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Abstract: For a common type of mixture distribution, namely the mixture normal distribution,
existing methods for constructing its tolerance interval are unsatisfactory for cases of small sample
size and large content. In this study, we propose a method to construct a tolerance interval for the
mixture normal distribution based on the generalized extreme value theory. The proposed method
is implemented on simulated as well as real-life datasets and its performance is compared with the
existing methods.
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1. Introduction

The tolerance interval (TI) serves as an important statistical interval within the domain
of statistics. Distinct from the confidence interval (CI), which furnishes insights into an
unknown parameter pertaining to a population, the TI extends its utility by providing
information concerning the entire population. For instance, consider a scenario wherein
measurements of length have been acquired from a random sample of 1000 pencils sourced
from a production process associated with a specific pencil brand. A CI computed from such
data provides a range within which one can claim, with a specified degree of confidence
(e.g., 95%), the potential presence of the parameter value, denoted as θ, characterizing the
distribution of pencil lengths. In contrast, a TI derived from the same dataset establishes
boundaries within which one can claim, with a specified degree of confidence (e.g., 95%),
the inclusion of the (measured) lengths of at least a specified proportion (e.g., 0.99) of the
distribution characterizing the lengths of the pencils.

Within the existing body of literature, two prominent categories of TIs have been scruti-
nized, denoted as “β-content TIs” and “β-expectation TIs”. In the context of a β-expectation
TI, its average content precisely corresponds to β, representing what is colloquially termed a
100β% prediction interval. This interval is designed to encompass a forthcoming randomly
selected observation from a distribution with a predetermined level of confidence. On the other
hand, a β-content TI, also identified as a (β, 1− α) two-sided TI, is constructed to include at
least a proportion β of the distribution with a confidence level of 100(1− α)% [1,2]. The present
investigation concentrates on the β-content TI, specifically denoted as the (β, 1− α) TI.

Two distinct categories of (β, 1 − α) two-sided TIs exist, namely, the control-the-center
TIs and the control-both-tails TIs, also recognized as equal-tailed TIs. Despite both falling
under the umbrella of β-content TIs, they exhibit disparate definitions. The former is
formulated to encompass at least a proportion, β, of the entire population with a confidence
level of 1 − α. In contrast, the latter is designed to encompass at least a proportion, β, of the
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central region of the population with the same confidence level. TIs stand as potent tools
widely employed across diverse domains such as manufacturing and industrial statistics,
engineering, environmental science, hydrology, medicine, meteorology, economics, and
beyond (refer to, for instance, [3–7]). For more recent advancements and in-depth theoretical
treatments of TIs, interested readers are directed to the comprehensive works of [1,2].

In the above applications, it is usually assumed that the data are singly distributed.
Indeed, finite mixture distributions may be more suitable to fit the real data than single
distributions, especially for the data that are believed to belong to two or more distinct,
but unobserved, categories. Because of their flexibility in fitting real data, finite mixture
distributions have continued to receive increasing attention over the years. Therein, finite
mixture normal distributions are one of the most commonly used mixture distributions.

Mixture normal distributions have been successfully used to address diverse data
problems, such as research on the evaluation of nuclear power plant safety [8], assessment
of the debrisoquin and dextromethorphan phenotyping tests [9], examination of the ven-
tricular size in schizophrenia [10], prediction of protein local conformations [11], fitting
the asset returns data in portfolio optimization problems [12], modeling rainfall drop size
distribution in southern England [13], and analysis of wireless channels [14].

In the above problems, it is important to construct TIs, which can be used to determine
whether a change has occurred in the process. Few methods can be used to construct TIs for
mixture normal distributions due to their higher computational costs. The distribution-free
(DF) method provides an easy-to-compute way of constructing TIs without assuming the
form of the underlying distribution, but the DF TIs may be relatively conservative, and not
satisfactory for the cases of small sample size and large content [2,15].

In addition to the DF method, ref. [16] constructed the TIs for the mixture normal
distribution based on the fiducial generalized pivotal quantiles (FGPQ); ref. [17] proposed
two TIs for the mixture normal distribution based the expectation-maximization (EM)
algorithm combined with the bootstrap method and the asymptotic normality of sample
quantiles (ANSQ), where the bootstrap method is also used in [8]. Although the methods
proposed by [16,17] outperform the DF method, there may still be a gap between the
coverage probabilities (CP) of these TIs and the nominal levels when the sample size is not
large enough and the content, β, is large. However, the content of the TI is usually required
to be close to one in some applications requiring high precision, such as the evaluation
of nuclear power plant safety. Moreover, considering the difficulty and cost of sample
collection, the sample size is likely to be less than 300 in many practical applications.

