
Citation: Wu, Z.; Ji, B.; Yu, S.S.

Modeling and Solution Algorithm for

Green Lock Scheduling Problem on

Inland Waterways. Mathematics 2024,

12, 1192. https://doi.org/10.3390/

math12081192

Academic Editor: Elias

Olivares-Benitez

Received: 8 March 2024

Revised: 8 April 2024

Accepted: 13 April 2024

Published: 16 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Modeling and Solution Algorithm for Green Lock Scheduling
Problem on Inland Waterways
Ziyun Wu 1, Bin Ji 1,* and Samson S. Yu 2

1 School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China;
chole_wzy@csu.edu.cn

2 School of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia; s.yu@ieee.org
* Correspondence: chcujibin@csu.edu.cn; Tel.: +86-195-7312-9461

Abstract: Inland navigation serves as a vital component of transportation, boasting benefits such
as ample capacity and minimal energy consumption. However, it also poses challenges related to
achieving navigation efficiency and environmental friendliness. Locks, which are essential for inland
waterways, often cause ship passage bottlenecks. This paper focuses on a green lock scheduling
problem (GLSP), aiming to minimize fuel emissions and maximize navigation efficiency. Considering
the realistic constraints, a mixed-integer linear programming model and a large neighborhood
search solution algorithm are proposed. From a job shop scheduling perspective, the problem is
decomposed into three main components: ship-lockage assignment, ship placement subproblem, and
lockage scheduling subproblem coupled with ship speed optimization. A large neighborhood search
algorithm based on a decomposition framework (LNSDF) is proposed to tackle the GLSP. In this, the
complex lockage scheduling problem is addressed efficiently by mapping it to a network planning
problem and applying the critical path method. Numerical experiments substantiate the effectiveness
of our proposed model and a heuristic approach was used in solving the GLSPs. In the sensitivity
analysis, under three different objective weight assignments, the resulting solutions achieved average
effective ship fuel savings of 4.51%, 8.86%, and 2.46%, respectively. This indicates that our green lock
scheduling problem considering ship speed optimization can enhance ship passage efficiency while
reducing carbon emissions.

Keywords: sustainable navigation; green lock scheduling; mixed-integer linear programming; speed
optimization; discrete optimization

MSC: 90B06

1. Introduction

In the process of ship navigation, there are many bottlenecks, such as channel naviga-
tion problems before entering container ports [1,2], dams [3,4], and canals [5,6] in inland
waterway navigation. Locks, as important components in inland waterway transportation,
are also one of the major bottlenecks in the navigation process of inland waterway trans-
portation. Developed countries such as China, Europe, and North America have commonly
used inland waterways, such as the 29 single-chamber locks upstream of the Mississippi
River [7] and the 6 locks along Belgium’s Albert Canal [8]. China’s inland waterways
host over 300 locks of various sizes, including large- and medium-sized ones [9]. With the
development of inland waterways and the consequent increase in traffic volume, some
locks are experiencing capacity constraints, leading to disruptions in waterway operations.
Due to the high cost and long construction cycles of inland waterway improvement and
new channel crossings, optimizing ship scheduling processes stands out as an effective
measure to enhance the efficiency of inland waterway navigation.

To ensure the safe and orderly flow of ships through locks, it is essential to allocate lock
chambers for bidirectional ship traffic within the navigation channel. This process, known

Mathematics 2024, 12, 1192. https://doi.org/10.3390/math12081192 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081192
https://doi.org/10.3390/math12081192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2983-7344
https://doi.org/10.3390/math12081192
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081192?type=check_update&version=1

Mathematics 2024, 12, 1192 2 of 25

as lock scheduling, involves determining ship berthing positions within lock chambers and
scheduling the start times for each lock. Traditional ship lock scheduling commonly relies
on heuristic rules based on engineers’ experience to prioritize ship queues [4,10]. However,
such methods lack scientific rigor and comprehensive consideration, especially in situations
of heavy ship traffic, making effective scheduling difficult to achieve. Research on lock
scheduling can be categorized into single lock scheduling and serial locks scheduling.
The study by Passchyn et al. [11] found that the single lock of the parallel chambers
scheduling problem for optimizing ship waiting times is strongly NP-hard even without
considering the ship placement problem. Verstichel et al. [12] systematically considered
the necessary constraints of the ship placement problem and proposed an improved best-
fit heuristic two-dimensional packing algorithm to solve the ship placement problem,
and the numerical simulation results showed that the heuristic algorithm has a high
efficiency. Subsequently, the team utilized branch-and-bound [13] logic-based Benders
decomposition [14] to solve the small-scale single-lock scheduling problem with parallel
chambers accurately. But, these two accurate algorithms still struggle to solve the large-scale
single lock of the parallel chambers scheduling problem effectively. Ji et al. [15] regarded
this problem as a coupled problem of the vehicle routing problem with ship placement
scheduling and proposed an adaptive large neighborhood search and an improved best-fit
algorithm. His study marked the first successful attempt to efficiently solve the large-scale
single-lock scheduling problem with parallel chambers.

Inland waterways in China often leverage stepped channelization to enhance navi-
gation conditions, resulting in the wide-spread distribution of serial locks. Studies have
demonstrated that the joint scheduling of serial locks can maximize the overall capacity
and service levels [16,17]. Compared with the single lock scheduling problem, the ship flow
routes in the serial-lock system are more diverse, and the scheduling schemes of adjacent
locks affect each other, so the serial-lock scheduling problem has a higher complexity. In
China, there are more abundant scheduling studies for the Three Gorges-Gezhou Dam
(TGD). Yuan et al. [18] divided the TGD lock scheduling into three subproblems: lock
allocation, schedule optimization, and the ship scheduling problem, and proposed a chaotic
embedded particle swarm optimization algorithm to solve it. Zhang et al. [3] proposed a
multi-objective mathematical model for optimizing lock utilization, the average waiting
time, and ship energy consumption in the joint scheduling problem of the TGD. They
introduced a multi-objective metaheuristic algorithm (MOMA) based on fuzzy correlation
entropy for solving it. Subsequently, Zheng et al. [19] further considered the impact of the
Three Gorges ship lift and approach channel on the scheduling of the TGD, and proposed
a collaborative adaptive multi-objective algorithm (CAMOA) for solving it based on this
foundation. All of the above studies conducted in-depth research on the navigation effi-
ciency and green carbon emission objectives of the scheduling problem of the TGD locks,
but only the special staircase lock structure of the TGD was not generalized.

In terms of the general serial-lock scheduling problem (SLSP), Smith et al. [7] devel-
oped a discrete event simulation model for the passage of ships through five locks on the
upper reaches of the Mississippi River. Prandtstetter et al. [20] introduced a variable neigh-
borhood search approach for optimizing the scheduling of the nine-lock system along the
Austrian segment of the Danube River. Passchyn et al. [21] proposed a mixed-integer linear
programming model (MILP) with time-indexing and lockage-indexing for the SLSP. They
evaluated the efficacy of the CPLEX solution model on a small-scale instance, confirming
its efficiency. They analyzed the impact of scheduling rules such as first-come-first-served
(FCFS) and shortest lockage service time priority, as well as the expansion and capacity
enhancement of locks, on ship passage efficiency. However, the above studies did not con-
sider the ship placement subproblem, instead simplifying this subproblem into a knapsack
problem and a one-dimensional packing problem.

Ji et al. [22] addressed this subproblem in SLSP, developing an MILP for the general
SLSP from the perspectives of flexible job shop scheduling. They employed Gurobi for
the exact solution of the model, and the results indicated that the model constructed

Mathematics 2024, 12, 1192 3 of 25

from the job shop scheduling perspective exhibited a higher efficiency. Furthermore,
Ji et al. [23] proposed a decomposition algorithm framework for solving the general serial-
lock scheduling problem. They introduced a heuristic solving algorithm combining a
large neighborhood search and dynamic programming, effectively addressing large-scale
serial-lock scheduling problems. Additionally, they analyzed the impact of factors such as
ship priorities and uneven lockage capacities.

All of the previously mentioned studies aimed to improve ship crossing efficiency or
lock chamber utilization without considering the environmental factors of lock scheduling.
In recent years, with the continuous growth of the waterway transport volume and the
increasing advocacy of the concept of low-carbon transportation, more and more scholars
have focused on the problem of ship speed optimization in shipping. Unlike previous stud-
ies that usually regarded the navigation time of ships between water hubs as a parameter,
these scholars considered ship speed as a variable and explored the interplay between
the efficiency of navigation and the cost of “green” and low-carbon transportation [6,24].
Defryn et al. [25] focused on the passage of a single ship through a single lock and inves-
tigated the impact of optimizing the speed of a single ship on other ships from a game
theory perspective. Tan et al. [26] and Buchem et al. [27] investigated the joint schedule
design and speed optimization problem for a inland waterway service using different
approaches, but both focused on only one ship. Passchyn et al. [21] studied the passage of
ships through a serial-lock system with a single chamber. They developed a ship-lockage
assignment model based on time discretization and analyzed the impact of optimizing
ship speeds on the total ship staying time and carbon emissions. Golak et al. [28] focused
on ships passing through a serial-lock system, assuming the uninterrupted continuous
operation of the locks. They constructed an MILP to optimize the total ship staying time
and carbon emissions. It is worth noting that this study assumed the continuous and
uninterrupted operation of the locks, with fixed start times for lockage, which may not
align with real-world scheduling scenarios. Yang et al. [5] proposed a nonlinear model with
two linear approximation methods to optimize the overall cost of ship navigation from the
perspective of system optimization, and the experimental results showed the necessity and
effectiveness of considering the green objectives for ship navigation strategies. However,
the aforementioned studies utilized overly simplified descriptions of chamber capacity,
failing to address the actual ship placement issues.

This paper investigates the green lock scheduling problem (GLSP) of ships traveling
bidirectionally through serial locks, considering features such as ship placement and ship
speed optimization. The objective was to minimize both total fuel emissions and total ship
staying time. To address this, an MILP was constructed based on job shop scheduling
theory. To efficiently solve large-scale GLSPs, the problem was decomposed into subprob-
lems including lockage scheduling, ship placement, and ship-lockage assignment. A large
neighborhood search algorithm based on a decomposition framework (LNSDF) is proposed.
An innovative approach was taken to map the complex lockage scheduling subproblem,
which considers ship speed optimization, into a network planning problem. The critical
path method (CPM) was then employed to solve this mapped problem efficiently. Numer-
ical experiments demonstrated that the MILP proposed in this paper can be accurately
solved using CPLEX for small-scale GLSPs. Additionally, large-scale problems can be
effectively resolved by the LNSDF. The sensitivity analysis indicates that the GLSP model
can ensure ship passage efficiency while effectively reducing ship fuel emissions.

