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Abstract: The half-open multi-depot vehicle routing problem (HOMDVRP) is a typical decision
optimization problem in the field of collaborative logistics that considers resource sharing. This
study aims to develop an effective meta-heuristic algorithm for solving the HOMDVRP. Firstly, a
mixed-integer programming model of HOMDVRP is established to minimize the total travel distance
of the vehicles. After that, a novel hybrid adaptive simulated annealing and tempering algorithm
(HASATA) is proposed based on the features of HOMDVRP. The proposed algorithm combines the
strengths of the simulated annealing algorithm and the large-neighborhood search algorithm to
balance the algorithm’s searching capabilities in both breadth and depth. Meanwhile, an adaptive
Markov chain length mechanism and a tempering mechanism are designed to improve the algorithm’s
computational efficiency and convergence ability. Finally, simulation experiments are conducted to
verify the effectiveness of the proposed model and the computational performance of the proposed
algorithm. Four comparison algorithms are selected and analyzed using 24 groups of problem
instances. The comparison results show that the proposed HASATA can solve the HOMDVRP more
efficiently and obtain a solution with better optimization performance and satisfactory stability.

Keywords: collaborative logistics; half-open multi-depot vehicle routing problem; adaptive Markov
chain length; improved large-neighborhood search; tempering mechanism

MSC: 90B06

1. Introduction

In order to cope with fierce market competition and meet the diverse needs of cus-
tomers for logistics services, logistics companies need to deploy multiple logistics distri-
bution centers. Taking express logistics as an example, as of June 2023, China’s express
business volume has exceeded 59.5 billion pieces and massive infrastructures such as distri-
bution centers, transfer stations, and forward warehouses have been built to meet express
turnover [1]. Driven by the sharing economy and sustainable development strategy, in
order to fully utilize the cluster benefits of existing logistics resources, collaborative logistics
based on horizontal cooperation or sharing logistics resources among different enterprises
has received wide attention [2]. Gansterer and Hartl [3] have stated that horizontal collabo-
rative logistics transportation can economically reduce costs by up to 30%. Wang et al. [4]
have discussed the benefits distribution among the participants in cooperative green pickup
and delivery problems and have proposed a suitable compensation mechanism. Further-
more, Li et al. [5] have proved that collaborative operation-based logistics resource sharing
has become an effective approach for logistics enterprises to reduce fuel costs. Liu et al. [6]
have pointed out that collaborative distribution among cold chain logistics companies
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can alleviate the pressure on carbon emissions of companies. The half-open multi-depot
vehicle routing problem (HOMDVRP) is a typical decision optimization problem in the
field of collaborative logistics. In this problem, vehicles can return to the nearest depot after
completing their transport tasks instead of returning to the initial depot when cooperative
logistics companies share the fleet and the distribution centers. To differentiate HOMDVRP
from the MDVRP, we refer to the vehicle paths between different depots as half-open vehi-
cle paths. As shown in Figure 1, here’s a example that includes 2 depots and 5 customers,
and the number on the arrow denotes the distance between two nodes. The transportation
path of MDVRP has a total distance of 16, whereas HOMDVRP decreases the total distance
by 6.25% compared to MDVRP by generating half-open vehicle paths between depots 1
and 2. Therefore, HOMDVRP has the potential advantage of decreasing travel distance
and reducing logistics costs compared to MDVRP.
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Figure 1. An illustrative case for half-open multi-depot vehicle routing problem.

Recently, the logistics industry has become more competitive and, as a result, re-
searchers are paying extensive attention to the HOMDVRP [7,8]. This problem is typically
studied in the form of collaborative vehicle routing problems to optimize the transporta-
tion network, based on the key features of multi-depot and half-open vehicle paths [9].
Moreover, the HOMDVRP and its variants are widely used in scenarios such as cold chain
logistics [10], hazardous materials transportation [8], and electric vehicle distribution [11].
This has demonstrated that half-open vehicle paths based on the sharing of logistics re-
sources can effectively reduce vehicle energy consumption and carbon emissions, thus
promoting the sustainable development of green logistics.

There are extensive applications based on variants of HOMDVRP. However, HOMD-
VRP is a problem that is difficult to solve efficiently as it is typically NP-hard. If exact
algorithms are used, the half-open path structure can expand the solution space of MDVRP,
which results in unacceptable computational time and difficulty in practical applications.
If heuristic algorithms are used, HOMDVRP needs to consider both customer sequence
optimization and depot–vehicle combination optimization. These decisions are coupled
with each other, making it easy to fall into the local optimum and increasing the logistic
cost under actual scenarios.

Distinguished from general exact and heuristic algorithms, meta-heuristic algorithms
provide flexible and adaptive solutions to complex optimization problems. They are
inspired by a variety of phenomena in nature, the behavior of organisms, the laws of physics,
the biological sciences, human interactions, the rules of games, and other evolutionary
processes [12]. Referring to the work of Montazeri et al. [13], meta-heuristic algorithms
are generally categorized into nine classes: swarm-based, biology-based, physics-based,
social-based, sports-based, music-based, chemistry-based, plant-based, and mathematics-
based approaches. MDVRP, as a classical NP-hard problem in the logistics industry, the
genetic algorithm (biology-based) [14], the ant colony algorithm (swarm-based) [15], the
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simulated annealing algorithm (physics-based) [16], and the local search algorithms based
on greedy strategies have been widely used to solve MDVRP and its variants [17]. With the
development of algorithmic research, many hybrid meta-heuristic algorithms have been
successfully applied to solve such more complex MDVRP variants [18,19]. More detailed
descriptions of meta-heuristic algorithms for solving MDVRPs can be found in the review
by Montoya-Torres et al. [20].