Aiming at the problem of small sample size and large content, a method to construct
the TIs for the mixture normal distribution based on the generalized extreme value theory
(GEVT) is proposed in this study [18,19]. We compared the GEVT method with the DF
method, the bootstrap method, the ANSQ method, and the FGPQ method in the simu-
lation study. The simulation results show that the GEVT method works better than the
other methods for the cases of small sample size and large content. Besides large content
(β = 0.99), β = 0.90 and β = 0.95 are also common in practice. Further investigations of a
more comprehensive method are a topic of ongoing research.

The outline of the paper is as follows. Section 2 provides a brief review of the basics
of TIs and the asymptotic behavior of the extreme value. We discuss the asymptotic
distributions of the extreme values for the mixture normal distribution, and provide the
GEVT method for constructing TIs in the following section. Simulations are conducted to
compare the performance of these methods in Section 4 and a real data example is used for
illustration in Section 5. Section 6 concludes the paper.

2. Preliminaries

This section reviews some basics of TIs and the GEVT briefly.
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2.1. Basics of TIs

This subsection is excerpted from the first section of Chapter 1 of [1]. Suppose
X = (X1, . . . , Xn) is a random sample from a continuous distribution Fθ(x), where Fθ(x) is
the cumulative distribution function (CDF) with an unknown parameter θ. The content
and confidence level are two essential nominal parameters of a TI, which will be denoted
by β and 1 − α, respectively, (0 < β, α < 1).

A (β, 1 − α) control-the-center TI
(
L(X), U(X)

)
for Fθ(x) can be defined as

PX{PX
(
L(X) ≤ X ≤ U(X)

∣∣X)
≥ β} ≥ 1 − α, (1)

or equivalently,

PX{Fθ(U(X))− Fθ(L(X)) ≥ β} ≥ 1 − α.

And a (β, 1 − α) control-both-tails (equal-tailed) TI can be defined as

PX{Fθ(U(X)) ≥ (1 + β)/2 and Fθ(L(X)) ≤ (1 − β)/2} ≥ 1 − α.

Substituting L(X) or U(X) in (1) with −∞ (or 0) or ∞ will yield a (β, 1 − α) upper or
lower tolerance limit for Fθ(x), respectively.

In fact, for the one-sided TI, a (β, 1− α) lower tolerance limit is a 1− α lower confidence
limit for the 1 − β quantile q1−β, and a (β, 1 − α) upper tolerance limit is a 1 − α upper
confidence limit for the β quantile qβ. Thus, the computation of the one-sided tolerance
limits reduces to the computation of the confidence limits for certain quantiles.

2.2. The Asymptotic Distribution of the Extreme Value

Suppose X1, X2, . . . , Xn are independent random samples with a common cumulative
distribution function (CDF) F(x). Denote X(1) and X(n) as the sample minima and maxima,
respectively, i.e., X(1) = min(X1, X2, . . . , Xn), X(n) = max(X1, X2, . . . , Xn). The asymptotic
behavior of X(n) has been thoroughly and rigorously discussed by [18,19]. Some of the
main findings will be reviewed in this section.

Unlike the central limit problem, the normal distribution is no longer suitable as the
limiting distribution (LD) of X(n) due to the inherent skewness of extreme values. In fact,
for an arbitrary F(x), if X(n) possesses an LD, then the LD must be one of the following
three types:

(Fréchet) G1(x; a) = exp(−x−a) for x > 0; (2)

(Weibull) G2(x; a) = exp[−(−x)a] for x ≤ 0, a > 0; (3)

(Gumbel) G3(x) = exp(−e−x) for − ∞ < x < ∞. (4)

More formally, if there exist constants an and bn > 0, such that

lim
n→+∞

P(X(n) < an + bnx) = Gi(x), for all x ∈ C(Gi), i = 1, 2, 3,

where C(Gi) denotes all continuity points of Gi, then we can say that F is in the domain of
maximal attraction of the LD Gi, denoted as F ∈ D(Gi).