2. Problem Description

The green lock scheduling process studied in this paper is illustrated in Figure 1.
Several locks are distributed along the inland waterway, with each chamber being able to
both provide passage services for ships traveling upstream and downstream. The properties
of each chamber include its length, width, draft, and the operational time for a lockage.
An additional empty lockage is required between two consecutive lockages in the same
direction within the same chamber. On the waterway, there is a bidirectional flow of

Mathematics 2024, 12, 1192 4 of 25

ship traffic distributed across different times and spaces. Ships each have fixed routes to
enter or leave the series-lock systems via the main channel or tributaries. The declared
information of the ship includes the length, width, locks it needs to pass, draft, tonnage,
speed range, and distance to the first lock. In the scheduling process of the GLSP, the lock
operator needs to make decisions on three key aspects: the allocation of ships and lockages,
the determination of the optimal arrival speed of ships and the optimal opening time
of lockages, and the two-dimensional placement of ships in the lock chambers. These
decision-making processes are referred to as the ship-lockage allocation problem, the lock
scheduling problem, and the ship placement problem, respectively. Factors to be considered
throughout the decision-making process include the characteristics of each lock chamber,
the declaration information provided by the ships, the two-way ship traffic flow in the
channel, and operational constraints. The goal is to develop a lock operation schedule that
maximizes lock efficiency and minimizes ship fuel consumption.

Figure 1. Green lock scheduling diagram.

Therefore, based on these factors, the spatio-temporal constraints, such as ship at-
tributes, lock characteristics, and operational limitations, need to be considered when ad-
dressing the GLSP. Among these, the ship placement problem requires the two-dimensional
arrangement of ships within the lock chamber to be resolved. Apart from the typical
two-dimensional packing constraints, safety mooring constraints for ships within the
lock chamber also need to be taken into account. Specifically, as shown in Figure 2a, be-
sides meeting the two-dimensional packing rigidity constraint, any ship must be moored
against the inner wall of the chamber or be completely moored alongside a longer ship [12],
which will be described by the model constraints in Section 3.

(a) (b)

Figure 2. Ship placement diagram. (a) shows the diagram of examples of prohibitions and permissions
of ship placement, and (b) shows the diagram of the coordinate.

3. Proposed GLSP Model

In the GLSP, the scheduling of locks is influenced by both adjacent locks and ship
speeds. Additionally, ship routes exhibit diverse characteristics, making the problem
description complex. This paper maps the problem into a job shop scheduling problem,
introducing ship speed optimization features and fuel emission objectives to construct the

Mathematics 2024, 12, 1192 5 of 25

GLSP model. Specifically, ships are treated as jobs, locks as machines, and the process
of ships passing through multiple locks sequentially is viewed as the processing of jobs
across different machines. The ability of a lock to serve multiple ships simultaneously is
considered as the machine having the batch processing capability.

The basic assumptions of the model are as follows:

• Safety margins are incorporated within the dimensions of the ships;
• The depth of the chambers meets the draft requirements of all ships;
• The ships navigate at a constant speed within each voyage segment.

Table 1. Symbol description of MILP.

Sets
N Set of locks, indexed by n
R Set of ships, indexed by i, j
Ni Subset of N, which represents the locks that ship i passes through. |N| represents the number of locks that ship i

needs to pass through.
Ru,Rd Subset of R, which represents the upstream and downstream ships, respectively. Ru ∪Rd = R,Ru ∩Rd = ∅
Rn Subset of R, which represents the ships passing through lock n
L Set of lockages, indexed by p, q
Ln Subset of L, which represents the lockage processed in lock n
Lu,Ld Subset of L, which represents the upstream and downstream lockages, respectively. Lu ∪ Ld = L,Lu ∩ Ld = ∅
I⃗i I⃗i = (Ii1, ..., Iik, ..., Ii|Ni |), which represents the sequence of locks that ship i needs to pass through, where Ii1 and

Ii|Ni | is the origin and destination lock of ship i
Rin Set of ships that ship i can be allowed to moor at lock n
Vi The discrete speed set of ship i, Vi = vi

min, . . . , vi
max

Parameters
Ln, Wn The length and width of chamber in lock n
L, W The maximum length and width among all chambers
li, wi The length and width of ship i
ri The time when ship i arrives at the serial-lock system
pn The time for processing one lockage (lockage processing time) of chamber in lock n
λnpq The minimum interval time between lockage p and q in lock n when they are processed in the same chamber. If the

directions of p and q are opposite, it is 0; otherwise, it is the empty lock processing time of chamber in lock n
Pmax The maximum processing time among all lock chambers
Cmax The upper bound of the completion time of all ships
Din Distance that ship i travels from the previous lock (or origin) to lock n
vi

min, vi
max The minimum and maximum speed of ship i

πi The importance weight of ship i
αi The fuel consumption coefficient of ship i
Variables
δinq Binary variables, indicating whether ship i is processed by lockage q in lock n (1) or not (0)
ain Continuous variable, indicating the arrival time of ship i at lock n
Cin Continuous variable, indicating the completion time of lockage q in lock n
Pnq Continuous variable, indicating the processing time of lockage q in lock n
βnpq Binary variables, indicating whether lockage p in lock n is processed before lockage q (1) or not (0)
znq Binary variables, indicating whether lockage q in lock n is used (1) or not (0)
cin Continuous variable, indicating the time when ship i departs lock n
ξijn, µijn Binary variables indicating whether ship i is moored to the left and right of ship j in lock n (1) or not (0)
eijn Binary variable indicating whether ship i is completely located to the left of ship j in lock n (1) or not (0)
bijn Binary variable indicating whether ship i is completely located behind ship j in lock n (1) or not (0)
ωijn Binary variable, indicating whether ship i arrives at lock n later than ship j (1) or not (0)
ηijn Binary variable, indicating whether ship i and ship j are processed by the same lockage in lock n (1) or not (0)
xin, yin Integer variable, indicating the coordinates (horizontal and vertical) of ship i in lock n, Figure 2b illustrates the

location of the specific representation
τinv Binary variable, indicating whether ship i arrives at lock n with speed v (1) or not (0)

3.1. Symbol Description

The significance of the symbols involved in the mixed-integer linear programming
model (MILP) is as shown in Table 1.

Mathematics 2024, 12, 1192 6 of 25

3.2. Optimization Objectives

For the operator of the locks, improving the efficiency of lock operations to ensure
ships pass through as quickly as possible is its primary goal. For the ships, they aim to
minimize fuel consumption (carbon emissions) during their journey. Therefore, the GLSP
considers both ship passage efficiency and ship fuel emissions as two objectives. Specifically,
maximizing ship passage efficiency is described by minimizing the total ship staying time
in the serial-lock system, as shown in Equation (1).

f1 = ∑
i∈R

πi(ciI|Ni | − ri) (1)

In elucidating the correlation between ship speed and fuel consumption, we draw on
the derivations and assumptions outlined in [27]. When sailing, a ship encounters resistance
R proportional to the square of its speed v2. Accordingly, the power required (denoted
by P) can be expressed as the product of the resistance, i.e., P(v) = R(v)v. Subsequently,
from the fact that fuel consumption per unit of time is proportional to the power required,
the formula for fuel consumption per unit of ship can be derived as F(v) = αv3, where
α represents the ship’s fuel consumption coefficient. Furthermore, considering that the time
required for a ship to sail a distance D is t = D/v, we can derive the fuel consumption
for sailing a distance D as F(v, D) = αDv2. This result is consistent with the findings
of [21] and confirms our analysis. Due to the nonlinear constraints introduced by the speed
variable, we discretize the ship’s speed and introduce a binary variable τinv to linearize the
objective as Equation .

f2 = ∑
i∈R

∑
n∈Ni

(αiDin ∑
v∈Vi

(v2τinv)) (2)

In this paper, the problem is transformed into a single-objective optimization prob-
lem using weighted coefficients, and the objectives are normalized. This is represented
by Equation .

min k1
f1

F1
min

+ k2
f2

F2
min

(3)

3.3. Constraints

The model constraints consist of three components: ship-lockage assignment (Contraints
(4)–(7)), lockage scheduling (Contraints (8)–(15)), and ship placement (Contraints (17)–(39)).

Constraints (4)–(7) are the relevant constraints for ship-lockage assignment.

∑
q∈Lu

n

δinq = 1, ∀n ∈ N, i ∈ Ru
n (4)

∑
q∈Ld

n

δinq = 1, ∀n ∈ N, i ∈ Rd
n (5)

znq ≥ δinq, ∀n ∈ N, i ∈ Rn, q ∈ Ln (6)

znq ≤ ∑
i∈Rn

δinq, ∀n ∈ N, q ∈ Ln (7)

Constraints (4) and (5) indicate that each ship must be serviced by exactly one lockage
at each lock, and the direction of the lockage must be consistent with that of the ship,
respectively. Constraints (6) and (7) ensure that each activated lockage serves at least
one ship.

Constraints (8)–(15) are constraints related to lockage scheduling.

Cnq − Pnq ≥ ain + Cmax
(
δinq − 1

)
, ∀n ∈ N, i ∈ Rn, q ∈ Ln (8)

Mathematics 2024, 12, 1192 7 of 25

cin ≥ Cmax
(
δinq − 1

)
+ Cnq, ∀i ∈ R, n ∈ Ni, q ∈ Ln (9)

cin ≤ Cmax
(
1 − δinq

)
+ Cnq, ∀i ∈ R, n ∈ Ni, q ∈ Ln (10)

Constraint (8) indicates that each lockage can only start operating after the ship it
serves arrives. Constraints (9) and (10) specify that ships must depart from the lock after
the corresponding lockage has finished operating.

aiIi1 = ri + DiIi1 ∑
v∈Vi

(−
vτi,Ii1,v

)
, ∀i ∈ R (11)

aiIij = ciIi,j−1 + DiIij ∗ ∑
v∈Vi

(−
vτi,Iij ,v

)
, ∀i ∈ R, j < |Ni| (12)

∑
v∈Vi

τinv = 1, ∀i ∈ R, n ∈ Ni (13)

Constraints (11) and (12) represent that the arrival time of a ship at the lock is deter-
mined by the distance between the ship and the lock and the ship’s speed on that segment,
where v̄ denotes the reciprocal of the ship’s speed, and DiIi1 represents the distance traveled
by the ship until reaching the first ship on the route. Constraint (13) states that each ship
selects only one average speed for sailing on a segment.

