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Abstract: We investigate a novel operator seminorm, ∥Q∥A,mλ, f , for an A-bounded operator Q, where A
is a positive operator on a complex Hilbert space (K , ⟨·, ·⟩). This seminorm is defined using a continuous
increasing and bijective function f : R+ −→ R+ and an interpolational path mλ of the symmetric mean

m. Specifically, ∥Q∥A,mλ, f = sup
{

f−1
(

f
(
|⟨Qy, y⟩A|

)
mλ f

(
∥Qy∥A

))
: y ∈ K , ∥y∥A = 1

}
, where f−1

represents the reciprocal function of f , and ⟨·, ·⟩A and ∥·∥A denote the semi-inner product and seminorm,
respectively, induced by A on K . We explore various bounds and relationships associated with this
new concept, establishing connections with existing literature.

Keywords: operator seminorm; A-bounded operator; A-numerical radius; symmetric mean; bounds

MSC: 47B65; 47B37; 46C05; 47L05

1. Introduction and Preliminaries

Let K be a complex Hilbert space equipped with the inner product ⟨·, ·⟩, and its associ-
ated norm ∥ · ∥. We denote by BL(K ) the C∗-algebra of all bounded operators acting on K .
Let I represent the identity operator on K . The symbols Q∗, Ran(Q), ∥Q∥, and w(Q) stand
for the adjoint, range, operator norm, and numerical radius of Q ∈ BL(K ), respectively.

Let us recall that an operator A belonging to the space BL(K ) is said to be positive,
denoted as A ≥ 0, if it satisfies the condition ⟨Au, u⟩ ≥ 0 for all u ∈ K . In such cases, we
denote the square root of A as

√
A.

In what follows, we consider A ≥ 0. The positive semi-definite sesquilinear form on
K induced by A, denoted as ⟨·, ·⟩A, is defined as follows:

⟨y, z⟩A := ⟨Ay, z⟩ (y, z ∈ K ).

We define the seminorm induced by ⟨·, ·⟩A as ∥ · ∥A, where ∥y∥2
A = ⟨y, y⟩A for every y ∈ K .

It is well-known that the space
(
K , ∥ · ∥A

)
is normed (resp. complete) if and only if A

is one-to-one (resp. Ran(A) is closed in K ). Furthermore, applying the Cauchy-Schwarz
inequality yields

|⟨y, z⟩A| ≤ ∥y∥A∥z∥A (y, z ∈ K ). (1)

Before proceeding further, it is worth revisiting some key definitions and results.
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Definition 1. Let Q ∈ BL(K ). An operator R ∈ BL(K ) is referred to as the A-adjoint of the
operator Q if it satisfies the following equality:

⟨Qu, v⟩A = ⟨u, Rv⟩A (u, v ∈ K ).

We denote the set of all operators in BL(K ) that have A-adjoints as BLA(K ).

It is evident that R is an A-adjoint of Q if and only if it is a solution of the following
operator equation AX = Q∗A where X is the unknown. However, it is important to note
that the existence and uniqueness of A-adjoint are not guaranteed in general (refer to [1]
for more details). According to Douglas’s Theorem [2], we can express BLA(K ) as follows:

BLA(K ) =
{

Q ∈ BL(K ) : Ran(Q∗A) ⊆ Ran(A)
}

.

An operator Q ∈ BL(K ) is considered A-bounded if there exists µ > 0 such that

∥Qy∥A ≤ µ∥y∥A (y ∈ K ).

Applying Douglas’s Theorem [2], once again, we find that the collection of all A-bounded
operators is equal to BL√

A(K ). It is widely known that both BL√
A(K ) and BLA(K ) are

subalgebras of BL(K ), but neither one is closed or dense in BL(K ). Furthermore, the
following inclusion chains hold:

BLA(K ) ⊆ BL√
A(K ) ⊆ BL(K ),

with equality if the operator A is injective and its range is closed in K (refer to [3]
(p. 1463)). Additionally, it is worth noting that, in general, BLA(K ) is not stable under
the involution ∗, i.e., Q∗ /∈ BLA(K ), even if Q ∈ BLA(K ) (see Example 1.1 in [4]).

According to Douglas’s Theorem [2], every Q ∈ BLA(K ) has a unique A-adjoint, de-
noted as Q♯. The operator Q♯ satisfies the property Ran(Q♯) ⊆ Ran(A), where the overline
denotes the closure. In other words, Q♯ is the unique solution to the following problem:

AX = Q∗A and Ran(X) ⊆ Ran(A).

The operator Q♯ is commonly referred to as the reduced solution of the equation AX = Q∗A.
It is worth noting that Q♯ = A†Q∗A, where A† represents the Moore–Penrose inverse of A
(refer to [5–8] for more details). We now present some properties of the operator Q♯.

Proposition 1 ([3]). Let Q, R ∈ BLA(K ) and α ∈ C. Then, we have the following statements:

1. Q♯ ∈ BLA(K ). Furthermore,
(
Q♯
)♯

= PAQPA, where PA represents the orthogonal projec-
tion onto Ran(A).

2.
((

Q♯
)♯)♯

= Q♯.

3.
(
QR
)♯

= R♯Q♯ and
(
Q + αR

)♯
= Q♯ + αR♯.