Similarly, if the LD of X(1) exists, then it must be one of the following three types:

H1(x; a) = 1 − exp(−(−x)−a) for x ≤ 0, a > 0; (5)

H2(x; a) = 1 − exp(−xa) for x > 0; (6)
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H3(x) = 1 − exp(−ex) − ∞ < x < ∞, (7)

where Hi(x) = 1 − Gi(−x), i = 1, 2, 3.

3. Main Results

In this section, the detailed methodology for constructing tolerance intervals for the
mixture normal distribution is provided.

We first discuss the asymptotic behavior of X(1) and X(n) for the mixture normal
distribution. For a finite k-components mixture normal distribution, its CDF Fθ has the
following form:

Fθ(x) =
k

∑
j=1

pjFj(x), −∞ < x < +∞, (8)

where Fj denotes the CDF of a certain normal distribution with mean µj and standard
deviation σj, and pjs are mixing proportions that comprise the standard simplex {p ∈ Rk :

∑k
j=1 pj = 1, pj > 0, j = 1, 2, · · · , k}, θ = {µ1, µ2, · · · , µk, σ1, σ2, · · · , σk, p1, p2, · · · , pk}. In

this paper, we assume that the value of k is known. Various procedures for dealing with
cases of unknown k can be found in [20].

For the normal distribution, ref. [21] provides a detailed derivation of the LD for the
extrema. Inspired by this, the asymptotic behavior of the extrema for the mixture normal
distribution is deduced as follows.

Theorem 1. For the mixture normal distribution (8), we have

Fθ ∈ D(G3), and Fθ ∈ D(H3).

The proof of Theorem 1 is given in Appendix A.
Let X = (X1, X2, . . . , Xn) be a random sample from the mixture normal distribution (8).

Based on Theorem 1, we have

X(n) − an

bn

D−→ G3, n → ∞, (9)

−
(X(1) − cn

dn

)
D−→ G3, n → ∞, (10)

where G3 ∼ Gumbel(0, 1), and the standardizing constants are an = q(1−1/n),
bn = 1/[n(F′(an))], cn = q(1/n), and dn = 1/[n(F′(cn))], where F(x) is the CDF and
F′(·) is the probability density function (see [21]). According to page 34 of [22], for each
c > 0, further extreme value theory results are as follows,

q1−c/n − an

bn
−→ − ln c, (11)

qc/n − cn

dn
−→ ln c, n → ∞. (12)

Combine Equations (9)–(12), and by Slutsky’s theorem we have

X(n) − q1−c/n

bn

D−→ G3 + ln c, (13)
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and

qc/n − X(1)

dn

D−→ G3 + ln c, ∀c > 0, n → ∞. (14)

Based on (13) and (14), the (1− c/n, 1− α) one-sided upper and lower tolerance limits
can be constructed as

U1 = X(n) − bn ln c − bnG−1
3 (α), (15)

and

L1 = X(1) + dn ln c + dnG−1
3 (α), (16)

respectively, where G−1
3 (α) is the α quantile of Gumbel(0, 1).

Following the results of the (1− c/n, 1− α) one-sided tolerance limits, the (1− c/n, 1− α)
two-sided equal-tailed TI [L2, U2] is

[X(1) + dn ln(c/2) + dnG−1
3 (α/2), X(n) − bn ln(c/2)− bnG−1

3 (α/2)]. (17)

The performance of the (1 − c/n, 1 − α) two-sided equal-tailed TI in (17) is unsatisfac-
tory, as the mixture normal distribution is often not symmetric. Therefore, an equal-tailed
interval for the mixture normal distribution would be a little conservative. Inspired by [17],
we adjust the TI in (17) as follows:

Pick up the lower limit of (17), and define β∗
U = Fθ(L2) + 1 − c/n, then the adjusted

upper limit is U∗
2 = X(n) − bn ln[n(1 − β∗

U)]− bnG−1
3 (α/2). Therefore, the (1 − c/n, 1 − α)

two-sided equal-tailed TI after adjusting the upper limit is

[X(1) + dn ln(c/2) + dnG−1
3 (α/2), X(n) − bn ln[n(1 − β∗

U)]− bnG−1
3 (α/2)].