Cnq − Cnp + 2Cmaxβnpq ≥ Pnp + λnpq, ∀n ∈ N, p, q ∈ Ln (14)

Cnp − Cnq + 2Cmax
(
1 − βnpq

)
≥ Pnq + λnpq, ∀n ∈ N, p, q ∈ Ln (15)

Pnq ≥ pnznq, ∀n ∈ N, q ∈ Ln (16)

Constraints (14) and (15) represent the temporal sequence relationship between the
adjacent lockage within the same lock. The subsequent lockage must wait for the comple-
tion of the preceding lockage before it can begin. If the consecutive lockages have the same
direction, an empty lockage is required between them. Constraint (16) specifies that the
processing time of each lockage is determined by the properties of the chamber where it
is assigned.

Constraints (17)–(38) are the constraints related to ship placement, wherein Constraints
(17)–(21) are standard two-dimensional constraints used to prevent ship placement from
exceeding the dimensions of the lock chamber, and Constraints (22)–(38) are special ship
mooring constraints for lock scheduling.{

eijn + ejin + bijn + bjin +
(
1 − δinq

)
+
(
1 − δjnq

)
≥ 1

∀n ∈ N, i, j ∈ Rn, q ∈ Ln
(17)

xin − xjn + Weijn ≤ W − wi, ∀n ∈ N, i, j ∈ Rn (18)

yin − yjn + Leijn ≤ L − li, ∀n ∈ N, i, j ∈ Rn (19)

xin + wi ≤ Wn +
(
1 − δinq

)
W, ∀n ∈ N, q ∈ Ln, i ∈ Rn (20)

yin + li ≤ Ln +
(
1 − δinq

)
W, ∀n ∈ N, q ∈ Ln, i ∈ Rn (21)

In the ship placement problem, we first need to consider the constraints of the standard
2D crate, i.e., (1) the ship cannot overlap inside the lock chamber, which is modeled by
constraints (17)–(19)), and (2) the ship cannot be placed beyond the 2D dimensions of the
lock chamber, which is modeled by (20) and (21).

yjn − yin ≤
(
1 − ξijn

)
L, ∀n ∈ N, i ∈ Rn, j ∈ Rin (22)

yin − yjn ≤ lj − li +
(
1 − ξijn

)
L, ∀n ∈ N, i ∈ Rn, j ∈ Rin (23)

Constraints (22) and (23) indicate that ship i can only be moored to the left of ship j ,
whose length is greater than ships i in Rin. The Rin is the set of ships that can be moored

Mathematics 2024, 12, 1192 8 of 25

by ship i in lock n. The ships in Rin must simultaneously satisfy the following conditions:
they are in the same direction as ship i and need to pass through the lock n that ship i needs
to pass through.

xjn − xin ≤ wi +
(
1 − ξijn

)
W, ∀n ∈ N, i ∈ Rn, j ∈ Rin (24)

xjn − xin ≥ wi −
(
1 − ξijn

)
W, ∀n ∈ N, i ∈ Rn, j ∈ Rin (25)

Constraints (24) and (25) denote another condition for the mooring of ships i and j,
i.e., ship j must be adjacent to ship i in lock n.

x|R|+n,n − xin ≤ wi +
(

1 − ξi,|R|+n,n

)
W, ∀n ∈ N, i ∈ Rn (26)

x|R|+n,n − xin ≥ wi −
(

1 − ξi,|R|+n,n

)
W, ∀n ∈ N, i ∈ Rn (27)

A ship may be moored to the left side of the right wall of the lock chamber in addition
to the left side of other ships, as indicated by constraints (26) and (27). Specifically, the right
inner wall of the lock chamber of lock n is represented by a virtual ship |R|+ n, whose
position is fixed as (Wn, 0), where |R| represents the number of ships planned during the
planning period.

yjn − yin ≤
(
1 − µijn

)
L, ∀n ∈ N, i ∈ Rn, j ∈ Rin (28)

yin − yjn ≤ lj − li
(
1 − µijn

)
L, ∀n ∈ N, i ∈ Rn, j ∈ Rin (29)

xjn − xin ≤ −wi +
(
1 − µijn

)
W, ∀n ∈ N, i ∈ Rn, j ∈ Rin (30)

xjn − xin ≥ −wi −
(
1 − µijn

)
W, ∀n ∈ N, i ∈ Rn, j ∈ Rin (31)

x0n − xin ≤ −wi + (1 − µi0n)W, ∀n ∈ N, i ∈ Rn (32)

x0n − xin ≥ −wi − (1 − µi0n)W, ∀n ∈ N, i ∈ Rn (33)

Similarly, when ship i needs to be moored to the right of ship j, the spatial relationship
is ensured by Constraints (28)–(31). Constraints (32) and (33) indicate that, besides other
ships within the lockage, ship i can also be moored to the right of the left wall of the lock
chamber, represented by a virtual ship 0, with its coordinates fixed at (0,0).

∑
i∈Rn ,j∈Rin

(
ξijn + µijn

)
+ ξi,|R|+n,n + µi0n ≥ 1, ∀n ∈ N, i ∈ Rn (34)

ξijn + µjin ≤ 1, ∀n ∈ N, i ̸= j, i, j ∈ Rn (35)

Constraint (34) ensures that each ship must be moored on one side of either another
ship or the lock chamber. When two ships of equal length are present, they are likely to be
moored to each other (e.g., ships 10 & 11 in Figure 2a). This violates the safety mooring
requirement in practical scheduling, and Constraint (35) is set to prevent this situation.

δjnq − δinq ≤ ηij, ∀n ∈ N, i ̸= j, i, j ∈ Rn, q ∈ Ln (36)

δinq − δjnq ≤ ηij, ∀n ∈ N, i ̸= j, i, j ∈ Rn, q ∈ Ln (37)

ξijn + µijn ≤ ηij, ∀ i ∈ Rn, n ∈ N, j ∈ Rin (38)

Constraints (36)–(38) indicate that two ships that do not transfer through the same
lockage cannot moor to each other.

ain − ajn ≤ ωijnCmax, ∀n ∈ N, i ̸= j, i, j ∈ Rn (39)

ain − ajn ≥
(
ωijn − 1

)
Cmax, ∀n ∈ N, i ̸= j, i, j ∈ Rn (40)

cin − cjn ≤ ωijnCmax, ∀n ∈ N, i ̸= j, i, j ∈ Rn (41)

Mathematics 2024, 12, 1192 9 of 25

cin − cjn ≥
(
ωijn − 1

)
Cmax, ∀n ∈ N, i ̸= j, i, j ∈ Rn (42)

In practical lock operation scheduling, the FCFS principle may be employed. This
means that within the same lock, ships that arrive earlier should depart before ships that
arrive later. This is represented by Constraints (39)–(42).

0 ≤ ain ≤ Cmax, ∀i ∈ R, n ∈ Ni (43)

0 ≤ cin ≤ Cmax, ∀i ∈ R, n ∈ Ni (44)

0 ≤ Cnq ≤ Cmax, ∀n ∈ N, q ∈ Ln (45)

0 ≤ Pnq ≤ Pmax, ∀n ∈ N, q ∈ Ln (46)

xin ∈ {0, .., W}, yin ∈ {0, . . . , L}, ∀n ∈ N, i ∈ Rn (47)

δinq ∈ {0, 1}, ∀i ∈ R, n ∈ N, q ∈ Ln (48)

ξijn, µijn, eijn, bijn ∈ {0, 1}, ∀n ∈ N, i, j ∈ Rn (49)

βnpq ∈ {0, 1}, ∀n ∈ N, p, q ∈ Ln (50)

τinv ∈ {0, 1}, ∀i ∈ R, n ∈ Ni, v ∈ Vi (51)

Constraints (43)–(51) are type and range constraints for the variables.

zn,q+1 ≤ znq, ∀n ∈ N, q, q + 1 ∈ Ln (52)

Cn,q+1 ≥ Cnq, ∀n ∈ N, q, q + 1 ∈ Ln (53)

To speed up the model, Constraints (52) and (53) are added to enforce the order of use
and start times for lockages within the same chamber.

4. Solution Method
4.1. Solution Framework

In order to solve large-scale GLSP problems efficiently, we propose a large neighbor-
hood search algorithm based on the decomposition framework (LNSDF). Considering the
high complexity of the GLSP, we decomposed the GLSP into an allocation main problem
with two subproblems (i.e., the ship-lockage allocation main problem, the ship placement
subproblem, and the lockage scheduling problem) based on the problem characteristics.
Subsequently, effective solution methods were applied for each problem to realize the
interactive solution of the three problems.

As shown in Figure 3, LNSDF is a method that applies a decomposition framework
on the basis of LNS, with interactions between various subproblems. The ship-lockage
allocation problem, as the main problem, influences the determination of ship placement
and lockage scheduling schemes. Therefore, initially, the removal and insertion operators
of LNS are employed to reorganize the allocation relationship between ships and lockages,
a heuristic that obtains new allocation schemes. Subsequently, the two-dimensional place-
ment of ships in each lockage is carried out, using the well-established Multi-Order Best-Fit
(MOBF) method to make decisions on ship placement schemes. At this stage, if MOBF fails
to find any feasible placement schemes, the objective function value of the current solution
is set to infinity, and the solution will not be adopted. Next, for feasible solutions, decisions
are made on ship speed schemes and lockage start times. In this subproblem, two decision
variables of the objective function can be obtained: the ship speed and lockage opening
schedule (the time when ships leave the lock system), and then the objective function value
is calculated, obtaining a feasible new solution.

Mathematics 2024, 12, 1192 10 of 25

Figure 3. Solution framework for GLSP.

As for the lock scheduling problem, the start time of each lock is not only affected by
the timing of other locks, but also by the ship speed. Therefore, the difficulty in solving
the lock scheduling subproblem lies in how to optimize the ship speed while obtaining the
optimal opening scheme of the locks. To this end, we innovatively map this problem to a
network planning problem and use the critical path method (CPM) to solve it.

X =

Ω1(1) . . . Ω1(q) . . . Ω1(L1)
...

.
. . .

...
Ωn(1) . . . Ωn(q) . . . Ωn(Ln)

...
.

. . .
...

ΩN(1) . . . ΩN(q) . . . ΩN(LN)

 (54)

In LNS, it is crucial to first define the structure of the solution for the problem. For ease
of representation, ships will be divided into several ship phases based on the locks they
need to pass through. Each phase will be assigned to a lockage in the lock it passes through.
This paper designs the solution structure as shown in Equation (54), where Ωn(q) represents
the set of phases assigned to lock n’s lockage q.

The basic approach to solving the problem is to reconstruct the solution structure using
removal and insertion operators to generate feasible solutions. During the removal process,
to avoid repetitively removing the same ship passage in iterations, a tabu list is used to
store the removed ship passages. These removed ship phases are not removed again for
a certain tabu tenure. During the insertion process, the lockage’s compliance with ship
placement constraints and other relevant spatiotemporal constraints is verified to ensure

Mathematics 2024, 12, 1192 11 of 25

the feasibility of the reconstructed solution structure. With the obtained solution structure,
the CPM is employed to decide the optimal start time for ships and lockages, taking into
account ship speeds. Subsequently, the solutions are evaluated, and the acceptance of these
solutions is determined using solution acceptance rules. This iterative process aims to seek
an optimized solution and can be described using Algorithm 1.

