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Abstract: We illustrate how structural equation models (SEMs) can be used to assess the reliability and
generalizability of composite and subscale scores, proportions of multiple sources of measurement
error, and subscale added value within multivariate designs using data from a popular inventory mea-
suring hierarchically structured personality traits. We compare these techniques between standard
SEMs representing congeneric relations between indicators and underlying factors versus SEM-based
generalizability theory (GT) designs with simplified essential tau-equivalent constraints. Results
strongly emphasized the importance of accounting for multiple sources of measurement error in both
contexts and revealed that, in most but not all instances, congeneric designs yielded higher score
accuracy, lower proportions of measurement error, greater average subscale score viability, stronger
model fits, and differing magnitudes of disattenuated subscale intercorrelations. Extending the
congeneric analyses to the item level further highlighted consistent weaknesses in the psychometric
properties of negatively versus positively keyed items. Collectively, these findings demonstrate the
practical value and advantages of applying GT-based principles to congeneric SEMs that are much
more commonly encountered in the research literature and more directly linked to the specific mea-
sures being analyzed. We also provide prophecy formulas to estimate reliability and generalizability
coefficients, proportions of individual sources of measurement error, and subscale added-value
indices for changes made to measurement procedures and offer guidelines and examples for running
all illustrated analyses using the lavaan (Version 0.6-17) and semTools (Version 0.5-6) packages in R.
The methods described for the analyzed designs are applicable to any objectively or subjectively
scored assessments for which both composite and subcomponent scores are reported.

Keywords: structural equation modeling; generalizability theory; multivariate analysis; factor
analysis; reliability; subscale added value; disattenuated correlation coefficients; Big Five Inventory;
R programming; confidence intervals

MSC: 62P15

1. Introduction

Generalizability theory (G-theory; [1–15]) combines concepts from classical test theory
and analysis of variance (ANOVA) procedures to form a comprehensive framework for
understanding how scores from assessment measures are affected by multiple sources of
measurement error and subsequently using that information to evaluate and improve such
measures. When objectively scored self-report questionnaires or multiple-choice tests are
administered in which all scorers would obtain the same results, persons × items × occasions
(pio) designs can be used to reduce confounding of universe scores with hidden sources of
measurement error and separate such error into three independent components that reflect
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inter-person differences in item scores (specific-factor error/method effects), occasion scores
(transient error/state effects), and other unrelated error (random-response error/within-
occasion “noise” effects; see, e.g., [13–15]). Such designs further allow for assessment of
results that would be obtained from simpler designs involving just items or just occasions
as measurement facets (i.e., persons × items (pi) and/or persons × occasions (po) designs) and
for estimating key indices (generalizability coefficients, proportions of measurement error,
etc.) when changing numbers of facet conditions (i.e., items and/or occasions here).

Although introduced long ago [4], multivariate G-theory designs have been applied
far less often across disciplines than have their univariate counterparts even though multi-
variate designs provide more appropriate indices of score accuracy for composites, while
simultaneously yielding results identical to univariate analyses for each individual sub-
scale. Multivariate G-theory designs can also produce correlations between subscale scores
corrected for all relevant sources of measurement error to provide additional evidence of
concurrent and construct validity for subscale scores (see, e.g., [10,16,17]).

Historically, G-theory has been applied more often to subjectively than to objectively
scored measures, with recent examples spanning disciplines that include educational psy-
chology and measurement [18–22], medical education [23–31], school psychology [32–37],
classroom assessment [38,39], second language education and linguistics [40–42], thinking
skills and creativity [43], music performance [44], athletic training [45], job performance [46],
and many other areas. This makes sense because raters typically change over situations,
and focal indices of reliability in G-theory (e.g., generalizability or G coefficients) repre-
sent the extent to which results can be generalized to broader domains of all possible
raters. However, the notion that items and occasions for objectively scored measures are
randomly sampled or exchangeable with those from such broader domains is certainly
debatable (see, e.g., [47]). Moreover, the broader focus of G-theory-based indices of score
accuracy is at odds with conventional reliability coefficients for objectively scored mea-
sures (alpha, omega, test–retest) that relate directly to the specific measures administered
and limit inferences to items and occasions that share the same characteristics as those
being analyzed.

To increase the flexibility of G-theory techniques, structural equation models (SEMs)
can be used to derive indices applicable either to the specific conditions considered in a
study or to the broader domains from which items and occasions are sampled [15,48–50].
This is typically accomplished by allowing unstandardized factor loadings to vary in
congeneric (CON) models but setting them equal in traditional G-theory models to render
essential tau-equivalent (ETE) relationships. When applying both frames of reference to
univariate [15,48,50] and bifactor model [49] designs, Vispoel and colleagues found that
CON models yielded higher reliability coefficients and better fits to the data due primarily
to reductions in inter-person item (i.e., specific-factor error/method) effects. However,
these techniques have yet to be comprehensively applied to multivariate designs that
produce more suitable indices of score accuracy for composite scores by taking subscale
representation and interrelationships into account.

Specifically, our goals in this article are to illustrate how multivariate SEMs can be
used to (a) evaluate how well models with ETE and CON constraints fit the data at hand,
(b) estimate relevant indices of score accuracy and proportions of measurement error within
each analyzed design, (c) extend partitioning of observed score variance to the item level
within appropriate designs, (d) produce correlation coefficients between subscale scores
corrected for all pertinent sources of measurement error, (e) apply techniques to assess
value gained when reporting subscales in addition to composite scores, and (f) derive
indices of score accuracy and added value when changes are made to numbers of items or
occasions within a design and/or when those designs are simplified to include just items
or just occasions.
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2. Background
2.1. Partitioning of Observed Score Variance within Common Multivariate Designs

To illustrate applications of ETE and CON relationships within multivariate analyses,
we will use data for selected scales from the recently revised and expanded form of the
Big Five Inventory (BFI-2; [51]) that was completed by a large sample of college students
on two occasions, a week apart. Our illustrations represent the global personality domain
Extraversion and its nested subdomain facets Assertiveness, Energy Level, and Sociability
using a persons × items × occasions (p × i × o) multivariate design. Within this design,
subscales are considered fixed because inferences do not extend beyond the constructs
measured by those subscales. In more technical terms (see, e.g., [10]), this multivariate
design would be formally labeled as a p• × i◦ × o• design, with the closed circles
indicating that persons and occasions are crossed with subscales (i.e., all persons complete
all subscales on all occasions) and the open circle indicating that items are nested within
subscales (i.e., different items appear in each subscale). At both subscale and composite
score levels for objectively scored self-report measures, the p• × i◦ × o• design allows for
separation of explained (i.e., trait, person, universe score, or true score) variance (σ2

p) and
three independent sources of measurement error variance that are often labeled as specific-
factor (σ2

pi), transient (σ2
po), and random-response error variance (σ2

pio,e; see e.g., [52–54],
also see [55]). These sources of measurement error, in turn, limit the extent to which results
can be generalized to the targeted domain(s) of interest.

The subscript p in the variance terms for the three components of measurement
error described above indicates that such errors are person specific. Specific-factor error
represents enduring effects such as understandings of words within items and response
options that are unrelated to the targeted construct(s) being measured. Transient error
represents effects pervasive within an occasion of assessment but not across occasions
that result from respondent dispositions, mindsets, and physiological conditions; their
reactions to administration and environmental factors; and other temporary entities that
affect overall behavior within an occasion. Random-response error corresponds to fleeting
within-occasion “noise” effects that follow no systematic pattern (distractions, momentary
lapses in attention, fluctuations in moods, changes in motivation, etc.). In designs illustrated
within this article, random-response error also would include any remaining residual error
not captured by other components in the design, as reflected in the inclusion of “,e” in
the subscript for the random-response error variance component (σ2

pio,e). In frameworks
such as latent state-trait theory [15,56,57], person, specific-factor error, transient error,
and random-response error are respectively labeled as trait, method, state, and error
effects, with method and/or state effects treated as explained rather than measurement
error variance when computing several types of reliability indices reported within that
framework (e.g., reliability, common reliability, total consistency; see [15] for an in-depth
discussion of relationships between G-theory and latent state-trait theory and parallel
labels typically used to describe various indices of score accuracy).

2.2. Multivariate ETE and CON SEMs

In Figure 1, we depict a SEM to represent a multivariate p• × i◦ × o• design for the
three subdomain-facet subscales (Assertiveness, Energy Level, and Sociability) within the
Extraversion personality domain from the BFI-2 that can be adjusted to represent either ETE
or CON relationships. The SEM has a separate factor to represent person/trait scores for
each subscale, and these factors are allowed to covary/correlate with each other. For each
subscale, there are separate factors for each item linked to all occasions, separate factors for
each occasion linked to all items within that occasion, and uniquenesses for each item within
each occasion. Because all subscales are administered during the same occasion, occasion
factors among subscales also are allowed to covary/correlate within, but to the same
degree, across occasions. Together, the modeling represents a separate univariate, persons
× items × occasions design for each subscale, which are linked together by covariances
among the subscale person and occasion factors to create the overall multivariate design.
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Relationships between subscale scores within the designs are instrumental in deriving
appropriate estimates of score accuracy for composites that will generally exceed those in
magnitude than when derived for the same composites ignoring subscale representation
and interrelationships [see, e.g., [4,58,59]].
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Figure 1. Structural equation model for S-ETE and CON G-theory designs for Extraversion domain
subscales. Note. p = Person; S = Subscale; I = Item; O = Occasion; σ2

p = person, universe score, or
trait variance; σ2

pi = specific-factor error variance; σ2
po = transient error variance; and σ2

pio,e = random-
response error variance. Symbols linking subscales at the top of the model and linking occasions at
the bottom of the model represent covariances. Lines shown in blue and brown respectively represent
loadings for items and occasions. For simplified essential tau-equivalent (S-ETE) designs, λ and β are
set equal to 1, and σ2

p , σ2
po, σ2

pi, and σ2
pio,e are set equal within a subscale but allowed to vary across

subscales. For congeneric (CON) designs, σ2
p and σ2

po are set equal to 1, and λ, β, σ2
pi, and σ2

pio,e are
allowed to differ across items but not across occasions.

To define ETE relationships within the SEM depicted in Figure 1, all factor loadings
(λs and βs) are set equal to one, and σ2

po, σ2
pi, and σ2

pio,e terms are, respectively, set equal
within but not across subscales. Although uniquenesses for each subscale could be allowed
to vary within an ETE model, they are set equal here to simplify the calculation of variance
components (see, e.g., [16,59]). Consequently, we will call this a simplified essential tau-
equivalent (S-ETE) design hereafter. For the corresponding CON design, σ2

p and σ2
po terms

for each subscale are set equal to one, and λ, β, σ2
pi, and σ2

pio,e values are allowed to differ
within but not across occasions. Once these parameters are estimated, they can be placed
in equations shown in Table 1 to derive variance components for persons, specific-factor
error, transient error, and random-response error on the item score metric for composite or
subscale scores. These variance components, in turn, can be inserted into Equations (1)–(4)
to derive proportions of variance due to person/trait, specific-factor error (SFE), transient
error (TE), and random-response error (RRE) effects. The proportion of person/trait
variance would be equivalent to a generalizability or G coefficient in the context of G-
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theory. Because item loadings can vary within CON designs, partitioning of explained and
measurement error variance also can be extended to the individual item level, as we will
demonstrate later in this article.

Proportion of person/trait variance = Person/Trait variance
Sum o f Person/Trait, SFE, TE, and RRE variances , (1)

Proportion of SFE variance =
SFE variance

Sum o f Person/Trait, SFE, TE, and RRE variances
, (2)

Proportion of TE variance =
TE variance

Sum o f Person/Trait, SFE, TE, and RRE variances
, (3)

Proportion of RRE variance =
RRE variance

Sum o f Person/Trait, SFE, TE, and RRE variances
, (4)

where SFE = specific-factor error, TE = transient error, and RRE = random-response error.

Table 1. Formulas for partitioning of variance components for p• × i◦ × o• multivariate designs.

