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Abstract: Machine learning for causal inference, particularly at the individual level, has attracted
intense interest in many domains. Existing techniques focus on controlling differences in distribution
between treatment groups in a data-driven manner, eliminating the effects of confounding factors.
However, few of the current methods adequately discuss the difference in treatment group sizes. Two
approaches, a direct and an indirect one, deal with potential missing data for estimating individual
treatment with binary treatments and different treatment group sizes. We embed the two methods into
certain frameworks based on the domain adaption and representation. We validate the performance
of our method by two benchmarks in the causal inference community: simulated data and real-world
data. Experiment results verify that our methods perform well.
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1. Introduction

What outcome an intervention produces, i.e., causal inference, has been a critical re-
search topic across many domains. In traditional statistical methods, most causal inference
studies are grounded in the average causal effect of the aggregate or subgroup to obtain
the causal characteristics of the population [1–3]. For example, researchers are interested in
the average preventive effect of flu vaccination on the population, the carcinogenic effect
of smoking on the smoking population, and the effect of running on body fat in men and
women, respectively. However, with the development of modern statistics and the advent
of the era of big data, the increasing requirements for personalized decision making, such
as achieving individual precision treatment and precise placement strategies for internet
advertising, have emerged. More researchers have realized that the method of causal
inference from the overall population is no longer applicable and have become concerned
with individual-level treatment effects (or heterogeneous effects) [4,5].

Various frameworks for causal inference have been developed, the most representative
of which are the potential outcome framework [6,7] and the structural causal model [8].
In this paper, we focus on the potential outcome framework which is proposed when
the intervention and outcome variables are known. For binary treatments t ∈ {0, 1}, we
assume that the outcomes of individual i with treatment t are unique and unaffected
by other individuals. Such outcomes are referred to as the potential outcome denoted
by Yt. We characterize each individual (also known as a unit) by a vector of context
xi ∈ X , denote m1(x) = E[Y1|X = x], m0(x) = E[Y0|X = x], and focus on the function
τ(x) = m1(x)−m0(x). τ(x) is the Individual Treatment Effect (ITE), reflecting the expected
treatment effect of t = 1 relative to t = 0 on a unit with context x. However, for each
individual, we never observe both Y1 and Y0 in the real world, which is a major challenge
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for causal inference. The statisticians overcame this problem by designing randomized
studies, making such treatment effects identifiable [9].

However, researchers in many fields often make causal inferences based on observa-
tional studies due to the low availability of randomized controlled trials (RCT). Observa-
tional data are based on empirical observations and cannot use controlled experiments
or randomly assigned treatments [10]. In observational studies, both potential outcomes
and treatments are influenced by certain factors, which are known as confounding factors.
Ignoring these factors can lead to biases and even paradoxes, which is another major chal-
lenge for estimating treatment effects [11,12]. For example, both children’s shoe size and
vocabulary are affected by age. If the age variable is ignored, it may be absurd to conclude
that the size of shoes can affect vocabulary. The important strong ignorability assumption
was introduced to make the conditional causal effect identifiable in observational studies.

Indeed, when estimating treatment effects from observational data, we face two prob-
lems, i.e., missing counterfactual outcomes and confounding bias. Many methods for
estimating ITE based on deep representation learning have been proposed to address the
above two problems. An inspiring general framework is the Counterfactual Regression
(CFR) method, where the first generalization-error upper bound for estimating ITE is
given [13]. The upper bound, consisting of the error of learning Y1 and Y0 and a measure
of the distance between two distributions p(x|t = 1) and p(x|t = 0), has similarities with
generalization bounds in domain adaptation [14,15]. Based on such an ITE error upper
bound, many recent methods have focused on learning representations regularized to
balance confounding factors by enforcing domain invariance with distributional distances.
For example, Feature Selection Representation Matching(FSRM) adopts deep feature selec-
tion and incorporates a regularizer based on the Integral Probability Metric (IPM) measure
to learn balanced representations [16]. In addition, a subsequent research approach ar-
gues that domain-invariance regularizer based on IPM is too strict and introduces a novel
regularization criterion by interpreting the loss of predictive power of domain-invariance
representation as a loss of information in the input variables [17].

The number of actual exposures observed in the data is often very small in the real
world due to exogenous variables. For example, the number of cancer patients in hospitals
who choose to undergo expensive treatment is usually a small percentage, as it usually
depends on the patient’s income level. The difficulties that arise when the probability of
treatment is near zero are commonly referred to as violations of the overlap assumption [18].
In the case of binary treatments, although the above violations rarely occur, the sample
sizes of the treated and control groups are often imbalanced, i.e., the overlap is poor. In this
case, we argue that estimators of treatment effects are not able to generalize or transport
causal findings beyond an experimental setting.