Let Q ∈ BL√
A(K ), the A-operator seminorm ∥Q∥A, the A-numerical radius ωA(Q),

and the A-Crawford number of Q are, respectively, given by the following:

∥Q∥A := sup{∥Qy∥A : y ∈ K and ∥y∥A = 1};

ωA(Q) := sup{|⟨Qy, y⟩A| : y ∈ K and ∥y∥A = 1};

cA(Q) := inf{|⟨Qy, y⟩A| : y ∈ K and ∥y∥A = 1}.

A direct calculation reveals that ∥ · ∥A and ωA(·) are two seminorms defined on BL√
A(K ).

For any Q ∈ BL√
A(K ), it holds that ∥Q∥A = 0 if and only if AQ = 0. Additionally, the

following properties can be observed:
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1. If Q, R ∈ BL√
A(K ) and y ∈ K , then

(i) ∥Q∥A < +∞ and ∥Qy∥A ≤ ∥Q∥A∥y∥A;

(ii)
∥Q∥A

2
≤ ωA(Q) ≤ ∥Q∥A;

(iii) ∥QR∥A ≤ ∥Q∥A∥R∥A.

2. If Q ∈ BLA(K ), then

∥Q∥2
A = ∥Q♯∥2

A = ∥QQ♯∥A = ∥Q♯Q∥A = ωA(QQ♯) = ωA(Q♯Q).

For more comprehensive information about the concept of the A-numerical radius and
the operator A-seminorm, as well as related results and inequalities, refer to the following
sources [9–15], and the references cited therein.

Now, let us review the definitions of certain classes of operators in semi-Hilbert spaces.
Some of these classes will be utilized in our investigation.

Definition 2. Let Q ∈ BLA(K ). We say that Q is as follows:

(i) A-positive if ⟨Qy, y⟩A ≥ 0 for every y ∈ K ;
(ii) A-self-adjoint if AQ is self-adjoint;
(iii) A-normal if Q♯Q = Q♯Q;
(iv) A-hyponormal if ∥Q♯y∥A ≤ ∥Qy∥A for every y ∈ K ;
(v) A-normaloid if ωA(Q) = ∥Q∥A.

Observe that if Q ∈ BLA(K ) is A-self-adjoint or A-normal, then it is A-hyponormal; see
Proposition 6 in [12]. Another point to note is that an A-self-adjoint operator is not necessarily
A-normal; see Example 5.1 in [4]. The fact that Q is A-self-adjoint does not imply that Q
must be equal to Q♯; see [15] (p. 161) or [3]. However, it was shown in Lemma 1 in [1] that if
Q ∈ BLA(K ) is A-self-adjoint, then Q♯ is also A-self-adjoint, and we have (Q♯)♯ = Q♯. The
most well-known examples of A-self-adjoint operators are given by QQ♯ and Q♯Q. Before
we move on, it is worth noting that any A-hyponormal operator is an A-normaloid; see
Remark 9 in [12]. For more detailed information about these classes of operators and other
investigations in the context of semi-Hilbert spaces, refer to [12,16–22] and the references
provided therein.

We now proceed to recall that a function m : R+ ×R+ → R+, (y, z) 7→ ymz is said to
be mean if it fulfills the following properties:

(C1) min{y, z} ≤ ymz ≤ max{y, z};
(C2) αymαz = α(ymz) for all α > 0;
(C3) ymz is monotone, increasing in both y and z;
(C4) ymz is continuous in y and z.

If ymz = zmy, then m is called symmetric mean.
Hereafter, m is a symmetric mean. An interpolational path mλ for m is a continu-

ous map λ 7→ mλ from [0, 1] into the set of all means on R+ × R+, which satisfies the
following conditions:

(C5) ym0z = y, ym1z = z, ym 1
2
z = ymz;

(C6) (ymλz)m(ymµz) = ym λ+µ
2

z;

whenever y, z ≥ 0 and λ, µ ∈ [0, 1].
It can be easily demonstrated that the set of all t ∈ [0, 1] satisfying the following equation:

(ymαz)mt(ymβz) = ym(1−t)α+tβz (2)

for every α, β ∈ [0, 1] and every y, z ≥ 0, forms a convex subset of [0, 1], which includes both
0 and 1. Consequently, the equality (2) holds for all α, β, t ∈ [0, 1] (see Lemma 1 in [23]).
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The most well-known examples of symmetric means are the arithmetic mean ∇, the
geometric mean ♯, and the harmonic mean !. They are defined as follows:

y∇z :=
y + z

2
;

y♯z :=
√

yz;

y!z :=
(

y−1 + z−1

2

)−1

;

where y, z > 0. Their associated interpolational paths are, respectively, given by the following:

y∇λz := (1 − λ)y + λz;

y♯λz := y1−λzλ;

y!λz :=
[
(1 − λ)y−1 + λz−1

]−1
;

where y, z > 0 and λ ∈ [0, 1]. It is well known that these interpolational paths satisfy the
following inequalities:

y!λz ≤ y♯λz ≤ y∇λz (y, z > 0 and 0 ≤ λ ≤ 1).

For a more in-depth understanding of means theory, we recommend consulting the
following references [23–27].

In their recent work, Conde et al. [28] introduced a novel quantity that lies between
the numerical radius, ω(Q), and the operator norm, ∥Q∥, of an operator, Q ∈ BL(K ),
using the concept of interpolational paths. Specifically, if Q ∈ BL(K ), and mλ represents
an interpolational path of the symmetric mean m, the quantity ∥Q∥mλ

is defined as follows:

∥Q∥mλ
= sup

{√
|⟨Qy, y⟩|2mλ∥Qy∥2, y ∈ K , ∥y∥ = 1

}
.