Algorithm 1: The solution framework of LNSDF
Input: An instance of GLSP.
Output: A solution of GLSP.

1 Generating the initial solution X0. Calculating its objective function FV0 (see
Equation (3)). X∗ = X0, FV∗ = FV0;

2 while maximum out-layer iterations not met do
3 while maximum in-layer iterations not met do
4 Generate a random integer ρ, which indicate the number of ship phases

to be removed;
5 Perform the remove operator to remove ρ ship phases that are not in the

tabu list from X, and obtain a temporary solution X̄;
6 Perform the insertion operator to insert the removed phases back into X̄,

obtaining a new solution X′;
7 Perform the CPM to calculate the ship speed and lockage starting time

for X′, obtaining FV′;
8 Compare FV′ with FV∗ and determine whether to accept X′ based on

the acceptance criterion;
9 if X′ is accepted then

10 X∗ = X′, FV∗ = FV′;

11 Update tabu list.;

4.2. Initialization

A heuristic method is used to generate an initial solution. For each lock, a separate
lockage is assigned to each ship phase that needs to pass through it. The ship speed is set to
its minimum value for each ship. This process results in an initial solution structure where
ship speed information is determined.

Treating lockages as nodes and the minimum interval between lockages as edges,
the initial solution structure can be represented as a network graph. By considering the
temporal relationships between lockages, the shortest path algorithm can be employed
to determine the optimal start time for each lockage. This provides the objective function
value for the initial solution. Specific descriptions are in Section 4.4.2.

4.3. Removal and Insertion

LNS was first proposed by Shaw and Paul [29] for solving vehicle path problems,
and has been widely used in engineering fields. In addition to the vehicle path problem,
LNS and its derivative adaptive large neighborhood search (ALNS) have shown their
superb global search ability in discrete combinatorial optimization problems such as port
berth scheduling [30] and flexible job shop scheduling [31]. Based on the characteristics
of the problem, this paper constructs a tabu-based random removal operator and a deep
greedy insertion operator to reconstruct the solution structure.

For ease of presentation, we divide the process of navigating a ship between the serial-
lock systems into a number of phases, each of which represents only the ship’s situation
within a particular lock. The removal and insertion operations we perform next are both
performed on the ship phases.

Mathematics 2024, 12, 1192 12 of 25

4.3.1. Random Removal

To enhance the diversity of the solution structure, a random removal operator is used
to randomly remove a certain number (ρ) of ships from the lockages in the current solution
structure.To prevent the repetitive and inefficient removal of the same ship phases, a tabu
strategy is added. Specifically, there is a 50% chance that the removed phases will be added
to the tabu list, and they will be released after a certain number of iterations. After removing
a portion of phases from solution X, a temporary solution X̄ is obtained.

4.3.2. Deep Greedy Insertion

The deep greedy insertion operator, initially proposed by Ropke et al. [32] to solve
vehicle routing problems, is adapted in this paper for the GLSP. The basic idea is to compute
the objective function value for all possible insertion positions of the removed phases into
the temporary solution X̄, considering all feasible insertion locations.The determination
conditions for the feasible positions are as follows: Some of these constraints are implicitly
satisfied by the setup of the solution structure (Contraints (6) and (7)). The other part of the
constraints requires feasibility determination, such as the operation constraints (Constraints
(4) and (5)) and the ship placement constraints.

If the lockage to be inserted is an existing lockage, it is necessary to determine whether
all the ships in the lockage satisfy the ship placement constraints (Constraints (17)–(38)).
If the insertion violates these constraints, the objective function value is set to infinity.
The best insertion position and corresponding objective function value for each removed
phase are recorded. Then, phases are inserted into their optimal positions in descending
order of the objective function value, resulting in a new solution X′.

The feasibility check for ship placement is achieved through MOBF. This algorithm
was initially proposed by Verstichel et al. [33] for solving the ship placement problem and
has been proven to have good computational efficiency. The key purpose of the MOBF
algorithm is to determine the lock chamber arrangement scheme for the given lockage
by sorting the ships based on width, length, or area, and adjusting gap sizes after each
placement to maximize the safe and efficient placement of ships within the lock chamber.
Algorithm 2 describes the specific steps of the deep greedy insertion operator.

Algorithm 2: Deep Greedy Insertion

Input: A temporary solution X̄, set of phases removed R̄.
Output: A feasible solution X′.

1 while R̄ ̸= ∅ do
2 for k ∈ R̄ do
3 Obtain the set Θk of feasible insertion locations of phase k for the

temporary solution X̄;
4 Perform MOBF determination and obtain a two-dimensional placement

scheme for the ship in the lock chamber;
5 Calculate the objective function for each insertion position, FVb(k, p),

∀p ∈ Θk;
6 Record the insertion position that minimizes the objective function of

ship i as the optimal insertion position, p̂k,
p̂k = argminp∈Θk

{FVb(k, p)};

7 Insert phase k̂ = argmink∈R̄{minp∈Θk FVb(k, p)} into its optimal position p̂k;
8 R̄ = R̄− k, Updating the solution structure X̄;

4.4. Lockage Scheduling Subproblem

With sailing speed as a parameter to customize the inputs, lockage scheduling at a
serial-lock system can be described as a shortest-path problem, and finding the optimal
start time of lockages can be translated into finding the shortest path [23]. However, in the

Mathematics 2024, 12, 1192 13 of 25

GLSP, ships’ speed is considered a variable, so this approach cannot be directly applied
to the GLSP. Therefore, from the perspective of job shop scheduling, each ship’s transit
through a lock is analogized to a workpiece’s processing step, with lockage representing a
batch of these processing steps. The fuel consumption incurred during the ship’s journey
is the resource consumption during the process. As a result, lock scheduling, considering
speed optimization, is mapped to the job shop scheduling problem, considering the balance
of resource consumption. The problem is described and a network planning diagram is
constructed, followed by its resolution using the critical path method (CPM) [34].

The constraints to be considered in the lockage scheduling problem are Constraints (8)–(15).

4.4.1. Ship Speed Decision

The process of speed decision-making involves three steps: determining critical ship
phases, adjusting speed, and relaxing time constraints.

1. Determining critical ship phases

In the solution structure X, associations are established between the phases and the
lockage. Using the lockages as vertices and the ship sailing and lockage operation processes
as arcs, we can derive several paths. Among them, the longest duration path starting from
the earliest starting lockage and ending at the latest ending lockage is termed the critical
path. The lockages involved in this path are referred to as critical lockages. The latest ship
phase to arrive at the critical lockage is termed a critical phase.

As shown in Figure 4, path Q11 → Q22 → Q23 → Q14 represents the longest duration
critical path, and the latest arrival ship phases s21, s22, s12, s72 of critical lockages on this
path are termed critical phases. This process is mapped to a network planning problem,
and the critical lockages, as well as the critical ship phases that affect the overall lockage
efficiency, are determined by using the CPM.

Figure 4. Illustration of critical phase.

The specific steps for determining critical lockages and ship critical phases using the
critical path method are as follows.

Step 1 Construct the network graph. Based on the relationship between serviced
ships and lockages, a double-labeled network graph is constructed, as seen in Figure 5.
Except for the start node (0) and the end node (*), each node represents the end time of each
lockage, and the arcs describe the operation process of subsequent nodes representing the
lockage. The weight of the arcs represents the duration of the corresponding operation for
the lockage. The arcs in the graph include two types: arcs connecting two lockages, which
served the consecutive phases of the same ship (A1), and arcs connecting two consecutive
lockages in the same chamber (A2).

Mathematics 2024, 12, 1192 14 of 25

Figure 5. Double-labeled network graph.

Step 2 Compute the weights of each arc as follows. The weight of arcs in set A1 is the
sum of the sailing time and the lockage processing time (as seen in the first and second
equation of Equation (55)) , and the weight of arcs in set A2 is the sum of the lockage
interval time and the processing time (as seen in the third equation of Equation (55)).

tmp,nq =

max

 Din

∑
v∈Vi

(
−
vτinv

)
, mp = 0, ∀q ∈ Ln, n = Ii1, i ∈ R

max

cim + Din

∑
v∈Vi

(
−
vτinv

)
+ Pnq, ∀p ∈ Lm, q ∈ Ln, m, n ∈ N, i ∈ R

λnpq + Pnq, m = n, ∀p < q, p, q ∈ Ln, n ∈ N
0, nq = ∗

(55)

where tmp,nq represents the arc weight connecting node Qmp to node Qnq, which denotes the
duration of the corresponding operation, cim denotes the departure time of ship i from lock
m, λnpq represents the switching time between lockage p and lockage q in lock n, and Pnq is
the processing time of lockage q in lock n.

Step 3 Use forward pass calculations to determine the earliest start and finish times
ESnq for each node in the network graph (see Equation (56)), and employ backward pass
calculations to determine the latest start and finish times LFnq for each node in the network
graph (see Equation (57)). Let CF

nq denote the set of predecessors connected to node Qnq,
and CB

nq denote the set of successors connected to node Qnq.

ESnq =

 max
p∈CB

nq

(
ESnq + tp,nq

)
, ∀q ∈ Ln, n ∈ N

0, nq = {0}
(56)

LFnq =

 max
p∈CF

nq

(
LFnq − tnq,p

)
, ∀q ∈ Ln, n ∈ N

ESnq, nq = {∗}
(57)

Step 4 Determine critical lockages and ship phases. In Step 3, Rnq represents the
range of time that can be adjusted without affecting the overall duration (see Equation (58)).
A lockage with Rnq = 0 is considered a critical lockage. The phase with the latest arrival
time in the critical lockage is identified as the critical phase in that lockage. The path
consisting of arcs corresponding to Rnq = 0 in critical lockages forms the critical path. If the
arc corresponding to Rnq = 0 in a critical lockage belongs to A2, then the corresponding
critical phase is a virtual phase. The final set of critical phases obtained is denoted as S∗.

Rnq = LFnq − ESnq, ∀q ∈ Ln, n ∈ N (58)

Mathematics 2024, 12, 1192 15 of 25

2. Adjusting Speed

After obtaining S∗ through the CPM, adjustments need to be made to the sailing speeds
of each critical phase to reduce the completion time of the planning horizon and enhance
the overall efficiency of serial-lock system. Clearly, phases with the potential to achieve
greater efficiency with fewer resources should be prioritized for speed adjustments. Let us
assume that vik and v+ik represent the initial speed and the speed after accelerating once,
respectively, for phase k of ship i, k ∈ S∗. The contribution of each phase to the objective
function value, denoted by ϕk, is calculated based on Equations (59). By evaluating ϕk,
the sailing speeds of the critical phases are increased successively while ensuring that the
critical lockages remain unchanged, until all critical phases reach their maximum speeds or
just before the critical lockages change.