Index Composite Level Subscale Level

Person, Universe score, or Trait VC

σ̂2
pc

= 1
(n J)

2

nJ

∑
j=1

[(
∑

nIj
i=1 λi
nI j

)2
σ2

pj

]
+ 1

(n J)
2

nJ

∑
j1=1

nJ

∑
j2 ̸=j1

[(
∑

nIj1
i=1 λi
nI j1

)(
∑

nIj2
i=1 λi
nI j2

)
σp(j1,j2)

] σ̂2
psj

=

(
∑

nIj
i=1 λi
nI j

)2
σ2

pj

Transient Error VC

σ̂2
poc

= 1
(n J)

2

nJ

∑
j=1

[(
∑

nIj
i=1 βi
nI j

)2
σ2

pok

]
+ 1

(n J)
2

nJ

∑
j1=1

nJ

∑
j2 ̸=j1

[(
∑

nIj1
i=1 βi
nI j1

)(
∑

nIj2
i=1 βi
nI j2

)
σpo(j1,j2)

] σ̂2
posj

=

(
∑

nIj
i=1 βi
nI j

)2
σ2

pok

Specific-Factor Error VC σ̂2
pic

=
∑

nI
i=1 σ2

pii

(n J)
2
nI j

σ̂2
pisj

=
∑

nIj
i=1 σ2

pii
nI j

Random-Response Error VC σ̂2
pio,ec

=
∑

nI
i=1 σ2

pio,ei

(n J)
2

nI j
σ̂2

pio,esj
=

∑
nIj
i=1 σ2

pio,ei
nI j

Total Observed Score VC Person, Universe score, or Trait VC + Transient Error VC +
Specific-Factor Error VC + Random-Response Error VC

Note. VC = variance component, nI = number of items for the composite; nI j = number of items for the jth subscale;
nJ = number of subscales; σ2 = variance; p = person; po = occasion factor; pi = item factor; pio,e = uniqueness;
λ = factor loading for person factor; β = factor loading for occasion factor; Total error variance equals the sum of
transient, specific-factor, and random-response error variances. For simplified essential tau-equivalent designs,

λ and β are set to 1, and σ2
p , σ

2
po

, σ2
pi , and σ

2

pio,e
are set equal within a subscale but allowed to vary across

subscales. For congeneric designs, σ2
p and σ2

po are set equal to 1, and λ, β, σ2
pi , and σ

2

pio,e
are allowed to differ

across items but not across occasions. All composite level variance components described here are weighted sums
(weighting = 1

(n J)
2 ) of all relevant estimated subscale variance and covariance terms.

2.3. Deriving G Coefficients for More Restricted Universes of Generalization

Once variance components for SFE, TE, and RRE are obtained for a pio univariate or
multivariate design, they can be inserted into Equations (5) and (6) to derive G coefficients
for pi and po designs. The corresponding multivariate versions of these designs would
respectively be labeled as p• × i◦ and p• × o• designs, again because items are nested un-
der subscales and persons and occasions are crossed with subscales. Equations (5) and (6)
reveal that TE is treated as part of person/trait variance in the pi design, whereas SFE
is treated as part of person/trait variance in the po design. Confounding of effects for
persons and TE within pi designs parallels the same confounding of those effects when
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estimating conventional single occasion reliability coefficients (alpha, omega, split-half).
Similarly, confounding of effects for persons and SFE within po designs parallels the same
confounding when estimating conventional test–retest coefficients.

Proportion of person/trait variance for pi designs derived from pio designs
= Person/Trait + TE variances

Sum o f Person/Trait, SFE, TE, and RRE variances , (5)

Proportion of person/trait variance for po designs derived from pio designs
= Person/Trait + SFE variances

Sum o f Person/Trait, SFE, TE, and RRE variances , (6)

where SFE = specific-factor error, TE = transient error, and RRE = random-response error.

2.4. Correcting Subscale Intercorrelation Coefficients for Multiple Sources of Measurement Error

An important advantage of analyzing multivariate designs is that results can be
used to correct correlation coefficients between subscale observed scores for multiple
sources of measurement error. Such corrections can be interpreted in relation to the classic
disattenuation formula shown in Equation (7) first proposed by Spearman ([60]; also
see [61]).

ρ̂TxTy =
rxy

√rxx′ ∗ ryy′
, (7)

where ρ̂TxTy = estimated correlation between true scores for measures X and Y, rxy =
observed correlation coefficient between measures X and Y, rxx′ = reliability coefficient for
measure X, and ryy′ = reliability coefficient for measure Y.

In this formula, the correlation between true scores for measures X and Y is estimated
by dividing the correlation between observed scores for the measures by the square root of
the product of their reliability coefficients. In G-theory, G coefficients for the measures of
interest would be substituted for conventional reliability coefficients, and universe scores
would be substituted for true scores (see, e.g., [62,63]). True scores would represent the
specific items included in measures X and Y, whereas universe scores based on the same
items serve as proxies for all possible items within the domains from which items are
sampled. The same relationships would hold if occasions or other measurement facets are
included in the design.

2.5. Evaluating Subscale Added Value

A common question addressed when using measures that produce both subscale
and composite scores is whether subscale scores provide information or “added value”
beyond that provided by composite scores. A useful classical test theory-based method
for answering this question originally proposed by Haberman ([64]; also see [65–69]) is to
compare proportional reductions in mean squared error (PRMSE) in estimating a subscale’s
true scores using observed scores from the subscale versus its associated composite. Vispoel,
Lee, Hong, and Chen ([17]; also see [59,70]) noted that Haberman’s procedure also can be
readily applied to G-theory designs by substituting universe score for true score estimation.
In the present context, these extensions would encompass both S-ETE and CON SEMs.

When interpreting Haberman’s procedure, a subscale would demonstrate added value
if its PRMSE exceeds that for its corresponding composite scale. The PRSME for a subscale
reduces to its reliability coefficient (either conventional or G-theory-based), whereas the
PRSME for the composite scale can be computed using Equation (8).

PRMSE(C) = r2
TSj

, TC
∗ rXC , XC ′ =

σ̂2
TSj

, TC

σ̂2
TSj

∗ σ̂2
TC

∗
σ̂2

TC

σ̂2
XC

=

(
σ̂2

TSj
+ ∑j ̸=k σ̂TSj

, TSk

)2

σ̂2
TSj

∗ σ̂2
XC

, (8)

where T = true score, X = observed score, S = subscale, C = composite score, and rXC , XC ′ =
composite reliability.
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In essence, a PRMSE index represents an estimate of the proportion of true or universe
score variance that is accounted for by targeted observed scores (subscale or compos-
ite; [67,68]). Once PRMSEs are derived for a subscale and its associated composite scale,
they can be placed in Equation (9) to form a value-added ratio (VAR; [69]). Subscale added
value is increasingly supported as VARs deviate upwardly from 1.00.

Value-Added Ratio (VAR) =
PRMSE(Subscale)

PRMSE(Composite)
(9)

2.6. Estimating Score Accuracy and Subscale Added Value When Changing Measurement
Procedures

One of the greatest virtues of G-theory is that it allows for estimation of score accuracy
for changes made to a measurement procedure (e.g., including additional items and/or
occasions). These techniques can be applied to both the S-ETE and CON multivariate SEMs
considered here and further extended to estimation of value-added indices. The main
difference between the two approaches again is that inferences for the CON designs would
be restricted to items and occasions like those sampled rather than the broader domains
from which they are drawn. In Table 2, we present formulas that can be used to estimate
score accuracy and value-added indices for changes made to numbers of items and/or
occasions for the original p• × i◦ × o• and more restricted p• × i◦ and p• × o• designs,
and demonstrate their application in later sections.

Table 2. Prophecy formulas for generalizability/reliability coefficients and value-added ratios.

Index Prophecy Formula

Generalizability/reliability
coefficient (pio design)

σ̂2
p

σ̂2
p+

σ̂2
pi

n′i
+

σ̂2
po

n′o
+

σ̂2
pio,e

n′i n′o

.

For the composite generalizability/reliability coefficient, use
the composite level variance components from Table 1. For
the subscale generalizability/reliability coefficient, use the
subscale level variance components from Table 1. n′

i = desired
number of items, n′

o = desired number of occasions.

Generalizability/reliability
coefficient (pi design)

σ̂2
p+

σ̂2
po

n′o

σ̂2
p+

σ̂2
pi

n′i
+

σ̂2
po

n′o
+

σ̂2
pio,e

n′i n′o

.

For the composite generalizability/reliability coefficient, use
the composite level variance components from Table 1. For
the subscale generalizability/reliability coefficient, use the
subscale level variance components from Table 1. n′

i = desired
number of items, n′

o = desired number of occasions.

Generalizability/reliability
coefficient (po design)

σ̂2
p+

σ̂2
pi

n′i

σ̂2
p+

σ̂2
pi

n′i
+

σ̂2
po

n′o
+

σ̂2
pio,e

n′i n′o

.

For the composite generalizability/reliability coefficient, use
the composite level variance components from Table 1. For
the subscale generalizability/reliability coefficient, use the
subscale level variance components from Table 1. n′

i = desired
number of items, n′

o = desired number of occasions.
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Table 2. Cont.

Index Prophecy Formula

Value-added ratio

Rel. coe f sj
′∗σ̂2

psj
∗σ̂2

pC

Rel. coe f C
′∗
(

σ̂2
psj

+ ∑
j ̸=k

σ̂psj ,psk

)2 ,

where Rel. coe f sj

′ = reliability or generalizability coefficient
for subscale j calculated using the preceding
reliability/generalizability coefficient prophecy formula,
Rel. coe f C

′ = reliability or generalizability coefficient for the
composite score calculated using the preceding
reliability/generalizability coefficient prophecy formula,
S = subscale, and σ̂2

pC
is the unweighted sum of all estimated

subscale true/universe score variances and covariances
(σ̂2

pC
= ∑

nJ
j=1 σ̂2

psj
+ ∑

nJ
j=1 ∑

nJ
k=1, k ̸=j σ̂psj ,psk

)
.

Note. pio = persons × items × occasions design, pi = persons × items design, po = persons × occasions design. Reliability
coefficients in the simplified essential tau-equivalent design are equivalent to generalizability coefficients.

3. Motivation for and Purpose of the Study

Reliability coefficients routinely reported in research studies (alpha [71], omega [72],
also see [73], split-half [61,74], etc.) are limited to single occasions and typically inflated
because they do not properly account for all relevant sources of measurement error. This, in
turn, can lead to underestimation of relationships between constructs when those reliability
coefficients are used to correct for measurement error (see Equation (7)). When reliability
coefficients are reported for composite scores in such studies, they often consist of alpha
coefficients derived from all item scores ignoring subscale representation and interrelation-
ships, thereby potentially leading to underestimation of composite score reliability in those
contexts [4,58,59]). Multivariate G-theory can provide solutions to both problems by pro-
ducing coefficients of score accuracy that account for all relevant sources of measurement
error at both subscale and composite levels and by adjusting for subscale representation
and interrelations at the composite level [10,16,17]. Such designs further allow for deriva-
tion of correlation coefficients between subscale scores corrected for multiple sources of
measurement error and indices for each subscale that reflect their added value beyond
the composite.

However, generalizability coefficients in applications of G-theory tend to be conser-
vative in nature because they reflect random equivalence across all possible indicators
within the global assessment domain(s) of interest (see, e.g., [1,2,11]). While such indices
are often of interest (e.g., when raters repeatedly change across measurements), they are at
odds with most conventional reliability coefficients that are catered to the specific condi-
tions (e.g., items) considered for a given assessment procedure. Within multivariate SEMs,
measures at hand are represented by CON relationships between indicators and factors,
whereas random equivalence across broader domains is represented by corresponding
S-ETE relationships.

Our purpose here is to illustrate and contrast both approaches (CON and S-ETE) in
relation to model fit, coefficients of score accuracy, partitioning of composite and subscale
observed score variance, subscale intercorrelation coefficients, and subscale added-value
indices using selected scores from the BFI-2. We further demonstrate how to estimate
generalizability/reliability and subscale added-value indices when making changes to
the measurement procedures. Within sections to follow, we first describe the participant
sample, measures used, and analyses in greater detail; then, present results for comparisons
between the S-ETE and CON SEMs; and lastly, illustrate how to use prophecy formulas
to estimate generalizability/reliability and value-added indices when increasing numbers
of items and/or occasions. Our Supplementary Materials include further instruction and
computer code for performing the key analyses.
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4. Methods
Participants, Measures, and Procedure

We collected data from 389 college students from a Midwestern Research One in-
stitution (71.72% female, 70.95% Caucasian, mean age = 20.38) who completed online
versions of the Big Five Inventory (BFI-2; [51]) on two occasions separated by a week. The
study was preapproved by the governing Institutional Review Board (ID# 200809738), and
all participants provided informed consent before completing the measures. For sake of
brevity, we limit results reported here to the Extraversion domain composite and its nested
subscale scores Assertiveness, Energy Level, and Sociability, but the same procedures could
be applied to the remaining personality domains represented in the BFI-2 or to composite
and nested subscale scores for any other assessment procedure. Each BFI-2 composite scale
has twelve items, with three nested subscales that each have four items, equally balanced
for positive and negative phrasing. Items are answered using a 5-point Likert-style rating
scale (1 = Disagree strongly, 2 = Disagree a little, 3 = Neutral, no opinion, 4 = Agree a little,
and 5 = Agree strongly).

