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Abstract: Detecting anomalies in large, complex systems is a critical and challenging task, and this is
especially true for high-dimensional anomaly detection due to the underlying dependency structures
among sensors. To incorporate the interrelationships among various sensors, a novel sparsity-
constrained vector autoregressive moving average (scVARMA) model is proposed for anomaly
detection in complex systems with multisensory signals. This model aims to leverage the inherent
relationships and dynamics among various sensor readings, providing a more comprehensive and
accurate analysis suitable for complex systems’ complex behavior. This research uses convex opti-
mization to search for a parameterization that is sparse based on the principal of parsimony. This
sparse model will not only contribute to meeting the real-time requirements of online monitoring
strategies but also keeps the correlations among different sensory signals. The performance of the
proposed scVARMA model is validated using real-world data from complex systems. The results
affirm the superiority of the proposed scheme, demonstrating its enhanced performance and potential
in practical applications.

Keywords: complex systems; sparsity-constrained; time series prediction; vector autoregressive
moving average

MSC: 62P30; 62J20; 62M10

1. Introduction

Since the inception of health monitoring technology for complex systems, such as
liquid rocket engines (LREs), major spacefaring nations around the world have placed
great emphasis on the design and development of health monitoring systems (HMS) for
these engines [1]. In fact, health monitoring systems have now become an indispensable
key component in both improving existing LREs and developing new ones. This system
utilizes sensors to gather system-related data and employs various intelligent algorithms
and models to assess the health status of the system [2]. The application scenarios of the
HMS for LRE can be categorized into online and offline modes [3]. The “online” mode is
utilized during flight and ground hot-fire tests for real-time monitoring and implementing
fault-tolerant control with the objective of ensuring the successful completion of the launch
mission [4,5]. The “offline” mode is applied post-engine testing for the analysis of compo-
nents’ performance, which involves combining relevant resource information to provide
practical maintenance measures, ultimately fulfilling the requirements for reusability [6].
Several key technologies in this system include: the selection of sensitive engine parameters
and optimization techniques for measurement points [7]; the design and application of
real-time fault diagnosis algorithms; and accurate fault localization technology [8].
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Over the past thirty years, significant progress has been made in the field of real-time
fault diagnosis technology for LREs. Especially since the concept of Industry 4.0 was first
introduced in 2011, the automation of the fault detection process has become a significant
objective in technological transformation [9]. Utilizing big data analytics, advanced statisti-
cal algorithms, and data visualization techniques enable the use of sensor data collected
from machinery to predict potential faults and implement corresponding maintenance
measures. In this field, time series analysis [10–12] and anomaly detection [13–16] have
garnered significant attention. Compared to structural models, time series models have
more advantages in this aspect as both modeling and forecasting can be readily accom-
plished. Time series models primarily include the autoregressive model (AR), moving
average model (MA), and autoregressive moving average model (ARMA) [17]. The ARMA
model is a parametric method used to analyze sequentially ordered random vibration data
to identify modal parameters. It predicts short-term system behaviors by examining the
inherent patterns within time series data. This method is typically employed for engine
fault detection during the steady-state phase [18]. Deng et al. [19] developed a real-time
fault detection method based on the ARMA model. They conducted simulations via a
hardware-in-the-loop platform to validate the method’s reliability. Similarly, Zhao et al. [20]
employed the ARMA model for real-time fault detection in rocket engine diagnosis using
a rapid prototyping approach on their hardware-in-the-loop simulation platform. Xue et
al. [21] also implemented the ARMA model in a fault detection model for a liquid oxygen–
methane rocket engine. Their algorithm successfully identified common LRE faults and
fulfilled the real-time demands of engine fault diagnosis.