Similarly, let the upper limit of (17) remain unchanged, and define β∗
L = Fθ(U2)−

(1 − c/n), then the new lower limit is L∗
2 = X(1) + dn ln

(
nβ∗

L
)
+ dnG−1

3 (α/2). Therefore,
the (1 − c/n, 1 − α) two-sided equal-tailed TI after adjusting the lower limit is

[X(1) + dn ln
(
nβ∗

L
)
+ dnG−1

3 (α/2), X(n) − bn ln(c/2)− bnG−1
3 (α/2)].

Remark 1. Note that the GEVT method works for any distribution that satisfies Theorem 1. Thus,
the GEVT method is asymptotic in nature; it can also be considered nonparametric within the wide
class of CDFs satisfying Theorem 1, such as normal and lognormal distributions.

4. Simulation Study

To compare the performance of the GEVT method with the DF method [2], the boot-
strap method [8], the ANSQ method [17], and the FGPQ method [16] in constructing TIs for
the mixture normal distribution, a simulation study is conducted. In some practical appli-
cations, it is usually necessary to calculate the tolerance interval (TI) for a significance level
of 0.99 (β = 0.99). In addition, due to cost constraints, the sample size in real applications
is likely to be less than 300 (n ≤ 300). Thus, in this simulation study, the significance level
(β) and the confidence level (α) are set to be 0.99 and 0.05, respectively, and the sample size
(n) is set to be 20, 50, 100, 200, 300.

In addition to comparing the CPs of the TIs, we also employ the following measure
defined in [17] as a criterion to compare the precision of the TIs:

δU =| U1 − qβ |,

δL =| L1 − q1−β |,
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and

δTI =| U2 − qβU | + | L2 − qβL |,

where βU = 1+β
2 , βL = 1−β

2 . Obviously, the smaller the values of δL and δTI are, the higher
precision the intervals (limits) have. Tables 1–3 present the simulation results based on
5000 runs. It should be noted that the EM algorithm may sometimes fail to converge when
the sample size is small or there is a large overlap of components. We use the notation “−”
in the tables to denote such cases.

Tables 1 and 2 present the results of the (0.99, 0.95) one-sided upper and lower tol-
erance limits, respectively. As can be seen, the CPs corresponding to the GEVT method
are closer to the nominal level 0.95 compared with the other methods, even for the small
sample size. For example, the CPs of the (0.99, 0.95) one-sided upper tolerance limits
constructed by the DF, bootstrap, ANSQ, FGPQ, and GEVT methods for the case of n = 50,
p = (1/2, 1/2), µ = (0, 5), and σ = (1, 1.5) are 0.395, 0.810, 0.971, 0.971, and 0.945, respec-
tively. Under the same case, the CPs of the (0.99, 0.95) one-sided lower tolerance limits
constructed by these three methods are 0.395, 0.818, 0.970, 0.982 and 0.942, respectively.
In addition, the precision of these tolerance limits corresponding to the GEVT method is
the highest of the three methods. For example, the values of δ corresponding to the above
two groups of CPs are δU = 0.626, 0.901, 1.306, 1.979, 1.135, and δL = 0.419, 0.930, 1.402,
1.558, 0.756, respectively. Note that, when the sample size n = 300, the CPs for both the
GEVT and the DF methods are pretty close to the nominal level. However, the values of δ
corresponding to the DF method are larger than those corresponding to the GEVT method,
which means that the GEVT tolerance limits have the higher precision.

Table 1. CPs of the (0.99, 0.95) one-sided upper tolerance limits. The values in parentheses denote
the corresponding values of δU.

c n DF Bootstrap ANSQ FGPQ GEVT

p = (1/3, 2/3), µ = (0, 1), σ = (1, 1)
0.2 20 0.182 (0.620) – 0.973 (0.957) 0.998 (7.632) 0.965 (0.915)
0.5 50 0.395 (0.394) – 0.975 (0.829) 0.997 (4.176) 0.944 (0.709)
1 100 0.634 (0.365) 0.788 (0.399) 0.978 (0.645) 0.993 (2.138) 0.943 (0.632)
2 200 0.866 (0.473) 0.897 (0.455) 0.970 (0.592) 0.987 (0.631) 0.945 (0.546)
3 300 0.951 (0.583) 0.906 (0.304) 0.965 (0.501) 0.985 (0.503) 0.950 (0.472)