The primary objective of this study is to introduce and investigate a new concept for the
class of A-bounded operators that encompasses and extends the aforementioned definition.

2. Main Results

In this section, we outline our contributions. To begin with, drawing inspiration from
the recent research by Conde et al. [28], we introduce the following definition:

Definition 3. Let f : R+ −→ R+ be a continuous increasing and bijective function, and let mλ

be an interpolational path of the symmetric mean, m. For an operator Q ∈ BL√
A(K ), we define

∥Q∥A,mλ , f := sup
{

f−1
(

f
(
|⟨Qy, y⟩A|

)
mλ f

(
∥Qy∥A

))
: y ∈ K , ∥y∥A = 1

}
,

where f−1 represents the inverse function of f .

Obviously, ∥Q∥A,m0, f = ωA(Q) and ∥Q∥A,m1, f = ∥Q∥A. This shows that the quantity
∥ · ∥A,mλ , f generalizes the A-norm operator and the A-numerical radius. Moreover, when
A = I and f (x) = x2 (x ≥ 0), this quantity coincides with the one defined in [28]. When
p ∈ [0,+∞) and fp(x) = xp (x ≥ 0), we simply write ∥ · ∥A,m0,p instead of ∥ · ∥A,m0, fp .

By a direct application of the inequality (1), we can derive the following inequalities:

ωA(Q) ≤ ∥Q∥A,mλ , f ≤ ∥Q∥A (λ ∈ [0, 1]). (3)

The primary objective of this paper is to investigate this newly introduced quantity.
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Throughout the rest of the paper, we assume that f : R+ −→ R+ is a continuous in-
creasing and bijective function, and mλ represents an interpolational path of the symmetric
mean, m.

We commence our study by examining the following fundamental properties of
∥ · ∥A,mλ , f which can be readily derived from its definition.

Proposition 2. Let Q ∈ BL√
A(K ) and λ ∈ [0, 1]. Then, the following properties hold:

1. ∥Q∥A,mλ , f = 0 if and only if AQ = 0.
2. If f is multiplicative (i.e., f (yz) = f (y) f (z) for y, z ≥ 0), then for every µ ∈ C, we have

∥µQ∥A,mλ , f = |µ|∥Q∥A,mλ , f .
3. If Q is A-normaloid, then

ωA(Q) = ∥Q∥A,mλ , f =
∥∥∥Q♯

∥∥∥
A,mλ , f

= ∥Q∥A.

In particular, for any R ∈ BLA(K ), we have the following:

∥R∥2
A = ∥RR♯∥A,mλ , f = ∥R♯R∥A,mλ , f .

4. If Q is A-hyponormal, then ∥Q♯∥A,mλ , f ≤ ∥Q∥A,mλ , f .
5. Let ∇ be the arithmetic mean. If f is concave, then for every λ ∈ [0, 1], we have

∥Q∥A,∇λ , f ≤ ∥Q∥A,∇λ ,1.

In particular, if p ∈ [0, 1], then ∥Q∥A,∇λ ,p ≤ ∥Q∥A,∇λ ,1 for all λ ∈ [0, 1].

By using Equality (2), we derive the following inequalities.

Proposition 3. Let Q ∈ BL√
A(K ). Then, for each α, β, t ∈ [0, 1], we have the following:

∥Q∥A,m(1−t)α+tβ , f ≤ f−1
(

f
(
∥Q∥A,mα

)
mt f

(
∥Q∥A,mβ

))
≤ max{∥Q∥A,mα

; ∥Q∥A,mβ
}.

Proof. Let y ∈ K , such that ∥y∥A = 1 and α, β, t ∈ [0, 1]. Set

a = f−1
[

f
(
|⟨Qy, y⟩A|

)
mα f

(
∥Qy∥A

)]
,

and
b = f−1

[
f
(
|⟨Qy, y⟩A|

)
mβ f

(
∥Qy∥A

)]
.

It follows from Equality (2) that

f−1
(

f
(
|⟨Qy, y⟩A|

)
m(1−t)α+tβ f

(
∥Qy∥A

))
= f−1

([
f
(
|⟨Qy, y⟩A|

)
mα f

(
∥Qy∥A

)]
mt

[
f
(
|⟨Qy, y⟩A|

)
mβ f

(
∥Qy∥A

)])

= f−1

{
f (a)mt f (b)

}
≤ f−1

(
f
(
∥Q∥A,mα , f

)
mt f

(
∥Q∥A,mβ , f

))
[by (C3)]

≤ max{∥Q∥A,mα , f ; ∥Q∥A,mβ , f } [by (C1)].

So, by taking the supremum over all y ∈ K with ∥y∥A = 1, we obtain the desired inequality.
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Evidently, the following inequality is fulfilled:

∥Q∥A,∇λ , f ≤ f−1( f (ωA(Q))∇λ f (∥Q∥A)
)
, (4)

where λ ∈ [0, 1] and Q ∈ BL√
A(K ). The following result provides a necessary and

sufficient condition for the inequality (4) to be an equality.

