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Abstract: Skewness and bimodality properties are frequently observed when analyzing environmen-
tal data such as wind speeds, precipitation levels, and ambient temperatures. As an alternative to
modeling data exhibiting these properties, we propose a flexible extension of the skew-logistic distri-
bution. The proposal corresponds to a weighted version of the skewed logistic distribution, defined
by a parametric weight function that allows shapes with up to three modes for the resulting density.
Parameter estimation via the maximum likelihood approach is discussed. Simulation experiments
are carried out to evaluate the performance of the estimators. Applications to environmental data
illustrating the utility of the proposal are presented.

Keywords: bimodality; density; environmental data; maximum likelihood; moments; skewness;
skew-logistic distribution; weighted distribution
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1. Introduction

The skew-logistic distribution is a continuous probability distribution used in the
modeling of skewed unimodal data. Considering a logistic baseline distribution, the
skew-logistic distribution can be understood as a member of the skewed distributions
class proposed by Azzalini [1]. Specifically, the random variable X follows a skew-logistic
distribution if its probability density function (PDF) is given by

fX(x) =
2e−x

(1 + e−x)2(1 + e−λx
) , x ∈ R, (1)

where λ ∈ R is a skewness parameter. This is usually denoted as X ∼ SLOG(λ).
The PDF in (1) is characterized by having a flared shape that can be symmetric or

asymmetric, depending on λ. If λ < 0, then a left-skewed PDF is achieved. If λ > 0, then a
right-skewed PDF is achieved. If λ = 0, then the PDF is symmetric and reduces to the PDF
of the classic logistic distribution.

The r-th moment of X ∼ SLOG(λ) can be written as E(Xr) = 2 Ir(λ), where

Ir =
∫ 1

0

[
− log

(
1 − u

u

)]r uλ

uλ + (1 − u)λ
du, r = 1, 2, . . . (2)

The skew-logistic distribution is considered a natural alternative to generalized lo-
gistic distributions discussed in Johnson et al. [2]. A comprehensive description of the
mathematical properties of the skew-logistic distribution can be found in Nadarajah [3]
and Gupta and Kundu [4].

Mathematics 2024, 12, 1287. https://doi.org/10.3390/math12091287 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091287
https://doi.org/10.3390/math12091287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2622-1245
https://orcid.org/0000-0002-2921-3056
https://orcid.org/0000-0002-9847-1497
https://doi.org/10.3390/math12091287
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091287?type=check_update&version=2


Mathematics 2024, 12, 1287 2 of 21

Although the skew-logistic distribution can perform appropriately in a wide vari-
ety of settings where the data exhibit unimodality, it performs poorly in the presence of
multimodality; that is, when there are multiple modes or peaks in the empirical distri-
bution. The presence of multimodality can be explained by different reasons, including
the existence of multiple groups or sub-populations with unique characteristics, or the
existence of latent variables that significantly influence the distribution of the popula-
tion. In such cases, a mixture distribution is one of the first alternatives considered for
modeling; however, its use involves dealing with the non-identifiability problem. An
extensive discussion of the logistic mixture model can be found in Rost [5]. Details of the
non-identifiability problem in mixture models can be consulted in Aitkin and Rubin [6] and
McLachlan et al. [7].

Various methods to introduce new flexible probability distributions can be found in the
statistical literature. There are many examples that we could mention, but the approaches
proposed in Elal-Olivero [8], Gómez et al. [9], Venegas et al. [10] and Bolfarine et al. [11]
are especially attractive when trying to propose a new bimodal distribution.

A very popular methodology in the literature is that of weighted distributions pro-
posed by Fisher [12] and Rao [13]. Suppose that X is a random variable with probability
function f (x). The weighted random variable Xw has PDF

fXw(x) =
w(x) f (x)

µw
, (3)

where w(·) is a nonnegative weight function and µw = E[W(X)] < ∞.
A particularly outstanding case of weighted distributions is obtained by considering

w(x) = x, which defines a size-biased (or length-biased) distribution. Size-biased distri-
butions arise naturally in applied fields, such as reliability and survival analysis, when
individuals or mechanical units are sampled with unequal probability due to the design of
the experiment or due to the existing unequal probability of detection.

In this paper, we propose a weighted version of the skew-logistic distribution that
can present asymmetric shapes with up to three modes. The new distribution arises
from Equation (3), considering that f (·) is the PDF of the skew-logistic distribution and
w(·) is a parametric function that we will describe in Section 2. We provide evidence
that the performance of the new distribution, being flexible both in skewness and in
shapes involving bimodality, can outperform important distributions in the literature, even
outperform the logistic mixture model.

The rest of this article is organized as follows. In Section 2, fundamental properties
of the new distribution, such as the PDF, cumulative distribution function, raw moments,
and Fisher’s skewness coefficient, are derived. In Section 3, parameter estimation via
the maximum likelihood method is discussed. In Section 4, an application example that
considers two environmental datasets illustrates the usefulness of the proposal. Finally,
Section 5 reports some concluding remarks.

2. The New Distribution and Its Properties

This section proposes the new probability distribution and studies some of its funda-
mental properties, such as the PDF, the cumulative distribution function (CDF), and the
raw moments. In addition, a detailed description of the PDF shapes is developed.

2.1. Weighted Skew-Logistic Distribution

The following proposition presents the PDF of the new distribution.

Proposition 1. Let X ∼ SLOG(λ) and w(·) be a parametric function given by

w(x) =
1

1 + ακλ

[
1 + α

(
x − µλ

σλ

)4
]

, x, λ ∈ R, α > 0,
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where

µλ = E(X) = 2 I1,

σ2
λ = Var(X) = 2

(
I2 − 2 I2

1

)
,

κλ = K(X) =
I4 − 8 I1 I3 + 24 I2

1 I2 − 24 I4
1

2
(
I2 − 2 I2

1
)2 , (4)

such that Ir(λ), with r = 1, 2, 3, 4, is as in Equation (2). Then, the PDF of the weighted random
variable Xw is

fXw(x; λ, α) =
2

1 + ακλ

[
1 + α

(
x − µλ

σλ

)4
]

e−x

(1 + e−x)2(1 + e−λx)
, (5)

where x ∈ R, λ ∈ R and α > 0.