p = (1/2, 1/2), µ = (0, 5), σ = (1, 1.5)
0.2 20 0.182 (1.007) 0.678 (0.791) 0.963 (1.539) 0.995 (7.195) 0.959 (1.496)
0.5 50 0.395 (0.626) 0.810 (0.901) 0.971 (1.306) 0.971 (1.979) 0.945 (1.135)
1 100 0.634 (0.577) 0.882 (0.698) 0.985 (1.309) 0.964 (1.014) 0.941 (0.996)
2 200 0.866 (0.741) 0.906 (0.579) 0.977 (0.927) 0.974 (0.903) 0.944 (0.862)
3 300 0.951 (0.909) 0.917 (0.532) 0.974 (0.825) 0.986 (1.033) 0.951 (0.683)

p = (1/4, 1/2, 1/4), µ = (0, 1, 2), σ = (1, 1, 1)
0.2 20 0.182 (0.687) – 0.968 (1.046) 0.999 (21.349) 0.962 (1.031)
0.5 50 0.395 (0.434) – 0.973 (0.917) 0.999 (16.635) 0.943 (0.785)
1 100 0.634 (0.403) 0.732 (0.649) 0.982 (0.910) 0.998 (12.823) 0.939 (0.692)
2 200 0.866 (0.513) 0.805 (0.401) 0.976 (0.645) 0.996 (5.329) 0.944 (0.599)
3 300 0.951 (0.634) 0.877 (0.395) 0.971 (0.611) 0.992 (1.699) 0.951 (0.479)

p = (1/3, 1/3, 1/3), µ = (0, 3, 7), σ = (1, 1.5, 1)
0.2 20 0.182 (0.740) – 0.941 (1.056) 0.999 (26.957) 0.959 (1.117)
0.5 50 0.395 (0.449) 0.823 (0.712) 0.965 (0.925) 0.999 (13.916) 0.939 (0.816)
1 100 0.634 (0.409) 0.894 (0.593) 0.975 (0.926) 0.992 (7.928) 0.941 (0.703)
2 200 0.866 (0.523) 0.911 (0.451) 0.967 (0.731) 0.990 (1.983) 0.943 (0.610)
3 300 0.951 (0.637) 0.933 (0.590) 0.975 (0.579) 0.999 (1.638) 0.950 (0.532)
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Table 2. CPs of the (0.99, 0.95) one-sided lower tolerance limits. The values in parentheses denote the
corresponding values of δL.

c n DF Bootstrap ANSQ FGPQ GEVT

p = (1/3, 2/3), µ = (0, 1), σ = (1, 1)
0.2 20 0.182 (0.654) – 0.973 (1.011) 0.999 (7.682) 0.966 (0.971)
0.5 50 0.395 (0.416) – 0.975 (0.876) 0.998 (4.532) 0.945 (0.749)
1 100 0.634 (0.388) 0.781 (0.410) 0.978 (0.682) 0.992 (2.083) 0.942 (0.615)
2 200 0.866 (0.499) 0.893 (0.442) 0.970 (0.605) 0.983 (0.627) 0.944 (0.555)
3 300 0.951 (0.614) 0.910 (0.322) 0.967 (0.571) 0.979 (0.591) 0.950 (0.498)

p = (1/2, 1/2), µ = (0, 5), σ = (1, 1.5)
0.2 20 0.182 (0.672) 0.694 (0.807) 0.963 (1.526) 0.996 (7.241) 0.959 (0.935)
0.5 50 0.395 (0.419) 0.818 (0.930) 0.970 (1.402) 0.982 (1.558) 0.942 (0.756)
1 100 0.634 (0.386) 0.897 (0.711) 0.976 (1.278) 0.962 (0.727) 0.941 (0.601)
2 200 0.866 (0.494) 0.902 (0.574) 0.967 (0.876) 0.967 (0.688) 0.944 (0.553)
3 300 0.951 (0.606) 0.913 (0.505) 0.963 (0.793) 0.983 (1.109) 0.950 (0.475)