Proposition 4. Let Q ∈ BL√
A(K ) and λ ∈ [0, 1]. The following statements are equivalent:

1. ∥Q∥A,∇λ , f = f−1( f (ωA(Q))∇λ f (∥Q∥A)
)
;

2. There exists a sequence {νj} of elements of K , with ∥νj∥A = 1, such that

lim
j→∞

|⟨Qνj, νj⟩A| = ωA(Q) and lim
j→∞

∥Qνj∥A = ∥Q∥A. (5)

3. Q is A-normaloid.

Proof. (1) =⇒ (2). By the definition of ∥ · ∥A,mλ , f , there exists a sequence {νj} of elements
of K , with ∥νj∥A = 1, such that

lim
j→∞

f−1
[

f
(
|⟨Qνj, νj⟩A|

)
∇λ f

(
∥Qνj∥A

)]
= f−1( f (ωA(Q))∇λ f (∥Q∥A)

)
.

This implies that

lim
j→∞

(1 − λ) f
(
|⟨Qνj, νj⟩A|

)
+ λ f

(
∥Qνj∥A

)
= (1 − λ) f (ωA(Q)) + λ f (∥Q∥A).

Hence, we have the following:

lim
j→∞

|⟨Qνj, νj⟩A| = ωA(Q) and lim
j→∞

∥Qνj∥A = ∥Q∥A.

This gives the desired result.
(2) =⇒ (3). Assume that there exists a sequence {νj} of elements of K , with ∥νj∥A = 1,
satisfying (5). So, by applying Proposition 4 in [12], we conclude that Q is A-normaloid.
(3) =⇒ (1). By the definition of ωA(·), we can find a sequence {νj} of elements of K , with
∥νj∥A = 1, such that

lim
j→∞

|⟨Qνj, νj⟩A| = ωA(Q).

By using the fact that Q is A-normaloid and the Cauchy–Schwarz inequality (1), we can
infer that

lim
j→∞

∥Qνj∥A = ∥Q∥A.

On the other hand, for each j, we have the following:

f−1
[

f
(
|⟨Qνj, νj⟩A|

)
∇λ f

(
∥Qνj∥A

)]
≤ ∥Q∥A,∇λ , f ≤ f−1( f (ωA(Q))∇λ f (∥Q∥A)

)
.

So, by letting j → ∞, we conclude that ∥Q∥A,∇λ , f = f−1( f (ωA(Q))∇λ f (∥Q∥A)
)
.

This completes the proof.

The following result shows the convexity of the map λ 7→ f
(
∥Q∥A,mλ , f

)
.

Proposition 5. Let Q ∈ BL√
A(K ). Then, for each α, β, t ∈ [0, 1], we have the following:

f
(
∥Q∥A,m(1−t)α+tβ , f

)
≤ (1 − t) f

(
∥Q∥A,mα , f

)
+ t f

(
∥Q∥A,mβ , f

)
.
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Proof. Observe first that for all λ ∈ [0, 1], we have the following:

f
(
∥Q∥A,mλ , f

)
= sup

{
f
(
|⟨Qy, y⟩A|

)
mλ f

(
∥Qy∥A

)
: y ∈ K , ∥y∥A = 1

}
,

since f is continuous and increasing.
Now, let α, β, t ∈ [0, 1], and let y ∈ K , such that ∥y∥A = 1. By using Equality (2) and

Theorem 2 in [23], we obtain the following:

f
(
|⟨Qy, y⟩A|

)
m(1−t)α+tβ f

(
∥Qy∥A

)
=
(

f
(
|⟨Qy, y⟩A|

)
mα f

(
∥Qy∥A

))
mt

(
f
(
|⟨Qy, y⟩A|

)
mβ f

(
∥Qy∥A

))
≤ (1 − t) f

(
|⟨Qy, y⟩A|

)
mα f

(
∥Qy∥A

)
+ t f

(
|⟨Qy, y⟩A|

)
mβ f

(
∥Qy∥A

)
≤ (1 − t) f

(
∥Q∥A,mα , f

)
+ t f

(
∥Q∥A,mβ , f

)
.

Hence, by taking the supremum over all y ∈ K with ∥y∥A = 1, we reach the required inequality.

The following result is a direct consequence of Proposition 5.

Corollary 1. Let Q ∈ BL√
A(K ). If the function f is concave, then the function λ 7→ ∥Q∥A,mλ , f

is convex.
In particular, if p ∈ [0, 1], then the function λ 7→ ∥Q∥A,mλ ,p is convex.

Proof. Since the function, f , is concave, we have that the function f−1 is convex. So, by
using the fact that the function f−1 is increasing and Proposition 5, we obtain the following:

∥Q∥A,m(1−t)α+tβ , f ≤ f−1
(
(1 − t) f

(
∥Q∥A,mα , f

)
+ t f

(
∥Q∥A,mβ , f

))
≤ (1 − t)∥Q∥A,mα , f + t∥Q∥A,mβ , f ,

for all α, β, t ∈ [0, 1]. This gives the desired result.

Another consequence of Proposition 5 is the following result:

Corollary 2. Let Q ∈ BL√
A(K ). If f (x) = log(x) (x > 0), then the function λ 7→

∥Q∥A,mλ ,log is log-convex, i.e., for each α, β, t ∈ [0, 1], we have the following:

∥Q∥A,m(1−t)α+tβ ,log ≤ ∥Q∥1−t
A,mα ,log ∥Q∥t

A,mβ ,log.

