the computation
resources on the edge devices so that it can perform in real-time. To reduce the computation
of YoloV5, layer reduction and sparsity techniques have been applied.

For a fair comparison, the same dataset (Augmented MB7500) has been used for
both networks. To train these two networks, transfer learning has been applied to further
boost accuracy. This has been performed using pre-trained weights of these models for
motorbike detection. These networks have been trained iteratively with different hyper-
parameters until the best accuracy is achieved in terms of mAP. After training on a GPU,
we achieved 91.5% mAP for SSD Mobilenet V2 and 99% mAP for YoloV5. This sets the
baseline performance for the optimization process, as shown in Table 1.
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Table 1. Baseline performance comparison of SSD Mobilenet V2 vs. YoloV5.

Network Mean Average Precision (mAP) Inference Time (ms) Frames Per Second (FPS)

SSD Mobilenet V2 91.5% 20.218 49.46
YoloV5 99.0% 10.526 94.0

3.3. Edge Deployment

This section is divided into two main parts. First, it deals with the process of selecting
suitable edge devices. Secondly, it explores the optimization of algorithms to ensure
efficient execution on the chosen edge devices.

3.3.1. Edge Devices

Conventional detection procedures are not generally deployable solutions for real-
time applications, due to extensive computation resource requirements and high power
consumption. So, an appropriate edge device has to be selected for implementing a model
in real-time. Edge devices come in all shapes and sizes with their respective advantages and
disadvantages. Currently, there are many options available to choose from, but the main
three types of edge devices are Intel, Nvidia, and Google. Before deploying a model on the
edge device, it needs to pass through a vendor-specific optimization tool that reduces the
computation cost and inference time of the model. Below is a list of available edge devices
from these three suppliers:

1. Google (USA, CA, Mountain View)

• Coral Dev Board.

2. NVIDIA (USA, CA, Santa Clara)

• Jetson Nano;
• Jetson Tx2;
• Jetson Xavier Nx.

3. INTEL (USA, CA, Santa Clara)

• Intel Neural Compute Stick 2 (NCS2).

This work uses all these devices so that the best platform can be identified. The
specifications of each of these devices are shown in Table 2 and the devices are shown
in Figure 4.

Figure 4. Various embedded devices utilized in the study for real-time deployment of deep learning
models.
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Table 2. Comparison of edge devices: detailed comparison of hardware components and features
across various embedded platforms.

Specification Jetson Nano Jetson TX2 Jetson Xavier Nx Coral Dev Board NCS2

AI
Performance 472 GFLOPs 1.26 TFLOPs 21 TOPs 4 TOPS 1 TOPS

RAM 4 GB DDR4 8 GB DDR4 16 GB DDR4 1GB LPDDR4 -

Flash Memory 16 GB eMMC 5.1 32 GB eMMC 5.1 16 GB eMMC 5.1 8 GB eMMC -

CPU Quad-core ARM
Cortex A57

(1) Quad-core
ARM Cortex A57

(2) Dual-core
Nvidia Denver2

Octa-core ARM
V8.2

Quad-core ARM
Cortex-A53 -

Clock Speed 1.43 GHz 2 GHz 2.265 GHz 1.5 GHz
700 MHz

(Processor Base
Frequency)