Evidence supporting the reliability and validity for BFI-2 Extraversion composite and
subscale scores reported by Soto and John [51] for college and/or internet samples includes
(a) alpha reliability coefficients equaling 0.88 for the composite score and ranging from 0.72
to 0.85 for subscale scores, (b) 8-week test–retest coefficients equaling 0.84 for the composite
score and ranging from 0.74 to 0.83 for subscale scores, (c) self-peer agreement correlation
coefficients for Extraversion composite and subscales exceeding the same correlation co-
efficients for other personality domains, (d) correlation coefficients for subscales within
the Extraversion domain exceeding those across other personality domains, (e) confirmed
patterns of convergent and discriminant validity with scores from other personality and
related measures, and (f) adequate model fits for confirmatory correlated factor models for
the subscales when controlling for acquiescence bias.

5. Analyses

Preliminary analyses for BFI-2 Extraversion composite and subscale scores included
estimation of means, standard deviations, alpha [71] and omega [72] reliability coefficients
for each occasion as well as test-retest reliability coefficients across occasions. Main analyses
focused on model fit tests, partitioning of observed score variance for the multivariate
S-ETE and CON designs in addition to disattenuated correlations and VARs for subscale
scores within those designs. We considered model fits for the original p• × i◦ × o•

designs as adequate when Comparative Fit Index (CFI) and Tucker–Lewis Index (TLI)
values equaled or exceeded 0.90 and Root Mean Squared Error of Approximation (RMSEA)
values were no higher than 0.08; and as excellent when CFIs and TLIs equaled or exceeded
0.95 and RMSEA values were no higher than 0.06 [75–77].

Within each original or restricted design, proportions of observed composite and sub-
scale score variances were derived for universe/factor trait scores and associated sources
of measurement error. The same partitioning of explained and measurement error variance
was extended to the item level for the p• × i◦ × o• CON design to determine which items
were most affected by particular sources of error (specific factor, transient, and random
response). Disattenuated correlation coefficients between subscale universe or factor trait
scores within the p• × i◦ × o• S-ETE and CON designs were estimated by dividing the
relevant observed score correlation coefficient by the square root of the products of corre-
sponding generalizability/reliability coefficients (see Equation (7)). VARs were derived for
each subscale within the original and reduced facet S-ETE and CON designs, with values
greater than 1.00 indicative of added value beyond the associated composite. We further
demonstrate how formulas from Table 2 can be used to estimate generaliability/reliability
coefficients and value-added ratios (VARs) when doubling numbers of items and/or pool-
ing results across two occasions within the p• × i◦ × o•, p• × i◦, and p• × o•

multivariate designs. SEMs were analyzed using the lavaan package (Version 0.6-17) in
R [78,79] with maximum likelihood (MLM) parameter estimation. Additional code was
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included to derive disattenuated correlation coefficients and VARs for all subscales and to
produce 95% Monte Carlo-based confidence intervals [80] for relevant indices using the
semTools package (Version 0.5-6) in R ([81]; see online Supplementary Materials).

6. Results
6.1. Descriptive Statistics and Conventional Reliability Estimates

Table 3 includes means, standard deviations, and conventional reliability estimates
for BFI-2 Extraversion composite and subscale scores. Overall, item scale means range
from 3.319 to 3.332 (M = 3.326) for composite scores and from 3.187 to 3.562 for subscales
(M = 3.326); item scale standard deviations range 0.696 to 0.711 (M = 0.704) for composite
scores and from 0.784 to 0.983 (M = 0.861) for subscales; alpha coefficients range from 0.843
to 0.850 (M = 0.847) for composites and from 0.655 to 0.791 (M = 0.731) for subscales; omega
coefficients range from 0.848 to 0.855 (M = 0.852) for composites and from 0.685 to 0.793
(M = 0.747) for subscales; and test–retest coefficients equal 0.898 for the composite and
range from 0.823 to 0.896 (M = 0.855) for subscales. As would be expected, due to inclusion
of more item scores (12 vs. 4), reliability coefficients for composites, on average, exceed
those for subscales (0.847 vs. 0.731 for alpha, 0.852 vs. 0.747 for omega, and 0.898. vs. 0.855
for test–retest).

Table 3. Means, standard deviations, and conventional reliability estimates for BFI-2 Extraversion
composite and subscale scores (n = 389).

Occasion/Index
Composite/Subscale

Extraversion Assertiveness Energy Level Sociability Subscale
Average

Number of Items 12 4 4 4 4

Time 1
Mean: Scale (Item) 39.823 (3.319) 12.748 (3.187) 14.239 (3.560) 12.835 (3.209) 13.274 (3.319)

SD: Scale (Item) 8.536 (0.711) 3.355 (0.839) 3.142 (0.786) 3.932 (0.983) 3.476 (0.869)
Alpha 0.843 0.737 0.655 0.771 0.721
Omega 0.848 0.758 0.685 0.774 0.739

Time 2
Mean: Scale (Item) 39.987 (3.332) 12.789 (3.197) 14.249 (3.562) 12.949 (3.237) 13.329 (3.332)

SD: Scale (Item) 8.350 (0.696) 3.325 (0.831) 3.137 (0.784) 3.767 (0.942) 3.410 (0.852)
Alpha 0.850 0.733 0.700 0.791 0.741
Omega 0.855 0.749 0.724 0.793 0.755

Test–retest 0.898 0.823 0.847 0.896 0.855

6.2. Model Fit

CFI, TLI, and RSMEA values for the p• × i◦ × o• multivariate designs repre-
sented in Figure 1 indicate that the model with CON relationships adequately fits the data
(CFI = 0.941, TLI = 0.934, RMSEA = 0.058), but the model with S-ETE relationships does
not (CFI = 0.853, TLI = 0.857. RMSEA = 0.085). However, the lack of adequate fit for the
S-ETE design does not invalidate its use within G-theory contexts because no assumptions
are made in G-theory concerning score dimensionality or other statistical characteristics of
item scores [1] (p. 145). Nevertheless, for the data at hand, the less restricted CON model
clearly provides a better fit.

6.3. Partitioning of Total Observed Score Variance within the S-ETE and CON Designs

In Table 4, we report estimates of all relevant indices (factor loadings, uniquenesses,
variances) needed to derive proportions of universe/factor trait and measurement error
variance using formulas shown in Table 1, and report those results for Extraversion compos-
ite and subscale scores within the S-ETE and CON designs in Table 5. Consistent with the
conventional reliability coefficients previously described, generalizability/reliability coeffi-
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cients representing multiple sources of measurement error for the p• × i◦ × o• designs
within Table 5 are uniformly higher for composite scores (0.816 for S-ETE and 0.819 for
CON) than for subscale scores (Ms = 0.691 for S-ETE and 0.696 for CON) and higher for the
CON design than the S-ETE design for all scales except Sociability. Partitioning of variance
for both S-ETE and CON designs underscores the importance of taking all three sources
of measurement error into account, with specific-factor, transient, and random-response
measurement error, on average, respectively accounting for proportions of observed score
variance in the S-ETE/CON designs equaling 0.081/0.080, 0.052/0.050, and 0.050/0.051 at
the composite level and 0.164/0.158, 0.040/0.044, and 0.105/0.103 at the subscale level.

Table 5 also includes proportions of person/trait variance and overall measurement
error for composite and subscale scores when measurement facets are restricted to just items
(p• × i◦ multivariate designs) or just occasions (p• × o• multivariate designs). Due to
transient error being treated as part of person/trait variance within the p• × i◦ design (see
Equation (5)) and specific-factor error being treated as part of person/trait variance within
the p• × o• design (see Equation (6)), generalizability/reliability coefficients in those
designs exceed corresponding ones within the p• × i◦ × o• designs at both composite
and subscale levels in all instances. Additionally, note that reliability coefficients for the
restricted CON designs exceed generalizability coefficients for S-ETE designs in most but
not all instances.

Table 4. Factor loadings, factor variances, residuals, and variance components for BFI-2 Extraversion
domain items within the p• × i◦ × o• multivariate SEM designs.

Variance Component/Index

p po pi pio,e

Scale/Item Loading Variance Loading Variance Loading Variance Residual

Simplified Essential Tau-Equivalent
EXT
VC

(0.470 + 0.400 + 0.689 + 2(0.424 +
0.359 + 0.251))/32 = 0.403

(0.041 + 0.016 + 0.033 + 2(0.026 +
0.027 + 0.018))/32 = 0.026

(0.411 + 0.479 + 0.554)/32 =
0.160

(0.326 + 0.314 +
0.256)/32 = 0.100

ASS 0.470 0.041
Item 6 1 1 1 0.411 0.326

Item 21 1 1 1 0.411 0.326
Item 36 1 1 1 0.411 0.326
Item 51 1 1 1 0.411 0.326
Average 1 1 1 0.411 0.326

VC 12 ∗ 0.470 = 0.470 12 ∗ 0.041 = 0.041 12 ∗ 0.411 = 0.411 0.326

ENE 0.400 0.016
Item 11 1 1 1 0.479 0.314
Item 26 1 1 1 0.479 0.314
Item 41 1 1 1 0.479 0.314
Item 56 1 1 1 0.479 0.314
Average 1 1 1 0.479 0.314

VC 12 ∗ 0.400 = 0.400 12 ∗ 0.016 = 0.016 12 ∗ 0.479 = 0.479 0.314

SOC 0.689 0.033
Item 1 1 1 1 0.554 0.256

Item 16 1 1 1 0.554 0.256
Item 31 1 1 1 0.554 0.256
Item 46 1 1 1 0.554 0.256
Average 1 1 1 0.554 0.256

VC 12 ∗ 0.689 = 0.689 12 ∗ 0.033 = 0.033 12 ∗ 0.554 = 0.554 0.256

Covariance
ASS, ENE 0.251 0.018
ASS, SOC 0.424 0.026
ENE, SOC 0.359 0.027
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Table 4. Cont.

Variance Component/Index

p po pi pio,e

Scale/Item Loading Variance Loading Variance Loading Variance Residual

Congeneric
EXT
VC

(0.487 + 0.401 + 0.632 + 2(0.228 +
0.377 + 0.383))/32 = 0.388

(0.040 + 0.025 + 0.028 + 2(0.012 +
0.025 + 0.022))/32 = 0.023

(0.358 + 0.438 + 0.569)/32 =
0.152

(0.320 + 0.291 +
0.259)/32 = 0.097

ASS 1 1
Item 6 0.705 0.301 1 0.560 0.290

Item 21 0.940 0.264 1 0.109 0.210
Item 36 0.417 0.129 1 0.428 0.368
Item 51 0.728 0.108 1 0.337 0.411
Average 0.698 1 0.201 1 1 0.358 0.320

VC 0.6982 ∗ 1 = 0.487 0.2012 ∗ 1 = 0.040 12 ∗ 0.358 = 0.358 0.320

ENE 1 1
Item 11 0.498 0.102 1 0.574 0.407
Item 26 0.383 0.003 1 0.941 0.352
Item 41 0.898 0.312 1 0.116 0.214
Item 56 0.753 0.212 1 0.121 0.192
Average 0.633 0.157 1 0.438 0.291

VC 0.6332 ∗ 1 = 0.401 0.1572 ∗ 1 = 0.025 12 ∗ 0.438 = 0.438 0.291

SOC 1 1
Item 1 0.964 0.235 1 0.201 0.165

Item 16 0.664 0.136 1 0.819 0.299
Item 31 0.532 0.142 1 0.989 0.354
Item 46 1.019 0.155 1 0.266 0.220
Average 0.795 0.167 1 0.569 0.259

VC 0.7952 ∗ 1 = 0.632 0.1672 ∗ 1 = 0.028 12 ∗ 0.569 = 0.569 0.259

Covariance
ASS, ENE 0.228 0.012
ASS, SOC 0.377 0.025
ENE, SOC 0.383 0.022

Note. VC = variance component, EXT = Extraversion (composite), ASS = Assertiveness, ENE = Energy Level, SOC
= Sociability. Because loadings are set equal across occasions, they are not listed for each occasion. All variance
components are expressed on the item-score metric.