Compared to MDVRP, the algorithmic research for HOMDVRP is scarce. Liu et al. [21]
proposed HOMDVRP and described it as a mixed-integer programming model and the
problem was solved by designing a saving algorithm, a sequence insertion algorithm,
and a parallel regretted insertion algorithm. Li et al. [22] conducted a study in which
they introduced a half-open vehicle path structure within the framework of shared depot
resources. Based on this, they proposed a multi-depot vehicle routing problem with time
windows under shared depot resources and developed a hybrid genetic algorithm with
adaptive local search properties to solve it. Later, they further verified that shared depot
resources can save driving distance and fuel consumption in their subsequent work [5].
Ge et al. [23] studied HOMDVRP based on the joint distribution of urban logistics and
proposed a cloud-quantum genetic algorithm to optimize the fuel consumption cost.

In recent years, researchers have combined HOMDVRP with real logistics scenarios
and accumulated significant research results. For example, Fan et al. [7] studied HOMD-
VRP based on the multi-center joint distribution of fresh products and designed an ant
colony algorithm to solve it. Ma et al. [11] studied the half-open multi-depot vehicle routing
problem with time windows based on electric vehicles and used the branch and bound al-
gorithm and ant colony algorithm to solve it. Wang et al. [24] proposed a multi-depot green
vehicle routing problem with shared transportation resources and time-dependent speed
and it was modeled as a bi-objective model for minimizing carbon emission and logistics
costs. Then, a multi-objective particle swarm optimization algorithm combining the Clarke
and Wright saving heuristic algorithm and the sweep algorithm was designed to solve this
proposed problem. Gu et al. [25] proposed a three-stage improved ant colony algorithm
from the problem structure, the multi-distribution center routing problem is converted
into multiple single-distribution center routing problems by the K-mediods clustering
method, and then it is solved by the multi-ant colony algorithm. Fan et al. [26] proposed a
mixed-integer programming model to minimize the total cost for the half-open multi-depot
green vehicle routing problem with time windows under a time-varying road network.
They also designed a hybrid genetic algorithm with a variable neighborhood search. Later,
they proposed an adaptive memetic algorithm and variable neighborhood search for the
multi-depot vehicle routing problem with simultaneous deterministic delivery and stochas-
tic pickup based on joint distribution [27]. Zhou et al. [8] studied the half-open multi-depot
heterogeneous vehicle routing problem in hazardous materials transportation and obtained
the minimized Pareto solution of transportation cost and risk by designing a hybrid heuris-
tic algorithm based on the ε constraint method and genetic algorithm. For the collaborative
multi-center vehicle routing problem with time windows and mixed deliveries and pick-
ups. Wang et al. [9] proposed a two-stage hybrid meta-heuristic algorithm combining
customer clustering and vehicle path optimization: customers are reassigned to logistics
facilities by an improved 3D k-means clustering algorithm and then a hybrid meta-heuristic
algorithm combining a genetic algorithm and a particle swarm optimization algorithm
is designed. Hasanpour Jesri et al. [28] studied the multi-warehouse traveling purchaser
problem with half-open vehicle paths in the context of shared resources and proposed a
decomposition-based two-stage heuristic algorithm to solve it. Bai et al. [29] studied a bike
rebalancing problem that allows vehicles to return to different depots and a hybrid heuristic
algorithm based on variable neighborhood search and dynamic programming to solve it.
Chen et al. [10] established a cold chain logistics model considering joint distribution and
carbon trading mechanism with the goal of minimizing total logistics costs and solved the
problem by designing a hybrid catastrophic genetic algorithm with variable neighborhood
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search. Tables 1 and 2 provide a summary of the literature related to the HOMDVRP and
abbreviations for problem types, respectively.

Table 1. Literature related to the HOMDVRP.

Reference Algorithms Problems Objectives
Algorithms

Designed for
Half-Open Path?

Other Issues

[21] Heuristic HOMDVRP Distance - -

[22] Hybrid heuristic HOMDVRPTW Distance
√

Shared depot resources

[23] Meta-heuristic UL-JD Fuel cost - Urban logistics;
Joint distribution

[7] Meta-heuristic HOMDVRP Total cost - Fresh logistics;
Joint distribution

[11] Meta-heuristic;
Exact algorithm HOMDEVRPTW Total cost - -

[24] Hybrid heuristic MDGVRP carbon emission;
Total cost -

Collaborative logistics;
Shared transportation

resource;
Time-dependent speed

[25] Meta-heuristic HOMDVRPTW Total cost
√

-

[26] Hybrid
meta-heuristic TDMDGVRPTW Total cost -

Time-varying road
network;

Vehicle fuel
consumption

[27] Hybrid
meta-heuristic MDVRPSDDSPJD Distance

√
-

[8] Hybrid
meta-heuristic HOMDHVRP Risk;

Cost - Hazardous material
transportation

[9] Hybrid heuristic CMVRPTWMDP Total cost -
Collaborative logistics;
Shared transportation

resource

[28] Hybrid heuristic MDTPPSR Distance - Sustainable logistics

[29] Hybrid heuristic;
Exact algorithm BRP Working time;

Fixed cost - Multi-depot;
Broken bike collection

[10] Hybrid
meta-heuristic CCL-JD Total cost -

Cold chain logistics;
Carbon trading

mechanism

This work
Hybrid

meta-heuristic;
Exact algorithm

HOMDVRP Distance
√

Collaborative logistics

Notes: the symbol “
√

” means that the half-open path structure is considered into the designed algorithm; the
symbol “-” means that the related items are not emphasized in their works.

Table 2. Abbreviations for problem types.

Abbreviations Problems

HOMDVRPTW Half-open multi-depot vehicle routing problem with time windows
UL-JD Urban logistics based on joint distribution

HOMDEVRPTW Half-open multi-depot electric vehicle routing problem with time windows
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Table 2. Cont.