Accelerator
Hardware

128 Nvidia
Maxwell GPU

256 Nvidia Pascal
GPU

(1) 512-Nvidia
Volta GPU with
64 Tensor Cores
(2) 2 × NVDLA

v1

Google Edge TPU
Accelerator

Intel Movidius
Myriad × VPU

4GB

Operating
Systems Linux4Tegra Linux4Tegra Linux4Tegra Debian Linux

(1) OS
Independent

(2) OpenVINO
toolkit

Power
Required 5–10 watt 7.5–15 watt 10–15 watt 10–15 watt -

3.3.2. Optimization

The conventional deep learning and machine learning algorithm development and
deployment cycle has two phases. The first phase is the training phase in which the focus
is on selecting a suitable neural network architecture and dataset preparation to train
the model. In this process, the priority is on the desired accuracy because the higher the
validation accuracy, the better the solution. The second phase is the inference process where
the trained model is used to predict unseen data and the goal is to achieve comparable
accuracy in making a decision as fast as possible. Conventional approaches use brute force
to increase the computation resources to make this possible. A more suitable approach is to
transform the trained model such that it uses less computation and resources, this process
is called optimization. Optimization offers several advantages as it helps to reduce the size
of the network and uses low precision to make it possible to efficiently run large-scale net-
works on edge devices. Optimization is what stands between conventional inference and a
smart, compact, edge deployable deep learning solution. Due to this, optimization has now
become the third phase of the modern machine learning-based solution development cycle.

Optimization is a general strategy that can be performed directly on the model but
where each vendor provides their proprietary tools to optimize the model. This is be-
cause the optimization of a model for an edge device heavily depends upon the device
architecture, and vendors do not expose the architectural details of their devices. Ten-
sorRT (Release 9.3.0) is used for optimizing the trained model for Nvidia’s edge devices.
OpenVINO (Release 2023.3.0) is an Intel open-source toolkit for the optimization of the
network to be used for inference and quick deployment. TensorFlow Lite (Version 2.9)
is an open-source package of deep learning tools/framework to carry out the optimized
deep learning inference on the edge for Google Edge devices. In general, there are two
types of optimization: software-related optimization and hardware-related optimization.
Each optimizer uses different methods to optimize the deep learning trained graph, but
the general sub-processes that are involved in the optimization process are quantization,
pruning, layer fusion, clustering, sparsity, time fusion, kernel auto-tuning, dynamic tensor
memory, and so on.

Since we are using all these devices, all these optimization tools have been used in this
work. Optimization is not a stable process and it often generates uncertain outputs (low
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accuracy, high inference time, high memory consumption, etc.), which requires iterative
adjustments of user-defined parameters to achieve the best results.

4. Results

The final optimized network file is copied to the target device to run it for producing
predictions. Then, the performance of the optimized network can be measured on the
target device. If the desired results are achieved, the solution can be applied in the field.
Before proceeding with the results, it is necessary to understand the evaluation metrics, as
discussed next.

4.1. Experimental Setup

In this work, the object detection system implemented on the edge devices is coded
in Python due to its versatility, ease of development, and compatibility with the selected
frameworks and libraries. These choices were made to facilitate comprehensive compar-
ison of the performance of state-of-the-art edge devices with that of a GPU, considering
metrics such as mAP (mean average precision), FPS (frames per second), model size after
optimization, power consumption, and memory usage. Additionally, two baseline models
have been established to mitigate any bias stemming from a particular device on a model.

4.1.1. Dataset

As pointed out before, there is a general lack of suitable datasets to train motorbike
detection models [25]. Although no comprehensive dataset is available, we have selected
the MB7500 open-source dataset, contributed by Espinosa et al., because it is focused on
motorbikes with surveillance-like views. Although it would have been possible to use
KITTI, it is mainly aimed at autonomous driving and mobile robotics as the camera is
mounted on a car, facing forward. Nevertheless, it also does not include a separate class
of motorbikes.

The data was collected for MB7000 using a Phantom 4 drone with a video camera.
The dataset consists of 7500 annotated images of motorbikes in urban occluded scenarios
with a size of 640 × 364, including 60% of occluded scenarios. The dataset is split into a
60–40 ratio to avoid overfitting. The dataset is collected using a drone with an angle similar
to a CCTV camera. This dataset covers the occluded scenario very efficiently. However,
this dataset does not address the problem of diversity, i.e., lightning conditions, weather
conditions, angle problems, and the diversity in shape, place, and number of riders.