In this paper, we formally define the DTGS task as estimating individual treatment
effects with different treatment group sizes. Our work is distinct from machine learning
based on imbalanced datasets [19–21]. We focus predominantly on estimating ITE more
efficiently in the DTGS task by calibrating the sample difference between treated and control
groups. We propose two simple yet effective techniques for addressing DTGS: Minority in
Treatment Over-sampling (MTOVA) and Factual Outcome Distribution Smoothing (FODS).
Both approaches can be easily integrated into certain existing representation learning
approaches for ITE estimation. A key idea underlying them is to compensate directly or
indirectly for potential missing parts of the observed sample based on the above first ITE
generalization-error upper bound. MTOVA is proposed from a data perspective, while
FODS is proposed from an algorithmic perspective.

To verify the effectiveness of MTOVA and FODS, we conduct experiments on two
well-known public datasets of causal inference. The results show that certain existing rep-
resentation learning approaches for estimating ITE in combination with the two techniques
outperform themselves in the DTGS task. The main contributions of this research are:

• We define the DTGS task as learning ITE from observational data with different
treatment group sizes;
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• The two approaches developed in this paper, MTOVA and FODS, are easily embedded
in the existing framework for estimating ITE and can contribute to a more efficient
estimation of ITE in DTGS;

• We conduct experiments on a simulated dataset and a real-world dataset to validate
the effectiveness of our two methods.

2. Methods
2.1. Problem Setting

The space of covariates vector x is a bounded set X ⊂ Rd with distribution p(x) and
the space of continuous outcome is Y ⊂ R. Suppose that the observational data contain n
units and each unit receives binary treatments t ∈ {0, 1}. For each unit, ti = 1 means the
treated group and ti = 0 means the control group. We assume that the potential outcome of
unit i with treatment t which is denoted by Yt is unique and unaffected by other individuals
(Stable Unit Treatment Value Assumption, SUTVA). In the observational study, we face two
major challenges in estimating treatment effects, as follows:

• We never observe both Y1 and Y0 for each unit in the real world, i.e., missing the
counterfactual outcomes;

• Confounding factors produce confounding bias, leading to invalid treatment effect pre-
dictions.

Let D = {(t, Yi, xi)}N
i=1 be an observed dataset, where the treatment group has a total

of m samples and the control group has a total of n samples, with m + n = N. We define
DTGS below.

Definition 1 (DTGS). If m:n or n:m exceeds 4:1, estimating the ITE with this dataset D is called
the DTGS task.

2.2. Definitions, Assumptions, and Lemmas

Technical background in this paper including the definitions, assumptions, and lem-
mas are introduced as follows.

Assumption 1 (Consistency). The potential outcome of treatment t is equal to the observed
outcome if the actual treatment received is t.

Assumption 2 (Strong ignorability [22]). Given covariates x, treatment assignment T is inde-
pendent to the potential outcomes, i.e., (Y0, Y1) ⊥⊥ t | x, and 0 < p(t = 1 | x) < 1.

Definition 2. The average treatment effect (ATE) is:

ATE = E(Y1 −Y0) = E[E(Y1 −Y0|x)]. (1)

Definition 3. The treatment effect for unit x (ITE) is:

τ(x) := E[Y1 −Y0|x]. (2)

Definition 4. The treated and control group distributions are:

pt=1(x) := p(x|t = 1),

pt=0(x) := p(x|t = 0).
(3)

For observational data, the two distributions in Equation (3) are often significantly
distinct due to confounding factors.
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Definition 5. Let Φ : X → R be a one-to-one representation function and h: R× {0, 1} → Y be
a hypothesis over the representation spaceR. Let L: Y × Y → R+ be a loss function. The expected
loss for the unit and treatment pair (x,t) is:

lh,Φ(x, t) =
∫
Y

L(Yt, h(Φ(x), t))p(Yt|x) dy. (4)

Definition 6. The expected treated and control losses are:

ϵt=1
F (h, Φ) =

∫
X

lh,Φ(x, 1)pt=1(x) dx,

ϵt=0
F (h, Φ) =

∫
X

lh,Φ(x, 0)pt=0(x) dx.
(5)

Definition 7. Let f: X × {0, 1} → Y be a hypothesis. The treatment effect estimate of the
hypothesis f for unit x is:

τ̂f (x) = f (x, 1)− f (x, 0). (6)

Definition 8. The expected Precision in Estimation of Heterogeneous Effect (PEHE, [23]) of f is:

ϵPEHE( f ) =
∫
X
(τf (x)− τ̂f (x))2 p(x) dx. (7)

Definition 9. We denote m(t) := E[Yt|x]. The expected variance of Yt with respect to a distribution
p(x, t):

σ2
Yt

p(x, t) =
∫
X×Y

(Yt −mt(x))2 p(Yt|x)p(x, t) dYtdx,

σ2
Yt

= min{σ2
Yt
(p(x, t)), σ2

Yt
(p(x, 1− t))},

σ2
Y = min{σ2

Y0
, σ2

Y1
}.

(8)

Theorem 1. A treatment effect is called identifiable if it can be uniquely determined by the distribu-
tion of the observed variable pr(t, Y, x). Under consistency and strong ignorability, the ATE and
ITE are identifiable.