The following result presents an improvement of (3).

Proposition 6. Let Q ∈ BL√
A(K ). Then, for each λ ∈ [0, 1] and each positive integer l ≥ 1,

we have the following:

f
(
∥Q∥A,mλ , f

)
≤ f

(
∥Q∥A,mλ , f

)
+

l−1

∑
n=0

rn(λ)
2n

∑
k=1

∆A,Q, f (n, k)χ( k−1
2n , k

2n )
(λ)

≤ λ f (∥Q∥A) + (1 − λ) f (ωA(Q))

≤ f (∥Q∥A),

where
∆A,Q, f (n, k) =

[
f
(
∥Q∥A,m k−1

2n
, f

)
+ f

(
∥Q∥A,m k

2n
, f

)]
− 2 f

(
∥Q∥A,m 2k−1

2n+1
, f

)
,

χI(·) represents the characteristic function of an interval I, r0(λ) = min{λ; 1 − λ} and
rn(λ) = min{2rn−1(λ); 1 − 2rn−1(λ)} for each integer n ≥ 1.

Proof. By combining Proposition 5 with Theorem 2.4 in [29], we obtain the desired result.
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The following result is similar to Proposition 6.

Proposition 7. Let Q ∈ BL√
A(K ). If the function f is concave, then for each λ ∈ [0, 1] and each

positive integer N ≥ 1, we have the following:

∥Q∥A,mλ , f ≤ ∥Q∥A,mλ , f +
N−1

∑
n=0

rn(λ)
2n

∑
k=1

δA,Q, f (n, k)χ( k−1
2n , k

2n )
(λ)

≤ λ∥Q∥A + (1 − λ)ωA(Q)

≤ ∥Q∥A,

where

δA,Q(n, k) =
[
∥Q∥A,m k−1

2n
, f + ∥Q∥A,m k

2n
, f

]
− 2∥Q∥A,m 2k−1

2n+1
, f .

Proof. The result follows immediately by combining Corollary 1 with Theorem 2.4 in [29].

In Proposition 2, we show that the new quantity ∥ · ∥A,mλ , f satisfies the properties of the
seminorm, except the triangular inequality. This leads us to wonder the following: Under
what conditions does the quantity ∥ · ∥A,mλ , f satisfy the triangle inequality? In the following,
we present an answer to this question in special cases. The first result is similar to the
triangular inequality.

Theorem 1. Let Q, R ∈ BL√
A(K ) and λ ∈ [0, 1]. If f is concave and multiplicative, then

we have the following:

f
(
∥Q + R∥A,∇λ , f

)
≤ f

(
∥Q∥A,∇λ , f

)
+ f

(
∥R∥A,∇λ , f

)
. (6)

In particular, if f (2) = 2, we have the following:

∥Q + R∥A,∇λ , f ≤ ∥Q∥A,∇λ , f + ∥R∥A,∇λ , f . (7)

Proof. Let us first show that f (0) = 0. Since f is multiplicative, we have that f (0) = f (0)2

and f (1) = f (1)2. By using the fact that f is injective, we find that there are two possible
cases, either f (0) = 1 and f (1) = 0 or f (0) = 0 and f (1) = 1. We can easily see that the
first case is impossible because f is increasing. Therefore, we only have the second case,
namely f (0) = 0 and f (1) = 1. Consequently, f (0) = 0.

Now, we will show that f is sub-additive; that is, f (x + y) ≤ f (x) + f (y) for every
x, y ≥ 0. Observe first that from the concavity of f and the fact that f (0) = 0, we can
conclude the following:

f (λt) ≥ λ f (t) (λ ∈ [0, 1], t ≥ 0). (8)

Now, let x, y ≥ 0. The result is clearly trivial when x = 0 or y = 0, since f (0) = 0. Suppose

now that x, y > 0. Set λ1 =
x

x + y
and λ2 =

y
x + y

. Obviously, λ1, λ2 ∈ (0, 1), λ1 + λ2 = 1,

f (x) = f (λ1(x + y)), and f (y) = f (λ2(x + y)). Therefore, combining this fact with the
inequality (8), we have that f (x + y) ≤ f (x) + f (y), and so f is sub-additive.

We now return to the proof of our inequality. Let y ∈ K , such that ∥y∥A = 1. Then,
we have the following:

f
(
|⟨(Q + R)y, y⟩A|

)
∇λ f

(
∥(Q + R)y∥A

)
≤ f

(
|⟨Qy, y⟩A|+ |⟨Ry, y⟩A|

)
∇λ f

(
∥Qy∥A + ∥Ry∥A

)
≤
[

f
(
|⟨Qy, y⟩A|

)
+ f

(
|⟨Ry, y⟩A|

)]
∇λ

[
f
(
∥Qy∥A

)
+ f

(
∥Ry∥A

)]
= f

(
|⟨Qy, y⟩A|

)
∇λ f

(
∥Qy∥A

)
+ f

(
|⟨Ry, y⟩A|

)
∇λ f

(
∥Ry∥A

)
.
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Hence, by taking the supremum over all y ∈ K with ∥y∥A = 1, we have the inequality (6).
Now, let us assume that f (2) = 2. By using the inequality (6) and the fact that the

function f−1 is convex and multiplicative, we can infer the following:

∥Q + R∥A,∇λ , f ≤ f−1
(

f
(
∥Q∥A,∇λ , f

)
+ f

(
∥R∥A,∇λ , f

))
= f−1(2) f−1

(
f
(
∥Q∥A,∇λ , f

)
+ f

(
∥R∥A,∇λ , f

)
2

)

≤ f−1(2)
f−1
(

f
(
∥Q∥A,∇λ , f

))
+ f−1

(
f
(
∥R∥A,∇λ , f

))
2

= 2
∥Q∥A,∇λ , f + ∥R∥A,∇λ , f

2
= ∥Q∥A,∇λ , f + ∥R∥A,∇λ , f .