Abbreviations Problems

MDGVRP Multi-depot green vehicle routing problem
TDMDGVRPTW Time-dependent multi-depot green vehicle routing problem with time windows

MDVRPSDDSPJD Multi-depot vehicle routing problem with simultaneous deterministic delivery and stochastic pickup
based on joint distribution

HOMDHVRP Half-open multi-depot heterogeneous vehicle routing problem
CMVRPTWMDP Collaborative multi-center vehicle routing problem with time windows and mixed deliveries and pickups

MDTPPSR Multi-depot traveling purchaser problem under shared resources
BRP Bike rebalancing problem

CCL-JD Cold chain logistics based on joint distribution

Based on the above literature related to HOMDVRP, studies have examined the use
of the half-open path structure as a strategy for complex collaborative logistics or joint
distribution and have demonstrated the effectiveness of proposed approaches for reducing
logistics costs and energy consumption [7,23,24]. Algorithms for the HOMDVRP and its
variants have primarily focused on hybrid meta-heuristic algorithms and hybrid heuristic
algorithms. However, most of the studies focus on the significance of half-open paths for
the improvement in MDVRP based on practical logistics scenarios [9,23,24,28], while there
is a lack of algorithmic studies based on the key structural features of HOMDVRP [22,25,27].
This lack of consideration leads to the algorithms for solving the HOMDVRP easily falling
into local optimum or unacceptable computational time. It has become an urgent issue to
find an algorithm that can efficiently solve the HOMDVRP problem in the collaborative
logistics field.

To compensate for the research gap, this study aimed to develop a hybrid meta-
heuristic algorithm that effectively addresses the HOMDVRP problem. The contributions
are summarized below:

(1) A mixed-integer programming model for HOMDVRP to minimize the total transporta-
tion distance is formulated by analyzing vehicle routing problems in the collaborative
logistics under the sharing economy;

(2) A hybrid adaptive simulated annealing and tempering algorithm (HASATA) based
on an improved simulated annealing (ISA) algorithm and an improved large neigh-
borhood search (ILNS) algorithm is proposed, in which an adaptive Markov chain
length mechanism and a neighborhood-based searching mechanism are designed
considering the features of HOMDVRP;

(3) The effectiveness and computation efficiency of HASATA in this paper for solving the
HOMDVRP are verified by comparing the results obtained by one commercial solver
and three existing heuristic algorithms in different scale computational experiments.

The remaining parts are organized as follows. The problem description and modeling
of the HOMDVRP are provided in Section 2. Section 3 illustrates the proposed meta-
heuristic algorithm to solve the mathematical model, followed by the computational
experiments in Section 4 and the conclusions in Section 5.

2. Problem Description and Mathematical Modeling
2.1. Problem Description

The HOMDVRP, which involves multiple depots and a group of customers with a
fixed demand within a given area is focused on. The objective is to find the shortest routes
for a fleet of identical vehicles with a defined capacity to travel from one depot to serve
customers and return to a nearby depot. Additionally, it is assumed that the transportation
process meets the following assumptions and constraints:

(1) The distance between each node is known;
(2) Each customer’s demand is satisfied by one vehicle service only once;
(3) The number of vehicles is sufficient;
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(4) The vehicle’s departure and termination depots can be inconsistent;
(5) Vehicles cannot travel directly between depots;
(6) The total customer demand on the route does not exceed the loading capacity of the

vehicle.

Table 3 lists notations used in the proposed formulation of the HOMDVRP mathemati-
cal model.

Table 3. The notations of the mathematical model.

Notations Definitions

Sets
C Index set of customers, where C = {1, 2, . . . , c, . . . , C}

N Index set of all nodes, where
N = D ∪ C ∪ D′ = {1, 2, . . . , i, j, . . . , N}

D Index set of depots
D′ Index set of dummy depots
V Index set of vehicles, where V = {1, 2, . . . , k, . . . , V}

Parameters
dc The demand of the customer c
dij The distance from node i to node j
Q The maximum load capacity of the vehicle

M The sum of the number of actual depot nodes and
customer nodes, where M = |D ∪ C|

Variables

xijk
xijk equals 1 if vehicle k drives from node i to node j,
otherwise xijk equals 0

ui The sequence of vehicle arrivals at nodes i

2.2. Mathematical Modeling

The mixed-integer programming model of HOMDVRP can be formulated as

Min Z = ∑
i∈N

∑
j∈N

∑
k∈V

xijkdij (1)

s.t.
∑j∈N ∑k∈V xcjk = 1, ∀c ∈ C, c ̸= j (2)

∑
i∈N

xick − ∑
j∈N

xcjk = 0, ∀c ∈ C, k ∈ V, c ̸= i, c ̸= j (3)

∑
i∈D∪D′

∑
c∈C

xick = ∑
c∈C

∑
j∈D∪D′

xcjk ≤ 1, ∀k ∈ V (4)

∑
i∈D∪D′

∑
j∈D∪D′

xijk = 0, ∀k ∈ V (5)

∑
c∈C

∑
j∈N

xcjkdc ≤ Q, ∀k ∈ V, c ̸= j (6)

ui − uj + Mxijk ≤ M− 1, ∀i ∈ C ∪ D, j ∈ C ∪ D′, k ∈ V, i ̸= j (7)

xijk ∈ {0, 1}, ui ≥ 0, ∀ui ∈ Z, i, j ∈ N, k ∈ V (8)

Equation (1) indicates that the objective of HOMDVRP is to minimize the total travel
distance of the vehicles. Equations (2) and (3) indicate that each customer c can only be
served once by one vehicle k. Equation (4) means that once a vehicle k is dispatched, it needs
to depart from the current depot and can return to any depot after visiting the customer c,
where starting depot i is not necessarily the same as ending depot j. Equation (5) represents
that any vehicle k cannot travel directly between two depots. Equation (6) denotes that the
total demand on any vehicle path is not greater than the vehicle load limit. Equation (7) is
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used to eliminate the vehicle sub-tours. Equation (8) declares the range of values of the
decision variables.

3. Hybrid Adaptive Simulated Annealing and Tempering Algorithm

The HOMDVRP is an NP-hard problem containing path sequence optimization and
vehicle-depot combination optimization problems. The simulated annealing (SA) algorithm,
as a classical heuristic algorithm with excellent global search capability, has been widely
used in various types of VRP [30,31]. Therefore, in this study, a hybrid adaptive simulated
annealing and tempering algorithm (HASATA) based on the framework of the SA is
proposed for solving the presented problem. In HASATA, we designed an improved
simulated annealing (ISA) algorithm and an improved large-neighborhood search (ILNS)
algorithm to enhance the search performance for the half-open path structure in HOMDVRP.
Furthermore, adaptive Markov chain length and tempering mechanism are designed to
improve the efficiency of the algorithm and the ability to jump out of local optimal solutions.
The flowchart of HASATA is shown in Figure 2.
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Figure 2. The flowchart of HASATA.