The 95% confidence intervals for all generalizability/reliability coefficients and nearly
all proportions of measurement error in Table 5 fail to capture zero. The only exception is
with the confidence interval for the Energy Level subscale’s proportion of transient error
within the p• × i◦ × o• design that captures zero in the S-ETE design but not in the
CON design. As would be expected, proportions of specific-factor and random-response
error are noticeably lower for composite than for subscale scores within that design, again
likely due to the composite scale having three times as many items. For the same reason,
composite score generalizability/reliability coefficients also exceed corresponding subscale
score coefficients within the more restricted p• × i◦ and p• × o• designs.
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Table 5. Generalizability/reliability coefficients and proportions of measurement error for BFI-2
Extraversion composite and subscale scores within the multivariate SEM designs.

Design/Scale
Index

Generalizability/
Reliability SFE TE RRE Total Error

p• × i◦ × o•

Simplified Essential Tau-Equivalent
Extraversion
(composite) 0.816 (0.770, 0.855) 0.081 (0.067, 0.099) 0.052 (0.019, 0.087) 0.050 (0.043, 0.059) 0.184 (0.145, 0.230)

Assertiveness 0.676 (0.613, 0.729) 0.148 (0.119, 0.181) 0.060 (0.023, 0.096) 0.117 (0.099, 0.139) 0.324 (0.271, 0.387)

Energy Level 0.652 (0.584, 0.709) 0.195 (0.158, 0.239) 0.026 (−0.007,
0.059) 0.128 (0.107, 0.152) 0.348 (0.291, 0.416)

Sociability 0.746 (0.691, 0.790) 0.150 (0.117, 0.189) 0.035 (0.014, 0.058) 0.069 (0.058, 0.083) 0.254 (0.210, 0.309)
Mean (subscales) 0.691 0.164 0.040 0.105 0.309

Congeneric
Extraversion
(composite) 0.819 (0.773, 0.855) 0.080 (0.066, 0.096) 0.050 (0.023, 0.088) 0.051 (0.044, 0.060) 0.181 (0.145, 0.227)

Assertiveness 0.699 (0.640, 0.748) 0.129 (0.103, 0.157) 0.058 (0.028, 0.099) 0.115 (0.097, 0.135) 0.301 (0.252, 0.360)
Energy Level 0.659 (0.596, 0.712) 0.180 (0.148, 0.216) 0.041 (0.015, 0.078) 0.120 (0.101, 0.141) 0.341 (0.288, 0.404)

Sociability 0.729 (0.670, 0.777) 0.164 (0.128, 0.206) 0.032 (0.013, 0.060) 0.075 (0.062, 0.090) 0.271 (0.223, 0.330)
Mean (subscales) 0.696 0.158 0.044 0.103 0.304

p• × i◦

Simplified Essential Tau-Equivalent
Extraversion
(composite) 0.868 (0.844, 0.887) 0.132 (0.113, 0.156)

Assertiveness 0.735 (0.688, 0.774) 0.265 (0.226, 0.312)
Energy Level 0.677 (0.618, 0.725) 0.323 (0.275, 0.382)

Sociability 0.781 (0.734, 0.819) 0.219 (0.181, 0.266)
Mean (subscales) 0.731 0.269

Congeneric
Extraversion
(composite) 0.869 (0.846, 0.889) 0.131 (0.111, 0.154)

Assertiveness 0.757 (0.716, 0.793) 0.243 (0.207, 0.284)
Energy Level 0.700 (0.651, 0.743) 0.300 (0.257, 0.349)

Sociability 0.761 (0.710, 0.805) 0.239 (0.195, 0.290)
Mean (subscales) 0.739 0.261

p• × o•

Simplified Essential Tau-Equivalent
Extraversion
(composite) 0.897 (0.859, 0.932) 0.103 (0.068, 0.141)

Assertiveness 0.823 (0.780, 0.862) 0.177 (0.138, 0.220)
Energy Level 0.847 (0.806, 0.883) 0.153 (0.117, 0.194)

Sociability 0.895 (0.868, 0.919) 0.105 (0.081, 0.132)
Mean (subscales) 0.855 0.145

Congeneric
Extraversion
(composite) 0.899 (0.859, 0.928) 0.101 (0.072, 0.141)

Assertiveness 0.827 (0.783, 0.863) 0.173 (0.137, 0.217)
Energy Level 0.839 (0.795, 0.873) 0.161 (0.127, 0.205)

Sociability 0.893 (0.862, 0.916) 0.107 (0.084, 0.138)
Mean (subscales) 0.853 0.147

Note. SFE = proportion of specific-factor error, TE = proportion of transient error, RRE = proportion of random-
response error, Total Error = proportion of total measurement error. Values within parentheses represent 95%
confidence interval limits. Within the illustrated designs, number of items per subscale equals 4 and number of
occasions equals 1.

6.4. Item-Level Partitioning of Observed Score Variance within the CON Design

A key advantage of allowing factor loadings to vary across items in the CON design
is that partitioning of observed score variance can be extended to the item level. Such
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information can be extremely useful in instrument development and revision for choosing
items that display desired patterns of partitioning for observed score variance. With
measures of psychological traits like those considered here, items within the CON design
would typically be chosen to maximize explained trait score variance and minimize all
relevant sources of measurement error.

To illustrate, we report proportions of trait score and measurement error variance
for all items within the Assertiveness, Energy Level, and Sociability subscales in Table 6.
Results in the table reveal that the desired pattern of partitioning is realized to a much
greater extent with positively than with negatively keyed items. Specifically, in comparison
to positively keyed items, negatively keyed items, on average, have noticeably lower
proportions of trait score variance (0.224 vs. 0.611), noticeably higher proportions of
specific-factor (0.489 vs. 0.170) and random-response (0.278 vs. 0.169) error variance, and
somewhat lower proportions of transient error variance (0.010 vs. 0.050). Among the
negatively keyed items, Item 51 from the Assertiveness scale comes closest to mirroring the
pattern typically displayed by positively keyed items.

Table 6. Item-level partitioning of observed score variance for Extraversion domain subscales within
the congeneric multivariate p• × i◦ × o• SEM design.

Subscale/
Item

Index/Proportion of Variance

Trait SFE TE RRE Total Error

Assertiveness
Item 6 0.346 (0.253, 0.443) 0.390 (0.297, 0.478) 0.063 (0.029, 0.110) 0.202 (0.149, 0.255) 0.654 (0.557, 0.747)
Item 21 0.694 (0.599, 0.782) 0.085 (0.004, 0.166) 0.055 (0.017, 0.114) 0.165 (0.121, 0.211) 0.306 (0.218, 0.401)
Item 36 * 0.176 (0.113, 0.248) 0.433 (0.347, 0.513) 0.017 (0.001, 0.049) 0.373 (0.302, 0.446) 0.824 (0.752, 0.887)
Item 51 * 0.411 (0.317, 0.509) 0.261 (0.173, 0.347) 0.009 (0.000, 0.034) 0.319 (0.240, 0.395) 0.589 (0.491, 0.683)

Energy Level
Item 11 * 0.200 (0.126, 0.286) 0.463 (0.358, 0.556) 0.008 (0.000, 0.043) 0.328 (0.253, 0.403) 0.800 (0.714, 0.874)
Item 26 * 0.102 (0.047, 0.175) 0.653 (0.568, 0.726) 0.000 (0.000, 0.010) 0.245 (0.189, 0.299) 0.898 (0.825, 0.953)
Item 41 0.653 (0.567, 0.733) 0.094 (0.024, 0.163) 0.079 (0.029, 0.153) 0.174 (0.119, 0.229) 0.347 (0.267, 0.433)
Item 56 0.613 (0.526, 0.694) 0.131 (0.061, 0.202) 0.049 (0.018, 0.093) 0.207 (0.158, 0.259) 0.387 (0.306, 0.474)

Sociability
Item 1 0.688 (0.605, 0.765) 0.148 (0.079, 0.219) 0.041 (0.015, 0.079) 0.122 (0.085, 0.162) 0.312 (0.235, 0.395)
Item 16 * 0.280 (0.185, 0.385) 0.519 (0.413, 0.616) 0.012 (0.002, 0.028) 0.190 (0.151, 0.229) 0.720 (0.615, 0.815)
Item 31 * 0.172 (0.100, 0.259) 0.601 (0.504, 0.684) 0.012 (0.002, 0.030) 0.215 (0.171, 0.261) 0.828 (0.741, 0.900)
Item 46 0.670 (0.594, 0.741) 0.172 (0.103, 0.242) 0.015 (0.002, 0.042) 0.142 (0.110, 0.177) 0.330 (0.259, 0.406)

Mean
(Positive) 0.611 0.170 0.050 0.169 0.389

Mean
(Negative) 0.224 0.489 0.010 0.278 0.776

Mean
(Overall) 0.418 0.330 0.030 0.224 0.582

Note. SFE = proportion of specific-factor error, TE = proportion of transient error, RRE = proportion of random-
response error, Total Error = proportion of total measurement error. Values within parentheses represent 95%
confidence interval limits. Within the illustrated design, number of items per subscale equals 4 and number of
occasions equals 1. * Indicates a negatively keyed item.

6.5. Disattenuated Correlation Coefficients

In Table 7, we provide observed and disattenuated correlation coefficients for all pairs
of Extraversion subscale scores within the p• × i◦ × o• S-ETE and CON designs. For
both types of designs, disattenuated correlations noticeably exceed observed correlations,
thereby revealing that the underlying constructs are more highly intercorrelated than would
otherwise be inferred. Nevertheless, the disattenuated correlation for any pair of subscales
is far away from the value of 1.00 that would signify complete redundancy between the
constructs being measured. For both observed and disattenuated coefficients, Assertiveness
and Energy Level share less in common than do Sociability with either of those constructs.
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Table 7. Observed and disattenuated correlation coefficients between BFI-2 Extraversion subscales
within the p• × i◦ × o• multivariate designs.

Correlation Coefficient

Design/Subscales Observed r Disattenuated r

p• × i◦ × o•

Simplified Essential
Tau-Equivalent

Assertiveness & Sociability 0.528 (0.452, 0.597) 0.745 (0.659, 0.825)
Energy Level & Sociability 0.476 (0.398, 0.547) 0.683 (0.593, 0.768)
Assertiveness & Energy Level 0.385 (0.297, 0.465) 0.580 (0.464, 0.687)

Congeneric
Assertiveness & Sociability 0.485 (0.413, 0.557) 0.680 (0.600, 0.760)
Energy Level & Sociability 0.528 (0.465, 0.589) 0.761 (0.693, 0.828)
Assertiveness & Energy Level 0.350 (0.272, 0.428) 0.516 (0.413, 0.617)

Note. Values within parentheses represent 95% confidence interval limits. Within the illustrated designs, number
of items per subscale equals 4 and number of occasions equals 1.

6.6. Subscale Added Value

An important consideration whenever reporting results for assessment measures at
both composite and subscale levels is whether scores for each subscale provide unique
information beyond what their associated composite score would provide. Results for
VARs shown in Table 8 support added value for all Extraversion subscales within both the
original and more restricted S-ETE and CON multivariate designs, with VARs exceeding
1.00 in all but one instance (i.e., the Sociability subscale within the CON p• × i◦ design).
Other than this one exception, these results support reporting of both composite and
subscale scores within the BFI-2’s Extraversion domain when taking measurement error for
items, occasions, or both into account. Nevertheless, the results also show that added value
for specific subscales can change depending on the nature of relationships represented and
sources of measurement error accounted for within a given design.

Table 8. Proportional reduction in mean squared error and value-added ratios for BFI-2 Extraversion
domain subscales within the multivariate designs.