Proof. Since we assume that Yt and t are independent conditioned on x and that the
potential outcome of t = 1 (t = 0) is the observed outcome Y in t = 1 (t = 0) group,
we have:

ATE = E(Y1 −Y0)

= E[E(Y1 −Y0|x)]
= E[E(Y|t = 1, x)− E(Y|t = 0, x)].

(9)

The proof is identical for ITE.

Failure to control for confounding factors can lead to confounding bias even if the
assumption of strong ignorability is valid, according to Equation (9).

Theorem 2 (ITE error upper bound [13]). Let Φ : X → R be a one-to-one representation
function with inverse Ψ. Let h: R× {0, 1} → Y be a hypothesis. Let G be a family of functions g:
R → Y . Assume that there exists a constant BΦ > 0 and for fixed t ∈ {0, 1}, the per unit expected
loss functions lh,Φ(Ψ(r), t) obey 1

BΦ
· lh,Φ(Ψ(r), t) ∈ G. We have:
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ϵPEHE(h, Φ) ≤
2(ϵCF(h, Φ) + ϵF(h, Φ)− 2σ2

Y) ≤
2(ϵt=0

F (h, Φ) + ϵt=1
F (h, Φ) + BΦIPMG(pt=1

Φ , pt=0
Φ )− 2σ2

Y).

(10)

We are interested in learning an optimal estimate τ̂(x) minimizing ϵPEHE. Since we
rarely have access to the ground truth treatment effect τ(x) in an observational study,
we cannot compute ϵPEHE in Equation (8). However, Theorem 2 is an approximate alterna-
tive to ϵPEHE.

Corollary 1. According to the Definition 9, we have:

2(ϵt=0
F (h, Φ) + ϵt=1

F (h, Φ) + BΦIPMG(pt=1
Φ , pt=0

Φ )− (σ2
Y1

+ σ2
Y0
)) ≤

2(ϵt=0
F (h, Φ) + ϵt=1

F (h, Φ) + BΦIPMG(pt=1
Φ , pt=0

Φ )− 2σ2
Y).

(11)

The equals sign holds if and only if σ2
Y = σ2

Y1
= σ2

Y0
.

Proof. The proof is immediate, noting that:

σ2
Y = min{σ2

Y0
, σ2

Y1
} ≤

σ2
Y0

+ σ2
Y1

2
. (12)

2.3. Intuition and Theoretical Analysis of the Impact of DTGS

Theorem 2 shows that the upper bound on the ϵPEHE is composed of three main
components:

1. Predictive accuracy of factual outcomes, i.e., ϵt=0
F (h, Φ) and ϵt=1

F (h, Φ) terms;
2. Imbalance between treated and control groups in the representation space, i.e.,

IPMG(pt=1
Φ , pt=0

Φ ) term;
3. The variance of outcome Y.

We illustrate the impact of DTGS with an example. Employing the subset of IDHP
dataset [23] containing 547 control samples and 125 treated samples, we plot the frequency
histogram of the factual outcome for the different treatment groups in this dataset in
Figure 1a. We can see that the frequency histogram of factual outcomes for the treated
group with the smaller sample size has significant missing values for certain regions
compared to the control group. We have the intuition that the absence of factual outcome
is largely accompanied by the absence of features, i.e., some samples have not yet been
observed, which is most likely caused by treatment selection bias. From the experience
of extensive machine learning, the smaller the sample size, the lower the accuracy tends
to be. Therefore, we speculate that DTGS will affect the above predictive accuracy of
factual outcomes.

In addition, the other intuition is that the imbalanced variance between the treated
and control groups also affects the performance of estimating ITE. As shown in Figure 1b,
the kernel density curve of the treated group is wider compared to the control group.
Corollary 1 confirms the above intuition.

Therefore, we consider expanding the minority group to minimize the effect of missing
data and large variance differences due to treatment selection bias.

Given the impact of DTGS for estimating ITE, we propose two simple yet effective
methods: Minority in Treatment Over-sampling (MTOVA) and Factual Outcome Distribu-
tion Smoothing (FODS). We combine these two methods with some current frameworks
for estimating ITE for addressing DTGS.
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(a) IDHP dataset
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(b) IDHP dataset with MTOVA

Figure 1. Comparison on the frequency histogram of the factual outcome for the different treatment
groups before and after using MTOVA: (a) original IDHP dataset, with different treatment group
sizes. (b) IDHP with MTOVA dataset, with similar treatment group size.

2.4. Methods
2.4.1. Frameworks for Estimating ITE

Grounded on or inspired by Theorem 2, numerous methods based on deep repre-
sentation learning are proposed to solve the above two major challenges and outperform
the state-of-the-art [13,16]. The ideas of such methods are similar but the optimization
objectives are different.