Proof. If w(x) = {1 + α[(x − µλ)/σλ]
4}/(1 + ακλ), the result in (5) is obtained directly by

substituting (1) into (3).

Remark 1.

1. Considering that κλ = K(X) > 4, see [3], we note that w(x) = 1
1+ακλ

[1 + α( x−µλ
σλ

)4] is a
positive function for all α > 0 and x, λ ∈ R.

2. From Equation (5), considering C0 = 1/(1 + ακλ), it is verified that

∫ ∞

−∞
fXw(x; λ, α) dx =

∫ ∞

−∞
C0

[
1 + α

(
x − µλ

σλ

)4
]

fXw(x; λ) dx

= C0

[∫ ∞

−∞
fXw(x; λ, α) dx +

∫ ∞

−∞
α

(
x − µλ

σλ

)4
fXw(x; λ, α) dx

]

= C0

{
1 + αE

[(
X − µλ

σλ

)4
]}

= C0(1 + ακλ)

= 1.

Definition 1. Let Xw be a random variable with PDF given in (5), then we say that Xw follows a
weighted skew-logistic distribution. We will denote this as Xw ∼ WSLOG(λ, α).

Corollary 1. If Xw ∼ WSLOG(λ, α), then the random variable Y = µ + σXw, with µ ∈ R
and σ > 0, follows the weighted skew-logistic distribution with location parameter µ and scale
parameter σ. The PDF of Y is given by

fY(y; µ, σ, λ, α) =
2

σ(1 + ακλ)

[
1 + α

(
y − µ′

1
σ1

)4
]

(6)

× e−z

(1 + e−z)2(1 + e−λz)
,

where y ∈ R, z = y−µ
σ , λ ∈ R, α > 0, µ′

1 = 2σ I1 + µ and σ2
1 = 2σ2(I2 − 2 I2

1), such that Ij,
j = 1, 2 is as in (2).

We denote this as Y ∼ WSLOG(µ, σ, λ, α).

Figure 1 shows some PDF curves of the WSLOG distribution for different values of its
parameters. In the figure, it can be seen that the WSLOG PDF can display shapes with up
to three modes. These shapes will be described in more detail in Section 2.4.
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Figure 1. PDF curves of the WSLOG distribution with µ = 10, σ = 2 and λ = α = 0.5 (solid line),
λ = 4 and α = 0.5 (dashed line), and λ = −1 and α = 0.1 (dotted line).

2.2. Special Cases

The following proposition details the relationship between the WSLOG distribution
with the logistic and SLOG distributions.

Proposition 2. Let Xw ∼ WSLOG(λ, α). Then,

1. lim
α→0

fXw(x, 0, α) =
e−x

(1 + e−x)2 .

2. lim
α→0

fXw(x, λ, α) =
2e−x

(1 + e−x)2(1 + e−λx
) .

3. fXw(x, 0, α) =

[
1 + α

(
x − µ0

σ0

)4
]

e−x

(1 + e−x)2 .

Proof. These results are the direct consequence of analyzing the limit case α → 0 of the
WSLOG distribution, together with the special case λ = 0 of the SLOG distribution.

Part (1) of Proposition 2 shows that WSLOG PDF tends to SLOG PDF as α → 0. Part (2)
shows that the WSLOG PDF tends to the logistic PDF as α → 0 and λ = 0. Part (3) presents
a new PDF that can be understood as a bimodal extension of the logistic distribution. This
new PDF is capable of displaying bimodal shapes while inheriting the symmetry feature of
the logistic PDF.

2.3. Distribution Function and Related

In this section, we derive the cumulative distribution function (CDF) of the WSLOG
distribution. This result will be used to compute goodness-of-fit tests in the application
example of Section 4.

Proposition 3. Let Y ∼ WSLOG(µ, σ, λ, α). Then, the CDF of Y is

FY(y; µ, σ, λ, α) =
σ4

1 FX(y; µ, σ, λ) + 2α J(y; µ, σ, λ)

σ4
1 (1 + ακλ)

, (7)
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where FX(·; ·, ·, ·) is the CDF of the location and scale version of the SLOG distribution, σ1 y κλ are
as in Equation (6) and J(·; ·, ·, ·) is given by

J(y; µ, σ, λ) =
∫ y−µ

σ

−∞

(tσ + µ − µ1)
4

(1 + e−λt)

e−t

(1 + e−t)2 dt.

Proof. Denoting as fX(x; µ, σ, λ) and FX(x; µ, σ, λ) the PDF and the CDF of the SLOG
distribution, respectively, from Equation (6), it is obtained that

FY(y; µ, σ, λ, α) =
∫ y

−∞
fY(u; µ, σ, λ, α) du

=
1

1 + ακλ

∫ y

−∞

[
1 + α

(
z − µ1

σ1

)4
]

fX(u; µ, σ, λ) du

=
1

σ4
1 (1 + ακλ)

[
σ4

1 FX(y; µ, σ, λ) + 2α
∫ y−µ

σ

−∞

(tσ + µ − µ1)
4

(1 + e−λt)

e−t

(1 + e−t)2 dt

]
,

and denoting the above integral as J(y; µ, σ, λ), the result in (7) is obtained.

The following results are a direct consequence of the Proposition 3 and the Corollary 1.

Corollary 2. If Y ∼ WSLOG(µ, σ, λ, α), the survival function (SF) of Y is

SY(y; µ, σ, λ, α) = 1 − FY(y; µ, σ, λ, α)

= 1 −
σ4

1 FX(y; µ, σ, λ) + 2α J(y; µ, σ, λ)

σ4
1 (1 + ακλ)

.