Design/Scale
Index

PRMSE (Subscale) PRMSE (Composite) VAR

p• × i◦ × o•

Simplified Essential Tau-Equivalent
Assertiveness 0.676 0.628 1.077
Energy Level 0.652 0.574 1.135

Sociability 0.746 0.707 1.054
Mean (subscale) 0.691 0.636 1.089

Congeneric
Assertiveness 0.699 0.574 1.218
Energy Level 0.659 0.598 1.101

Sociability 0.729 0.719 1.014
Mean (subscale) 0.696 0.630 1.111
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Table 8. Cont.

Design/Scale
Index

PRMSE (Subscale) PRMSE (Composite) VAR

p• × i◦

Simplified Essential Tau-Equivalent
Assertiveness 0.735 0.666 1.104
Energy Level 0.677 0.622 1.090

Sociability 0.781 0.756 1.033
Mean (subscale) 0.731 0.681 1.076

Congeneric
Assertiveness 0.757 0.608 1.245
Energy Level 0.700 0.631 1.110

Sociability 0.761 0.765 0.995
Mean (subscale) 0.739 0.668 1.117

p• × o•

Simplified Essential Tau-Equivalent
Assertiveness 0.823 0.612 1.346
Energy Level 0.847 0.553 1.531

Sociability 0.895 0.705 1.270
Mean (subscale) 0.855 0.623 1.383

Congeneric
Assertiveness 0.827 0.568 1.458
Energy Level 0.839 0.577 1.454

Sociability 0.893 0.713 1.253
Mean (subscale) 0.853 0.619 1.388

Note. PRMSE: proportional reduction in mean squared error, VAR: value-added ratio. Within the illustrated
designs, number of items per subscale equals 4 and number of occasions equals 1.

6.7. Changing Numbers of Items and/or Occasions within the Multivariate Designs

After analyzing the data, score accuracy and/or value-added ratios may not reach
desired levels. To address this problem, the prophecy formulas shown in Table 2 can be
used to estimate how generalizability/reliability coefficients and VARs change when alter-
ing numbers of items and/or occasions. In Table 9, we illustrate how these indices change
for Extraversion composite and subscale scores within the S-ETE and CON multivariate
designs when doubling numbers of items and/or pooling results across two occasions. On
the basis of indices reported in Tables 5, 8 and 9 for the p• × i◦ × o• design, generaliz-
ability/reliability coefficients in the S-ETE and CON designs for composites respectively
increase from 0.816 to 0.911 and from 0.819 to 0.914, average generalizability/reliability
coefficients for subscales increase from 0.691 to 0.843 and from 0.696 to 0.846, and av-
erage VARs for subscales increase from 1.089 to 1.192 and from 1.111 to 1.214. Similar
patterns of improvements in generalizability/reliability and added-value indices occur
within the more restricted p• × i◦ and p• × o• designs when doubling numbers of items
or occasions.
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Table 9. Generalizability/reliability and value-added indices for Extraversion composite and subscale
scores when doubling numbers of items and/or occasions within the S-ETE and CON designs.

Design/Scale

Design/Index

S-ETE CON

Generalizability VAR Reliability VAR

p• × i◦ × o•

Extraversion 0.911 0.914
Assertiveness 0.836 1.192 0.851 1.331
Energy Level 0.821 1.280 0.824 1.235

Sociability 0.872 1.104 0.862 1.075
Mean (subscale) 0.843 1.192 0.846 1.214

p• × i◦

Extraversion 0.930 0.930
Assertiveness 0.847 1.189 0.861 1.325
Energy Level 0.808 1.214 0.824 1.220

Sociability 0.877 1.084 0.864 1.056
Mean (subscale) 0.844 1.162 0.850 1.200

p• × o•

Extraversion 0.946 0.947
Assertiveness 0.903 1.401 0.906 1.515
Energy Level 0.917 1.574 0.913 1.501

Sociability 0.945 1.272 0.943 1.257
Mean (subscale) 0.922 1.401 0.921 1.425

Note. S-ETE = Simplified essential tau-equivalent design, CON = Congeneric design, VAR = Value-added ratio.
For the p• × i◦ × o• design, number of items per subscale equals 8 and number of occasions equals 2; for the
p• × i◦ design, number of items per subscale equals 8 and number of occasions equals 1; and for the p• × o•
design, number of items per subscale equals 4 and number of occasions equals 2. Examples of calculations for
selected reliability and VAR indices for the Assertiveness subscale using the formulas in Table 2 and variance
components in Table 4 are shown below. Final values shown on the right side of the equations may vary slightly
from those obtained from the left side of the equations because they were originally computed beyond three
decimal places.

p• × i◦ × o• design
Reliability coefficientcomposite (CON) =

0.388
0.388+ 0.152

8 + 0.023
2 + 0.097

16
= 0.914

Reliability coefficientassertiveness (CON) =
0.487

0.487+ 0.358
8 + 0.040

2 + 0.320
16

= 0.851

Value-added ratioassertiveness(CON) =
0.851∗0.487∗3.496

0.914∗(0.487+0.228+0.377)2 = 1.331

where σ̂2
pC
(3.496) = 0.487 + 0.401 + 0.632 + 2(0.228 + 0.377 + 0.383).

p• × i◦ design

Reliability coefficientcomposite (CON) =
0.388+ 0.023

1
0.388+ 0.152

8 + 0.023
1 + 0.097

8
= 0.930

Reliability coefficientassertiveness (CON) =
0.487+ 0.040

1
0.487+ 0.358

8 + 0.040
1 + 0.320

8
= 0.861

Value-added ratioassertiveness(CON) =
0.861∗(0.487+ 0.040

1 )∗3.707

0.930∗(0.487+ 0.040
1 +0.228+0.377+0.012+0.025)

2 = 1.325

where σ̂2
pC
(3.707) = (0.487 + 0.401 + 0.632 + 2(0.228 + 0.377 + 0.383)) + (0.040 + 0.025+

0.028 + 2(0.012 + 0.025 + 0.022))/1.

p• × o• design

Reliability coefficientcomposite (CON) =
0.388+ 0.152

4
0.388+ 0.152

4 + 0.023
2 + 0.097

8
= 0.947

Reliability coefficientassertiveness (CON) =
0.487+ 0.358

4
0.487+ 0.358

4 + 0.040
2 + 0.320

8
= 0.906

Value-added ratioassertiveness(CON) =
0.906∗(0.487+ 0.358

4 )∗3.837

0.947∗(0.487+ 0.358
4 +0.228+0.377)

2 = 1.515

where σ̂2
pC
(3.837) = (0.487 + 0.401 + 0.632 + 2(0.228 + 0.377 + 0.383)) + (0.358 + 0.438+

0.569)/4.

7. Discussion
7.1. Overview

A pivotal influence in the creation of G-theory by Cronbach and colleagues (see,
e.g., [1,82]) was Lord’s [83] article introducing the notion of randomly parallel tests. In
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that article, Lord expanded the idea of random sampling or exchangeability of persons
in research studies to encompass random sampling or exchangeability of items in the
derivation of reliability coefficients. Cronbach and colleagues later extended that idea to
include conditions for any measurement facets (tasks, raters, occasions, etc.) within both
univariate and multivariate G-theory designs [1–4]. These extensions within G-theory
designs are manifested in the derivation of variance components from random effects
analysis of variance (ANOVA) models to produce G coefficients that reflect the extent to
which results can be generalized to the broader domains represented by the measurement
facets and that subsequently can be used to correct intercorrelations among subscale
scores for multiple sources of measurement error. Within the G-theory SEMs considered
here, random sampling or exchangeability of measurement facet conditions (i.e., items
and occasions) was operationalized by setting relevant factor loadings, variances, and
uniquenesses equal to produce the same results obtained from parallel ANOVA designs
(see, e.g., [16,17,50,84–89]).

G coefficients and associated disattenuated correlation coefficients within the S-ETE
designs analyzed here reflect generalizability of scores across broader domains of mea-
surement facet conditions. Such coefficients are certainly of interest in many situations but
much less frequently reported in the research literature than are indices that do not assume
random equivalence and take the individual idiosyncrasies of sampled items or occasions
into account. This latter approach was taken within the CON SEMs in which factor loadings,
item variances, and item uniquenesses were allowed to vary within subscales. Had items
been the sole measurement domain of interest, the generalizability/reliability coefficients
produced by the present S-ETE and CON models would be, respectively, analogous to the
alpha [71] and omega coefficients [72] reported in Table 3. Our intent was to go well beyond
simple comparisons of alpha and omega coefficients by contrasting results for model fit,
partitioning of explained and measurement error variance, correlation coefficients, and
subscale added value between S-ETE and CON multivariate SEMs that simultaneously
took both item and occasion effects into account.

7.2. Model Fit

When conducting traditional G-theory analyses, SEMs with S-ETE constraints serve
merely as a computational tool to derive the same variance components and related in-
dices produced by ANOVA-based procedures. As is the case with traditional ANOVA
applications, tests for overall model fit within G-theory designs are rarely reported. This
follows from G-theory requiring no explicit assumptions about either the content within
the universe(s) of interest or the statistical characteristics of observed scores [1] (p. 145).
The fit tests we provided for the S-ETE multivariate G-theory SEM design represented a
model for the measures at hand in which factor loadings and uniquenesses were set equal
for all items within a given subscale. Technically and strictly speaking, this model depicts
item scores within each subscale as being classically parallel (i.e., all have equal true score
and error score variances). However, for most self-report measures, such relationships
would rarely hold in practice. We provided model fit indices for the S-ETE design primarily
for comparison to those for the CON design in which factor loadings and uniquenesses
for items were allowed to vary within subscales. Not surprisingly, the less restricted CON
design provided a noticeably better fit to the observed data than did the S-ETE design.
Nevertheless, superior model fits for CON models do not necessarily guarantee that score
accuracy or viability indices for all subscales will exceed those for S-ETE models.

7.3. Score Accuracy and Partitioning of Variance

Total score level. In keeping with the results just described and with findings from
previous studies of univariate [15,48,50] and bifactor model-based SEMs [49], score accu-
racy coefficients within the multivariate SEMs were generally higher and proportions of
measurement error generally lower in the CON design than in the S-ETE design. However,
exceptions were found for the Sociability subscale within the p• × i◦ × o•, p• × i◦,
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and p• × o• S-ETE designs and for the Energy Level subscale within the p• × o• S-ETE
design, in which higher generalizability coefficients and lower proportions of specific-factor,
random-response, or overall measurement error were found than for corresponding indices
in CON designs. These results demonstrate, as noted above, that generalizability coeffi-
cients based on S-ETE relationships can, at times, exceed reliability coefficients based on
CON relationships when maximum likelihood parameter estimation is used (see, e.g., [90]).
Conceptually, such results imply that estimates of score accuracy for specific samplings of
items can be higher or lower that estimates intended to reflect the broader domains from
which items and/or occasions were drawn.

Consistent with previous research [15,48–50], partitioning of measurement error across
both S-ETE and CON designs highlighted the importance of taking all three sources of error
into account at both composite and subscale levels. At the composite level, proportions of
specific-factor error (0.081 for S-ETE and 0.080 for CON) exceeded those for both random-
response error (0.050 for S-ETE and 0.051 for CON) and transient error (0.052 for S-ETE
and 0.050 for CON), which were similar in magnitude. For subscales, average proportions
of specific-factor error (0.164 for S-ETE and 0.158 for CON) and random-response error
(0.105 for S-ETE and 0.103 for CON) were noticeably higher in comparison to transient
error (0.040 for S-ETE and 0.044 for CON). The larger proportions of specific-factor and
random-response error for subscale compared to composite scores is likely due to the
subscales having eight fewer items. The relatively modest proportions of transient error
in relation to person variance at both composite and subscale levels make sense when
measuring psychological traits like those considered here, because traits are expected to
remain reasonably stable over time and especially across short time intervals.

In addition to affecting the magnitude of overall generalizability/reliability coeffi-
cients, proportions of multiple sources of measurement error have important implications
for the best ways to revise measurement procedures to enhance score accuracy. Specific-
factor error is best reduced by adding additional items, transient error by pooling results
across additional occasions, and random-response error by doing either. The high levels of
both specific-factor and random-response error for subscales indicate that adding items
would be an effective and efficient way to improve the generalizability/reliability of scores
and underscores the price sometimes paid when subscale scores from self-report measures
are based on a small number of items.