4.1.2. Evaluation Metrics

In a normal classification-based task, the performance of a network is defined in terms
of accuracy, and this is sufficient to justify the impact of the method. However, in an
object detection-based task, performance is better evaluated based on mAP, which further
depends on ROI (region of interest) and prediction accuracy. The actual region of interest is
the area on the image where the actual object exists. The area on the image that is predicted
by the model in which it believes that some object is identified can be referred to as the
predicted region of interest. A correct detection is measured as the overlap (typically 50%)
between the predicted region of interest and the actual region of interest, given that the
object identified in that area is the same as the actual label. This is the performance criteria
for object detection-based tasks. To evaluate the performance of an object detection model
in real-time, further metrics are used such as frames per second or inference time per frame.
However, further metrics are required to demonstrate the performance of such object
detection-based tasks on small, embedded edge devices. For that, we are using model size,
power consumption, and memory usage, where the latter two are monitored during the
runtime. This gives us insight into the real-time performance of different devices against
different optimization flows, for the common task and neural network architecture.
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4.2. Result and Analysis

This section presents a detailed analysis of the performance of SSD Mobilenet V2 and
YoloV5 models for real-time motorbike detection on various embedded edge devices and
a standard GPU. Although YoloV8 is a recent introduction, potential deployment in the
field is limited due to licensing costs, and we selected YoloV5 for comparison due to its
relevance to our research objectives and full availability at the time of the study. We begin
by measuring the baseline performance of SSD Mobilenet V2 on a normal GPU, serving
as a reference for comparison. This section highlights the mean average precision (mAP)
scores and frames per second (FPS) achieved by each device, offering insights into their
computational power and real-time capabilities. Additionally, we explore the impact of
model size on the trade-off between accuracy and speed for edge devices. Furthermore,
we present inference results of SSD Mobilenet V2 on both the GPU and edge devices,
showcasing the detection performance with predicted bounding boxes. Then, we present
the evaluation of YoloV5 with and without dataset augmentation, along with various
input tensor sizes. A comparison of YoloV5 with other state-of-the-art models and custom
networks is provided based on parameter count, mAP, and FPS on the GPU. Overall,
the results reveal the advantages and drawbacks of utilizing these models for real-time
motorbike detection tasks on different embedded edge devices and a standard GPU.

4.2.1. Results and Analysis Using SSD Mobilenet V2

First, we measure the performance of this model on a normal GPU, which gives the
baseline performance. From Figure 5, it can be seen that the Single Shot Detection (SSD)
Mobilenet V2 gives a 91% mean average precision score, which is higher than all the
embedded edge devices but at the cost of high computation power and memory, as shown
in Figure 6. On the other hand, the GPU processes around 49 FPS, which is more than the
real-time requirement but is somewhat low compared to most edge devices, given the fact
that edge device are very low-power and limited on resources (Figure 5).
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64.12

5049.47

27.8

62.56

87.32

95.26

24
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GPU Jetson Nano Jetson TX2 Jetson Xavier Coral Dev Board Intel Compute Stick

Mean Average Precision (mAP) and Frames Per Second(FPS)
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FPS

Figure 5. Speed and accuracy comparison across different devices for SSD Mobilenet V2: visualizing
performance metrics of various edge devices for real-time deep learning model deployment.

As far as mAP and FPS are concerned, it can be observed from Figure 5 that the mean
average precision score of the edge devices starts to decrease with an increase in FPS.
Therefore, the devices offer a straight trade-off between FPS and mean average precision.
To maintain a certain FPS and real-time performance, a device has to drop its mAP. This
way, despite their small sizes and limited resources, some of these devices can exceed the
GPU performance in terms of FPS score, i.e., Coral Dev Board achieves an FPS twice as
high as THE GPU, Jetson Xavier achieves 80% higher FPS as compared to the GPU, and
Jetson TX2 achieves 63 FPS, which is also considerably higher than the 49 FPS of the GPU.
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Figure 6. Comparison of model size, memory usage, and power consumption across different devices
for SSD Mobilenet V2: visualizing resource utilization metrics for real-time model execution on
various edge devices.