This gives the inequality (7).

The following result is a direct application of Theorem 1.

Corollary 3. Let Q, R ∈ BL√
A(K ). If p ∈ [0, 1], then for every λ ∈ [0, 1], we have the following:(

∥Q + R∥A,∇λ ,p
)p ≤

(
∥Q∥A,∇λ ,p

)p
+
(
∥R∥A,∇λ ,p

)p.

In particular, for each λ ∈ [0, 1], ∥ · ∥A,∇λ ,1 is a seminorm on BL√
A(K ).

The next result asserts that the quantity ∥ · ∥A,∇,2 defines a seminorm on BL√
A(K ).

Theorem 2. Let Q, R ∈ BL√
A(K ). Then, we have the following:

∥Q + R∥A,∇,2 ≤ ∥Q∥A,∇,2 + ∥R∥A,∇,2.

Proof. Let y ∈ K , such that ∥y∥A = 1. Obviously

|⟨(Q + R)y, y)⟩A|2∇∥(Q + R)y∥2
A ≤ (|⟨Qy, y⟩A|+ |⟨Ry, y⟩A|)2 + (∥Qy∥A + ∥Ry∥A)2

2
.

On the other hand, by using the Cauchy–Schwarz inequality, we have the following:

(|⟨Qy, y⟩A|+ |⟨Ry, y⟩A|)2 + (∥Qy∥A + ∥Ry∥A)2

= ∥Qy∥2
A + |⟨Qy, y⟩A|2 + ∥Ry∥2

A + |⟨Ry, y⟩A|2

+ 2(|⟨Qy, y⟩A||⟨Ry, y⟩A|+ ∥Qy∥A∥Ry∥A)

≤ ∥Qy∥2
A + |⟨Qy, y⟩A|2 + ∥Ry∥2

A + |⟨Ry, y⟩A|2

+ 2
(√

|⟨Qy, y⟩A|2 + ∥Qy∥2
A

√
|⟨Ry, y⟩A|2 + ∥Ry∥2

A

)
.

This implies the following:

|⟨(Q + R)y, y)⟩A|2∇∥(Q + R)y∥2
A

≤ |⟨Qy, y⟩A|2∇∥Qy∥2
A + |⟨Ry, y⟩A|2∇∥Ry∥2

A

+ 2
√
|⟨Qy, y⟩A|2∇∥Qy∥2

A

√
|⟨Ry, y⟩A|2∇∥Ry∥2

A

≤ ∥Q∥2
A,∇,2 + ∥R∥2

A,∇,2 + 2∥Q∥A,∇,2∥R∥A,∇,2.

Consequently,

∥Q + R∥2
A,∇,2 ≤ (∥Q∥A,∇,2 + ∥R∥A,∇,2)

2.
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This completes the proof.

It is often of interest to investigate equality cases. The following theorem provides a
characterization for the equality ∥Q + R∥A,∇,2 = ∥Q∥A,∇,2 + ∥R∥A,∇,2 to hold in BL√

A(K ).

Theorem 3. Let Q, R ∈ BL√
A(K ). Then, the following conditions are equivalent.

(1) ∥Q + R∥A,∇,2 = ∥Q∥A,∇,2 + ∥R∥A,∇,2.
(2) There exists a sequence {νj} of A-unit vectors in K , i.e., vectors satisfying ∥νj∥A = 1 for all

j, such that

lim
j→∞

Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A) = 2∥Q∥A,∇,2∥R∥A,∇,2.

Proof. (2) ⇒ (1) Notice first that if AQ = 0 or AR = 0, then trivially, the equality
∥Q + R∥A,∇,2 = ∥Q∥A,∇,2 + ∥R∥A,∇,2 holds. Assume that AQ ̸= 0 or AR ̸= 0. Suppose
that there exists a sequence {νj} of A-unit vectors in K , such that

lim
j→∞

Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A) = 2∥Q∥A,∇,2∥R∥A,∇,2.

So, for every n ∈ N, we obtain the following:

Re2
(

1
2
⟨Rνj, Qνj⟩A +

1
2
⟨νj, Qνj⟩A⟨Rνj, νj⟩A

)
=

∣∣∣∣12 ⟨Rνj, Qνj⟩A +
1
2
⟨νj, Qνj⟩A⟨Rνj, νj⟩A

∣∣∣∣2
−ℑ2

(
1
2
⟨Rνj, Qνj⟩A +

1
2
⟨νj, Qνj⟩A⟨Rνj, νj⟩A

)
≤
∣∣∣∣12 ⟨Rνj, Qνj⟩A +

1
2
⟨νj, Qνj⟩A⟨Rνj, νj⟩A

∣∣∣∣2
≤
(

1
2
|⟨Rνj, Qνj⟩A|+

1
2
|⟨νj, Qνj⟩A||⟨Rνj, νj⟩A|

)2

≤
(

1
2
∥Rνj∥A∥Qνj∥A +

1
2
|⟨νj, Qνj⟩A||⟨Rνj, νj⟩A|

)2
.