As shown in Figure 2, firstly, the parameters of HASATA are initialized. Secondly,
initial feasible solutions are generated based on the constraints of the HOMDVRP model.
Thirdly, during the pre-annealing phase, the ISA embedded in the adaptive Markov chain
length setting algorithm is invoked to search for a better solution, meanwhile, the proposed
algorithm outputs the effective number of searches (i.e., the number of times the current
solution is updated) and the adaptive Markov chain length (also known as the number of
searches in the inner layer of the algorithm), which are used as a basis for the algorithmic
choices in the next step. Fourthly, if the current solution is updated at least once in the pre-
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annealing phase, the algorithm will enter the annealing phase and apply the ISA to search
for a better solution until the loop reaches the adaptive Markov chain length; otherwise, the
algorithm will enter the tempering phase and, after the tempering criterion is satisfied, the
temperature is elevated and the ILNS is invoked to search in-depth until the loop reaches
the maximum Markov chain length. Finally, when the algorithm reaches the number of
inner adaptive searches, the temperature decreases and the number of outer iterations is
updated. Steps 3 to 5 are repeated until the algorithm meets the termination criteria.

In the following sections, we describe the main procedures of the proposed HASATA
in detail. The parameter symbols in the proposed algorithm and their descriptions are
listed in Table 4.

Table 4. The notations of the proposed algorithm.

Algorithmic Parameter Description

T0 The initial temperature
Tend The final temperature
Tk The current temperature
ψ The cooling rate
Sc The current solution
Sb The best solution
Sn The new solution
sk The number of effective searches (the times of Sc is updated)
N The number of tempering
γ The tempering factor
Lk The adaptive Markov chain length

Lpre
k The Markov chain length at Tk in pre-annealing phase

Lmax
k The maximum Markov chain length

Hmax The outer maximum number of loops

3.1. Initialization of the Parameters

In the initial phase of the proposed algorithm, define the initial temperature T0, the
final temperature Tend, the cooling rate ψ, and the outer maximum number of loops Hmax.
Set the number of tempering N equal to zero and define the tempering factor as γ. De-
fine the maximum Markov chain length Lmax

k . Then, define the Markov chain length at
temperature k in pre-annealing as Lpre

k . It usually takes the value of one-fifth of Lmax
k .

3.2. Initial Solution Representation

As shown in Figure 3, for a HOMDVRP with m depots and n customers, since the
outgoing and terminating depots of vehicle k may not coincide, we determine a vehicle
path by every two neighboring depots from left to right in the coding string. Furthermore,
since the number of vehicles is sufficient, we quickly generate an initial feasible solution
by randomly assigning each customer c to the starting and ending depots only under the
consideration of vehicle loading constraints. Therefore, the encoding length of the feasible
solution is 3n.
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Figure 3. The initial solution representation.
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3.3. Adaptive Markov Chain Length Mechanism

In the SA, the Markov chain length Lk is also known as the number of searches in the
inner layers of the algorithm at temperature Tk. Its value has a significant impact on the
performance of the algorithm. Different from the previous empirical judgment, Li et al. [32]
proposed a connection between the solution value at Tk and Lk and they presented an
inequality for the theoretical upper bound valuation of the Lk as shown in Equation (9).

Lk ≤ 4
Sc − Sb
|Sn − Sc|

(9)

where Sc, Sn, and Sb are the current solution, new solution, and current best solution,
respectively. Here, “4” is a constant derived and has no practical significance. Therefore,
the formula about Lk is reformulated as shown in Equation (10).

Lk =
Sc − Sb
|Sn − Sc|

(10)

We design an adaptive Markov chain length setting algorithm based on Equation (10),
which is used to compute Lk at Tk while searching for a better solution. Algorithm 1 briefly
explains its general structure.

Algorithm 1 The pseudo-code of adaptive Markov chain length setting algorithm

1: Input: Sc, Sb, Tk, Lpre
k , and Lmax

k
2: Initialization: Lk ← 0 ; sk ← 0 ; i← 0
3: while i ≤ Lpre

k do
4: Apply perturbations of the ISA to generate new solution Sn
5: if Sn < Sc then
6: sk ← sk + 1
7: if Sn < Sb then
8: Sb ← Sn
9: end if
10: Lk ← Lk +

Sc−Sb
|Sn−Sc |

11: Sc ← Sn
12: end if
13: else if Sn > Sc and exp

(
Sc−Sn

Tk

)
> random[0, 1 ) then

14: sk ← sk + 1
15: Lk ← Lk +

Sc−Sb
|Sn−Sc |

16: Sc ← Sn
17: end else if
18: i← i + 1
19: end while
20: if sk > 0 then
21: Lk ← min

(
ceil

(
Lk
sk

)
, Lmax

k

)
22: end if
23: if sk = 0 then
24: Lk ← Lmax

k
25: end if
26: Output: Sc, Sb, Lk, and sk

After initializing the parameters, Sn is accepted probabilistically through the ISA with
the Metropolis rule as shown in Equation (11).

P =

{
1 , Sn − Sc < 0
exp

(
−(Sn−Sc)

Tk

)
, Sn − Sc > 0

(11)
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Each time the Sn is updated, the sk is increased by 1 (lines 6 and 14) and then
Equation (10) is computed cumulatively (lines 10 and 15). At the end of the loop, if sk = 0,
we consider the algorithm to be trapped in a local optimum and subsequently enter the
tempering phase; if sk > 0, Lk is calculated by the formula in line 21 and subsequently
enter the annealing phase. Considering the fluctuation in the solution objective value in
the real-world problems, we preset the maximum Markov chain length Lmax

k .