p = (1/4, 1/2, 1/4), µ = (0, 1, 2), σ = (1, 1, 1)
0.2 20 0.182 (0.687) – 0.969 (1.047) 0.999 (22.367) 0.963 (1.031)
0.5 50 0.395 (0.434) – 0.973 (0.910) 0.999 (17.992) 0.943 (0.783)
1 100 0.634 (0.402) 0.695 (0.672) 0.975 (0.706) 0.998 (14.999) 0.941(0.692)
2 200 0.866 (0.516) 0.807 (421) 0.968 (0.610) 0.996 (5.819) 0.943 (0.606)
3 300 0.951 (0.632) 0.882 (0.407) 0.966 (0.620) 0.996 (1.598) 0.950 (0.510)

p = (1/3, 1/3, 1/3), µ = (0, 3, 7), σ = (1, 1.5, 1)
0.2 20 0.182 (0.734) – 0.944 (1.153) 0.999 (29.986) 0.961 (1.051)
0.5 50 0.395 (0.447) 0.818 (0.694) 0.966 (0.923) 0.998 (13.925) 0.941 (0.812)
1 100 0.634 (0.410) 0.901 (0.615) 0.974 (0.933) 0.999 (7.295) 0.941 (0.703)
2 200 0.866 (0.519) 0.917 (0.476) 0.969 (0.677) 0.994 (2.008) 0.944 (0.636)
3 300 0.951 (0.636) 0.929 (0.575) 0.977 (0.589) 0.999 (1.528) 0.950 (0.575)

Table 3. CPs of the (0.99, 0.95) two-sided TIs. The values in parentheses denote the corresponding
values of δTI .

c n DF Bootstrap ANSQ FGPQ GEVT (L) GEVT (U)

p = (1/3, 2/3), µ = (0, 1), σ = (1, 1)
0.2 20 0.017 (1.660) – 0.999 (3.030) 0.999 (42.137) 0.980 (1.972) 0.979 (1.989)
0.5 50 0.089 (1.020) – 0.999 (2.180) 0.997 (29.585) 0.960 (1.485) 0.960 (1.503)
1 100 0.264 (0.743) 0.850 (1.012) 0.999 (1.892) 0.995 (19.828) 0.954 (1.305) 0.953 (1.295)
2 200 0.595 (0.699) 0.924 (0.813) 0.996 (1.442) 0.985 (4.409) 0.955 (1.176) 0.955 (1.202)
3 300 0.802 (0.792) 0.935 (0.712) 0.994 (1.253) 0.991 (1.179) 0.955 (1.132) 0.954 (1.138)

p = (1/2, 1/2), µ = (0, 5), σ = (1, 1.5)
0.2 20 0.017 (2.174) 0.732 (2.817) 0.998 (3.791) 0.996 (34.512) 0.974 (2.800) 0.974 (2.686)
0.5 50 0.089 (1.311) 0.897 (1.965) 0.998 (2.756) 0.970 (6.901) 0.957 (2.012) 0.956 (1.895)
1 100 0.264 (0.948) 0.968 (1.656) 0.998 (2.397) 0.964 (2.615) 0.951 (1.707) 0.952 (1.616)
2 200 0.595 (0.886) 0.976 (1.210) 0.998 (1.929) 0.998 (8.607) 0.954 (1.544) 0.953 (1.458)
3 300 0.802 (1.001) 0.989 (1.174) 0.995 (1.579) 0.993 (2.923) 0.954 (1.477) 0.953 (1.415)

p = (1/4, 1/2, 1/4), µ = (0, 1, 2), σ = (1, 1, 1)
0.2 20 0.017 (1.788) – 0.999 (3.197) 0.999 (107.125) 0.979 (2.189) 0.979 (2.172)
0.5 50 0.089 (1.091) – 0.999 (2.309) 0.999 (89.076) 0.960 (1.618) 0.959 (1.611)
1 100 0.264 (0.789) 0.723 (1.182) 0.999 (2.006) 0.999 (75.350) 0.953 (1.400) 0.952 (1.388)
2 200 0.595 (0.736) 0.831 (0.979) 0.997 (1.540) 0.992 (26.108) 0.954 (1.247) 0.954 (1.261)
3 300 0.802 (0.834) 0.906 (0.885) 0.993 (1.301) 0.992 (6.120) 0.952 (1.197) 0.953 (1.192)