ϕk =
f1(Xvi)− f 1

(
Xv+i

)
f2

(
Xv+i

)
− f2(Xvi)

(59)

3. Relaxing Time Constraint

After adjusting the sailing speeds of critical phases, it is necessary to examine whether
there is any redundant resource usage, i.e., whether ships are waiting. This process is
known as time relaxation. Unlike adjusting the sailing speeds, this process does not
affect the start times of lockages. As mentioned earlier, the arrival time of critical phases
determines the start time of their corresponding lockages. Therefore, non-critical phases
may experience some waiting time upon arrival at the corresponding lockage. By reducing
the sailing speed of non-critical phases, the waiting time can be converted into the sailing
time, reducing fuel consumption.

This process involves traversing all non-critical phases in each lockage. First, non-
critical phases with a non-zero waiting time and current speeds not at the minimum speed
are identified. Subsequently, the speed of these phases is adjusted to the next lower level.
If reducing the speed leads to an increase in the objective function value or renders the
current solution infeasible, the reduction is abandoned, and the original sailing speed
is retained.

4.4.2. Objective Calculation

The GLSP has two objectives: the total ship’s staying time in the lock system and the
total ship’s fuel consumption, which are determined by two decision variables: the time
a ship leaves the last lock (ciI|Ni |

, ∀i ∈ R) and the ship’s speed (τinv, ∀i ∈ R, ∀n ∈ N),
respectively.

In Section 4.4.1, we obtained the ship’s speed scenario, which allows us to calculate
the ship’s total fuel consumption, and the ship’s total staying time, which needs to be
determined by making a decision on the lockage start time. If a ship’s speed is known,
the decision of lockage start time for the current solution X structure can be transformed
into a shortest path problem. The Bellman–Ford algorithm [35] can be used to solve it.

Specifically, a graph G = (V, A) is used to represent the solution structure, as shown
in Figure 6. Here, V represents the set of vertices (i.e., lockages) in the solution structure;
A represents the sets of arcs between vertices, where solid lines represent arcs between
lockages serving the same ship, and dashed lines represent arcs between lockages in the
same chamber but occur sequentially. The weights of the arcs correspond to both the sailing
time between two lockages for a ship and the switching time (λnpq) between two lockages.
Therefore, deciding the start time for each lockage is equivalent to solving a shortest path
problem, which can be achieved using the Bellman–Ford algorithm , thereby obtaining the
objective function value of the solution structure.

Mathematics 2024, 12, 1192 16 of 25

Figure 6. Schematic diagram of the precedence relations of different lockages. O represents the origin,
and * represents the destination.

4.5. Acceptance Criteria

Each new solution X′ obtained after the disruption and repair operations applied to
each solution X uses the exponential Monte Carlo acceptance criterion [36] to determine
whether it should be accepted. Considering the large-scale optimization capability of the
LNS, when FV(X′) < FV(X), the new solution will be accepted. Inferior solutions will be
accepted with a probability of e−ϖ(FV(X′)−FV(X)), where ϖ is the coefficient controlling the
probability of accepting new solutions that are worse than the current one.

5. Numerical Experiments
5.1. Instance Introduction
5.1.1. First Instance Class

This class of instances utilizes the serial-lock instance proposed by Ji et al. [22] for
numerical simulation experiments. The configuration of chambers in the locks is shown
in Table 2, while the specific ship data are presented in Table 3. Specifically, there are four
locks in total. The number of ships varies between 10 and 20, with an average arrival
interval ranging from 5 to 30 min. It is assumed that the ship speed can be decided within
the range of [15, 20], and the ship speed decision segment includes the first 10 km before
reaching the first lock. There are a total of 16 scenarios comprising different proportions of
upstream and downstream ships and varying average arrival intervals for each ship size.

Table 2. Chamber configurations.

Chamber Type Dimension (m2) Processing Time (min) Switching Time (min)

SC 1600 × 13, 600 16 16
LC 2400 × 20, 000 16 16

Table 3. Information of the first instance class.

Lock and Ship Flow Configurations Instance

Number of ships 10, 20
Mean inter-arrival time (min) 5, 10, 15, 30
Upstream and downstream ratio 0.3, 0.5
Range of ship speed (km/h) [15, 20]
The name of instance 5-10-0.3
Lock configuration LC-LC-SC-LC
Distance between adjacent locks (km) (10)-10-18-25

Mathematics 2024, 12, 1192 17 of 25

5.1.2. Second Instance Class

This class of instances utilizes the instances proposed by Ji et al. [22]. The lock attributes
parameters are the same as in Table 2, with the main difference lying in the number of
locks and the average arrival interval of ships, as shown in Table 4. Specifically, there
are three locks in total. The number of ships varies between 10 and 20, with the average
arrival interval ranging from 1 to 30 min. It is assumed that the ship speed can be decided
within the range of [12, 15], and the ship speed decision segment includes the first 10 km
before reaching the first lock. For each group of different numbers of ships, 10 instances are
generated by changing the upstream and downstream traffic ratios and the average arrival
interval, resulting in a total of 20 instances.

Table 4. Information of the second instance class.

Lock and Ship Flow Configurations Instance

Number of ships 10, 20
Mean inter-arrival time (min) 1, 5, 10, 15, 30
Upstream and downstream ratio 0.3, 0.5
Range of ship speed (km/h) [12, 15]
The name of instance 1-10-0.3
Lock configuration LC-SC-LC
Distance between adjacent locks (km) (10)-12-18

All experiments in this paper were conducted on a computer equipped with an Intel(R)
Core (TM) i5-1340P CPU and 16GB of RAM. The MILP and LNSDF were implemented
using CPLEX 12.6.3 and C language, respectively.

5.2. Parameter Setting

This paper utilized the Irace software package developed by López-Ibáñez M et al. [37]
to determine the parameters and settings of LNS. The basic principle is to provide a set of
representative instances and a set of possible values for each parameter. Then, using an
iterative racing method, combinations of parameter values are adjusted to approach the
optimal solution as closely as possible.

The method involves three steps:

1. Randomly sampling parameters within a specific range, with the probability of selec-
tion following a specific distribution;

2. Comparing the sampled parameters and selecting the current optimal configuration
based on the performance of the objective function values;

3. Updating the current optimal parameters and repeating the experiments until the
stopping conditions are met. For each of the two instance classes, one instance is
randomly selected for applying the sampled parameters, with the objective weights
set at k1 = 0.6, k2 = 0.4.

All instances are run 20 times under the same set of parameters, ultimately outputting
a set of optimal parameters, as shown in Table 5.

Table 5. Parameters and settings of the LNSDF.

Parameters Description Tuned Value

ρ Removes the degree of destruction in the operator Random value in the range of
(1, 0.5(∑i∈R|Ni| − RT

1))
ε Reaction factor in weight adjustment process 0.1
Ψ Maximum number of LNSDF iterations (outer iteration) 20
ψ The maximum number of iterations of inner iteration min (50, max (|R|, 20))
ϖ Index threshold parameter of Monte Carlo accep-

tance criteria
0.3

ξ The tabu period of ship phase in the tabu table 5
1 RT represents the phase of the ship in the current tabu table.

Mathematics 2024, 12, 1192 18 of 25

5.3. Experiment of GLSPs

This section of the experiment utilizes the first instance class and conducts experiments
for four different sets of objective weights: k1 = 0.8, k2 = 0.2, k1 = 0.6, k2 = 0.4, k1 = 0.4,
k2 = 0.6, and k1 = 0.2, k2 = 0.8. The experiments consider the FCFS principle for ships,
where the importance weight for all ships (πi, i ∈ R) is 1, and the ship fuel consumption
coefficient (αi, i ∈ R) is 1.049.

To facilitate a clearer comparison between the performance of the LNSDF method
and the deterministic method, this study contrasts the average objective function values
obtained by MILP and LNSDF over 20 computations. Additionally, to provide a more
intuitive comparison of their solutions, the concept of relative deviation (RD) is introduced
(see Equation (60)), where FVLNSDF(i) represents the objective function value obtained by
the LNSDF algorithm in the i-th computation.

RD =

(
20

∑
i=1

FVLNSDF(i)− FVMILP

)
/FVMILP (60)

The comparison results between MILP and LNSDF under various lockage configu-
rations are shown in Tables 6 and 7. In all 16 instances, MILP could optimally solve eight
small-scale instances, with an average computation time of 3751.04 s. However, as the size
of the instances increased, the solving time required by MILP rapidly escalated. When
the number of ships exceeded 10, MILP failed to obtain the optimal solution within two
hours. In contrast, the proposed algorithm (LNSDF) could achieve high-quality solutions
in a shorter time. The average differences between LNSDF and MILP under various objec-
tive weights were −0.37%, −0.56%, −0.88%, and −0.83%, respectively. The results of the
instances indicate that LNSDF can obtain superior solutions to MILP in a shorter amount
of time.

A comparison of the solution obtained using MILP solving with the lower bound
of the solution and the LNSDF algorithm is given in Figure 7. First, the results of MILP
and LNSDF were similar or equal in some instances. With the four objective weight
configurations, MILP was able to optimally solve the algorithm for all 10 ships with a
Gap value of 0. With the 20-ship algorithm, the solutions and the lower bounds of MILP
and LNSDF were very close to each other in the instances of 5 and 10 min ship intervals,
suggesting that both methods are able to find a similar optimal solution in these instances.
However, the Gap values of MILP with its lower bound were relatively more significant
in the arithmetic case of ship arrival time of 15 vs. 30 min, and the results with LNSDF
were more divergent. This was more evident in the objective configuration with weights
k1 = 0.6, k2 = 0.4 and k1 = 0.6, k2 = 0.4. This may be due to the fact that when the ship
arrival time interval is close to or more than 1 unit of lockage operation time, it is more
difficult for MILP to balance the two objectives of ship speed and lock crossing efficiency
when scheduling lockages. When dealing with complex integer programming problems,
the CPLEX branch-and-bound algorithm searches the entire solution space to find the
optimal solution. However, due to the NP difficulty of integer programming problems,
searching the entire solution space can be very expensive and there may be a large number
of branches and constraints in the solution space. This may result in the inability to find a
globally optimal solution in a given time, thus producing a significant difference from the
lower bound.