Corollary 3. If Y ∼ WSLOG(µ, σ, λ, α), the hazard rate function (HRF) of Y is

hY(y; µ, σ, λ, α) =
fY(y; µ, σ, α, λ)

1 − FY(y; µ, σ, λ, α)

=
[σ4

1 + α(y − µ1)
4] fX(y; µ, σ, λ)

σ4
1 FX(y; µ, σ, λ) + 2αJ(y; µ, σ, λ)

.

Figure 2 presents some curves for the HRF of the WSLOG distribution for different
parameter values. In the figure, it is possible to see that this function can present a roller
coaster shape (increasing–decreasing–increasing).

2.4. Shapes

In order to provide more details regarding the shapes of the WSLOG distribution, this
section provides analytical expressions that allow the identification of local maximum (min-
imum) values and inflection points for the WSLOG PDF. The behavior of these expressions
is illustrated by means of some graphical representations.

If Xw ∼ WSLOG(λ, α), to obtain the partial derivatives of the PDF of Xw, we rewrite
Equation (5) as

fXw(x; λ, α) = C x1 x2 x3,

where

C =
2

1 + ακλ
, x1 =

e−x

(1 + e−x)2 , x2 =
1

1 + e−x , x3 = 1 + α

(
x − µλ

σλ

)4
.



Mathematics 2024, 12, 1287 6 of 21

So, the first and second partial derivative of the WSLOG PDF is

∂ fXw(x; λ, α)

∂x
= C λ x1 x3 x4 +

4 α C(x − µλ)

σ4
λ

x1 x2 + C x′1 x2 x3, (8)

∂2 fXw(x; λ, α)

∂x2 =
8Cα

σ4
λ

(x − µλ)
3 x1 x4 +

12Cα

σ4
λ

(x − µλ)
2 x1 x2 + Cλ x3 x4 x′1 (9)

+
8Cα

σ4
λ

(x − µλ)
3 x′1 x2 + Cλ2x1 x3 x′4 + C x

′′
1 x2 x3,

where

x′1 =
e−x(e−x − 1)
(1 + e−x)3 , x′′1 =

e−x(1 − 4e−x + e−2x)

(1 + e−x)4 , x′4 =
λe−λx(e−λx − 1)

(1 + e−λx)3 .

The modes, antimodes and abscissas of the inflection points of the WSLOG PDF can
be obtained by calculating the roots of Equations (8) and (9). The analytical complexity of
these equations makes it difficult to obtain closed analytical expressions for these quantities.
However, once λ and α are known, it is possible to obtain approximations of the roots using
numerical procedures such as the Newton–Raphson method.
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Figure 2. Plot of the HRF of the WSLOG distribution with µ = 0, σ = 1 and α = 0.1 in the left panel
and µ = 0, σ = 1 and α = 0.5 in the right panel.

Figures 3–7 present profiles of the critical points and inflection points equations
(Equations (8) and (9)) and the WSLOG PDF curves considering different choices of λ and α.
In the figures, it can be seen that the WSLOG PDF can present a unimodal shape with two,
four, or six inflection points, a bimodal shape with four inflection points and a trimodal
shape with six inflection points.

Considering λ ∈ [−5, 5] and α ∈ [0, 5], Figure 8 illustrates the behavior of the WSLOG
PDF in terms of the number of modes it presents. The figure reveals three differentiated
regions; unimodality region, bimodality region, and a region where the PDF has three
modes. Taking into account that λ is a skewness parameter inherited from the SLOG
distribution, we observe that when λ = 0 (symmetric case), the WSLOG PDF is unimodal
or trimodal. On the other hand, bimodal shapes are obtained when α > 0 and λ ̸= 0.
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Figure 3. Profiles of the critical points and inflection points equations and the WSLOG PDF curve for
λ = 0 and α = 0.05.
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Figure 4. Profiles of the critical points and inflection points equations and the WSLOG PDF curve for
λ = 3 y α = 0.05.
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Figure 5. Profiles of the critical points and inflection points equations and the WSLOG PDF curve for
λ = −0.3 y α = 0.2.
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Figure 6. Profiles of the critical points and inflection points equations and the WSLOG PDF curve for
λ = 5 y α = 0.2.
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Figure 7. Profiles of the critical points and inflection points equations and the WSLOG PDF curve for
λ = 0 y α = 0.5.
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Figure 8. Shape description for WSLOG PDF with different values of λ and α; unimodal (⋄), bimodal
(·) and trimodal (+).
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2.5. Moments and Skewness Behavior

In this section, the moments of the WSLOG distribution are derived and, from these,
the behavior of the skewness is described.

Proposition 4. Let Y ∼ WSLOG(µ, σ, λ, α). Hence, for r = 1, 2, 3, . . ., we have

E[Yr] =
1

1 + ακλ

[(
1 +

αµ′ 4
1

σ4
1

)
µ′

r (10)

+
α

σ4
1

(
µ′

r+4 − 4µ′
1µ′

r+3 + 6µ′ 2
1 µ′

r+2 − 4µ′ 3
1 µ′

r+1

)]
,

where κλ is as in Equation (4), σ2
1 = 2σ2(I2 − I2

1) and µ′
r = ∑r

j=0 (
r
j)σ

jIj µr−j, such that I0 = 1
and Ij, j = 1, . . . , r, is as in Equation (2).

Proof. From Equation (6), we see that

E[Yr] =
∫ ∞

−∞

yr

1 + ακλ

[
1 + α

(
y − µ′

1
σ1

)4
]

2e−z

σ(1 + e−z)2(1 + e−λz
) dy

=
∫ ∞

−∞

1
1 + ακλ

[
yr +

α

σ4
1

(
yr+4 − 4yr+3µ′

1 + 6yr+2µ′ 2
1 − 4yr+1µ′ 3

1 + yrµ′ 4
1

)]

× 2e−z

σ(1 + e−z)2(1 + e−λz
) dy.