Let f : X × {0, 1} → Y by a hypothesis, such that f (x, t) := h(Φ(x), t) for a represen-
tation Φ defined over X and hypothesis h defined over the output of Φ : X → R. CFR
uses the following objective, minimizing the ITE error upper bond and parameterizing
Φ(x) and h(Φ(x), t) by deep neural networks trained jointly:

min
h,Φ
∥Φ∥=1

1
n

n

∑
i=1

wi · L(h(Φ(xi), ti), Yi) + λ ·R(h)

+ α · IPMG({Φ(xi)}i:ti=0), {Φ(xi)}i:ti=1),

(13)

where L is a square loss function and R is a model complexity term. IPMG is a measure
of the distance between the control and treated group distributions (empirical) in the
representation space [24]. For two probability density functions p, q defined over U ⊆ Rd

and function family G of functions g: U → R, IPMG := sup
g∈G
|
∫

u g(u)(p(u)− q(u))du|.

The objective function of feature selection representation matching (FSRM) model is
slightly different and is simply illustrated as follows:

min − 1
n

n

∑
i=1

K

∑
j=1

(tijlog(t̂ij))

+
1
n

n

∑
i=1

wi · L(Ŷ
ti
i , Yi)

+ α · IPMWASS

+ λ ·RLASSO

+ β ·R.

(14)

The first term in Equation (14) above is the loss function for factual treatment assign-
ment prediction. The second and third terms, respectively, correspond to the same first and
third terms in the CFR objective function. The fourth term is an elastic net term based on
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LASSO [25], used for deep feature selection and regularization. The last term regularizes
the deep prediction network.

We propose two techniques that can easily be integrated into such frameworks, ensur-
ing the error of estimating τ(x) = m1(x)−m0(0) that is as small as possible and has good
out-of-sample performance in the DTGS task.

2.4.2. Minority in Treatment Over-Sampling

Based on the above analyses of the impact of DTGS, we argue that a data-based
solution should have the following performances.

• Able to expand minority samples: The “head” of predicting the factual outcome of the
minority is often poorly generalized in DTGS, resulting in a larger prediction error on
the test set.

• Able to compensate for potential missing data: If the sample size of a treatment
group is small, the sample distribution tends to be sparse even after characterization
Φ. In other words, the value space of {Φ(xi)}i:ti=0 and {Φ(xi)}i:ti=1 is extremely
different, seeing the t-SNE visualization of the representation of the IHDP learned by
CFRMMD (Figure 2b). In this case, according to Equation (13), it is difficult to find a
satisfactory Φ, which makes the pt=1

Φ (r) (empirical) and pt=0
Φ (r) (empirical) similar.

Therefore, the method ought to compensate for potential missing by identifying similar
but more specific regions in the feature space.

• Able to achieve variance approximation: According to Corollary 1, the upper bound is
smallest when σ2

Y0
and σ2

Y1
are close.

t=1
t=0

(a) Original data

t=1
t=0

(b) CFR WASS

t=1
t=0

(c) CFR WASS + MTOVA

Figure 2. t-SNE visualizations of IHDP: (a) the distribution of original data; (b) the balanced
representation of IHDP learned by CFR Wass; (c) the balanced representation of IHDP learned by
CFR Wass using MTOVA.

A brace of algorithms has been developed to learn from imbalanced datasets in
machine learning [19,20]. However, these methods are slightly different from the context
of this paper. The goal of our task is to learn the Φ(x) and h(Φ(x), t) such that the ϵPEHE
is small.

Inspired by the Synthetic Minority Over-sampling Technique (SMOTE), we apply the
idea of over-sampling the minority group to solve the first conjecture and second conjecture
above. To satisfy the third point, we present the variance approximation theorem.

Theorem 3 (Variance approximation). Two samples, y1 and y2, are randomly sampled from the
one-dimensional random variable Y, with the current sample variance Var1. A point y3 is randomly
selected as a new sample point on the line connecting y1 and y2, i.e., y3 = λy1 + (1− λ)y2 with
λ ∈ (0, 1). The current sample variance is Var2. We have Var2 ≤ Var1.

Proof. The proof process is shown as Theorem A1 in Appendix A.

According to Theorem 3, the variance of the three points is less than that of the original
two points after randomly synthesizing new samples on the line connecting the two points.
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Since there is no guarantee that the variance of all the samples after synthesizing the sample
points will be less than that before synthesizing, we can add a variance filtering mechanism.

In general, the variance tends to be larger for the minority group, as shown in Figure 1a.
Therefore, the minority in treatment over-sampling based on variance approximation
(MTOVA) is proposed that both over-samples the minority group and allows the variance
of the minority group to constantly approximate another group. The pseudo-code for
MTOVA is shown in Algorithm 1. We can easily embed the MTOVA into the framework
for estimating ITE, such as the CFR framework, as shown in Figure 3.