In this case, the LNSDF algorithm found a solution similar to the MILP algorithm
in a more advantageous solution time, which demonstrates the ability of the LNSDF to
efficiently solve larger scale GLSPs. In addition, the lower bound of the solution provides
valuable information compared to the solution. If the solution of the MILP or LNSDF
algorithm is close to or equal to the lower bound of its corresponding solution, this indicates
that the resulting solution may be close to the optimal solution.

Mathematics 2024, 12, 1192 19 of 25

0.5

0.6

0.7

0.8

0.9

1.0

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Intsance

 MILP
 LNS-DF
 LOW BOUND

10 ships 20 ships

(a) k1 = 0.8, k2 = 0.2

0.5

0.6

0.7

0.8

0.9

1.0

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Intsance

 MILP
 LNS-DF
 LOW BOUND

10 ships 20 ships

(b) k1 = 0.6, k2 = 0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Intsance

 MILP
 LNS-DF
 LOW BOUND

10 ships 20 ships

(c) k1 = 0.4, k2 = 0.6

0.5

0.6

0.7

0.8

0.9

1.0

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Intsance

 MILP
 LNS-DF
 LOW BOUND

10 ships 20 ships

(d) k1 = 0.8, k2 = 0.2

Figure 7. Comparison of upper and lower bounds obtained from CPLEX solution with LNSDF solution.

From Figure 8, it can be observed that, as the weight of the fuel emission objective
k2 increased, the overall fuel consumption of ships gradually decreased, indicating that
the scheduling scheme tended to prioritize the low-fuel objective. In practical scheduling
processes, the operators of lockage facilities can adjust the weights of different objectives
according to different traffic scenarios. When the lockage capacity is insufficient, greater
weight can be given to the lockage efficiency objective to ensure ships pass through the
lockage as quickly as possible. Conversely, greater weight can be given to the fuel emission
objective to minimize ship fuel emissions while ensuring smooth ship passage conditions.
Figure 9 gives a schematic diagram of the optimal solution for instance 5_10_0.3, which
contains the ship-lockage assignment information, lockage opening time information, ship
speed information, and ship placement information, demonstrating that the proposed
MILP with the LNSDF is capable of proposing an effective and high-quality solution to the
practice GLSP.

10

20

30

40

To
ta

l S
hi

ps
 F

ue
l C

on
su

m
pt

io
n(

g/
km

) k1=0.8,k2=0.2
 k1=0.6,k2=0.4
 k1=0.4,k2=0.6
 k1=0.2,k2=0.8

10 Ships 20 Ships

Figure 8. Total fuel consumption of ships with different objective weights.

Mathematics 2024, 12, 1192 20 of 25

Table 6. Comparative results of MILP and LNSDF objectives weights of k1 = 0.8, k2 = 0.2, k1 = 0.6, k2 = 0.4.

Weight k1 = 0.8, k2 = 0.2 k1 = 0.6, k2 = 0.4

Instance MILP Gap (%) Time (s) LNSDF Time (s) RD (%) MILP Gap (%) Time (s) LNSDF Time (s) RD (%)

5_10_0.3 0.7278 0.00 4.18 0.7278 1.81 0.00 0.7410 0.00 5.55 0.7410 1.37 0.00
5_10_0.5 0.6352 0.00 10.32 0.6352 1.46 0.00 0.6381 0.00 8.79 0.6381 1.16 0.00
10_10_0.3 0.6851 0.00 9.91 0.6851 2.04 0.00 0.6959 0.00 7.52 0.6959 1.61 0.00
10_10_0.5 0.6585 0.00 55.44 0.6585 2.46 0.00 0.6698 0.00 70.54 0.6698 2.08 0.00
15_10_0.3 0.8385 0.00 22.52 0.8385 1.98 0.00 0.8010 0.00 26.08 0.8010 1.70 0.00
15_10_0.5 0.8505 0.00 54.67 0.8505 1.79 0.00 0.7852 0.00 35.16 0.7852 1.46 0.00
30_10_0.3 0.9519 0.00 446.62 0.9519 0.80 0.00 0.8500 0.00 246.19 0.8500 0.80 0.00
30_10_0.5 0.8568 0.00 125.87 0.8568 2.05 0.00 0.8165 0.00 148.26 0.8165 1.62 0.00
5_20_0.3 0.6766 5.02 7203.00 0.6751 11.68 −0.22 0.6878 1.08 7205.30 0.6877 14.94 −0.01
5_20_0.5 0.6021 7.11 7204.58 0.5900 12.13 −2.01 0.5982 4.67 7200.28 0.5890 14.69 −1.54
10_20_0.3 0.6790 6.38 7205.80 0.6735 22.13 −0.81 0.6729 26.25 7209.89 0.6620 28.65 −1.62
10_20_0.5 0.6512 5.30 7203.11 0.6487 12.23 −0.38 0.6390 6.29 7205.45 0.6338 15.03 −0.81
15_20_0.3 0.7001 29.42 7203.11 0.6936 27.54 −0.93 0.6893 2.27 7200.00 0.6868 27.45 −0.36
15_20_0.5 0.7982 39.06 7200.31 0.7908 28.41 −0.93 0.7759 18.23 7201.02 0.7711 28.15 −0.62
30_20_0.3 0.8126 28.82 7200.45 0.8095 19.60 −0.38 0.7797 25.23 7204.59 0.7619 18.77 −2.28
30_20_0.5 0.7498 15.05 7200.53 0.7482 27.00 −0.21 0.7374 24.29 7200.91 0.7248 25.32 −1.71

Ave 0.7430 8.51 3646.90 0.7396 10.94 −0.37 0.7236 6.77 3635.97 0.7197 11.55 −0.56

Table 7. Comparative results of MILP and LNSDF objectives weights of k1 = 0.4, k2 = 0.6, k1 = 0.2, k2 = 0.8.

Weight k1 = 0.4, k2 = 0.6 k1 = 0.2, k2 = 0.8

Instance MILP Gap (%) Time (s) LNSDF Time (s) RD (%) MILP Gap (%) Time (s) LNSDF Time (s) RD (%)

5_10_0.3 0.7483 0.00 5.54 0.7483 1.25 0.00 0.7711 0.00 7.26 0.7711 1.68 0.00
5_10_0.5 0.6898 0.00 4.03 0.6898 1.26 0.00 0.7023 0.00 4.02 0.7023 1.38 0.00
10_10_0.3 0.7059 0.00 32.36 0.7059 2.12 0.00 0.6344 0.00 51.44 0.6344 2.04 0.00
10_10_0.5 0.6572 0.00 63.64 0.6572 2.33 0.00 0.6396 0.00 25.13 0.6396 2.32 0.00
15_10_0.3 0.7395 0.00 23.34 0.7395 1.73 0.00 0.7604 0.00 14.13 0.7604 1.66 0.00
15_10_0.5 0.7158 0.00 32.37 0.7158 1.26 0.00 0.7457 0.00 61.76 0.7457 1.41 0.00
30_10_0.3 0.7103 0.00 126.94 0.7103 0.66 0.00 0.7703 0.00 112.19 0.7703 0.76 0.00
30_10_0.5 0.7487 0.00 544.99 0.7487 1.22 0.00 0.7239 3.66 7202.17 0.7300 1.37 0.84
5_20_0.3 0.6903 9.28 7201.22 0.6861 14.68 −0.61 0.6882 2.37 7201.08 0.6861 16.69 −0.31
5_20_0.5 0.6142 1.93 7202.34 0.6101 15.19 −0.67 0.6247 10.60 7200.53 0.6101 17.25 −2.34
10_20_0.3 0.6754 39.92 7201.86 0.6542 27.04 −3.14 0.6682 2.05 7201.12 0.6542 30.24 −2.10
10_20_0.5 0.6982 13.32 7200.89 0.6615 15.66 −5.26 0.6874 13.13 7203.20 0.6615 16.09 −3.77
15_20_0.3 0.6835 5.64 7200.91 0.6744 26.61 −1.33 0.6853 9.04 7202.05 0.6744 21.12 −1.59
15_20_0.5 0.7287 22.56 7207.78 0.7270 24.67 −0.23 0.7312 7.46 7201.16 0.7270 21.76 −0.57
30_20_0.3 0.7097 32.16 7201.20 0.7097 17.70 0.00 0.7232 12.76 7202.03 0.7097 14.81 −1.87
30_20_0.5 0.7003 33.17 7201.16 0.6980 24.88 −0.33 0.7092 26.11 7201.01 0.6980 20.80 −1.58

Ave 0.7010 9.87 3653.16 0.6960 11.14 −0.88 0.7049 5.45 4068.14 0.6978 10.71 −0.83

Figure 9. Optimal solution obtained by LNSDF and MILP (5_10_0.3).

Mathematics 2024, 12, 1192 21 of 25

5.4. Sensitivity Analysis

This section analyzes the impact of ship importance weights and ship speed on the
GLSP without considering the FCFS constraint (i.e., constraints (40)–(43)).

5.4.1. Impact of Ship Importance Weights

This section of the experiment utilized the second instance class conducting experi-
ments under two different sets of objective weights (k1 = 0.8, k2 = 0.2, k1 = 0.2, k2 = 0.8).
The importance weight of ships πi was randomly generated among the values 1, 2, and 3,
reflecting the priority of ships in passing through the locks. The ship’s staying time and fuel
consumption under each objective weight scenario are illustrated in Figure 10. As shown
in Figure 10a,c, in the scenario where k1 = 0.8 and k2 = 0.2, out of the 20 instances,
16 instances had the highest fuel consumption for ships with an importance weight of 3.
Additionally, ships with higher importance weights tended to have lower average staying
times. This is because, under an emphasis on the efficiency of ship passage through the
locks, ships with higher importance weights were prioritized, leading them to travel at
higher speeds, thus increasing their carbon emissions during navigation. Figures 10b,d
illustrate that, under the scenario where k1 = 0.2, k2 = 0.8, the priority of ships with an
importance weight of 3 was not significantly pronounced. Compared to ships with lower
weights, the fuel consumption of ships with an importance weight of 3 was relatively low.
This is because, with the increase in k2, the scheduling scheme tended to prioritize the low-
fuel objectives of ships. In actual scheduling operations, the operators of lock systems can
assign different importance weights to different types of ships based on different scenarios.
When the lock system is operating at capacity, ships with higher importance weights can
be given priority passage.