Recognizing in the previous integral the r-th moment of the SLOG distribution,
µ′

r = ∑r
j=0 (

r
j)σ

jIj µr−j, such that Ir is as in Equation (2), we obtain that

E[Yr] =
1

1 + ακλ

[
µ′

r +
α

σ4
1

(
µ′

r+4 − 4µ′
r+3µ′

1 + 6µ′
r+2µ′ 2

1 − 4µ′
r+1µ′ 3

1 + µ′
rµ′ 4

1

)]

=
1

1 + ακλ

[(
1 +

αµ′ 4
1

σ4
1

)
µ′

r +
α

σ4
1

(
µ′

r+4 − 4µ′
1µ′

r+3 + 6µ′ 2
1 µ′

r+2 − 4µ′ 3
1 µ′

r+1

)]
.

which is the result given in Equation (10).

Corollary 4. Let Y ∼ WSLOG(µ, σ, λ, α). Then, the mean (E(Y)), variance (Var(Y)), and
Fisher’s skewness (S) and kurtosis (K) coefficients of Y are

E(Y) = µ1,

Var(Y) = µ2 − µ2
1,

S =
µ3 − 3µ1µ2 + 2µ3

1
(µ2 − µ2

1)
3/2

and

K =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
,

where

µ1 =
1

1 + ακλ

[(
1 +

αµ′ 4
1

σ4
1

)
µ′

1 +
α

σ4
1

(
µ′

5 − 4µ′
1µ′

4 + 6µ′ 2
1 µ′

3 − 4µ′ 3
1 µ′

2

)]
,
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µ2 =
1

1 + ακλ

[(
1 +

αµ′ 4
1

σ4
1

)
µ′

2 +
α

σ4
1

(
µ′

6 − 4µ′
1µ′

5 + 6µ′ 2
1 µ′

4 − 4µ′ 3
1 µ′

3

)]
,

µ3 =
1

1 + ακλ

[(
1 +

αµ′ 4
1

σ4
1

)
µ′

3 +
α

σ4
1

(
µ′

7 − 4µ′
1µ′

6 + 6µ′ 2
1 µ′

5 − 4µ′ 3
1 µ′

4

)]
,

µ4 =
1

1 + ακλ

[(
1 +

αµ′ 4
1

σ4
1

)
µ′

4 +
α

σ4
1

(
µ′

8 − 4µ′
1µ′

7 + 6µ′ 2
1 µ′

6 − 4µ′ 3
1 µ′

5

)]
,

such that µ′
j, with j = 1, 2, 3, 4, is as in Equation (10).

Figure 9 presents 3-D and 2-D perspectives for the Fisher’s skewness coefficient of the
WSLOG distribution. From the figure, we note the following: (1) From the 2-D perspective,
it can be seen that if λ = 0, then the WSLOG PDF is symmetric. (2) From the 3-D perspective,
it can be seen that the highest skewness values are obtained when considering small values
of α (close to 0) and high values of λ; that is, in the unimodal case, by complementing this
with the results obtained from Figure 8. (3) In both perspectives, it can be seen that for a
fixed λ, the skewness can increase or decrease as α grows. However, we can note that α has
a smooth effect on the skewness.

Alpha 0246810

Lambda

−4
−2

0
2

4
S

ke
w

n
e

ss

−1.5

−1.0

−0.5

0.0

0.5

1.0

0 2 4 6 8 10

−
2

−
1

0
1

2

α

S
ke

w
n

e
ss

Figure 9. Left panel: A 3-D perspective of Fisher’s skewness coefficient of the WSLOG distribution.
Right panel: A 2-D perspective of Fisher’s skewness coefficient of the WSLOG distribution with
λ = 0 (solid line), λ = −1 (black dashed line), λ = −10 (black dotted line), λ = 1 (grey dashed line),
and λ = 10 (grey dotted line).

2.6. Possible Application Scenarios

Focusing on the PDF shapes described in Section 2.4, we next consider some possible
application scenarios for the WSLOG distribution.

For the unimodal case, there are many possible scenarios of application that we can
mention. We considered the following: (1) Hydrology: to model hydrological variables such
as river flows and water levels. These variables often exhibit unimodality and asymmetry.
(2) Economy and Finance: to model asset returns, volatility, and other financial data that
may exhibit unimodal and asymmetric behavior. (3) Environment: to model data related
to air pollution, concentrations of chemical substances, and other types of environmental
data. (4) Demography and Social Sciences: to model data such as the age distribution of a
population, migration rates, and other demographic variables.
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In general, the WSLOG distribution, in its unimodal shape, can be considered an
alternative distribution for data modeling in scenarios where the skew-logistic distribution
is used. The fact that the PDF WSLOG can have more than two inflection points (in
its unimodal shape) can lead to better fits of datasets whose frequency distributions are
unimodal but with extravagant shapes.

Focusing on the bimodal shapes, we believe that the WSLOG distribution can be
considered a viable alternative for modeling data associated with environmental variables.
When analyzing this type of variable, it is common to find data that exhibit bimodality
due to factors such as special geographic characteristics and seasonality. For example, the
wind speed in the Canary Islands may exhibit bimodality due to the interaction of the
trade winds with the mountainous and volcanic topography of this region. This can cause
local disturbances in certain areas, which increases the wind speed in those specific areas,
see [14]. Another example that we can mention is related to the behavior of the distribution
of rainfall in Central America. In this region, precipitation shows a bimodal behavior
related to the influence of the rainy seasons in the Caribbean and the Pacific, see [15].

Both in the bimodal and trimodal case, the WSLOG distribution can be used to
analyze data in scenarios where it is possible to identify sub-populations with differentiated
behavior with respect to the characteristic of interest studied in the population. In this case,
the WSLOG distribution can be considered an alternative to the popular mixture models,
especially the logistic mixture model.

3. Parameter Estimation

The problem of estimating parameters for the WSLOG distribution using the maximum
likelihood method is discussed in this section. In addition, simulation experiments are
carried out to assess the performance of the estimators.