Item score level. A further advantage of allowing CON relationships within a mul-
tivariate design is that trait score and measurement error variance can be partitioned at
the individual item level to provide additional insights into the nature of items and how
they might be replaced or revised to better serve the purpose of an assessment procedure.
In general, for measures of psychological traits, the most effective items would be those
with high proportions of trait score variance and low proportions of pertinent sources
of measurement error. The present results for Extraversion subscale items revealed that
positively keyed items displayed such patterns to a much greater extent than did negatively
keyed items. Balancing proportions of positively and negatively keyed items is common
within self-report measures to reduce possible effects of acquiescence bias (see, e.g., [91]).
To maximize the effectiveness of negatively phrased items, use of conceptual opposites (e.g.,
sad vs. happy) rather than negations (e.g., not happy vs. happy) is routinely recommended.
However, that was not a prevalent issue with the Extraversion subscales, because only one
item (#26) seemed to contain words mildly implying possible negation (i.e., “less active”
was used rather than “more passive”). Overall, these results underscore possible challenges
in creating negatively keyed items that match positively worded items in psychometric
quality and raise the question of whether the benefits of including negatively keyed items
within a self-report measure outweigh their drawbacks (see, e.g., [92]).

7.4. Disattenuated Correlation Coefficients

An important advantage that both multivariate p• × i◦ × o• S-ETE and CON
designs share is to allow for derivation of correlation coefficients between subscale scores
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that are corrected for multiple sources of measurement error. The major difference between
the corrected coefficients from the designs considered here again is that inferences are
made to universe scores across the broader domains from which items and occasions are
sampled within the S-ETE design and to trait scores for the specific items and occasions
sampled within the CON design. Because both observed score correlations and score
accuracy coefficients varied across the designs, the resulting disattenuated correlations
also differed. However, for both designs, disattenuated correlations noticeably exceeded
observed score correlations, thereby highlighting the importance of taking all relevant
sources of measurement error into account when interpreting the concurrent and construct
validity of subscale scores. The results across both designs revealed anticipated overlap
among the measured constructs but sufficient uniqueness for scores within each subscale
to merit further evaluation in relation to indices of subscale added value.

7.5. Subscale Added Value

When reporting psychometric results at both composite and subscale levels for psy-
chological traits, evidence should be provided to demonstrate that subscale scores are not
wholly redundant with composite scores. We chose to address this question by extending a
procedure developed by Haberman [64] to multivariate SEM designs. When applying this
procedure, subscale added value is supported when measurement error is reduced more
when using subscale rather than composite observed scores to estimate the subscale’s uni-
verse or trait scores. Such a relationship is revealed when the value-added ratio (VAR; [69])
for the subscale exceeds 1.00. Except for the Sociability subscale within the p• × i◦ CON
design, added value was supported for all subscales within both the original and restricted
S-ETE and CON designs. When a subscale fails to reach the threshold to support added
value, prophecy formulas can be used to determine the number of items and/or occasions
that might be needed to support added value as further discussed in the next section (see,
e.g., [16,17,70,93]).

7.6. Changing Measurement Procedures

One of the most compelling aspects of G-theory is the application of formulas to
estimate how score generalizability might be improved by increasing the number of mea-
surement facet conditions. In this study, we expanded such formulas to encompass relia-
bility coefficients for CON designs and VARs for both S-ETE and CON designs. Results
from these formulas can be invaluable when developing or revising measurement proce-
dures in defining ways to reach desired levels for those indices. After relevant variance
components are derived, these formulas merely require inserting numbers for measure-
ment facet conditions to determine whether results match or exceed targeted levels for
generalizability/reliability or subscale added value. When using those formulas here, gen-
eralizability/reliability coefficients and VARs improved noticeably after doubling numbers
of items and pooling results across two occasions. If administering a measure over multiple
occasions is impractical, these formulas can be adjusted for one occasion by setting n′

o equal
to 1 and determining the value for n′

i that brings generalizability/reliability coefficients or
VARs to desired levels. Although not demonstrated explicitly here, the prophecy formulas
for generalizability/reliability coefficients also can be easily adjusted to estimate propor-
tions of measurement error when changing numbers of items or occasions by replacing
the variance for persons in the numerator with the variance for any relevant source of
measurement error (see Equations (2)–(4) and [50,70,87]). In general, prophecy formulas
for CON models would be most accurate when added items and/or occasions mirror the
characteristics of those originally analyzed.

7.7. Benefits of Using R with Multivariate Designs

In contrast to traditional ANOVA-based programs, the lavaan (Version 0.6-17) [78,79]
and semTools (Version 0.5-6) [81] packages in R can be used to analyze both S-ETE and CON
SEMs, extend partitioning to item-level scores, and build Monte Carlo-based confidence
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intervals for key parameters of interest, which included generalizability/reliability coef-
ficients, proportions of measurement error, and correlation coefficients here. Across the
present designs and indices, widths of most confidence intervals were narrower in the CON
designs than in the S-ETE designs, and only the confidence interval for the proportion of
transient error for the Energy Level subscale in the S-ETE design captured zero. Consistent
with the model fit results, those for confidence intervals again highlighted the added overall
precision often gained when allowing for CON relationships between indicators and the
underlying factors of interest within the multivariate SEMs.

8. Summary and Future Directions

A major consideration in preparing this article and Supplementary Materials was to
provide readers with practical tools for creating, evaluating, and improving assessment
procedures when the focus is either on the specific measures at hand or the broader domains
from which measurement conditions are sampled. To this end, we stressed the importance
of accounting for all relevant sources of measurement error when assessing the accuracy and
validity of composite and subscale scores, when examining the viability of subscale scores,
and when determining the best ways to improve measures globally and at individual item
levels. Although we confined our examples to self-report measures, the same techniques
are applicable to any assessment procedure for which both composite and subscale scores
are reported. Our results revealed that, on average, the multivariate CON SEM design
yielded higher score accuracy, lower measurement error, stronger overall subscale viability,
and better model fits. The primary limitation of that design was that results could only
be generalized to items and occasions sharing the same properties as those sampled, in
contrast to the broader universes from which those items and occasions were drawn. Such
limitations also would hold for prophecy formula results when applied to the CON design.

Informative future extensions of the multivariate SEMs illustrated here would be
to (a) analyze them using broader demographic groups beyond the present sample of
college students, which was heavily dominated by female and Caucasian participants;
(b) apply the procedures to objectively and subjectively scored measures within achieve-
ment, aptitude, behavioral, psychomotor, physiological, and other affective domains;
(c) incorporate additional designs with different combinations of crossed and nested
facets and more than two measurement facets (see, e.g., [14,16,17,89]); (d) use estima-
tion procedures, when warranted, to adjust for scale coarseness effects common when
using binary or ordinal level data [13,15,16,49,50,84,88,89,94–96]; and (e) derive global
and cut-score-specific dependability coefficients when using data for criterion-referencing
purposes [13,14,16,17,50,70,87–89,95–102]. We encourage researchers and practitioners to
take advantage of these techniques to develop better assessment procedures and more
thoroughly evaluate the psychometric quality of results obtained from them.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math12081164/s1. Supplementary Materials File S1: Instruc-
tional Online Supplement to Multivariate Structural Equation Modeling Techniques for Estimating
Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale
Scores in Practice.

Author Contributions: Conceptualization, W.P.V., H.L. and T.C.; Methodology, W.P.V., H.L. and T.C.;
Software, H.L.; Validation, W.P.V., H.L. and T.C.; Formal analysis, W.P.V., H.L. and T.C.; Investigation,
W.P.V., H.L. and T.C.; Resources, W.P.V.; Data curation, W.P.V. and H.L.; Writing—original draft,
W.P.V., H.L. and T.C.; Writing—review & editing, W.P.V., H.L. and T.C.; Visualization, W.P.V., H.L.
and T.C.; Supervision, W.P.V.; Project administration, W.P.V.; Funding acquisition, W.P.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This project received no external funding but did receive internal research assistant support
from the Iowa Measurement Research Foundation (Grant ID#: 520-14-2581-00000-88395100-5045-000-
92045-20-0000).

https://www.mdpi.com/article/10.3390/math12081164/s1
https://www.mdpi.com/article/10.3390/math12081164/s1


Mathematics 2024, 12, 1164 22 of 25

Data Availability Statement: This study was not preregistered and inquiries about accessibility to
the data should be forwarded to the lead author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cronbach, L.J.; Rajaratnam, N.; Gleser, G.C. Theory of generalizability: A liberalization of reliability theory. Br. J. Stat. Psychol.

1963, 16, 137–163. [CrossRef]
2. Cronbach, L.J.; Gleser, G.C.; Nanda, H.; Rajaratnam, N. The Dependability of Behavioral Measurements: Theory of Generalizability for

Scores and Profiles; Wiley: New York, NY, USA, 1972.
3. Gleser, G.C.; Cronbach, L.J.; Rajaratnam, N. Generalizability of scores influenced by multiple sources of variance. Psychometrika

1965, 30, 395–418. [CrossRef] [PubMed]
4. Rajaratnam, N.; Cronbach, L.J.; Gleser, G.C. Generalizability of stratified-parallel tests. Psychometrika 1965, 30, 39–56. [CrossRef]

[PubMed]
5. Shavelson, R.J.; Webb, N.M. Generalizability theory: 1973–1980. Brit. J. Math. Stat. Psy. 1981, 34, 133–166. [CrossRef]
6. Shavelson, R.J.; Webb, N.M. Generalizability Theory: A Primer; Sage: Thousand Oaks, CA, USA, 1991.
7. Shavelson, R.J.; Webb, N.M.; Rowley, G.L. Generalizability theory. Am. Psychol. 1989, 44, 922–932. [CrossRef]
8. Brennan, R.L. Elements of Generalizability Theory (Revised Edition); American College Testing: Iowa City, IA, USA, 1992.
9. Brennan, R.L. Generalizability theory. Educ. Meas.-Issues Pract. 1992, 11, 27–34. [CrossRef]
10. Brennan, R.L. Generalizability Theory; Springer: New York, NY, USA, 2001.
11. Brennan, R.L. Generalizability theory and classical test theory. Appl. Meas. Educ. 2010, 24, 1–21. [CrossRef]
12. Bloch, R.; Norman, G. Generalizability theory for the perplexed: A practical introduction and guide: AMEE Guide No. 68. Med.

Teach. 2012, 34, 960–992. [CrossRef] [PubMed]
13. Vispoel, W.P.; Morris, C.A.; Kilinc, M. Applications of generalizability theory and their relations to classical test theory and

structural equation modeling. Psychol. Methods 2018, 23, 1–26. [CrossRef] [PubMed]
14. Vispoel, W.P.; Morris, C.A.; Kilinc, M. Practical applications of generalizability theory for designing, evaluating, and improving

psychological assessments. J. Pers. Assess. 2018, 100, 53–67. [CrossRef]
15. Vispoel, W.P.; Xu, G.; Schneider, W.S. Interrelationships between latent state-trait theory and generalizability theory in a structural

equation modeling framework. Psychol. Methods 2022, 27, 773–803. [CrossRef] [PubMed]
16. Vispoel, W.P.; Lee, H.; Hong, H. Analyzing multivariate generalizability theory designs within structural equation modeling

frameworks [Teacher’s corner]. Struct. Equ. Model. 2023, 1–19, advance online publication. [CrossRef]
17. Vispoel, W.P.; Lee, H.; Hong, H.; Chen, T. Applying multivariate generalizability theory to psychological assessments. Psychol.

Methods 2023, 1–23, advance online publication. [CrossRef] [PubMed]
18. Bimpeh, Y.; Pointer, W.; Smith, B.A.; Harrison, L. Evaluating human scoring using Generalizability Theory. Appl. Meas. Educ.

2020, 33, 198–209. [CrossRef]
19. Choi, J.; Wilson, M.R. Modeling rater effects using a combination of Generalizability Theory and IRT. Psychol. Sci. 2018, 60, 53–80.
20. Hurtz, G.M.; Hertz, N.R. How many raters should be used for establishing cutoff scores with the Angoff method? A Generaliz-

ability Theory study. Educ. Psychol. Meas. 1999, 59, 885–897. [CrossRef]
21. Ten Hove, D.; Jorgensen, T.D.; var der Ark, L.A. Interrater reliability for multilevel data: A generalizability theory approach.