20

30

40

50

60

70

80

A
ve

ra
ge

 w
ai

tin
g

tim
e

of
 sh

ip
s (

m
in

)

 w=3
 w=2
 w=1

10 ships 20 ships
(a) k1 = 0.8, k2 = 0.2

20

30

40

50

60

70

80

A
ve

ra
ge

 w
ai

tin
g

tim
e

of
 sh

ip
s (

m
in

)

 w=3
 w=2
 w=1

10 ships 20 ships
(b) k1 = 0.2, k2 = 0.8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
 w=3
 w=2
 w=1

Sh
ip

 fu
el

 c
on

su
m

pt
io

n(
g/

km
)

10 ships 20 ships
(c) k1 = 0.8, k2 = 0.2

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
 w=3
 w=2
 w=1

Sh
ip

 fu
el

 c
on

su
m

pt
io

n(
g/

km
)

10 ships 20 ships
(d) k1 = 0.2, k2 = 0.8

Figure 10. Impact of ship importance weights on dwell time and fuel consumption with different
objectives weights.

Mathematics 2024, 12, 1192 22 of 25

5.4.2. The Impact of Ship Speed Optimization

In these experiments using the second instance class, we aimed to verify the impact of
considering speed optimization on GLSP scheduling solutions. We conducted comparative
experiments between LNSDF-NSO (LNSDF without speed optimization, excluding the
CPM part) and LNSDF.

To keep the parameters of LNSDF-NSO consistent with those of LNSDF, the naviga-
tional distance between all locks was set to 10km, and the decision range of navigational
speed was set to 15 km/h to 20 km/h in LNSDF, which corresponds to the navigational
time of the ship between 20 min and 30 min. Since LNSDF-NSO does not adjust the sailing
speed, the sailing time of ships obeyed a uniform distribution U(20, 30) in LNSDF-NSO.

Then, LNSDF was employed to solve the results of the GLSP under the three objective
weighting scenarios: k1 = 0.2, k2 = 0.8; k1 = 0.6, k2 = 0.4; k1 = 0.8, k2 = 0.2.

The effectiveness of ship speed optimization was evaluated using the indicator of fuel
savings efficiency θ, as defined in Equation (61). Here, f ′1 represents the total time ships
spent waiting without considering speed optimization, and f ′2 is calculated based on the
preset travel times obtained without considering speed optimization. f1 and f2 then denote
the objective values obtained by considering the speed optimization.

θ
(g

km

)
=

f
′
2 − f2

f1 − f ′1
∗

max
(

f1, f
′
1

)
(

max
(

f2, f ′2
))2 (61)

Table 8 compares the results of LNSDF considering and not considering speed opti-
mization (LNSDF-NSO) under three different objective weight scenarios. The average fuel
efficiency savings rates provided by LNSDF for the three solution scenarios were 4.51%,
8.86%, and 2.46%, respectively. This indicates that the ship speed optimization method
CPM introduced by LNSDF achieved some effectiveness in reducing ship fuel emissions.

Table 8. Average of LNSDF results for each weight compared to the LNSDF-NSO.

k1 = 0.8, k2 = 0.2 k1 = 0.6, k2 = 0.4 k1 = 0.2, k2 = 0.8 LNSDF-NSO

Instance f1 f2 θ(%) f1 f2 θ(%) f1 f2 θ(%) f1
′ f2

′

1_10_0.3 3477.0 30.0 6.8 3518.0 25.6 9.6 4964.0 25.6 2.4 3212.0 37.1
1_10_0.5 3596.0 35.0 5.8 3654.0 29.1 8.5 5403.0 29.1 2.0 3333.0 42.8
5_10_0.3 3725.0 30.2 7.5 3756.0 26.8 9.2 5288.0 26.8 2.3 3416.0 40.2
5_10_0.5 3478.5 28.3 5.7 3564.3 21.2 11.7 4902.0 21.0 3.2 3239.0 32.4
10_10_0.3 3870.0 35.8 2.0 3989.0 25.6 10.2 4798.0 25.6 3.6 3660.0 37.3
10_10_0.5 3666.0 31.1 4.7 3711.6 23.4 11.0 4910.0 23.3 3.1 3388.0 35.6
15_10_0.3 3973.3 33.9 2.4 4104.3 22.4 11.5 5659.0 22.1 3.1 3731.0 35.8
15_10_0.5 4139.0 30.5 4.5 4244.0 22.4 12.8 5234.0 21.0 4.4 3921.0 33.1
30_10_0.3 4749.0 27.3 1.1 4824.1 19.3 17.5 5289.0 17.5 9.2 4523.0 27.7
30_10_0.5 4891.4 36.9 3.8 4991.0 26.1 11.8 6696.0 24.5 3.1 4622.0 40.3
1_20_0.3 6849.8 45.8 5.7 6961.0 43.1 5.4 9699.0 43.1 1.5 6285.0 66.2
1_20_0.5 6727.0 48.0 4.8 6760.4 43.2 5.9 9555.0 43.1 1.5 6162.0 65.4
5_20_0.3 7895.6 56.4 4.4 7969.7 49.1 5.5 16,304.0 49.0 0.8 7308.0 74.9
5_20_0.5 7512.7 48.2 5.1 7606.0 42.0 6.0 10,413.0 42.0 1.7 6894.0 67.0
10_20_0.3 8303.0 52.0 4.7 8418.0 42.0 6.9 12,684.0 42.0 1.4 7750.0 65.3
10_20_0.5 8198.1 54.7 4.0 8382.6 44.7 5.8 11,478.0 43.1 1.6 7678.0 65.6
15_20_0.3 9056.3 51.4 5.6 9222.0 45.5 5.9 16,301.0 45.5 1.0 8449.0 69.6
15_20_0.5 10,942.7 56.1 5.9 11,024.0 50.1 6.9 19,698.0 50.1 0.9 10,320.0 74.9
30_20_0.3 11,031.6 57.6 4.1 11,143.1 45.8 7.7 18,576.0 45.5 1.1 10,457.0 67.1
30_20_0.5 12,285.1 67.2 1.8 12,662.1 45.6 7.2 19,432.0 45.5 1.3 11,779.0 70.9

Ave 6418.4 42.8 4.5 6525.3 34.7 8.9 9864.2 34.3 2.5 6006.4 52.5

As shown in Table 8, across the three scenarios, the solutions provided by LNSDF
achieved ship speed optimization without significantly increasing ship waiting times at the
locks, effectively balancing the objectives of ship fuel consumption and waiting time. In the
scenario where k1 = 0.2 and k2 = 0.8, the influence of the speed decision operator led to a
slight increase in ship waiting times in LNSDF solutions compared to those of LNSDF-NSO.
However, the corresponding total fuel consumption of ships decreased. This is because,

Mathematics 2024, 12, 1192 23 of 25

even when only considering the efficiency of ship passage as the objective, LNSDF still
optimizes ship speeds to some extent, reducing fuel consumption.

In the scenario where k1 = 0.6 and k2 = 0.4, the average fuel savings rate of the
obtained solutions was highest among the three scenarios. This is because optimizing both
ship waiting times and fuel consumption simultaneously can lead to more environmentally
friendly ship passage plans without significantly reducing passage efficiency.

In the scenario where k1 = 0.8 and k2 = 0.2, introducing ship speed optimization
methods can effectively reduce ship fuel emissions. In practical scheduling, by adjusting
scheduling strategies and objective weights, a balance can be achieved between ship
fuel consumption and waiting time objectives. This ensures efficient operations while
minimizing ship fuel emissions.

6. Conclusions

This study investigates the green lock scheduling problem (GLSP) in the process
of ship passage through a serial-lock system. Considering practical factors such as ship
placement, an MILP was constructed with the objectives of maximizing lockage efficiency
and minimizing ship navigation fuel emissions. To efficiently solve the large-scale GLSP,
the problem was decomposed into ship-lockage assignment, lock scheduling, and ship
placement subproblems. Based on this problem, a decomposition framework, i.e., a hybrid
heuristic solving algorithm called LNSDF, based on the large neighborhood search and
critical path method, was proposed.

Extensive numerical simulations were conducted to validate the effectiveness of the
model and algorithm proposed in this study. The results demonstrate that the MILP
proposed in this paper can efficiently solve optimal solutions for small-scale problems
using CPLEX. Additionally, LNSDF can achieve high-quality scheduling solutions for
larger-scale GLSPs in shorter time frames. Furthermore, considering ship fuel emission
objectives can better balance lockage efficiency and ship navigation fuel emissions in
different traffic scenarios. Sensitivity analysis results indicate that optimizing ship speed
can provide more flexible lockage services. When the lock capacity is insufficient, reducing
ship speed can distribute the ship waiting time evenly throughout the navigation process,
thereby reducing ship navigation fuel emissions. At the same time, for certain important
ships, accelerating navigation can ensure a reduction in the waiting time at the serial-locks
system, thereby expediting lockage.

This study is also subject to some limitations. Firstly, the discretization of ship speeds
may result in suboptimal solutions due to the limited granularity of the decision space.
Secondly, the reliance on weighted optimization for addressing both objectives introduces
a significant dependency on the predetermined weights, potentially biasing the obtained
solutions. To address these limitations, future research could explore alternative approaches.
For instance, employing continuous optimization techniques for ship speeds could enable
the exploration of a broader solution space, leading to potentially improved scheduling
outcomes. Additionally, the investigation of multi-objective optimization algorithms that
do not require predefined weights could offer more candidate solutions.

Author Contributions: Conceptualization, Z.W. and B.J.; methodology, Z.W. and B.J.; software, Z.W.;
validation, Z.W. and B.J.; formal analysis, Z.W. and B.J.; investigation, Z.W.; resources, B.J.; data
curation, Z.W. and B.J.; writing—original draft preparation, Z.W. and S.S.Y.; writing—review and
editing, B.J. and S.S.Y.; visualization, Z.W. and S.S.Y.; supervision, B.J.; project administration, B.J.;
funding acquisition, Z.W. and B.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant num-
ber 72371250, and Central South University Graduate Research Innovation Project under Grant
No. 1053320222623.

Data Availability Statement: The datasets generated during and analyzed during the current study
are available from the corresponding author upon reasonable request.

Mathematics 2024, 12, 1192 24 of 25

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jia, S.; Li, C.L.; Xu, Z. Managing navigation channel traffic and anchorage area utilization of a container port. Transp. Sci. 2019,

53, 728–745. [CrossRef]
2. Ji, B.; Huang, H.; Samson, S.Y. An enhanced NSGA-II for solving berth allocation and quay crane assignment problem with

stochastic arrival times. IEEE Trans. Intell. Transp. Syst. 2022, 24, 459–473. [CrossRef]
3. Zhang, Y.; Zheng, Q.Q.; He, L.J.; Tian, H.W. Ship traffic optimization method for solving the approach channel and lock

co-scheduling problem of the Three Gorges Dam on the Yangzi River. Ocean Eng. 2023, 276, 114196. [CrossRef]
4. Zhang, H.; Ke, J. An Intelligent scheduling system and hybrid optimization algorithm for ship locks of the Three Gorges Hub on

the Yangtze River. Mech. Syst. Signal Process. 2024, 208, 110974. [CrossRef]
5. Yang, X.; Gu, W.; Wang, S. Optimal scheduling of vessels passing a waterway bottleneck. Ocean Coast. Manag. 2023, 244, 106809.