3.1. Maximum Likelihood Estimators

For a random sample Y1, . . . , Yn of the WSLOG(θ) distribution, with θ = (µ, σ, λ, α).
Then, the log-likelihood function associated with θ is written as

ℓ(θ; y) = n log (2)− n log (σ)− n log (1 + ακλ) +
n

∑
i=1

log
(

1 + αz4
1i

)
(11)

−
n

∑
i=1

zi − 2
n

∑
i=1

log
(
1 + e−zi

)
−

n

∑
i=1

log(1 + e−λzi ),

where y = (y1, . . . , yn)⊤ are the vector of observed values, zi = (yi − µ)/σ and
z1i = (yi − µ′

1)/σ1, for i = 1, . . . , n. Thus, the elements of the score vector associated
with the log-likelihood function (11) are given by

∂ℓ(θ; y)
∂µ

= − 4α√
2σ2(I2 − 2I2

1)

n

∑
i=1

z3
1i

(1 + αz4
1i)

− 2
σ

n

∑
i=1

exp (−zi)

(1 + exp (−zi))

−λ

σ

n

∑
i=1

exp (−λzi)

(1 + exp (−λzi))
+

n
σ

,

∂ℓ(θ; y)
∂σ

= −n
σ
+

n

∑
i=1

zi
σ
− 2

σ

n

∑
i=1

zi exp (−zi)

(1 + exp (−zi))

−λ

σ

n

∑
i=1

zi exp (−λzi)

(1 + exp (−λzi))
− 4α√

2σ2(I2 − 2I2
1)

n

∑
i=1

z3
1izi

(1 + αz4
1i)

,

∂ℓ(θ; y)
∂λ

=
n

∑
i=1

zi exp (−λzi)

(1 + exp (−λzi))
,

∂ℓ(θ; y)
∂α

=
n

∑
i=1

z4
1i

(1 + αz4
1i)

− nκλ

(1 + ακλ)
.
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Since the ML estimators of µ, σ, α, and λ do not have closed expressions, it is necessary
to use numerical procedures such as Newton–Raphson.

The standard errors of the ML estimators can be obtained as the square roots of the
elements of the diagonal of the matrix

K−1(θ̂) =

{
−∂2ℓ(θ; y)

∂θ∂θ⊤

∣∣∣
θ=θ̂

}−1

,

where ∂2ℓ(θ; y)/∂θ∂θ⊤ is the Hessian matrix.
Alternatively, it is possible to solve the problem of maximizing Equation (11) with

the help of some numerical optimization routine such as the function stats:optim() of the
R programming language [16]. In this case, minimizing the negative log-likelihood, this
function returns the ML estimates and the numerical Hessian matrix. The R code used
is available at https://github.com/isaaccortes1989/WSLOG-ARTICLE, accessed on 20
March 2024.

3.2. Simulation Study

In this section, we carry out a simulation study aimed at evaluating the behavior of
the ML estimators of the parameters of the WSLOG distribution.

3.2.1. Simulation Algorithm

We used the accept-reject method to generate pseudo-random numbers from the
WSLOG distribution. The results in a sequence of n pseudo-random numbers were stored in-
side an array that we called nvector. We considered the envelope function g(x) = c f (x; m, s),
where f (x; m, s) = e−(x−m)/s[1 + e−(x−m)/s]−2, x, m ∈ R, s > 0, is the PDF of the logis-
tic distribution. Thus, from Equation (6), to determine the value of the constant c, we
calculated the root of the equation

0 =
∂

∂x

[
1 + α

(
x−µ′

1
σ1

)4
]

e−
x−µ

σ

(
1 + e−

x−m
s

)2

(
1 + e−

x−µ
σ

)2(
1 + e−λ

x−µ
σ

)
e−

x−m
s

. (12)

In addition to the parameters µ, σ, λ and α of the WSLOG distribution, to build the
algorithm (Algorithm 1), we needed to define:

1. n: The length of the nvector.
2. µ, σ, λ y α: The parameters of the WSLOG distribution.
3. m y s: The location and scale parameters of the logistic distribution.
4. fY(·; µ, σ, λ, α): The WSLOG PDF whit µ ∈ R, σ > 0, λ ∈ R and α > 0.
5. f (·; m, s): The logistic PDF with m ∈ R and s > 0.
6. U1: A random variable with a uniform(0, 1) distribution.
7. U2: A random variable with a uniform(0, 1) distribution.

Algorithm 1: Accept-Reject Algorithm to Generate Pseudo Random Numbers
from the WSLOG(µ, σ, λ, α) Distribution.

1 begin
Input: n, µ, σ, α, λ, m, s, c
Output: nvector

2 Generate a value u1 from U1 ∼ uniform(0, 1);
3 Generate a value u2 from U2 ∼ uniform(0, 1);
4 Compute x = m + s log[(1 − u1)/u1]; ;

5 Set y = x from Y ∼ WSLOG(µ, σ, λ, α) if u2 ≤ fY(x;µ,σ,λ,α)
c f (x;m,s) and append y to

nvector; otherwise, go back to step 2;
6 Repeat steps 2–5 until the length of nvector equals n;
7 end

https://github.com/isaaccortes1989/WSLOG-ARTICLE
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3.2.2. Simulation Scenarios

We focused on two different choices for the parameter vector θ = (µ, σ, λ, α) of the
WSLOG distribution, thus defining the following simulation scenarios:

1. Scenario A, θ = (10, 2,−0.3, 0.2): this choice of θ leads to a PDF with an asymmetric
unimodal shape, with six inflection points. To generate pseudo-random numbers
from the WSLOG distribution, we solved Equation (12) considering m = 6 and s = 10,
obtaining c = 3.284.

2. Scenario B, θ = (30, 3,−3, 5): this choice of θ leads to a PDF with an asymmetric
bimodal shape. In this case, we solved the Equation (12) considering m = 18 and
s = 5.4, obtaining c = 2.0436.

The values of the parameters that give rise to Scenarios 1 and 2 were selected through
a graphical inspection of the WSLOG PDF, so that the simulation aims to consider pseudo-
random numbers that come from an asymmetric unimodal population (Scenario 1) and an
asymmetric bimodal population (Scenario 2).