On the other hand, from Figure 5, it can be seen that some smaller edge devices lack
performance in terms of mean average precision (Intel compute stick); moreover, although
their FPS is lower than that of the GPU (Intel compute stick and jetson nano), they are
closer at reaching the threshold of real-time performance.

When looking at the impact of model size, since we are using the same model for the
evaluation of the performance on all edge devices, the optimized model size can provide a
direct measure of the effectiveness of the model optimization flow of a respective vendor
that has caused a significant reduction in the computation complexity of a model. One core
observation, from Figure 6, is that a reduction in the computation complexity of a model
causes a decrease in mAP while it increases the FPS. Optimization of the Coral Dev Board
provides the highest compression in terms of model size, and this in turn provides the
highest frame rate.

Inference results of different frames of SSD Mobilenet V2 on GPU are shown in Figure 7.
These are the same set of images as depicted during dataset selection but with predicted
bounding boxes. For comparison, inference results of embedded devices are also presented
in Figures 8–10 for TX2, Coral Board, and Xavier, respectively. It can be observed that the
highest number of bikes are detected in the GPU-based implementation, but almost the
same number of bikes are detected on the edge device-based implementations as well, and
with higher FPS.

Figure 7. Inference results of SSD Mobilenet V2 on GPU: visualization of object detection performance
using GPU acceleration.
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Figure 8. Inference results of SSD Mobilenet V2 on Jetson TX2 (NVIDIA): object detection performance
on Jetson TX2.

Figure 9. Inference results of SSD Mobilenet V2 on Coral Dev Board (Google): object detection
performance on Coral Dev Board.

Figure 10. Inference results of SSD Mobilenet V2 on Jetson Xavier (NVIDIA): object detection
performance on Jetson Xavier.
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4.2.2. Results and Analysis of Customized YoloV5

YoloV5 has been trained with two settings, i.e., with and without dataset augmentation
and also with different-sized input tensors. The results of YoloV5 on a GPU and the Jetson
Xavier are presented in Table 3. It can be seen that training without augmentation gives
around 97 percent mAP, while training with augmentation gives around 99 percent mAP,
while in terms of FPS, it gives around 65 FPS on 640 × 364-sized images. When the image
size is decreased to 300 × 300, we see some drop in mAP, but the inference rate goes up to
over 100 FPS.

Table 3. Results of YoloV5 on GPU and edge devices: object detection performance comparison (bold
indicates best performance).

Device Augmentation Input Size mAP (%) FPS Memory (GB) Power (W)

GPU

No
640 × 364 × 3 97 65 1.4 45

300 × 300 × 3 94 103 1.2 45

Yes
640 × 364 × 3 99 65 1.4 45

300 × 300 × 3 95 103 1.2 45

Xavier Yes
640 × 364 × 3 90 27 3.3 5.8

300 × 300 × 3 86 51 2.7 5.1

YoloV5 provides around 90 percent mAP on a Jetson Xavier with 27 FPS. This low
FPS is due to partial optimization and these results can be further improved with optimal
optimization as discussed earlier. There is, however, another way to improve the FPS,
i.e., image size reduction. A model has been trained with a 300 × 300 image size, and
when this small network is partially optimized for Jetson Xavier, the FPS increases to
51 FPS. This significant boost is due to reduced computation, caused by a small frame
size with only a marginal drop in mAP. This suggests that YoloV5 can still be used with
partial optimization on a Jetson Xavier with acceptable mAP and FPS. For comparison, the
inference results of different frames of YoloV5 on the GPU and on Jetson-Xavier are shown
in Figures 11 and 12, respectively.

Table 4 provides a comparison of different variants of YoloV5, along with a custom
network, based on parameter count, mAP and FPS on a standard GPU. It can be seen
that the custom network provides almost the same mAP but has a significantly reduced
parameter (size) count.

Figure 11. Inference results of YoloV5 Model on GPU: object detection performance using GPU
acceleration.
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Figure 12. Inference results of YoloV5 on Jetson Xavier (NVIDIA): object detection performance on
Jetson Xavier.