[CrossRef]
6. Meisel, F.; Fagerholt, K. Scheduling two-way ship traffic for the Kiel Canal: Model, extensions and a matheuristic. Comput. Oper.

Res. 2019, 106, 119–132. [CrossRef]
7. Smith, L.D.; Nauss, R.M. Investigating strategic alternatives for improving service in an inland waterway transportation system.

Int. J. Strateg. Decis. Sci. (IJSDS) 2010, 1, 62–81. [CrossRef]
8. Verstichel, J.; Vanden Berghe, G. Scheduling Serial Locks: A Green Wave for Waterbound Logistics. In Sustainable Logistics and Supply

Chains; Lu, M., De Bock, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 91–109. [CrossRef]
9. Zhao, X.; Lin, Q.; Yu, H. A co-scheduling problem of ship lift and ship lock at the Three Gorges Dam. IEEE Access 2020,

8, 132893–132910. [CrossRef]
10. Wang, X.; Qi, H.; Xiao, H.; Zhang, X.; Hu, Y.; Feng, X. Series queuing network scheduling approach to co-scheduling model of

three Gorges-Gezhou dam. J. Syst. Sci. Complex. 2010, 23, 715–726. [CrossRef]
11. Passchyn, W.; Coene, S.; Briskorn, D.; Hurink, J.L.; Spieksma, F.C.; Berghe, G.V. The Lockmaster’s Problem. Eur. J. Oper. Res. 2016,

251, 432–441. [CrossRef]
12. Verstichel, J.; De Causmaecker, P.; Spieksma, F.C.; Berghe, G.V. Exact and Heuristic Methods for Placing Ships in Locks. Eur. J.

Oper. Res. 2014, 235, 387–398. [CrossRef]
13. Verstichel, J.; De Causmaecker, P.; Spieksma, F.; Berghe, G.V. The Generalized Lock Scheduling Problem: An Exact Approach.

Transp. Res. Part E Logist. Transp. Rev. 2014, 65, 16–34. [CrossRef]
14. Verstichel, J.; Kinable, J.; De Causmaecker, P.; Berghe, G.V. A Combinatorial Benders’ decomposition for the lock scheduling

problem. Comput. Oper. Res. 2015, 54, 117–128. [CrossRef]
15. Ji, B.; Yuan, X.; Yuan, Y.; Lei, X.; Iu, H.H. An Adaptive Large Neighborhood Search for Solving Generalized Lock Scheduling

Problem: Comparative Study with Exact Methods. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3344–3356. [CrossRef]
16. Liu, C.; Qi, J.; Chu, X.; Zheng, M.; He, W. Cooperative ship formation system and control methods in the ship lock waterway.

Ocean Eng. 2021, 226, 108826. [CrossRef]
17. Li, X.; Mou, J.; Chen, L.; Huang, Y.; Chen, P. Ship–Infrastructure Cooperation: Survey on Infrastructure Scheduling for Waterborne

Transportation Systems. J. Mar. Sci. Eng. 2022, 11, 31. [CrossRef]
18. Yuan, Y.; Ji, B.; Yuan, X.; Huang, Y. Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm

optimization and heuristic-adjusted strategies. Appl. Math. Comput. 2015, 270, 74–89. [CrossRef]
19. Zheng, Q.Q.; Zhang, Y.; Guo, W.J.; Tian, H.W.; He, L.J. Solving energy-efficient lock group co-scheduling problem with ship lift

and approach channel using a collaborative adaptive multi-objective algorithm. Expert Syst. Appl. 2024, 242, 122712. [CrossRef]
20. Prandtstetter, M.; Ritzinger, U.; Schmidt, P.; Ruthmair, M. A Variable Neighborhood Search Approach for the Interdependent

Lock Scheduling Problem. In Evolutionary Computation in Combinatorial Optimization; Ochoa, G., Chicano, F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; Volume 9026, pp. 36–47. [CrossRef]

21. Passchyn, W.; Briskorn, D.; Spieksma, F.C. Mathematical Programming Models for Lock Scheduling with an Emission Objective.
Eur. J. Oper. Res. 2016, 248, 802–814. [CrossRef]

22. Ji, B.; Zhang, D.; Samson, S.Y.; Fang, X. An Exact Approach to the Generalized Serial-Lock Scheduling Problem from a Flexible
Job-Shop Scheduling Perspective. Comput. Oper. Res. 2021, 127, 105164. [CrossRef]

23. Ji, B.; Zhang, D.; Zhang, Z.; Samson, S.Y.; Van Woensel, T. The Generalized Serial-Lock Scheduling Problem on Inland Waterway:
A Novel Decomposition-Based Solution Framework and Efficient Heuristic Approach. Transp. Res. Part E Logist. Transp. Rev.
2022, 168, 102935. [CrossRef]

24. Xie, W.; Xu, S.; Zhang, N.; Liu, J.; Yin, K.; Mao, L. Ship Speed Optimization Method in Canal Environments Considering Waiting
Times for Crossing Locks. J. Mar. Sci. Eng. 2024, 12, 375. [CrossRef]

25. Defryn, C.; Golak, J.A.P.; Grigoriev, A.; Timmermans, V. Inland Waterway Efficiency through Skipper Collaboration and Joint
Speed Optimization. Eur. J. Oper. Res. 2021, 292, 276–285. [CrossRef]

26. Tan, Z.; Wang, Y.; Meng, Q.; Liu, Z. Joint ship schedule design and sailing speed optimization for a single inland shipping service
with uncertain dam transit time. Transp. Sci. 2018, 52, 1570–1588. [CrossRef]

27. Buchem, M.; Golak, J.A.P.; Grigoriev, A. Vessel Velocity Decisions in Inland Waterway Transportation under Uncertainty. Eur. J.
Oper. Res. 2022, 296, 669–678. [CrossRef]

http://doi.org/10.1287/trsc.2018.0879
http://dx.doi.org/10.1109/TITS.2022.3213834
http://dx.doi.org/10.1016/j.oceaneng.2023.114196
http://dx.doi.org/10.1016/j.ymssp.2023.110974
http://dx.doi.org/10.1016/j.ocecoaman.2023.106809
http://dx.doi.org/10.1016/j.cor.2019.02.015
http://dx.doi.org/10.4018/jsds.2010040103
http://dx.doi.org/10.1007/978-3-319-17419-8_5
http://dx.doi.org/10.1109/ACCESS.2020.3009775
http://dx.doi.org/10.1007/s11424-010-7195-9
http://dx.doi.org/10.1016/j.ejor.2015.12.007
http://dx.doi.org/10.1016/j.ejor.2013.06.045
http://dx.doi.org/10.1016/j.tre.2013.12.010
http://dx.doi.org/10.1016/j.cor.2014.09.007
http://dx.doi.org/10.1109/TITS.2019.2926405
http://dx.doi.org/10.1016/j.oceaneng.2021.108826
http://dx.doi.org/10.3390/jmse11010031
http://dx.doi.org/10.1016/j.amc.2015.08.009
http://dx.doi.org/10.1016/j.eswa.2023.122712
http://dx.doi.org/10.1007/978-3-319-16468-7_4
http://dx.doi.org/10.1016/j.ejor.2015.09.012
http://dx.doi.org/10.1016/j.cor.2020.105164
http://dx.doi.org/10.1016/j.tre.2022.102935
http://dx.doi.org/10.3390/jmse12030375
http://dx.doi.org/10.1016/j.ejor.2020.10.017
http://dx.doi.org/10.1287/trsc.2017.0808
http://dx.doi.org/10.1016/j.ejor.2021.04.026

Mathematics 2024, 12, 1192 25 of 25

28. Golak, J.A.P.; Defryn, C.; Grigoriev, A. Optimizing Fuel Consumption on Inland Waterway Networks: Local Search Heuristic for
Lock Scheduling. Omega 2022, 109, 102580. [CrossRef]

29. Shaw, P. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In Principles and Practice of
Constraint Programming—CP98; Goos, G., Hartmanis, J., Van Leeuwen, J., Maher, M., Puget, J.F., Eds.; Springer: Berlin/Heidelberg,
Germany, 1998; Volume 1520, pp. 417–431. [CrossRef]

30. Liu, B.; Li, Z.C.; Sheng, D.; Wang, Y. Integrated planning of berth allocation and vessel sequencing in a seaport with one-way
navigation channel. Transp. Res. Part B Methodol. 2021, 143, 23–47. [CrossRef]

31. Cao, S.; Li, R.; Gong, W.; Lu, C. Inverse model and adaptive neighborhood search based cooperative optimizer for energy-efficient
distributed flexible job shop scheduling. Swarm Evol. Comput. 2023, 83, 101419. [CrossRef]

32. Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time
Windows. Transp. Sci. 2006, 40, 455–472. [CrossRef]

33. Verstichel, J.; De Causmaecker, P.; Berghe, G.V. An Improved Best-fit Heuristic for the Orthogonal Strip Packing Problem. Int.
Trans. Oper. Res. 2013, 20, 711–730. [CrossRef]

34. Bishnoi, N. Critical Path Method (CPM): A Coordinating Tool. Int. Res. J. Manag. Sci. Technol. 2018, 9, 459–467.
35. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2022.
36. Ayob, M.; Kendall, G. A Monte Carlo Hyper-Heuristic to Optimise Component Placement Sequencing for Multi Head Placement

Machine. In Proceedings of the International Conference on Intelligent Technologies, InTech, Halifax, NS, Canada, 13–17 October
2003; Volume 3, pp. 132–141.

37. López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L.P.; Birattari, M.; Stützle, T. The Irace Package: Iterated Racing for Automatic
Algorithm Configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.omega.2021.102580
http://dx.doi.org/10.1007/3-540-49481-2_30
http://dx.doi.org/10.1016/j.trb.2020.10.010
http://dx.doi.org/10.1016/j.swevo.2023.101419
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1111/itor.12030
http://dx.doi.org/10.1016/j.orp.2016.09.002

	Introduction
	Problem Description
	Proposed GLSP Model
	Symbol Description
	Optimization Objectives
	Constraints

	Solution Method
	Solution Framework
	Initialization
	Removal and Insertion
	Random Removal
	Deep Greedy Insertion

	Lockage Scheduling Subproblem
	Ship Speed Decision
	Objective Calculation

	Acceptance Criteria

	Numerical Experiments
	Instance Introduction
	First Instance Class
	Second Instance Class

	Parameter Setting
	Experiment of GLSPs
	Sensitivity Analysis
	Impact of Ship Importance Weights
	The Impact of Ship Speed Optimization

	Conclusions
	References