Figure 10 presents the WSLOG PDF curves with the envelope functions considered in
both simulation scenarios.
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Figure 10. The WSLOG PDFs and envelope functions considered in scenarios A and B.

3.2.3. Results

We generated 1000 pseudo-random samples from the WSLOG distribution for the
scenarios described above, under the sample sizes n = 100, 150, 200, . . ., and 750, respectively.
Subsequently, we obtained the ML estimates with their corresponding standard errors and
squared errors.

Figures 11 and 12 illustrate the behavior of the mean estimate (Mean), standard devia-
tion (SD), root mean square error (RMSE), asymptotic standard error (SE), and probability
of coverage (CP) of the 95% asymptotic confidence intervals that were obtained under the
different sample sizes considered in the two simulation scenarios. In the figures, it can be
seen that, as the sample size increases, the mean estimates get closer to the true values of
the parameters and the SDs, SEs, and RMSEs decrease and tend to be close to each other,
which suggests the asymptotic consistency of the estimators. In addition, we observe that
the CPs approach nominal values as the sample size increases.
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Figure 11. Mean, SD, SE, RMSE, and CP obtained in scenario A under the different sample sizes
considered.
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Figure 12. Mean, SD, SE, RMSE, and CP obtained in scenario B under the different sample sizes considered.
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4. Data Analysis

Environmental data allow us to monitor the state of our natural environment, includ-
ing air quality, water quality, biodiversity, temperature, among other factors. Continuous
probability distributions have played an important role in the analysis of problems in-
volving environmental variables. For example, Kassem et al. [17] investigated the wind
characteristics and available wind energy for three urban regions in Northern Cyprus
using the Weibull distribution; Rad et al. [18] proposed a mixture of multimodal skewed
von Mises to model the wind direction in different geographic regions of interest under a
Bayesian approach; Suleiman et al. [19] proposed the odd beta prime-logistic distribution
to evaluate magnesium concentrations for groundwater quality.

This section illustrates the usefulness of the WSLOG distribution by fitting two real
datasets associated with environmental variables.

4.1. Fitted Distributions

We compared the performance of the WSLOG distribution with that of the logistic
mixture model and other bimodal distributions popular in the literature. Below is the PDF
of each distribution considered:

1. Logistic mixture (MLOG) PDF [5]

f (x; µ, σ, µ2, σ2, α) =
α

σ

e
x−µ

σ(
1 + e

x−µ
σ

)2 +
1 − α

σ2

e
x−µ2

σ2(
1 + e

x−µ2
σ2

)2 , x ∈ R,

where µ, µ2 ∈ R are the locations of the mixture components, σ, σ2 > 0 are the scales
of the mixture components, and α ∈ (0, 1) is the mixing parameter.

2. Skew bimodal-logistic (SBLOG) PDF [20]

f (x; µ, σ, λ, α) =
6
σ3

(
σ2 + α(x − µ)2

3 + π2α

)
e

x−µ
σ(

1 + e
x−µ

σ

)2
eλ

x−µ
σ

(1 + eλ
x−µ

σ )
, x ∈ R,

where µ ∈ R is a location parameter, σ > 0 is a scale parameter, λ ∈ R, and α > 0 are
shape parameters that control skewness and uni/bi-modality.

3. Skew flexible normal (SFN) PDF [9]

f (x; µ, σ, λ, α) =
cα

σ
ϕ

( ∣∣∣∣ x − µ

σ

∣∣∣∣+ α

)
Φ
(

λ
x − µ

σ

)
, x ∈ R,

where µ ∈ R is a location parameter, σ > 0 is a scale parameter, α, λ ∈ R are
shape parameters that control skewness and uni/bi-modality, c−1

α = [1 − Φ(α)] is a
normalizing constant, and ϕ(·) and Φ(·) are the PDF and CDF of the standard normal
distribution, respectively.

4. Asymmetric bimodal power normal (ABPN) PDF [11]

f (x; µ, σ, λ, α) =
2αcα

σ
ϕ

(
x − µ

σ

)
Φ
(∣∣∣∣ x − µ

σ

∣∣∣∣)α−1
Φ
(

λ
x − µ

σ

)
, x ∈ R,

where µ ∈ R is a location parameter, σ > 0 is a scale parameter, λ ∈ R and α > 0 are
shape parameters that control skewness and uni/bi-modality, cα = 2α−1/(2α − 1) is a
normalizing constant, and ϕ(·) and Φ(·) are the PDF and CDF of the standard normal
distribution, respectively.

The PDFs described above exhibit uni/bimodal asymmetric shapes depending on the
values assumed by their shape parameters. Note, however, that the MLOG distribution
has a larger parameter dimension, which translates into more shape flexibility for the PDF,
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but at the cost of investing more effort in parameter estimation. On the other hand, the
SBLOG, SFN, and ABPN distributions have the same parameter dimension as the WSLOG
distribution, so the WSLOG distribution can be considered a natural alternative for data
modeling in scenarios where the SBLOG, SFN, and ABPN distributions are employed.

4.2. Fit Measurements

We used the Anderson–Darling (AD) and Cramér-von Mises (CvM) goodness-of-fit
tests to assess the quality of fit of the WSLOG distribution. For this, we used the functions
goftest::ad.test() and goftest::cvm.test() in the R programming language, see [21]. To assess
comparative performance, we considered the Akaike Information Criterion (AIC) [22],
the Corrected Akaike Information Criterion (CAIC) [23], and the Bayesian Information
Criterion (BIC) [24]. These criteria are defined as AIC = 2k− 2ℓ, CAIC = k[log(n)+ 1]− 2ℓ,
BIC = k log(n)− 2ℓ, respectively, where k is the number of parameters to be estimated, n is
the sample size, and ℓ is the maximum log-likelihood value.