3.4. Tempering Mechanism

In the tempering mechanism, if the sk equals 0, it means that the new solution will
be no longer accepted. We introduce the tempering mechanism at this time to try to jump
out the local optimal solution. Specifically, the temperature will rise to double the current
temperature Tk. In addition, to avoid frequent tempering, which affects efficiency, we
design the tempering criteria as shown in Equation (12) with reference to Li et al. [33].

Sb
Sn + Nγ

> Random[0, 1) (12)

where N denotes the number of tempering of HASATA and its initial value is set to zero.
The index γ of N is the tempering factor and its suitable value interval is [2,5]. Imitating the
Metropolis rule, in the early stage of HASATA, the tempering criteria is greatly influenced
by Sb and Sn, when Sn is close to Sb, then it is easy to temper frequently. With the N
gradually increasing, in the middle and late stage of the algorithm, the tempering criteria is
greatly influenced by N, when N is large enough, the probability of tempering tends to be
approximately 0. Therefore, the tempering criteria can make HASATA quickly stabilize in
the late stage.

3.5. Perturbations in the ISA

Based on the SA, we add the perturbation method of depot mutation to the customer
sequence perturbation for the characteristics of the half-open vehicle path structure in
HOMDVRP. ISA is applied to the pre-annealing and annealing phases of the proposed
algorithm to search for a better solution. The four perturbation methods designed are
shown below.

(1) Reverse: As shown in Figure 4, two customers, 1 and 3, are first randomly selected
within a path and then the customer segments containing customers 1 and 3 are sorted
in reverse order.

(2) 0-1 Insertion: Select two customers randomly and then insert the first selected cus-
tomer to the right neighboring position of the second customer. As shown in Figure 5a,
when the selected customers are all on the same path, then it is an intra-route 0-1
insertion, otherwise, it is inter-route 0-1 insertion, as shown in Figure 5b, under the
premise of satisfying the vehicle load constraints, the inter-route 0-1 insertion may
produce an infeasible solution situation of direct access between two depots, so after
executing the inter-route 0-1 insertion, it is necessary to judge and delete the infeasible
vehicle path in solution.

(3) 1-1 Exchange: Figure 6a,b shows examples of intra-route and inter-route exchanges,
respectively. Notably, the inter-route 1-1 exchange needs to ensure that vehicle load
constraints are not violated.

(4) Depot mutation: in order to search for the optimal combination solution of vehicles
and depots in a half-open vehicle path structure, we design the depot mutation
perturbation method. As shown in Figure 7, a better solution in HOMDVRP is
searched by randomly selecting a depot in a route and then replacing it with any
depot in the depot set.
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The procedures of the ISA are shown in Algorithm 2. The four perturbation methods
mentioned above are selected by roulette to search for better solutions (lines 3–5), where
the value of Lk is output by Algorithm 1, which is adaptively adjusted as the algorithm
converges and can therefore improve the computational efficiency of ISA.
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Algorithm 2 The pseudo-code of ISA algorithm

1: Input: Sc, Sb, Tk, Lk
2: while j ≤ Lk do
3: while Sn is infeasible do
4: Sn ← perturbation(Sc)
5: end while
6: if Sn < Sc then
7: Sc ← Sn
8: if Sn < Sb then
9: Sb ← Sn
10: end if
11: end if
12: else if Sn ≥ Sc and exp

(
Sc−Sn

Tk

)
> random[0, 1 ) then

13: Sc ← Sn
14: end else if
15: j← j + 1
16: end while
17: Tk ← ψTk ; h← h + 1
18: if Tk ≤ Tend or h ≥ Hmax then
19: Computation terminated
20: else
21: Turn to Algorithm 1
22: end if
23: Output: Sc, Sb

3.6. Destroy and Repair Operators in ILNS

The large neighborhood search (LNS) algorithm has good global search capability
and is highly scalable [34,35]. Therefore, we improve the destroy and repair operators of
LNS based on the features of HOMDVRP. After tempering, the local optimal solution is
attempted to be jumped out by ILNS. The destroy and repair operators designed in the
proposed algorithm are as follows.

The following five destroy operators are designed.

(1) Random customer removal: this operator removes customers from the current solution
at random, with the percentage of removal ranging from 0% to 10% of all customers;

(2) Cluster removal: the operator randomly selects a customer c and set dmax as the
distance between customer c and its farthest neighborhood and then remove customer
c and all customers within its 1/5dmax radius;

(3) Route removal: the operator calculates the average number of customers n across all
routes, if the number of customers on a randomly selected route is greater than n, then
n customers will be removed randomly, otherwise, the entire route will be removed;

(4) Relevance removal: a customer c is randomly selected, then the relevance values
Rvcc′ of customer c with other customer c′ are calculated by Equation (13) and finally
customer c and the first q− 1 customers with the highest relevance are removed.

Rvcc′= 1/
(

dcc′µ1

max(d cc′)
+ Xµ2

)
(13)

Equation (13) is the difference degree formula and its inverse is used to represent the
relevance degree. If customer c is in the same route as customer c′, then X is 0, otherwise it
is 1. µ1 and µ2 denote the weight factors, which are taken as 0.4 and 0.6, respectively.

(5) Random depot removal: similar to the depot mutation in ISA, this operator randomly
selects and records the indexes of certain warehouses and then deletes them.

To repair the infeasible solutions after being disrupted by the destroy operations, the
following four repair operators are designed:
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(1) Random insertion: this operator randomly inserts a customer into an arbitrarily
chosen route, and if the generated solution is not feasible, a new route is created for
that customer. This operation is repeated until all customers are inserted into the
route;

(2) Sequential greedy repair: this operator randomly selects a customer from the customer
pool and inserts it into the best position, then updates the current solution. Repeat
this operation until all customers are inserted into the route;

(3) Random depot repair: this operator randomly selects a depot from the pool and
inserts it into the current position of the destroyed depot. Repeat this operation until
all depots have been repaired;

(4) Greedy depot repair: the operator selects a depot from the depot set and inserts it into
the current position of the destroyed depot according to the principle of minimum
cost increase.