Psychol. Methods 2022, 27, 650–666. [CrossRef] [PubMed]
22. Wiberg, M.; Culpepper, S.; Janssen, R.; González, J.; Molenaar, D. An evaluation of rater agreement indices using Generalizability

Theory. In Quantitative Psychology; Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D., Eds.; The 82nd Annual
Meeting of the Psychometric Society: Zurich, Switzerland, 2018; Volume 233, pp. 77–89.

23. Andersen, S.A.W.; Nayahangan, L.J.; Park, Y.S.; Konge, L. Use of generalizability theory for exploring reliability of and sources of
variance in assessment of technical skills: A systematic review and meta-analysis. Acad. Med. 2021, 96, 1609–1619. [CrossRef]
[PubMed]

24. Andersen, S.A.W.; Park, Y.S.; Sørensen, M.S.; Konge, L. Reliable assessment of surgical technical skills is dependent on context:
An exploration of different variables using Generalizability Theory. Acad. Med. 2020, 95, 1929–1936. [CrossRef] [PubMed]

25. Anderson, T.N.; Lau, J.N.; Shi, R.; Sapp, R.W.; Aalami, L.R.; Lee, E.W.; Tekian, A.; Park, Y.S. The utility of peers and trained raters
in technical skill-based assessments a generalizability theory study. J. Surg. Educ. 2022, 79, 206–215. [CrossRef] [PubMed]

26. Blood, A.D.; Park, Y.S.; Lukas, R.V.; Brorson, J.R. Neurology objective structured clinical examination reliability using generaliz-
ability theory. Neurology 2015, 85, 1623–1629. [CrossRef] [PubMed]

27. Jogerst, K.M.; Eurboonyanun, C.; Park, Y.S.; Cassidy, D.; McKinley, S.K.; Hamdi, I.; Phitayakorn, R.; Petrusa, E.; Gee, D.W.
Implementation of the ACS/ APDS Resident Skills Curriculum reveals a need for rater training: An analysis using generalizability
theory. Am. J. Surg. 2021, 222, 541–548. [CrossRef] [PubMed]

28. Kreiter, C.D.; Wilson, A.B.; Humbert, A.J.; Wade, P.A. Examining rater and occasion influences in observational assessments
obtained from within the clinical environment. Med. Educ. Online 2016, 21, 29279. [CrossRef] [PubMed]

29. O’Brien, J.; Thompson, M.S.; Hagler, D. Using generalizability theory to inform optimal design for a nursing performance
assessment. Eval. Health Prof. 2019, 42, 297–327. [CrossRef]

https://doi.org/10.1111/j.2044-8317.1963.tb00206.x
https://doi.org/10.1007/BF02289531
https://www.ncbi.nlm.nih.gov/pubmed/5217607
https://doi.org/10.1007/BF02289746
https://www.ncbi.nlm.nih.gov/pubmed/14293191
https://doi.org/10.1111/j.2044-8317.1981.tb00625.x
https://doi.org/10.1037/0003-066X.44.6.922
https://doi.org/10.1111/j.1745-3992.1992.tb00260.x
https://doi.org/10.1080/08957347.2011.532417
https://doi.org/10.3109/0142159X.2012.703791
https://www.ncbi.nlm.nih.gov/pubmed/23140303
https://doi.org/10.1037/met0000107
https://www.ncbi.nlm.nih.gov/pubmed/28114776
https://doi.org/10.1080/00223891.2017.1296455
https://doi.org/10.1037/met0000290
https://www.ncbi.nlm.nih.gov/pubmed/34914472
https://doi.org/10.1080/10705511.2023.2222913
https://doi.org/10.1037/met0000107
https://www.ncbi.nlm.nih.gov/pubmed/28114776
https://doi.org/10.1080/08957347.2020.1750403
https://doi.org/10.1177/00131649921970233
https://doi.org/10.1037/met0000391
https://www.ncbi.nlm.nih.gov/pubmed/33818118
https://doi.org/10.1097/ACM.0000000000004150
https://www.ncbi.nlm.nih.gov/pubmed/33951677
https://doi.org/10.1097/ACM.0000000000003550
https://www.ncbi.nlm.nih.gov/pubmed/32590473
https://doi.org/10.1016/j.jsurg.2021.07.002
https://www.ncbi.nlm.nih.gov/pubmed/34353764
https://doi.org/10.1212/WNL.0000000000002053
https://www.ncbi.nlm.nih.gov/pubmed/26432851
https://doi.org/10.1016/j.amjsurg.2021.01.018
https://www.ncbi.nlm.nih.gov/pubmed/33516415
https://doi.org/10.3402/meo.v21.29279
https://www.ncbi.nlm.nih.gov/pubmed/26925540
https://doi.org/10.1177/0163278717735565


Mathematics 2024, 12, 1164 23 of 25

30. O’Neill, S.; O’Neill, L. Improving QST Reliability—More raters, tests, or occasions? A multivariate Generalizability study. J. Pain
2015, 16, 454–462. [CrossRef] [PubMed]

31. Peeters, M.J. Moving beyond Cronbach’s alpha and inter-rater reliability: A primer on Generalizability Theory for pharmacy
education. Innov. Pharm. 2021, 12, 14. [CrossRef] [PubMed]

32. Anthony, C.J.; Styck, K.M.; Volpe, R.J.; Robert, C.R.; Codding, R.S. Using many-facet Rasch measurement and Generalizability
Theory to explore rater effects for Direct Behavior Rating–Multi-Item Scales. Sch. Psychol. 2023, 38, 119–128. [CrossRef] [PubMed]

33. Ford, A.L.B.; Johnson, L.D. The use of generalizability theory to inform sampling of educator language used with preschoolers
with autism spectrum disorder. J. Speech Lang. Hear. R. 2021, 64, 1748–1757. [CrossRef] [PubMed]

34. Graham, S.; Hebert, M.; Sandbank, M.P.; Harris, K.R. Assessing the writing achievement of young struggling writers: Application
of generalizability theory. Learn. Disabil. Q. 2016, 39, 72–82. [CrossRef]

35. Lakes, K.D.; Hoyt, W.T. Applications of Generalizability Theory to clinical child and adolescent psychology research. J. Clin. Child
Adolesc. Psychol. 2009, 38, 144–165. [CrossRef] [PubMed]

36. Lei, P.; Smith, M.; Suen, H.K. The use of generalizability theory to estimate data reliability in single-subject observational research.
Psychol. Sch. 2007, 44, 433–439. [CrossRef]

37. Tanner, N.; Eklund, K.; Kilgus, S.P.; Johnson, A.H.; Bowman-Perrott, L. Generalizability of universal screening measures for
behavioral and emotional risk. Sch. Psychol. Rev. 2018, 47, 3–17. [CrossRef]

38. Atilgan, H. Reliability of essay ratings: A study on Generalizability Theory. Eurasian J. Educ. Res. 2019, 19, 1–18. [CrossRef]
39. Mantzicopoulos, P.; French, B.F.; Patrick, H.; Watson, J.S.; Ahn, I. The stability of kindergarten teachers’ effectiveness: A

generalizability study comparing the Framework For Teaching and the Classroom Assessment Scoring System. Educ. Assess.
2018, 23, 24–46. [CrossRef]

40. Kachchaf, R.; Solano-Flores, G. Rater language background as a source of measurement error in the testing of English language
learners. Appl. Meas. Educ. 2012, 25, 162–177. [CrossRef]

41. Kim, Y. A G-Theory analysis of rater effect in ESL speaking assessment. Appl. Linguist. 2009, 30, 435–440. [CrossRef]
42. Ohta, R.; Plakans, L.M.; Gebril, A. Integrated writing scores based on holistic and multi-trait scales: A generalizability analysis.

Assess. Writ. 2018, 38, 21–36. [CrossRef]
43. Van Hooijdonk, M.; Mainhard, T.; Kroesbergen, E.H.; Van Tartwijk, J. Examining the assessment of creativity with generalizability

theory: An analysis of creative problem solving assessment tasks. Think. Ski. Creat. 2022, 43, 100994. [CrossRef]
44. Bergee, M.J. Performer, rater, occasion, and sequence as sources of variability in music performance assessment. J. Res. Music

Educ. 2007, 55, 344–358. [CrossRef]
45. Lafave, M.R.; Butterwick, D.J. A generalizability theory study of athletic taping using the Technical Skill Assessment Instrument.

J. Athl. Train. 2014, 49, 368–372. [CrossRef] [PubMed]
46. Murphy, K.R.; Deshon, R. Interrater correlations do not estimate the reliability of job performance ratings. Pers. Psychol. 2000, 53,

873–900. [CrossRef]
47. Kane, M. Inferences about variance components and reliability-generalizability coefficients in the absence of random sampling. J.

Educ. Meas. 2006, 39, 165–181. [CrossRef]
48. Vispoel, W.P.; Xu, G.; Kilinc, M. Expanding G-theory models to incorporate congeneric relationships: Illustrations using the Big

Five Inventory. J. Pers. Assess. 2021, 104, 429–442. [CrossRef]
49. Vispoel, W.P.; Lee, H.; Xu, G.; Hong, H. Expanding bifactor models of psychological traits to account for multiple sources of

measurement error. Psychol. Assess. 2022, 32, 1093–1111. [CrossRef] [PubMed]
50. Vispoel, W.P.; Hong, H.; Lee, H. Benefits of doing generalizability theory analyses within structural equation modeling frame-

works: Illustrations using the Rosenberg Self-Esteem Scale [Teacher’s corner]. Struct. Equ. Model. 2024, 31, 165–181. [CrossRef]
51. Soto, C.J.; John, O.P. The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance

bandwidth, fidelity, and predictive power. J. Pers. Soc. Psychol. 2017, 113, 117–143. [CrossRef] [PubMed]
52. Le, H.; Schmidt, F.L.; Putka, D.J. The multifaceted nature of measurement artifacts and its implications for estimating construct-

level relationships. Organ. Res. Methods 2009, 12, 165–200. [CrossRef]
53. Schmidt, F.L.; Hunter, J.E. Measurement error in psychological research: Lessons from 26 research scenarios. Psychol. Methods

1996, 1, 199–223. [CrossRef]
54. Schmidt, F.L.; Le, H.; Ilies, R. Beyond alpha: An empirical investigation of the effects of different sources of measurement error on

reliability estimates for measures of individual differences constructs. Psychol. Methods 2003, 8, 206–224. [CrossRef] [PubMed]
55. Thorndike, R.L. Reliability. In Educational Measurement; Lindquist, E.F., Ed.; American Council on Education: Washington, DC,

USA, 1951; pp. 560–620.
56. Steyer, R.; Ferring, D.; Schmitt, M.J. States and traits in psychological assessment. Eur. J. Psychol. Assess. 1992, 8, 79–98.
57. Geiser, C.; Lockhart, G. A comparison of four approaches to account for method effects in latent state-trait analyses. Psychol.

Methods 2012, 17, 255–283. [CrossRef] [PubMed]
58. Cronbach, L.J.; Schönemann, P.; McKie, D. Alpha coefficients for stratified-parallel tests. Educ. Psychol. Meas. 1965, 25, 291–312.