Notice that (∣∣⟨Qνj, νj⟩A
∣∣2 + ∥Qνj∥2

A
2

)
≤ ∥Q∥2

A,∇,2.

So, by applying the Cauchy–Schwarz inequality, we observe the following:

1
4
Re2(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A

)
≤
(∣∣⟨Qνj, νj⟩A

∣∣2 + ∥Qνj∥2
A

2

)(∣∣⟨Rνj, νj⟩A
∣∣2 + ∥Rνj∥2

A
2

)

≤ ∥Q∥2
A,∇,2

(∣∣⟨Rνj, νj⟩A
∣∣2 + ∥Rνj∥2

A
2

)
≤ ∥Q∥2

A,∇,2∥R∥2
A,∇,2.

So, by letting j go to ∞ in the above inequalities, and then taking into consideration the
following fact:

lim
j→∞

Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A) = 2∥Q∥A,∇,2∥R∥A,∇,2,
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we conclude the following:

∥Q∥2
A,∇,2 lim

j→∞

(∣∣⟨Rνj, νj⟩A
∣∣2 + ∥Rνj∥2

A
2

)
= ∥Q∥2

A,∇,2∥R∥2
A,∇,2.

Since AQ ̸= 0, then ∥Q∥A,∇,2 ̸= 0. Hence, we infer the following:

lim
j→∞

(∣∣⟨Rνj, νj⟩A
∣∣2 + ∥Rνj∥2

A
2

)
= ∥R∥2

A,∇,2. (9)

Similarly, we may prove the following:

lim
j→∞

(∣∣⟨Qνj, νj⟩A
∣∣2 + ∥Qνj∥2

A
2

)
= ∥Q∥2

A,∇,2. (10)

So, by applying Theorem 2 and using Equation (10) with Equation (9), we infer the following:

(∥Q∥A,∇,2 + ∥R∥A,∇,2)
2

= ∥Q∥2
A,∇,2 + 2∥Q∥A,∇,2∥R∥A,∇,2 + ∥R∥2

A,∇,2

= lim
j→∞


∣∣∣⟨Qνj, νj⟩A

∣∣∣2 + ∥Qνj∥2
A

2

+ lim
j→∞


∣∣∣⟨Rνj, νj⟩A

∣∣∣2 + ∥Rνj∥2
A

2


+ lim

j→∞
Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A)

= lim
j→∞

1
2

(∣∣∣〈(Q + R)νj, νj

)
⟩A
∣∣∣2 + ∥(Q + R)νj∥2

A

)
≤ ∥Q + R∥2

A,∇,2

≤ (∥Q∥A,∇,2 + ∥R∥A,∇,2)
2.

Thus, we deduce ∥Q + R∥A,∇,2 = ∥Q∥A,∇,2 + ∥R∥A,∇,2 as desired.
(1) ⇒ (2): By the hypothesis, there exists a sequence, {νj}, of A-unit vectors in K ,

such that

lim
j→∞

1
2

(∣∣〈(Q + R)νj, νj
)
⟩A
∣∣2 + ∥(Q + R)νj∥2

A

)
= (∥Q∥A,∇,2 + ∥R∥A,∇,2)

2.

On the other hand, for all n ∈ N, we have the following:

1
2

∣∣∣〈(Q + R)νj, νj

)
⟩A
∣∣∣2 + 1

2
∥(Q + R)νj∥2

A

=
1
2
∥Qνj∥2

A +Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A)

+
1
2
∥Rνj∥2

A +
1
2
|⟨Qνj, νj⟩A|2 +

1
2
|⟨Rνj, νj⟩A|2

≤ ∥Q∥2
A,∇,2 + ∥R∥2

A,∇,2 +Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A)

≤ ∥Q∥2
A,∇,2 + ∥R∥2

A,∇,2 + |⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A|.
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By using the Cauchy–Schwarz inequality, we infer the following:

1
2

∣∣〈(Q + R)νj, νj
)
⟩A
∣∣2 + 1

2
∥(Q + R)νj∥2

A

≤ ∥Q∥2
A,∇,2 + ∥R∥2

A,∇,2 + (∥Rνj∥A∥Qνj∥A + |⟨νj, Qνj⟩A||⟨Rνj, νj⟩A|)

≤ ∥Q∥2
A,∇,2 + ∥R∥2

A,∇,2 + 2

√∣∣⟨Qνj, νj⟩A
∣∣2 + ∥Qνj∥2

A
2

√∣∣⟨Rνj, νj⟩A
∣∣2 + ∥Rνj∥2

A
2

≤ (∥Q∥A,∇,2 + ∥R∥A,∇,2)
2.

Taking limits as j approaches infinity, we can conclude the following:

lim
j→∞

Re(⟨Rνj, Qνj⟩A + ⟨νj, Qνj⟩A⟨Rνj, νj⟩A) = 2∥Q∥A,∇,2∥R∥A,∇,2,

as required. Thus, the proof is complete.

The results below provide lower bounds for ∥ · ∥A,mλ , f in terms of the A-Crawford
number cA(·).