The general procedure of ILNS is shown in Algorithm 3. In the fifth line of the pseudo-
code, the destroy operator is performed on the current solution followed by repair (line 5).
The above destroy and repair operators used are chosen by roulette. Considering the
existence of both customer-specific and depot-specific operators in ILNS, we apply the
destroy and repair operators for customers and depots separately in combination to ensure
the effectiveness of the algorithm.

Algorithm 3 The pseudo-code of ILNS algorithm

1: Input: Sc, Sb, Tk, Lk
2: if meet tempering criteria then
3: Tk ← 2Tk ; N ← N + 1 ; q← 0
4: while q ≤ Lk do
5: Sn ← repair(destroy(Sc))
6: if Sn < Sc then
7: Sc ← Sn
8: if Sn < Sb then
9: Sb ← Sn
10: end if
11: end if
12: else if Sn ≥ Sc and exp

(
Sc−Sn

Tk

)
> random[0, 1 ) then

13: Sc ← Sn
14: end else if
15: q← q + 1
16: end while
17: Tk ← ψTk ; h← h + 1
18: if Tk ≤ Tend or h ≥ Hmax then
19: Computation terminated
20: else
21: Turn to Algorithm 1
22: end if
23: else
24: Tk ← ψTk ; h← h + 1
25: if Tk ≤ Tend or h ≥ Hmax then
26: Computation terminated
27: else
28: Turn to Algorithm 1
29: end if
30: end if
31: Output: Sc, Sb

3.7. Termination Criteria

In the HASATA, the tempering mechanism may result in the temperature never cooling
to the Tend, which in turn prevents the algorithm from terminating the run. Therefore, in
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this paper, the algorithm is set to terminate the computation when the temperature reaches
Tend or the number of outer loops Hmax reaches a preset value.

4. Computational Experiments and Analysis

In this section, in order to analyze the performance of HASATA, we compare the pro-
posed algorithm with the cardinal optimizer (COPT) [36], the hybrid adaptive large neigh-
borhood search (HALNS) algorithm, the improved simulated annealing (ISA) algorithm,
and the adaptive simulated annealing and tempering algorithm (ASATA). All the algo-
rithms were coded in Python 3.12 and executed on 13th Gen Intel(R) Core (TM) i5-13500HX
2.50 GHz × 14 machines with 16 GB of RAM under the Windows 10 operating system.

There are 24 sets of instances generated for HOMDVRP based on the MDVRPTW
instance set published by NEO (Available at http://neo.lcc.uma.es/vrp/vrp-instances/
multiple-depot-vrp-with-time-windows-instances/ (accessed on 21 November 2023)).
Among them, there are 12 sets for small-scale instances and 12 sets for large-scale instances.
Taking instance S12-C30-D4-Q200 as an example, it implies that the small-scale 12th instance
has 30 customers and 4 depot nodes and the maximum load capacity of vehicles is 200.

This section first shows the procedures for tuning the parameters. Then, we present
and analyze the small-scale experimental results and large-scale experimental results.

4.1. Experiment Setting

The parameters have a large impact on the performance of meta-heuristic algorithms.
Setting appropriate parameters for an algorithm can improve the optimization performance.
The Taguchi analysis method is widely used as a class of statistical methods for parameter
tuning, so it is adopted for the parameter tuning of HASATA.

Firstly, we select four key parameters that have the greatest impact on the proposed
algorithm, which are initial temperature, cooling rate, tempering factor, and maximum
Markov chain length. Then, we set low, medium, and high-level values for each of the
selected parameters based on a large number of experiments to generate a table of or-
thogonal experiments with nine tours. Finally, we randomly selected S5-C20-D2-Q100,
S12-C30-D4-Q200, L4-C50-D4-Q200, and L7-C60-D2-Q200 as sample instances and ran the
algorithm 10 times with different parameter combinations to obtain the average objective
value and average solution time.

Since we expect the proposed algorithm to obtain a smaller objective value in a shorter
computational time, the level with the highest signal-to-noise ratio for each given parameter
was determined to be the optimal level for that parameter. The alternative values for each
parameter and the level that was finally chosen are listed in Table 5.

Table 5. Tuning results for the parameters of HASATA.

Parameters Low Level Medium Level High Level Selected Level

T0 2000 5000 8000 Low level
ψ 0.97 0.98 0.99 Medium level
γ 2 3 4 Medium level

Lmax
k 200 250 300 Medium level

Overall, the initial temperature T0, cooling rate ψ, tempering factor γ, and maximum
Markov chain length Lmax

k are tuned to 2000, 0.98, 3, and 250, respectively. The Markov
chain length in pre-annealing Lpre

k is set to one-fifth of Lmax
k .

4.2. The Comparison Algorithms

In this section, the parameters of the comparison algorithms are introduced as follows.
COPT: It uses a branch-and-cut exact algorithm to solve mixed-integer programming

models. The solver is programmed based on Python 12.1 API and we limit COPT to stop
the program when the time reaches 7200 s or the memory limit is exceeded.

http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-with-time-windows-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-with-time-windows-instances/
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HALNS: The HALNS algorithm is adapted from Lahyani et al. [37]. In this paper,
the initial temperature T0 is set to 1000, the cooling rate ψ = (0.01/T0)

10/itermax , and
the Markov chain length Lk = 20 and the temperature is periodically reset to T0 every
itermax/10 iterations; the rewards for updating Sb, Sc and accepting Sn are 10, 5, and 3,
respectively, and the weights are updated every 200 generations.

ISA: The ISA algorithm is based on the framework of the classical simulated annealing
algorithm, which uses the perturbation method designed for half-open path structures
in the proposed algorithm. Its T0 is set to 5000 and ψ = 0.99; Lk = 300 and the final
temperature Tend = 0.001.

ASATA: The ASATA is the same parameter settings as HASATA, using perturbations
instead of ILNS after tempering.

Considering the stochastic nature of the solution process of the meta-heuristic algo-
rithms, we compare the average objective value and running time of each meta-heuristic
algorithm for 20 runs in each instance.