[CrossRef]
59. Vispoel, W.P.; Lee, H.; Chen, T.; Hong, H. Analyzing and comparing univariate, multivariate, and bifactor generalizability theory

designs for hierarchically structured personality traits. J. Pers. Assess. 2023, 1–16, advance online publication. [CrossRef] [PubMed]
60. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [CrossRef]

https://doi.org/10.1016/j.jpain.2015.01.476
https://www.ncbi.nlm.nih.gov/pubmed/25683899
https://doi.org/10.24926/iip.v12i1.2131
https://www.ncbi.nlm.nih.gov/pubmed/34007684
https://doi.org/10.1037/spq0000518
https://www.ncbi.nlm.nih.gov/pubmed/36174169
https://doi.org/10.1044/2021_JSLHR-20-00586
https://www.ncbi.nlm.nih.gov/pubmed/33848197
https://doi.org/10.1177/0731948714555019
https://doi.org/10.1080/15374410802575461
https://www.ncbi.nlm.nih.gov/pubmed/19130364
https://doi.org/10.1002/pits.20235
https://doi.org/10.17105/SPR-2017-0044.V47-1
https://doi.org/10.14689/ejer.2019.80.7
https://doi.org/10.1080/10627197.2017.1408407
https://doi.org/10.1080/08957347.2012.660366
https://doi.org/10.1093/applin/amp035
https://doi.org/10.1016/j.asw.2018.08.001
https://doi.org/10.1016/j.tsc.2021.100994
https://doi.org/10.1177/0022429408317515
https://doi.org/10.4085/1062-6050-49.2.22
https://www.ncbi.nlm.nih.gov/pubmed/24955623
https://doi.org/10.1111/j.1744-6570.2000.tb02421.x
https://doi.org/10.1111/j.1745-3984.2002.tb01141.x
https://doi.org/10.1080/00223891.2020.1808474
https://doi.org/10.1037/pas0001170
https://www.ncbi.nlm.nih.gov/pubmed/36265049
https://doi.org/10.1080/10705511.2023.2187734
https://doi.org/10.1037/pspp0000096
https://www.ncbi.nlm.nih.gov/pubmed/27055049
https://doi.org/10.1177/1094428107302900
https://doi.org/10.1037/1082-989X.1.2.199
https://doi.org/10.1037/1082-989X.8.2.206
https://www.ncbi.nlm.nih.gov/pubmed/12924815
https://doi.org/10.1037/a0026977
https://www.ncbi.nlm.nih.gov/pubmed/22309958
https://doi.org/10.1177/001316446502500201
https://doi.org/10.1080/00223891.2023.2268193
https://www.ncbi.nlm.nih.gov/pubmed/37937893
https://doi.org/10.2307/1412159


Mathematics 2024, 12, 1164 24 of 25

61. Spearman, C. Correlation calculated from faulty data. Brit. J. Psychol. 1910, 3, 271–295. [CrossRef]
62. Morris, C.A. Optimal Methods for Disattenuating Correlation Coefficients under Realistic Measurement Conditions with

Single-Form, Self-Report Instruments (Publication No. 27668419). Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2020.
63. Vispoel, W.P.; Morris, C.A.; Kilinc, M. Using generalizability theory to disattenuate correlation coefficients for multiple sources of

measurement error. Multivar. Behav. Res. 2018, 53, 481–501. [CrossRef] [PubMed]
64. Haberman, S.J. When can subscores have value? J. Educ. Behav. Stat. 2008, 33, 204–229. [CrossRef]
65. Haberman, S.J.; Sinharay, S. Reporting of subscores using multidimensional item response theory. Psychometrika 2010, 75, 209–227.

[CrossRef]
66. Sinharay, S. Added value of subscores and hypothesis testing. J. Educ. Behav. Stat. 2019, 44, 25–44. [CrossRef]
67. Feinberg, R.A.; Jurich, D.P. Guidelines for interpreting and reporting subscores. Educ. Meas.-Issues Pract. 2017, 36, 5–13. [CrossRef]
68. Hjärne, M.S.; Lyrén, P.E. Group differences in the value of subscores: A fairness issue. Front. Educ. 2020, 5, 55. [CrossRef]
69. Feinberg, R.A.; Wainer, H. A simple equation to predict a subscore’s value. Educ. Meas.-Issues Pract. 2014, 33, 55–56. [CrossRef]
70. Vispoel, W.P.; Lee, H.; Chen, T.; Hong, H. Extending applications of generalizability theory-based bifactor model designs. Psych

2023, 5, 545–575. [CrossRef]
71. Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [CrossRef]
72. McDonald, R.P. Test Theory: A Unified Approach; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1999.
73. Bentler, P.M. Alpha-maximized factor analysis (alphamax): Its relation to alpha and canonical factor analysis. Psychometrika 1968,

33, 335–345. [CrossRef] [PubMed]
74. Brown, W. Some experimental results in the correlation of mental abilities. Brit. J. Psychol. 1910, 3, 296–322.
75. Hu, L.T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.

Psychol. Methods 1998, 3, 424–453. [CrossRef]
76. Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.

Struct. Equ. Model. 1999, 6, 1–55. [CrossRef]
77. Yu, C.Y. Evaluating Cutoff Criteria of Model Fit Indices for Latent Variable Models with Binary and Continuous Outcomes; University of

California: Los Angeles, CA, USA, 2002.
78. Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [CrossRef]
79. Rosseel, Y.; Jorgensen, T.D.; De Wilde, L. Package ‘lavaan’. R Package Version (0.6-17). 2023. Available online: https://cran.r-

project.org/web/packages/lavaan/lavaan.pdf (accessed on 10 February 2024).
80. Preacher, K.J.; Selig, J.P. Advantages of Monte Carlo confidence intervals for indirect effects. Commun. Methods Meas. 2012, 6,

77–98. [CrossRef]
81. Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling. R

Package Version 0.5-6. 2022. Available online: https://CRAN.R-project.org/package=semTools (accessed on 10 February 2024).
82. Cronbach, L.J.; Shavelson, R.J. My current thoughts on coefficient alpha and successor procedures. Educ. Psychol. Meas. 2004, 64,

391–418. [CrossRef]
83. Lord, F.M. Estimating test reliability. Educ. Psychol. Meas. 1955, 15, 325–336. [CrossRef]
84. Jorgensen, T.D. How to estimate absolute-error components in structural equation models of generalizability theory. Psych 2021,

3, 113–133. [CrossRef]
85. Marcoulides, G.A. Estimating variance components in generalizability theory: The covariance structure analysis approach. Struct.

Equ. Model. 1996, 3, 290–299. [CrossRef]
86. Raykov, T.; Marcoulides, G.A. Estimation of generalizability coefficients via a structural equation modeling approach to scale

reliability evaluation. Int. J. Test. 2006, 6, 81–95. [CrossRef]
87. Vispoel, W.P.; Hong, H.; Lee, H.; Jorgensen, T.R. Analyzing complete generalizability theory designs using structural equation

models. Appl. Meas. Educ. 2023, 36, 372–393. [CrossRef]
88. Vispoel, W.P.; Lee, H.; Chen, T.; Hong, H. Using structural equation modeling techniques to reproduce and extend ANOVA-based

generalizability theory analyses for psychological assessments. Psych 2023, 5, 249–273. [CrossRef]
89. Lee, H.; Vispoel, W.P. A robust indicator mean-based method for estimating generalizability theory absolute error indices within

structural equation modeling frameworks. Psych 2024, 6, 401–425. [CrossRef]
90. Deng, L.; Chan, W. Testing the difference between reliability coefficients alpha and omega. Educ. Psychol. Meas. 2017, 77, 185–203.

[CrossRef] [PubMed]
91. Paulhus, D.L. Measurement and control of response bias. In Measures of Social Psychological Attitudes; Robinson, J.P., Shaver, P.R.,

Wrightsman, L.S., Eds.; Academic Press: San Diego, CA, USA, 1991; Volume 1, pp. 17–59.
92. Zeng, B.; Wen, H.; Zhang, J. How does the valence of wording affect features of a scale? The method effects in the Undergraduate

Learning Burnout Scale. Front. Psychol. 2020, 11, 585179. [CrossRef]
93. Vispoel, W.P.; Lee, H.; Chen, T. Determining when subscale scores from assessment measures provide added value. Biomed. J. Sci.

Tech. Res. 2023, 53, 45111–45113. [CrossRef]
94. Ark, T.K. Ordinal Generalizability Theory Using an Underlying Latent Variable Framework. Ph.D. Thesis, University of British

Columbia, Vancouver, BC, Canada, 2015. Available online: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24
/items/1.0166304 (accessed on 21 November 2023).

https://doi.org/10.1111/j.2044-8295.1910.tb00206.x
https://doi.org/10.1080/00273171.2018.1457938
https://www.ncbi.nlm.nih.gov/pubmed/29718726
https://doi.org/10.3102/1076998607302636
https://doi.org/10.1007/s11336-010-9158-4
https://doi.org/10.3102/1076998618788862
https://doi.org/10.1111/emip.12142
https://doi.org/10.3389/feduc.2020.00055
https://doi.org/10.1111/emip.12035
https://doi.org/10.3390/psych5020036
https://doi.org/10.1007/BF02310555
https://doi.org/10.1007/BF02289328
https://www.ncbi.nlm.nih.gov/pubmed/5243965
https://doi.org/10.1037/1082-989X.3.4.424
https://doi.org/10.1080/10705519909540118
https://doi.org/10.18637/jss.v048.i02
https://cran.r-project.org/web/packages/lavaan/lavaan.pdf
https://cran.r-project.org/web/packages/lavaan/lavaan.pdf
https://doi.org/10.1080/19312458.2012.679848
https://CRAN.R-project.org/package=semTools
https://doi.org/10.1177/0013164404266386
https://doi.org/10.1177/001316445501500401
https://doi.org/10.3390/psych3020011
https://doi.org/10.1080/10705519609540045
https://doi.org/10.1207/s15327574ijt0601_5
https://doi.org/10.1080/08957347.2023.2274573
https://doi.org/10.3390/psych5020019
https://doi.org/10.3390/psych6010024
https://doi.org/10.1177/0013164416658325
https://www.ncbi.nlm.nih.gov/pubmed/29795909
https://doi.org/10.3389/fpsyg.2020.585179
https://doi.org/10.26717/BJSTR.2023.53.008457
https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0166304
https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0166304


Mathematics 2024, 12, 1164 25 of 25

95. Vispoel, W.P.; Morris, C.A.; Kilinc, M. Using generalizability theory with continuous latent response variables. Psychol. Methods
2019, 24, 153–178. [CrossRef] [PubMed]

96. Vispoel, W.P.; Lee, H.; Xu, G.; Hong, H. Integrating bifactor models into a generalizability theory structural equation modeling
framework. J. Exp. Educ. 2023, 91, 718–738. [CrossRef]

97. Brennan, R.L.; Kane, M.T. An index of dependability for mastery tests. J. Educ. Meas. 1977, 14, 277–289. [CrossRef]
98. Brennan, R.L. Examining the dependability of scores. In R. A. Berk A Guide to Criterion-Referenced Test Construction; John Hopkins

University Press: Baltimore, MD, USA, 1984; pp. 293–332.
99. Kane, M.T.; Brennan, R.L. Agreement coefficients as indices of dependability for domain-referenced tests. Appl. Psychol. Meas.

1980, 4, 105–126. [CrossRef]
100. Webb, N.M.; Shavelson, R.J.; Haertel, E.H. 4 reliability coefficients and generalizability theory. Handb. Stat. 2006, 26, 81–124.
101. Vispoel, W.P.; Tao, S. A generalizability analysis of score consistency for the Balanced Inventory of Desirable Responding. Psychol.

Assess. 2013, 25, 94–104. [CrossRef] [PubMed]
102. Vispoel, W.P.; Xu, G.; Schneider, W.S. Using parallel splits with self-report and other measures to enhance precision in generaliz-

ability theory analyses. J. Personal. Assess. 2022, 104, 303–319. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1037/met0000177
https://www.ncbi.nlm.nih.gov/pubmed/30080056
https://doi.org/10.1080/00220973.2022.2092833
https://doi.org/10.1111/j.1745-3984.1977.tb00045.x
https://doi.org/10.1177/014662168000400111
https://doi.org/10.1037/a0029061
https://www.ncbi.nlm.nih.gov/pubmed/22867009
https://doi.org/10.1080/00223891.2021.1938589
https://www.ncbi.nlm.nih.gov/pubmed/34323619

	Introduction 
	Background 
	Partitioning of Observed Score Variance within Common Multivariate Designs 
	Multivariate ETE and CON SEMs 
	Deriving G Coefficients for More Restricted Universes of Generalization 
	Correcting Subscale Intercorrelation Coefficients for Multiple Sources of Measurement Error 
	Evaluating Subscale Added Value 
	Estimating Score Accuracy and Subscale Added Value When Changing Measurement Procedures 

	Motivation for and Purpose of the Study 
	Methods 
	Analyses 
	Results 
	Descriptive Statistics and Conventional Reliability Estimates 
	Model Fit 
	Partitioning of Total Observed Score Variance within the S-ETE and CON Designs 
	Item-Level Partitioning of Observed Score Variance within the CON Design 
	Disattenuated Correlation Coefficients 
	Subscale Added Value 
	Changing Numbers of Items and/or Occasions within the Multivariate Designs 

	Discussion 
	Overview 
	Model Fit 
	Score Accuracy and Partitioning of Variance 
	Disattenuated Correlation Coefficients 
	Subscale Added Value 
	Changing Measurement Procedures 
	Benefits of Using R with Multivariate Designs 

	Summary and Future Directions 
	References