Algorithm 1 MTOVA: Minority in Treatment Over-Sampling based on Variance Approxi-
mation

1: Input: Original majority group samples D1 = {(xi, ti, yi)}M
i=1; Original minority group

samples D2 = {(xj, tj, yj)}N
j=1; The set of synthetic sample D3

2: Calculate the variance Var1 of the majority group D1
3: Calculate the variance Var2 of the minority group D2
4: while M− N ̸= 0 and Var1 ≤ Var2 do
5: for i to N do
6: Choose existing methods to synthesize a new sample j
7: Calculate the variance Varnew of D2 = {D2 ∪ j}
8: if Varnew ≤ Var2 then
9: Add j to the set of synthetic sample D3

10: D2 = {D2 ∪D3}
11: Var2 = Varnew
12: N = N + 1
13: else
14: break
15: end if
16: end for
17: end while

For the IDHP example, frequency histograms of the factual outcome and t-SNE visu-
alization of the representation using the MTOVA for the control and treated groups are
also plotted, as jointly shown in Figures 1b and 2c. Figure 1b illustrates that the potentially
missing parts of the frequency histogram of the factual outcome of the treated group after
using MTOVA are somewhat filled in. Figure 2c shows that the distribution of control
and treated groups on the representation space changed significantly after using MTOVA.
We see this change as a move towards better reflecting the overall distribution pΦ(r) in
representation Φ space.

 

Figure 3. Diagram of the CFR-MTOVA. The left half of (x̂, t̂, ŷ) marked in yellow is a schematic repre-
sentation of MTOVA. The right half of it is the neural network structure of the CFR framework [13].
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2.4.3. Factual Outcome Distribution Smoothing

We submit an additional solution for DTGS from the point of view of algorithmic
improvement in this section.

In the CFR framework, the inverse of the proportion of the control and treated group
sample sizes to the total sample size as their respective compensation factors are utilized to
calibrate for the DTGS task. The compensation factor is wi =

ti
2u + 1−ti

2(1−u) in Equation (13),

where u = 1
n ∑n

i=1 ti, lacking processing of potential missing data within the two treatment
groups, which is undoubtedly crude.

Confounding factors often make pt=1(x)and pt=0(x) different and may both differ
significantly from the p(x) in the overall population. It can be inferred that the distribution
of the control and treated groups will also significantly differ from the distribution of Y0
and Y1 in the overall population. Therefore, we attempt to adjust the weights wi for the
prediction error component of Equation (13) such that both the prediction error and IPM
could be reduced. To ensure the learned hypothesis f : X × {0, 1} → Y to able to deal with
potential missing data, we try to seek an efficient density estimator of the factual outcome
to calibration for the prediction loss.

At present, a non-parametric estimation method has been widely used in statistics
for probability density estimation, i.e., kernel density estimation. The Factual Outcome
Distribution Smoothing (FODS) proposed in this paper is based on the kernel density
estimation of Y0 and Y1 [21], convolving a symmetric kernel with the empirical density
distribution of a continuous label.

The label space is divided into n groups with the same group distance, forming
the following grouping intervals [y0, y1), . . . , [y(n−1), yn), using N = {1, 2, . . . n} ⊂ Z+ to
denote the indexes of the above intervals. p(y) is the number of training sets contained in
the interval, where y is located, i.e., the empirical label density. p̃(y′) is the effective label
density of label y′, and k(y, y′) is a symmetric kernel. p̃(y′) is the effective label density for
y, as follows:

p̃(y′) ≜
∫
Y

k(y, y′)p(y)dy. (15)

We believe that the effective label density is smoother compared to the empirical
label density when the sample better reflects the overall characteristics, see Figure 4. We
can integrate the effective density estimate p̃(y′) of the factual outcome into the general
frameworks for estimating ITE in DTGS, such as CFR, see Algorithm 2.

 ( , )k y y

y

( )p y

y

( )p y

Figure 4. Comparison of the empirical factual outcome density distribution and effective factual
outcome density distribution on the IHDP dataset (treated group). The former is on the left, the latter
on the right. The symbol * denotes a convolution operation.

The method successfully reduces the impact of DTGS by correcting for sample size
imbalance within and between the treated and control groups by wi in Equation (13).
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Algorithm 2 CFR-FODS: Counterfactual Regression with Factual Outcome Distribu-
tion Smoothing

1: Input: Factual sample D = {(xi, ti, yi)}n
i=1, scaling parameter α > 0, loss function L,

representation network ΦW with initial weights W, outcome network hV with initial
weights V, function family G for IPM, bin size ∆b, symmetric kernel distribution k(y, y′)

2: Calculate u = 1
n ∑n

i=1 ti

3: Calculate ci =
ti
2u + 1−ti

2(1−u)
4: Calculate the empirical label density distribution p(y) based on ∆b and D
5: Calculate the effective label density distribution p̃(y) ≜

∫
Y k(y, y′)p(y)dy

6: for all (xi, ti, yi) ∈ D do
7: Calculate the wi =

ci
p̃(yi)

∝ 1
p̃(yi)