4.3. Unimodality Test

In order to achieve a deep understanding of the behavior of empirical frequency
distributions, in addition to justifying the relevance of postulating the WSLOG distribution
as a viable candidate for data modeling, we tested the hypothesis H0: the data have exactly
one mode, versus the hypothesis H1: the data have at least two modes. For this, we
consider the excess mass test using the function multimode::modetest() in the R programming
language, see [25] and [26].

4.4. Data Description

Details of the analyzed datasets are provided below.

4.4.1. Geometric Features of Pollen Grains

The pollen grain is a fundamental structure in the reproduction of flowering plants.
Its cellular and structural composition allows it to transport male genetic material to the
female reproductive organs of the flower. Geometric characteristics of the pollen grain,
such as its shape, size, and presence of surface structures, play an important role in studies
on the growth of flowering plants. For this reason, we studied 481 observations on the
measurement of a surface feature (ridge) along a direction in a certain type of pollen grain.
These data are available on the website http://lib.stat.cmu.edu/datasets/pollen.data,
accessed on 20 March 2024. Specifically, the data correspond to the observations of the
variable “Ridge” in the data file POLLEN1.DAT.

Computing some descriptive measures, we saw that the minimum and maximum
observations were −19.4687 and 21.4066, respectively, and that Fisher’s skewness coefficient
was 0.0246, a smooth skewness level. In the excess mass test, we obtained an observed
statistic of value 0.219, with a corresponding p-value equal to 0.164, which led us to
conclude (at a significance level of 5%) that the frequency distribution of the data was
unimodal. Taking these results into account, we explored the performance of the WSLOG
distribution in fitting this dataset.

4.4.2. Temperature of Administrative Regions with Prevalence of Dengue

Dengue is a viral disease transmitted mainly by mosquitoes of the Aedes genus,
endemic in many tropical and subtropical areas of the world. Ambient temperature
plays a crucial role in the spread and incidence of dengue, since it affects both the vector
mosquitoes and the virus; high temperatures positively influence the rate of development
and reproduction of mosquitoes and favor the replication of the virus in them. We analyzed
a dataset containing 1998 observations on the average temperature in administrative
areas where occurrences of dengue virus have been documented. For more information
regarding this dataset, please consult [27], or access it within the “dengue” database under
the identifier “temp” in the R software, version 4.3.1, as indicated in [28].

http://lib.stat.cmu.edu/datasets/pollen.data
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In the excess mass test, the observed statistic was equal to 0.048, with a p-value less
than 0.01, which allowed us to conclude with a significance level of 1% that the temperature
data are at least bimodal. Adding to the above the fact that the Fisher skewness coefficient
was −0.728, a negative skewness level, we believe that the WSLOG distribution is a viable
alternative for fitting the temperature data.

4.5. Results

Table 1 reports the ML estimates of the parameters of the distributions fitted to the
data described in Section 4.4. In the tables, it can be seen that the WSLOG distribution
presents the lowest values of AIC, CAIC, and BIC, which suggests that this distribution
should be selected to fit both datasets.

Table 1. ML estimates for the parameters of the distributions fitted to the data described in Section 4.4.

Ridge Variable

Estimate WSLOG MLOG SBLOG SFN ABPN

µ̂ −1.458 (0.396) −1.207 (1.050) 2.612 (0.796) 2.464 (0.725) −1.294 (0.156)
σ̂ 1.558 (0.065) 3.231 (0.307) 2.241 (0.150) 6.176 (0.543) 7.528 (0.831)
µ̂2 - 7.279 (1.702) - - -
σ̂2 - 1.996 (0.801) - - -
λ̂ 0.182 (0.067) - −0.264 (0.107) −0.417 (0.158) 0.353 (0.088)
α̂ 0.255 (0.034) 0.831 (0.135) 0.376 (0.092) −0.214 (0.189) 0.363 (0.270)

AIC 3141.8 3151.9 3148.4 3150.8 3149.5
CAIC 3162.5 3177.8 3169.1 3171.5 3170.2
BIC 3158.5 3172.8 3165.1 3167.5 3166.2

Temp Variable

µ̂ 27.604 (0.082) 12.529 (0.395) 15.736 (0.206) 28.177 (0.092) 28.120 (0.093)
σ̂ 2.746 (0.046) 3.842 (0.141) 2.553 (0.040) 16.202 (1.081) 14.010 (0.375)
µ̂2 - 25.230 (0.131) - - -
σ̂2 - 1.248 (0.071) - - -
λ̂ −5.948 (0.474) - 0.202 (0.022) −22.942 (2.461) −19.224 (1.856)
α̂ 0.119 (0.007) 0.530 (0.021) 1.671 (0.187) 0.644 (0.178) 6.967 × 10−4 (0.189)

AIC 13,031.1 13,182.3 13,650.2 13,220.1 13,205.2
CAIC 13,057.5 13,215.3 13,676.6 13,246.5 13,231.6
BIC 13,053.5 13,210.3 13,672.6 13,242.5 13,227.6

Table 2 shows the results of the AD and CvM goodness-of-fit tests for the WSLOG
distribution fitted to the data. From the table, it can be concluded (with a significance
level of 1%) that the data come from a WSLOG population with parameters specified in
Table 1. Figure 13 shows the histograms of the datasets along with the fitted PDFs. Here, it
is evident that the observed relative frequencies closely align with the density values of the
WSLOG distribution.

The datasets and results presented in this section can be accessed at https://github.
com/isaaccortes1989/WSLOG-ARTICLE, accessed on 20 March 2024.

Table 2. Goodness-of-fit tests for the WSLOG distribution fitted to the data described in Section 4.4.

Data AD Test CvM Test

Statistic p-Value Statistic p-Value

Ridge variable 3.578 0.272 0.703 0.228
Temp variable 3.076 0.683 0.530 0.778

https://github.com/isaaccortes1989/WSLOG-ARTICLE
https://github.com/isaaccortes1989/WSLOG-ARTICLE
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Figure 13. Histogram of the data described in Section 4.4 and the fitted PDFs.