4.3. Experimental Results of Small-Scale Instances

In this section, we compare the results of HASATA with those of the COPT solver,
ISA, HALNS, and ASATA for solving 12 sets of small-scale instances. The results of
the small-scale experiments shown in Table 6 verify the validity of the proposed model
and algorithm.

Table 6. The small-scale experimental results.

Instances
COPT HALNS ISA ASATA HASATA

Obj1
Time1

(s) Obj2
Time2

(s) Gap1 Obj3
Time3

(s) Gap2 Obj4
Time4

(s) Gap3 Obj5
Time5

(s) Gap4

S1-C10-D2-Q100 224.0 0.7 224.0 9.4 0.00% 224.0 9.5 0.00% 224.0 2.0 0.00% 224.0 5.5 0.00%
S2-C10-D4-Q100 192.0 0.4 192.1 9.9 0.05% 192.0 9.1 0.00% 192.0 1.9 0.00% 192.0 5.2 0.00%
S3-C10-D2-Q200 166.0 0.1 182.6 18.9 10.00% 166.0 5.8 0.00% 166.0 1.3 0.00% 166.0 2.4 0.00%
S4-C10-D4-Q200 161.0 0.1 173.5 15.4 7.76% 161.0 5.6 0.00% 161.0 1.3 0.00% 161.0 2.4 0.00%
S5-C20-D2-Q100 330.0 7200.0 330.5 15.5 0.15% 331.0 35.6 0.30% 333.0 6.8 0.91% 330.6 5.8 0.17%
S6-C20-D4-Q100 288.0 799.2 289.0 15.6 0.35% 289.4 25.6 0.47% 289.5 4.6 0.52% 288.2 5.9 0.07%
S7-C20-D2-Q200 262.0 6.8 262.0 22.3 0.00% 269.3 11.8 2.77% 270.1 2.5 3.09% 262.0 5.0 0.00%
S8-C20-D4-Q200 247.0 1.1 247.0 23.0 0.00% 253.2 11.7 2.49% 248.4 2.4 0.55% 247.0 4.9 0.00%
S9-C30-D2-Q100 463.0 7200.0 438.0 30.2 −5.40% 441.7 22.9 −4.60% 442.6 6.0 −4.41% 436.3 12.4 −5.78%

S10-C30-D4-Q100 361.0 7200.0 373.9 30.0 3.57% 371.7 22.4 2.95% 368.2 7.7 1.99% 361.0 14.8 0.00%
S11-C30-D2-Q200 335.0 7200.0 335.0 44.7 0.00% 344.9 15.2 2.96% 340.6 4.8 1.66% 335.0 12.9 0.00%
S12-C30-D4-Q200 309.0 126.1 310.5 44.4 0.47% 319.9 15.0 3.53% 319.0 8.8 3.24% 309.0 13.4 0.00%

Average 278.2 2477.9 279.8 23.3 1.41% 280.3 15.9 0.91% 279.5 4.2 0.63% 276.0 7.5 −0.46%

Notes: Gapi−1 = (Obji −Obj1)/Obj1 × 100%, i = 2, . . ., 5. Bold text indicates better results for same-dimension
comparisons.

As seen from Table 6, HASATA obtains the optimal solution for 10 out of the 12 sets
of small-scale arithmetic instances and its average elapsed time of 7.5 s is much lower
than COPT solver’s 2477.9 s. Meanwhile, the average gap between HASATA and COPT is
−0.46%, while the average gaps between HALNS, ISA and ASATA, and COPT are 1.41%,
0.91%, and 0.63%, respectively, their results are all inferior to the results given by HASATA.
Moreover, it can be seen from Table 6 that the COPT solver did not find the optimal solution,
for instance, S9 in 7200 s, while it took only 126.1 s to find the optimal solution for instance
S12. The reason is that in the instance of the same number of customers and depot, the
larger the vehicle load, the fewer vehicles are used, and it is very easy to generate feasible
long-distance half-open vehicle paths. Figure 8 illustrates the optimal solution for S12,
where all three paths are half-open. The convergence of the four algorithms on instance
S12 is illustrated in Figure 9, where it can be seen that, compared to the other algorithms,
HASATA can converge quickly in the early stage and converge to a better solution in the
later stage by tempering and ILNS.
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To further compare the computational stability of the four comparison algorithms,
we adopt Figure 10 to show the box plots of the four algorithms for solving 12 sets of
small-scale instances. From the figures, it is found that the HASATA can obtain all the
optimal median values for the 12 sets of small-scale instances, while with satisfactory
performance stability that significantly exceeds the comparison algorithms.
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From the above analysis of the simulation results for the small-scale problem instances,
the effectiveness of the proposed HASATA for solving the established HOMDVRP is
verified. Meanwhile, the simulation results comparison also validates the optimization
performance, computational efficiency, and performance stability of the HASATA.

4.4. Experimental Results of Large-Scale Instances

To further analyze the performance of HASATA for solving the large-scale instances
of HOMDVRP, 12 groups of computational experiments are conducted. Table 7 shows
the results of the numerical experiments. As the problem size increases, COPT cannot
obtain the optimal solution for any set of instances within 7200 s. The other four types of
heuristic algorithms outperform COPT. The average gap between HALNS, ISA, ASATA,
and HASATA and COPT is −37.55%, −35.99%, −33.94%, and −38.04%, respectively. The
results obtained by HASATA are better than all the comparison algorithms, which obtained
the eight best solutions in the 12 group experiments. Meanwhile, the average computation
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time of HASATA is 41.2 s, which is within the acceptable time range for all the large-scale
problem instances.

Table 7. The large-scale experimental results.