8: end for
9: while not converged do

10: Sample mini-batch {(xi, ti, yi, wi)}m
i=1 from D

11: Calculate the gradient of the IPM term:
12: g1 = ∇W IPMG({Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1)
13: Calculate the gradients of the empirical loss:
14: g2 = ∇V

1
m ∑j wij L(hV(ΦW(xij), tij), yi)

15: g3 = ∇W
1
m ∑j wij L(hV(ΦW(xij), tij), yi)

16: Obtain step size scalar or matrix η with standard neural net methods
17: [W, V]← [W− η(αg1 + g3), V− η(g2 + 2λV)]
18: Check convergence criterion
19: end while

3. Experiment
3.1. Datasets

Causal inference algorithms are much more challenging than many machine learning
tasks in the choice of dataset and evaluation criteria, as we never access real ITE from
the data. We chose two benchmark datasets in the current causal inference community:
a semi-synthetic dataset [23] and a real-world dataset from the Job Corps randomized
controlled trial (RCT) in the USA [26]. By non-randomly removing a biased subset of the
two datasets for a given treatment group, we obtained the datasets suitable for the context
targeted by our method, i.e., the experimental datasets have different distributions and
sample sizes for both the control and treated groups.

3.1.1. Simulations Based on Real Data: IHDP

The IHDP dataset collected from the Infant Health and Development Program (IHDP)
is commonly used to estimate causal effects. The dataset is from a randomized controlled
trial that obtains a set of 25 covariates reflecting the characteristics of newborns and their
mothers, containing 6 continuous covariates and 19 binary covariates. The outcome of such
a dataset is the infants’ cognitive test scores. Both factual and counterfactual outcomes can
be simulated through the NPCI package [27].

We generated 1000 equally sized subsets of the IHDP dataset. Every subset contains
747 units, including 608 control units and 139 treated units. The sample size ratio between
the treated and control groups in these 1000 datasets is around 1:4, which belongs to DTGS.
We conduct experiments using 1000 datasets with a treated group ratio of approximately
0.2 and 63/27/10 for training/validation/test splits. We ensure that the training and the
validation sets have no observed sample in the testing set and report the results of the
testing set.
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3.1.2. Real-World Data: JC

The US Job Corps Experiment dataset, which contains information on weekly earnings,
criminal activity rates, and other information for disadvantaged youth who meet the criteria
and are randomly assigned to participate in the Job Corps Experiment over time, is used
to explore social issues such as the impact of educational attainment on employment,
earnings, and violent crime rates. The dataset has 9240 observations and 46 independent
variables. In the experiments in this paper, we assess the individual causal effect of the
Job Corps experiment’s random assignment scheme on weekly earnings in the fourth year
after assignment, selecting the 28 descriptive variables before the start of the assignment
scheme as background characteristics of the sample, and treating those randomly assigned
into Job Corps as the treated group and otherwise as the control group.

We artificially generate differences in treatment group distributions and sample sizes
by removing a biased subset of the control population on the set of continuous covariates.
We construct 100 datasets (800 units, 28 covariates) for the experiment, with a treated group
ratio of approximately 0.85 satisfying DTGS and 63/27/10 for training/validation/test splits.

3.2. Baseline

We compare our two methods with the following baseline methods:
Balancing linear regression (BLR) learns a relatively balanced representation space by

limiting the influence of imbalanced features on the prediction of the outcomes. BLR binds
the relative error of fitting a ridge-regression using the distribution with reverse treatment
assignment versus fitting a ridge-regression using the factual distribution. Unfortunately,
such a bound is not at all informative regarding the ϵPEHE [28].

Counterfactual regression (CFR) controls confounding factors and obtains counterfac-
tual outcomes on a new representation space, using the ideas of deep representation and
domain adaptation [15]. Compared to BLR, CFR provides an informative bound on the
absolute quality of the representation. The CFR is specifically divided into CFRMMD and
CFRWASS, which depends on the form of IPMs, such as the Wasserstein and MMD distances.

Treatment-agnostic representation network (TARNET) is a special case of CFR, whose
variant without balancing regularization, i.e., IPMG = 0 in Equation (13) [15].

Feature selection representation matching (FSRM) model maps the original feature
space into a selective, nonlinear, and balanced representation space, and then conducts
matching in the learned representation space [16].

3.3. Metric

For simulation datasets that contain counterfactual outcomes such as the IHDP dataset,
we report the PEHE loss, i.e., Equation (8) and we give a finite sample form, as follows:

ϵ̂PEHE( f ) =
1
n

n

∑
i=1

(τf (xi)− τ̂f (xi))
2, (16)

However, for real-world data, the counterfactual outcome cannot be observed, only
the nearest-neighbor approximation of PEHE loss (Equation (8)) can be taken as a measure,
such as the real JC dataset. In this case, we use the nearest-neighbor approximation of the
PEHE loss, which is:

ϵ̂PEHEnn( f ) =
1
n

n

∑
i=1

(1− 2ti)((yj(i) − yi)− τ̂f (xi))
2, (17)

where yj(i), as the surrogate for the counterfactual outcome, is the observed outcome of the
nearest neighbor j(i) to i in the opposite treatment group with tj(i) = 1− ti.
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4. Results

The performances that the MTOVA and FODS integrate with the above baseline models
for estimating ITE on the test set of the two datasets are reported in Table 1. The results in
the table contain the mean and standard errors of the results of multiple replicated trials.