Table 4. Comparison of different variants of YoloV5 with custom model: performance evaluation of
various YoloV5 configurations.

Model Parameters GFLOPS mAP

YoloV5 Extra Large 87.7 M 218.8 99.458
YoloV5 Large 47.0 M 115.4 99.447
YoloV5 Medium 21.4 M 51.3 99.437
YoloV5 Small 7.3 M 17.0 99.434
YoloV5 Custom 32 k 1.0 98.975

Table 5 provides a comparison of YoloV5 with other state-of-the-art models used in
previous papers. As mentioned earlier, we have trained YoloV5 with and without dataset
augmentation. From Table 5, it can be seen that training without augmentation gives
around 97% mAP while training with augmentation gives around 99% mAP. Both these
accuracies are better than all other previous baseline accuracies. On the other hand, we
obtain around 65 FPS on the GPU with YoloV5, which is also better than the previously
reported inference rates. In conclusion, using YoloV5 has the following advantages:

• It gives consistently high mean average precision.
• It gives higher FPS on GPU.
• Model size is very small.
• It uses less memory resources.

Table 5. Comparison of YoloV5 with other models: performance evaluation across different object
detection models.

Model Input Size mAP FPS

YoloV3 640 × 364 × 3 0.89 21
SSDLite Mobilenet V2 300 × 300 × 3 0.96 60
SSD InceptionV2 300 × 300 × 3 0.94 60
SSD Mobilenet V2 640 × 364 × 3 0.97 60
YoloV5 640 × 364 × 3 H H

One drawback of YoloV5 is that its robustness is low compared to SSD Mobilenet. In
our observation, SSD Mobilenet trained on one motor bike dataset can be used for other
motor bike datasets as well, but YoloV5 does not have such robustness.

5. Conclusions and Future Work

In this paper, we have presented an investigation of motorbike detection on edge
devices for real-time applications. We have investigated five different state-of-the-art
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embedded edge devices from three different vendors, using state-of-the-art SSD Mobilenet
and YoloV5. The most important aspect that differentiates between conventional machine
learning implementation and edge deployable machine learning is the optimization of the
neural network. We have used three different frameworks/toolkits to perform optimization
for edge devices. We have demonstrated that with proper optimization, neural networks
can be made to run on small, low-power edge devices with some pros and cons. Firstly,
model size is significantly reduced by several folds after optimization. Due to this reduced
model size, power consumption and memory usage drop significantly. Reduced model size
is a direct outcome/indication of reduced computation complexity, which in turn increases
inference rate. For some embedded devices, we have achieved inference rates that are twice
as high as a GPU. For the Coral Dev Board, the inference rate is 96 FPS; for Nvidia Xaviera,
the inference rate is 88 FPS; and for Nvidia Jetson TX2, the inference rate is 63 FPS, which is
higher than the standard GPU inference rate of 53 FPS. A boost in inference rate comes at
the cost of some decrease in mAP. In this case, this decrement lies in the range of 5 percent
of the original baseline accuracy, which is acceptable for most edge devices. On the other
hand, we have improved the previous best baseline accuracy of motorbike detection using
a custom network based on YoloV5 on a standard GPU-based system. We have achieved
99 percent mAP with 65 FPS, which is around 2–3 percent better than the previous mAP
and 15 FPS higher.

One of the possible future directions is related to the unavailability of the dataset. We
have used the MB7500 dataset with some custom-labeled images. This is a small dataset
in terms of the total number of images. Future work could include collecting much more
representative data for motorbike-related analysis, including not only the variability of the
motor vehicle, but also the atmospheric conditions, type of riders, and traffic violations.
Another useful work would be to investigate and improve the lack of robustness of YoloV5
in “domain shifts”, i.e., when data change in type, camera view, etc. This is a major problem
that currently requires the time-consuming manual annotation of additional data.
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