Instances
COPT HALNS ISA ASATA HASATA

Obj1
Time1

(s) Obj2
Time2

(s) Gap1 Obj3
Time3

(s) Gap2 Obj4
Time4

(s) Gap3 Obj5
Time5

(s) Gap4

L1-C50-D2-Q100 941.0 7200.0 635.5 58.9 −32.47% 649.4 34.9 −30.99% 658.0 14.0 −30.08% 633.8 31.6 −32.65%
L2-C50-D4-Q100 847.0 7200.0 550.0 60.9 −35.06% 547.3 33.9 −35.38% 553.6 10.8 −34.64% 528.3 34.4 −37.63%
L3-C50-D2-Q200 589.0 7200.0 482.6 76.3 −18.07% 506.8 22.5 −13.96% 521.3 7.9 −11.50% 483.1 26.1 −17.99%
L4-C50-D4-Q200 488.0 7200.0 458.6 76.8 −6.02% 468.2 22.4 −4.07% 481.2 6.6 −1.39% 452.9 27.2 −7.19%
L5-C60-D2-Q100 2044.0 7200.0 823.1 48.7 −59.73% 847.6 49.7 −58.53% 850.0 21.8 −58.41% 821.0 37.1 −59.83%
L6-C60-D4-Q100 962.0 7200.0 631.9 51.7 −34.32% 628.8 48.6 −34.64% 645.8 16.8 −32.87% 619.4 41.5 −35.62%
L7-C60-D2-Q200 1089.0 7200.0 573.0 66.9 −47.38% 599.0 31.8 −45.00% 618.1 9.4 −43.24% 579.6 29.0 −46.78%
L8-C60-D4-Q200 854.0 7200.0 526.3 67.7 −38.37% 537.5 30.3 −37.06% 547.2 8.2 −35.93% 520.2 33.8 −39.09%
L9-C70-D2-Q100 1698.0 7200.0 938.4 87.7 −44.73% 957.5 73.9 −43.61% 1002.6 17.8 −40.96% 944.9 60.1 −44.36%

L10-C70-D4-Q100 1162.0 7200.0 735.7 90.8 −36.69% 743.9 51.6 −35.98% 783.4 17.7 −32.58% 729.8 65.2 −37.19%
L11-C70-D2-Q200 1424.0 7200.0 638.7 115.6 −55.15% 688.7 33.7 −51.64% 735.3 11.5 −48.36% 647.0 51.7 −54.57%
L12-C70-D4-Q200 1041.0 7200.0 597.3 120.3 −42.63% 614.0 33.0 −41.02% 653.3 11.1 −37.25% 586.8 56.7 −43.64%

Average 1094.9 7200.0 632.6 76.9 −37.55% 649.0 38.9 −35.99% 670.8 12.8 −33.94% 628.9 41.2 −38.04%

Notes: Gapi−1 = (Obji −Obj1)/Obj1 × 100%, i = 2, . . ., 5. Bold text indicates better results for same-dimension
comparisons.

Similarly, we use Figure 11 to show the convergence of the four comparison algorithms
in the large-scale instance S24, which demonstrates the convergence ability of the HASATA.
It is also found that the HALNS has a good convergence ability for both the large-scale and
small-scale problems. But in most of the cases, it is easier to fall into the local optimum,
which is the reason that only four optimal solutions are obtained among the 12 instances.
Meanwhile, the computational time of ALNS apparently exceeds that of HASATA.
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To analyze the performance stability of the HASATA for solving large-scale problem
instances, we use Figure 12, which shows the box plots of the four algorithms solving
12 sets of large-scale instances.
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Figure 12. Box plots of the results of the algorithms on the 12 large-scale instances.

In all of the 12 large-scale instances, HASATA outperforms the ISA and ASATA.
However, in 4 sets over the 12, the HALNS outperforms the proposed HATASA, which
is shown in Figure 12c,g,i,k. In the other 8 sets, the HASATA has better performance
stability concerning the average value and variations. As for the computational efficiency,
the HATASA outperforms the HALNS over all the large-scale instances. From the above
analysis, it can be concluded that the performance stability of HATASA is satisfactory for
solving the large-scale HOMDVRP.

5. Conclusions

This study aims to reduce logistics costs by studying the half-open multi-depot vehicle
routing problem commonly found in collaborative logistics. Specifically, it proposes an
effective hybrid meta-heuristic algorithm that is specially tailored to address the HOMD-
VRP with features of collaborative vehicle routing problems. To achieve this, the simulated
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annealing algorithm is utilized as the framework to solve the half-open multi-depot vehicle
routing problem.

Firstly, a mixed-integer programming model is established to minimize the travel dis-
tance of vehicles in HOMDVRP, taking into account its features and constraints. However,
due to the problem being NP-hard with a larger feasible solution space and complex prob-
lem structure, a solution representation scheme is designed based on the half-open vehicle
path structure. Furthermore, the HASATA based on ISA and ILNS under the framework of
SA is proposed to balance the algorithm’s breadth-search and depth-search performances.
The adaptive Markov chain length and tempering mechanism are then designed to improve
the computational efficiency and convergence ability of the HASATA. In the simulation
experiments, 24 groups of problem instances of different scales are provided and the results
verify the validity of the provided mixed-integer programming model of HOMDVRP, as
well as the efficiency of the proposed HASATA for solving it. It is concluded that the
HASATA outperforms all four comparison algorithms in terms of optimization perfor-
mance, computational efficiency, and performance stability. Therefore, we can conclude
that the provided HOMDVRP and the HASATA can generate satisfactory solutions for
decision-makers in the field of collaborative logistics.

However, meta-heuristic algorithms have the characteristic of stochastic searching, so
the optimization result of the proposed HASATA may vary when dealing with large-scale
HOMDVRP. In addition, meta-heuristic algorithms are not problem-specific algorithms;
therefore, some improved mechanisms and heuristic rules designed for HOMDVRP are
incorporated into the components of HASATA in this paper. It results in the proposed
algorithm requiring more parameters to be set.

In future research, benefiting from the malleability of meta-heuristic algorithms, the
HASATA can be further modified to obtain better solutions in more large-scale HOMDVRP.
Moreover, only the basic HOMDVRP model is considered in this study. It would be
valuable to investigate the variants of the problem based on more complex collaborative
logistics scenarios and apply the proposed algorithm to solve it.
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