We use Adam [29] to parameterize parameters in every baseline models, such as Φ(x)
and h(Φ(x), t) in CFR and Φ(x), h1(Φ(x), t), and h2(Φ(x), t) in FSRM. In MOTVA, since the
experimental datasets have both continuous and categorical variables, we chose the existing
SMOTENC to implement the over-sampling procedure. We combine FODS with the loss
inverse re-weighting scheme in the optimization objective of such baselines for estimating ITE.
The example details of hyperparameters in CFR-FODS are shown in Table 2.

Table 1. Results on IHDP and JC. Lower is better.

IDHP JC

Metrics
√

ϵPEHE
√

ϵPEHEnn

√
ϵPEHEnn

BLR 2.82 ± 0.12 5.74 ± 0.23 283.45 ± 8.15
BLR + MTOVA 2.59 ± 0.10 5.61 ± 0.22 271.18 ± 7.23
BLR + FODS 2.43 ± 0.10 5.55 ± 0.21 269.26 ± 7.29

TARNET 1.64 ± 0.03 5.69 ± 0.23 269.82 ± 7.30
TARNET + MTOVA 1.33 ± 0.07 5.52 ± 0.22 267.13 ± 6.63
TARNET + FODS 1.60 ± 0.07 5.35 ± 0.21 279.22 ± 7.31

CFRMMD 1.42 ± 0.03 5.62 ± 0.22 275.42 ± 7.13
CFRMMD + MTOVA 1.10 ± 0.06 5.48 ± 0.22 267.18 ± 6.63
CFRMMD + FODS 0.90 ± 0.03 5.50 ± 0.22 264.32 ± 10.19

CFRWASS 1.11 ± 0.02 5.66 ± 0.23 275.58 ± 6.71
CFRWASS + MTOVA 0.95 ± 0.00 5.62 ± 0.23 267.09 ± 6.64
CFRWASS + FODS 0.79 ± 0.03 5.47 ± 0.22 263.19 ± 7.22

FSRM 1.24 ± 0.04 5.67 ± 0.23 275.82 ± 6.98
FSRM + MTOVA 1.02 ± 0.03 5.58 ± 0.22 265.09 ± 6.78
FSRM + FODS 0.85 ± 0.02 5.42 ± 0.22 262.89 ± 7.02

Table 2. Hyperparameters and ranges in CFR-FODS.

Parameter Range

Kernel {gaussian, laplace}
Kernel size(odd number) {1, 3, 5, 7, 9}
Kernel parameter, σ {0.5k}10

k=1
reweight {inverse, sqrt inverse}
Imbalance parameter, α {3× 10k}2

k=−3
regularization parameter, λ {10k}2

k=−4
Num. representation layers {1, 2, 3}
Num. hypothesis layers {1, 2, 3}
Dim. representation layers {100, 200}
Dim. hypothesis layers {100, 200}
Batch size {100, 200, 500}

5. Discussion

The evaluation metrics of both the IDHP dataset and the JC dataset perform better
relative to the baseline models themselves after applying our techniques. To interpret
these results, we perform a parametric analysis and visualization based on the effects of
combining the two techniques and the CFR framework.

5.1. Discussion of MTOVA

By comparing the expected variance of Yt in Equation (9) before and after using
MTOVA, we find that MTOVA does indeed bring σ2

Y0
and σ2

Y1
closer together, as shown
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in Figure A2. We calculate that the prediction loss of CFR-MTOVA on the validation
set, i.e., L(h((Φ(xi), t), Yi) in Equation (13), is smaller than CFR. Such results verify our
intuitions in Section 2.4.2.

5.2. Discussion of FODS

By searching for the optimal hyperparameters kernel size and σ of the FODS Gaussian
kernel function, we find that FODS is sensitive to the values of the two hyperparameters
of the kernel function. The optimal value of the key hyperparameter α in the CFRNET
varies for different kernel sizes and σ, as shown in Figure A1. This verifies our inference
that FODS affects both the prediction error and the IPM term in Equation (13). Figure 5
illustrates that the CFR-FODS can quickly reduce the IPM and that the IPM at the end of
model training is smaller compared to CFR.
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Figure 5. In total, 4 of the 1000 realizations of the IDHP were randomly selected to look at the
IPM based on Wasserstein distance, a measure of the difference in distribution between the control
and treated groups in the validation set during the training of the experiment. The CFR combined
with FODS technology resulted in a faster decline and greater minimization of the IPM term during
training than on its own.