Theorem 4. Let Q ∈ BLA(K ) and λ ∈ [0, 1]. Then, we have the following inequality:

max
{

f−1
[

f (wA(Q))mλ f
(√

cA(Q♯Q)

)]
; f−1

[
f (cA(Q))mλ f (∥Q∥A)

]}
≤ ∥Q∥A,mλ , f . (11)

Proof. Let y ∈ K , such that ∥y∥A = 1. Then, we have the following:

f−1
[

f (|⟨Qy, y⟩A|)mλ f (∥Qy∥A)
]
= f−1

[
f (|⟨Qy, y⟩A|)mλ f

(√
⟨Q♯Qy, y⟩A

)]
≥ f−1

[
f (|⟨Qy, y⟩A|)mλ f

(√
cA(Q♯Q)

)]
.

Taking supremum over all y ∈ K with ∥y∥A = 1, we have the following:

f−1
[

f (wA(Q))mλ f
(√

cA(Q♯Q)

)]
≤ ∥Q∥A,mλ , f . (12)

On the other hand, let {yn} be a sequence of elements of K , with ∥yn∥A = 1, such
that limn→∞ ∥Qyn∥A = ∥Q∥A. Fix n ∈ N. By the definition of cA(·), we have the follow-
ing inequalities:

f−1
[

f (cA(Q))mλ f (∥Qyn∥A)
]
≤ f−1

[
f (|⟨Qyn, yn⟩A|)mλ f (∥Qyn∥A)

]
≤ ∥Q∥A,mλ , f .

Letting n → +∞ yields the following:

f−1
[

f (cA(Q))mλ f (∥Q∥A)
]
≤ ∥Q∥A,mλ , f . (13)

Consequently, we can achieve the desired inequality by combining Equations (12) and (13).

The following result is an easy consequence of Theorem 4:
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Corollary 4. Let Q ∈ BLA(K ) and λ ∈ [0, 1]. Then, for every p ∈ (0,+∞), we have the
following inequality:

max

{[
wA(Q)pmλc

p
2
A(Q

♯Q)
] 1

p
;
[
cp
A(Q)mλ∥Q∥p

A

] 1
p

}
≤ ∥Q∥A,mλ ,p. (14)

Another consequence of Theorem 4 is the following result:

Corollary 5. Let Q ∈ BLA(K ) and λ ∈ [0, 1]. Then, we have the following:

f−1
(

min{λ; 1 − λ} f (∥Q∥A)
)
≤ ∥Q∥A,∇λ , f .

In particular, for each p ∈ (0,+∞), we have the following:

min{λ
1
p ; (1 − λ)

1
p }∥Q∥A ≤ ∥Q∥A,∇λ ,p.

Proof. According to Theorem 4, we can derive the following:

f−1
(

min{λ; 1 − λ} f (∥Q∥A)
)

= max
(

f−1
(

min{λ; 1 − λ} f (ωA(Q))
)

; f−1
(

min{λ; 1 − λ} f (∥Q∥A)
))

≤ max
{

f−1
(
(1 − λ) f (ωA(Q))

)
; f−1

(
λ f (∥Q∥A)

)}
≤ max

{
f−1
[

f (wA(Q))∇λ f
(√

cA(Q♯Q)

)]
; f−1

[
f (cA(Q))∇λ f (∥Q∥A)

]}
≤ ∥Q∥A,∇λ , f .

This gives the desired result.

In the case where m = ∇, we obtain the following estimation:

Proposition 8. Let Q ∈ BLA(K ) and λ ∈ [0, 1]. Then, we have the following inequality:

max
{

f−1
[

f (ωA(Q))1−λ f
(

cA(Q♯Q)
)λ]

; f−1
[

f (cA(Q))1−λ f (∥Q∥A)λ
]}

≤ ∥Q∥A,∇λ , f .

Proof. Using Young’s inequality, one obtains the following inequalities:

f (ωA(Q))1−λ f
(

cA(Q♯Q)
)λ

≤ f (wA(Q))∇λ f
(√

cA(Q♯Q)

)
(15)

and
f (cA(Q))1−λ f (∥Q∥A)λ ≤ f (cA(Q))∇λ f (∥Q∥A). (16)

Therefore, by combining inequalities (16) and (15) with (11), we obtain the required result.

An immediate consequence of Proposition 8 is as follows:

Corollary 6. Let Q ∈ BLA(K ) and λ ∈ [0, 1]. Then, for every p ∈ (0,+∞), we have the
following inequality:

max
{

ω1−λ
A (Q)cλ

A(Q
♯Q); c1−λ

A (Q)∥Q∥λ
A

}
≤ ∥Q∥A,∇λ ,p.
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3. Conclusions

In this paper, we introduced and investigated a novel operator seminorm, ∥Q∥A,mλ , f ,
which provides a link between the A-numerical radius and the operator A-seminorm for
an A-bounded operator, Q, on a complex Hilbert space. Our analysis has revealed several
interesting properties and relationships associated with this new concept.

Moreover, we believe that this work can serve as a starting point for further research
in this area. The connections established with existing literature open up avenues for
exploring deeper connections and applications of these seminorms in various mathematical
contexts. Future work could focus on extending these results to more general settings or
investigating specific applications in the operator theory and related areas.

Overall, the results presented in this paper contribute to the understanding of operator
seminorms and their connections to other important concepts in functional analysis, paving
the way for future research and exploration in this fascinating field.
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