p = (1/3, 1/3, 1/3), µ = (0, 3, 7), σ = (1, 1.5, 1)
0.2 20 0.017 (1.902) – 0.992 (3.145) 0.999 (132.970) 0.968 (2.520) 0.968 (2.534)
0.5 50 0.089 (1.123) 0.802 (2.935) 0.994 (2.309) 0.999 (74.821) 0.955 (1.694) 0.954 (1.714)
1 100 0.264 (0.799) 0.968 (1.526) 0.995 (2.014) 0.997 (41.117) 0.950 (1.410) 0.949 (1.417)
2 200 0.595 (0.742) 0.988 (1.197) 0.997 (1.549) 0.997 (9.577) 0.953 (1.267) 0.952 (1.263)
3 300 0.802 (0.835) 0.992 (1.019) 0.997 (1.300) 0.999 (4.906) 0.955 (1.196) 0.955 (1.197)
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Table 3 present the results of the (0.99, 0.95) equal-tailed two-sided TIs, where GEVT(L)
(GEVT(U)) denotes the results based on the GEVT method and adjusting the lower (upper)
limit. As shown in the table, the adjusted GEVT methods have a very obvious advantage
in constructing TIs for the mixture normal distribution. Moreover, comparing the two
adjusted results of the GEVT method in the table, it is found that there is little difference
in the effects of adjusting the upper limit and adjusting the lower limit. And the adjusted
GEVT method is obviously superior to the other methods in terms of both the CPs of the
intervals and the corresponding value of δTI . More importantly, the CPs of the adjusted
GEVT TIs are quite close to the nominal level.

To evaluate the proposed method under component overlap, we consider an extreme
case as [17] does, i.e., we mis-specify the single standard normal distribution N(0, 1) as
the mixture normal distribution. The simulation results in Table 4 show that the modified
GEVT method is still superior to the DF method in the extreme cases, which indicates a
certain robustness of the GEVT method.

Table 4. CPs of the (0.99, 0.95) two-sided TIs, when the sample is sampling from the single standard
normal distribution N(0, 1). The values in parentheses denote the corresponding values of δTI.

c n DF Bootstrap ANSQ FGPQ Modified GEVT

k = 2
0.2 20 0.017 (1.540) – 0.999 (2.858) 0.999 (40.083) 0.976 (1.817)
0.5 50 0.089 (0.950) 0.616 (0.732) 0.999 (2.052) 0.997 (27.461) 0.961 (1.387)
1 100 0.264 (0.695) 0.944 (1.030) 0.999 (1.777) 0.996 (18.751) 0.955(1.209)
2 200 0.595 (0.657) 0.976 (0.903) 0.999 (1.362) 0.989 (4.396) 0.956 (1.108)
3 300 0.803 (0.747) 0.990 (0.781) 0.999 (1.073) 0.986 (1.056) 0.960 (1.069)

k = 3
0.2 20 0.017 (1.540) – 0.999 (2.859) 0.999 (96.013) 0.977 (1.811)
0.5 50 0.089 (0.951) – 0.999 (2.051) 0.999 (80.929) 0.961 (1.385)
1 100 0.264 (0.695) 0.640 (0.653) 0.999 (1.777) 0.999 (63.747) 0.955 (1.208)
2 200 0.595 (0.658) 0.998 (1.185) 0.999 (1.361) 0.997 (22.098) 0.956 (1.113)
3 300 0.803 (0.747) 0.982 (0.800) 0.999 (1.072) 0.995 (5.349) 0.960 (1.074)

k = 4
0.2 20 0.017 (1.539) – 0.999 (2.860) 0.999 (149.003) 0.980 (1.800)
0.5 50 0.089 (0.951) – 0.999 (2.051) 0.999 (118.327) 0.962 (1.390)
1 100 0.264 (0.695) 0.623 (0.637) 0.999 (1.776) 0.999 (93.538) 0.955 (1.199)
2 200 0.595 (0.659) 0.805 (0.590) 0.999 (1.362) 0.999 (43.221) 0.954 (1.112)
3 300 0.802 (0.746) 0.975 (0.876) 0.999 (1.074) 0.997 (14.977) 0.957 (1.080)