More importantly, the distribution (empirical) of control and treated groups over the
representation space at this point is more reflective of the overall distribution. Therefore,
the trained model performs well out-of-sample, as shown in Table A1, which is robust.

Based on the effects of TARNET whose optimization objective does not include the
IPM term in combination with the two methods, we are more confident that FODS affects
both the predicted loss term and the IPM term in Equation (13).



Mathematics 2024, 12, 1224 14 of 17

5.3. Comparison of MTOVA and FODS

Comparing the two methods, FODS performs better with the CFR framework and best
with CFRWASS. This is mainly because, in the MTOVA method, we only synthesize new
samples for the minority group, while the sample distribution in another group may also be
sparse. However, in the FODS method, we not only take into account differences in sample
size between treatment group groups, but also deal with imbalances in the continuous
potential outcome within each treatment group.

6. Conclusions and Future Work

We naturally introduced the DTGS-CFR task based on the CFR framework, i.e., learn-
ing individual causal effect estimators from a dataset with imbalanced sample sizes in
the treated and control groups. We propose two different perspectives, CFR-MTOVA and
CFR-FODS, to eliminate the effects of this sample size imbalance. Of these, CFR-FODS
stands out both in the IDHP dataset and the JC dataset. Although CFR-MTOVA is not as
state-of-the-art as CFR-FODS, CFR-MTOVA also performs significantly better than CFR in
the DTGS-CFR context and provides us with many open questions for discussion.

In the future, we can consider exploring the following directions:

1. According to the studies on the problem of classifying unbalanced datasets [30,31], we
can discuss whether the treatment group with the larger sample needs to be treated
as well in MTOVA;

2. There has been a lot of interest in applying machine learning methods, e.g., super-
vised learning methods such as random forests and neural networks, to causal effect
inference, known as causal machine learning (CML) [32]. We can further discuss
the effect of combining the two techniques with other CML methods, such as causal
forests (CF);

3. How our two methods affect ITE estimates for samples with different levels of imbal-
ance between treated and control groups.
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Appendix A

Theorem A1. Two samples y1 and y2 are randomly sampled from the one-dimensional random
variable Y, with the current sample variance Var1. A point y3 is randomly selected as a new sample
point on the line connecting y1 and y2, i.e., y3 = λy1 + (1− λ)y2 with λ ∈ (0, 1). The current
sample variance is Var2. We have Var2 ≤ Var1.

Proof. Firstly, denoting the mean of y1 and y2 as ȳ, we can calculate:

Var1 =
1
2

2

∑
i=1

(yi − ȳ)2 =
(x1 − x2)

2

4
. (A1)

https://www.mit.edu/~fredrikj/files/IHDP-1000.tar.gz
https://www.mit.edu/~fredrikj/files/IHDP-1000.tar.gz
https://www.dol.gov/agencies/eta/jobcorps


Mathematics 2024, 12, 1224 15 of 17

When a new sample point y3 = λy1 + (1 − λ)y2, λ ∈ (0, 1) is synthetic, we can
calculate:

Var2 =
1
3

3

∑
i=1

(yi − ȳ′)2

=
2
9
(λ2 − λ + 1)(x1 − x2)

2,

(A2)

where ȳ′ is the mean of y1, y2 and y3 and for λ ∈ (0, 1), 3
4 ≤ λ2 − λ + 1 ≤ 1 holds.

∀λ ∈ (0, 1), we have:

1
6
(x1 − x2)

2 ≤ Var2 ≤
2
9
(x1 − x2)

2 ≤ Var1 =
(x1 − x2)

2

4
. (A3)
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Figure A1. The influence of the hyperparameter σ on the PEHE of the test set of IDHP under different
α. The overall level of PEHE for the IDHP test set is small for a = 3.
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Figure A2. Comparison of the variance of the outcome of the treated and control groups before and
after using MTOVA. (a) The variance of the outcome of the treated and control groups in the original
dataset; (b) the variance of the outcome of the treated and control groups with MTOVA.
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Table A1. Within-sample and out-of-sample results on IHDP based on FODS. Lower is better.

Within-Sample Out-of-Sample

Metrics
√

ϵPEHE
√

ϵPEHEnn

√
ϵPEHE

√
ϵPEHEnn

TARNET 1.67 ± 0.03 5.47 ± 0.21 1.64 ± 0.03 5.69 ± 0.23
TARNET + FODS 1.62 ± 0.07 5.16 ± 0.20 1.60 ± 0.07 5.35 ± 0.21

CFRMMD 1.27 ± 0.04 5.54 ± 0.21 1.42 ± 0.03 5.52 ± 0.22
CFRMMD + FODS 0.95 ± 0.05 5.34 ± 0.22 0.90 ± 0.03 5.50 ± 0.22

CFRWASS 1.15 ± 0.02 5.49 ± 0.22 1.11 ± 0.02 5.66 ± 0.23
CFRWASS + FODS 0.87 ± 0.06 5.28 ± 0.28 0.79 ± 0.03 5.47 ± 0.22
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