5. Final Comments

We have proposed an extension of the skew-logistic distribution capable of presenting
asymmetric shapes with up to three modes for its PDF. The new distribution corresponds
to a weighted version of the skew-logistic distribution, defined by a weight function that
induces an extra shape parameter. Thus, the new distribution, which we call the weighted
skew-logistic (WSLOG) distribution, has two shape parameters that lead to a more flexible
PDF than the skew-logistic PDF. This flexibility allows for overcoming the limitation of
the use of the skew-logistic distribution to unimodal data, being the WSLOG distribution
capable of modeling data that exhibit bimodality and even trimodality.

We described some possible application scenarios of the WSLOG distribution, of which
we highlight its possible use in the modeling of bimodal data associated with environmental
variables. Also, we derived fundamental properties such as the cumulative distribution
function and raw moments. In addition, we described the behavior of the skewness of
the distribution and determine the approximate regions of uni/bi and trimodality in the
two-dimensional parameter space associated with the shape parameters of the distribution.
Furthermore, we observed that the shape parameter inherited from the skew-logistic
distribution had an important effect on the skewness of the distribution, while the shape
parameter induced by the weight function had an important effect on the number of modes
that the distribution presents.

We explored the issue of parameter estimation for the WSLOG distribution using the
maximum likelihood approach. We carried out a simulation study to empirically evaluate
the performance of the estimators. Overall, we found that the maximum likelihood method
yields were satisfactory.

Finally, we presented two applications for real data associated with environmental
variables; ambient temperature in administrative regions in which dengue virus cases have
been recorded, and the measurement of a surface characteristic of a certain type of pollen
grain. The performance of the WSLOG distribution was compared to that of some bimodal
skewed distributions in the literature, including a logistic mixture model. The results
suggest that the WSLOG distribution performs better in fitting both data sets, illustrating
the utility of the new distribution in modeling environmental data.
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17. Kassem, Y.; Al Zoubi, R.; Gökçekuş, H. The possibility of generating electricity using small-scale wind turbines and solar

photovoltaic systems for households in Northern Cyprus: A comparative study. Environments 2019, 6, 47. [CrossRef]
18. Rad, N.N.; Bekker, A.; Arashi, M. Enhancing wind direction prediction of South Africa wind energy hotspots with Bayesian

mixture modeling. Sci. Rep. 2022, 12, 11442. [CrossRef] [PubMed]
19. Suleiman, A.A.; Daud, H.; Singh, N.S.S.; Othman, M.; Ishaq, A.I.; Sokkalingam, R. A novel odd beta prime-logistic distribution:

Desirable mathematical properties and applications to engineering and environmental data. Sustainability 2023, 15, 10239.
[CrossRef]

20. Cortés, I.E.; Venegas, O.; Gómez, H.W. A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution:
Properties, Simulation and Applications. Mathematics 2022, 10, 1968. [CrossRef]

21. Faraway, J.; Marsaglia, G.; Marsaglia, J.; Baddeley, A. R Package Version 1.2-3; goftest: Classical Goodness-of-Fit Tests for Univariate
Distributions. R Foundation for Statistical Computing: Vienna, Austria, 2021.

https://github.com/isaaccortes1989/WSLOG-ARTICLE/blob/main/Application%201.R
https://github.com/isaaccortes1989/WSLOG-ARTICLE/blob/main/Application%201.R
http://doi.org/10.1007/s10182-009-0105-6
http://dx.doi.org/10.1111/j.2517-6161.1985.tb01331.x
http://dx.doi.org/10.1146/annurev-statistics-031017-100325
http://dx.doi.org/10.4067/S0716-09172010000300006
http://dx.doi.org/10.1002/env.1026
http://dx.doi.org/10.1080/00949655.2017.1381698
http://dx.doi.org/10.1080/03610926.2013.765475
http://dx.doi.org/10.1111/j.1469-1809.1934.tb02105.x
http://dx.doi.org/10.1016/j.enconman.2006.04.004
http://dx.doi.org/10.1002/joc.6736
http://dx.doi.org/10.3390/environments6040047
http://dx.doi.org/10.1038/s41598-022-14383-8
http://www.ncbi.nlm.nih.gov/pubmed/35794177
http://dx.doi.org/10.3390/su151310239
http://dx.doi.org/10.3390/math10121968


Mathematics 2024, 12, 1287 21 of 21

22. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
23. Bozdogan, H. Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions.

Psychometrika 1987, 52, 345–370. [CrossRef]
24. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
25. Ameijeiras-Alonso, J.; Crujeiras, R.M.; Rodríguez-Casal, A. Mode testing, critical bandwidth and excess mass. Test 2019,

28, 900–919. [CrossRef]
26. Ameijeiras-Alonso, J.; Crujeiras, R.M.; Rodríguez-Casal, A. Multimode: An R package for mode assessment. arXiv 2018,

arXiv:1803.00472.
27. Hales, S.; De Wet, N.; Maindonald, J.; Woodward, A. Potential effect of population and climate changes on global distribution of

dengue fever: An empirical model. Lancet 2002, 360, 830–834. [CrossRef] [PubMed]
28. Maindonald, J.H.; Braun, W.J. Data Analysis and Graphics Using R. An Example-Based Approach, 3rd ed.; Cambridge University

Press: Cambridge, MA, USA, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1007/BF02294361
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/s11749-018-0611-5
http://dx.doi.org/10.1016/S0140-6736(02)09964-6
http://www.ncbi.nlm.nih.gov/pubmed/12243917

	Introduction
	The New Distribution and Its Properties 
	Weighted Skew-Logistic Distribution
	Special Cases
	Distribution Function and Related
	Shapes
	Moments and Skewness Behavior
	Possible Application Scenarios

	Parameter Estimation
	Maximum Likelihood Estimators
	Simulation Study
	Simulation Algorithm
	Simulation Scenarios
	Results


	Data Analysis
	Fitted Distributions
	Fit Measurements
	Unimodality Test
	Data Description
	Geometric Features of Pollen Grains
	Temperature of Administrative Regions with Prevalence of Dengue

	Results

	Final Comments
	References 