5. Example

The dataset utilized in this study is derived from the work of [8], encompassing
information on the peak cladding temperature (PCT) observed in nuclear power plants.
Within nuclear reactors, the reactor core is constructed using metal tubes known as fuel rods,
wherein nuclear fuel pellets are stacked and sealed. The outer protective layer separating
the nuclear fuel from the coolant is denoted as cladding. Stringent adherence to regulatory
standards is imperative in the design and construction of nuclear reactors. To mitigate
cladding embrittlements, it is crucial to maintain the PCT within a specified and accurate
range. TIs with content 0.99 serve as effective and commonly used tools to achieve such
goals. The PCT dataset originates from AREVA, Inc., a company specializing in supplying
fuel and providing engineering services for nuclear power plants. The dataset, comprising
208 observations on PCT, is sourced from computer code simulations simulating postulated
LOCA accidents in nuclear power plants [8]. The research by [8] demonstrates that a
mixture of two normal distributions adeptly captures the bimodal nature of the PCT data.
The maximum likelihood estimates (MLEs) of the parameters for this two-component
mixture of normals are denoted as p̂ = (0.3, 0.7), µ̂ = (1100, 1650), and σ̂2 = (130, 155),
where p̂ represents the MLE of the proportions for each component, µ̂ is the MLE of the
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vector for means, and σ̂ is the MLE of the vector for standard deviations. The outcomes
based on the PCT data are presented in Tables 5–7. From the results in these tables, it can
be seen that, for such practical applications with a sample size of 300 or less and a high
demand for accuracy (such as β = 0.99), the GEVT method has superior performance
and guarantees the coverage accuracy of TIs while satisfying the CP of TIs close to the
nominal level.

Table 5. (0.99, 0.95) one-sided upper tolerance limits based on the PCT data.

DF Bootstrap ANSQ FGPQ GEVT

1859.800 1801.378 1834.512 2108.899 1869.974

Table 6. (0.99, 0.95) one-sided lower tolerance limits based on the PCT data.

DF Bootstrap ANSQ FGPQ GEVT

934.300 875.842 920.093 876.949 918.817

Table 7. (0.99, 0.95) TIs based on the PCT data.

DF Bootstrap ANSQ

[934.300, 1859.800] [852.550, 1823.984] [885.853, 1892.706]

FGPQ GEVT(L) GEVT(U)

[779.851, 2146.396] [883.925, 1844.420] [826.734, 1800.621]

6. Final Considerations

In some practical applications, it is often required to construct tolerance limits with
content close to 1, such as 0.99. In addition, due to cost constraints, the sample size in
real applications is likely to be less than 300. To the best of our knowledge, the available
methods that can be used to construct tolerance limits for mixture distributions are the
DF method, the bootstrap method, the ANSQ method, and the FGPQ method. However,
these methods do not work so well for cases of small sample size and large content. In this
study, we constructed the tolerance limits for the mixture normal distribution based on
the GEVT, which contributed a more general treatment of the TIs with large content. We
provided numerous numerical studies to show that the GEVT tolerance limits outperform
the other tolerance limits in terms of both CPs and coverage accuracy for insufficiently
large sample size and large content cases. In addition, the robustness of the GEVT tolerance
limits is further verified by mistaking a single normal distribution for a mixture normal
distribution. This work only highlighted the use of GEVT on TIs for distributions that
satisfy Theorem 1. This approach could be extended to TIs for other types of distributions.
However, the GEVT method only works for distributions that satisfy Theorem 1. Further
research is needed to explore the construction of TIs for other types of distributions in cases
of small sample size and high confidence levels.
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Abbreviations
The following abbreviations are used in this manuscript:

TI Tolerance interval
DF Distribution free
ANSQ Asymptotic normality of sample quantiles
GEVT Generalized extreme value theory
CP Coverage probabilities
EM Expectation-maximization
FGPQ Fiducial generalized pivotal quantiles
CI Confidence interval
CDF Cumulative distribution function
LD Limiting distribution
PCT Peak cladding temperature

Appendix A. Proof of Theorem 1

Proof of Theorem 1. For the mixture normal distribution, F,

F(x) =
k

∑
j=1

pjFj(x),

according to Theorem 3 of [23], to prove F ∈ D(G3), we need to prove that there exists a
sequence of strictly monotone continuous transformations {gn(x)}∞

n=1, such that

Fn(gn(x)) → G3(x).

Since [21] has proved that the LD of the maximum for the normal distribution is the
Gumbel distribution, we thus have

Fn
j (gn(x)) → G3(x), j = 1, 2, · · · , k. (A1)

Then, the rest of the proof is straightforward according to Theorem 1 of [24]. Similar
ways can be used, of course, to prove F ∈ D(H3).
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