However, the ARMA model, being univariate in nature, is confined to the analysis of a
singular time series. This inherent characteristic precludes its ability to discern and interpret
the interrelations among a multitude of critical parameters, such as pressure, temperature,
and flow rate. Such a limitation poses a significant constraint on its utility for grasping the
intricacies embedded in the overall performance and health state of LREs. In contrast, the
vector autoregressive moving average (VARMA), exemplifying a multivariate approach, is
adept at concurrently analyzing multiple time series. This capability enables VARMA to
elucidate the intricate and dynamic interplay among these parameters, thereby providing
a more holistic and nuanced comprehension of the rocket engines’ overall health status.
Therefore, this manuscript delineates an innovative methodological approach, specifically
the deployment of VARMA, within the ambit of LRE surveillance. Despite the established
prominence of VARMA in the realm of statistical analysis, its applicability and potential in
the field of aerospace engineering, particularly in the monitoring of engines, is still an under-
researched area. This study endeavors to fill this research lacuna by methodically exploring
the practicability and efficacy of VARMA in the real-time analysis and surveillance of
LREs. The ensuing sections of this paper are dedicated to a comprehensive examination
of VARMA encompassing its theoretical foundations and an avant-garde approach to
application. This culminates in an elaborate elucidation of the transformative impact these
models can have on the domain of aerospace engine monitoring.

The main contributions of this paper are as follows:

1. A novel sparsity-constrained vector autoregressive moving average is proposed to
apply multivariate time series analysis methods to the real-time fault detection of
complex systems utilizing the interrelationships among data from various sensor
points to monitor the overall health status of the systems.

2. A sparse induction strategy is proposed to enhance the real-time capabilities of multi-
variate time series analysis methods, which is aimed at reducing the computational
load during model parameter identification.

3. Utilizing actual test data, the proposed scheme is compared with traditional online
monitoring schemes that use single time series models, and the results demonstrate
the advanced nature of the proposed model.

The remainder of this paper is organized as follows. Section 2 introduces the rationale
behind selecting a multivariate time series analysis approach and the specific framework
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of the scheme. In Section 3, this study describe how to refine the existing approach to
better suit the application scenarios of real-time fault diagnosis. Section 4 compares this
method with traditional single time series methods. The discussion in Section 5 delves
into the broader implications of the findings, highlighting the advancements it offers over
conventional approaches. Finally, some important conclusions are drawn in Section 6.

2. Theoretical Framework

Although the VARMA model is widely used for the predictive analysis of time series
data, this study specifically employs it for the real-time prediction of operational engine
data. By comparing predicted values with actual observational data, the model aims to
promptly identify potential anomalies or faults in the system, thereby supporting fault
diagnosis and health monitoring. The complex challenges of real-time fault diagnosis
in LREs are particularly evident in the dynamic interactions and complexity of multiple
parameters. The application of the VARMA model in this context, due to its ability to
analyze multiple time series concurrently, allows us to reveal and understand the complex
and dynamic interactions among these parameters, thereby comprehensively grasping the
overall health status of the rocket engines.

2.1. The Rationale for Choosing VARMA

Figure 1 shows the system diagram of an LRE. During engine start-up, high-pressure
ammonia gas squeezes the kerosene in the starter box, and the change in pressure causes
the ignition conduit to break, filling the generator and thrust chamber ignition path with
igniter. Then, the main valve of the liquid oxygen opens, allowing liquid oxygen to enter
the generator. After that, the fuel valve of the generator opens, and the igniter enters
the generator, igniting with the mixture of liquid oxygen, producing oxygen-rich gas
that drives the main turbine to rotate. This process causes the igniter to flow into the
thrust chamber, mixing and igniting with the oxygen-rich gas. Finally, the main fuel
valve opens, and the fuel mixes with the oxygen-rich gas for combustion. The start-up
process is very brief, and the system quickly reaches a stable operating condition. In the
context of fault diagnosis for LREs, this study is interested in the temporal variations of
parameters such as temperature, pressure, flow rate, and rotational speed. In the operation
of LREs, various components work closely in conjunction and adhere to thermodynamic
principles. For instance, variations in the temperature of the combustion chamber can
affect the temperature in the exhaust system, subsequently impacting the efficiency of
the entire cooling system. Therefore, the performance parameters of the components are
interdependent, exhibiting strong correlations or feedback relationships.

LREs generate data from multiple sensors simultaneously. Suppose that a d related
time series variable is obtained as, say, y1t, y2t, . . . , ydt. Define yt = (y1t, y2t, . . . , ydt)

′ as the
time series vector at time point t.

In the process of conducting multi-parameter studies of LREs, a framework is required
that not only characterizes the properties of individual sequences but also describes the
interrelationships between sequences. The two primary objectives of jointly analyzing and
modeling are as follows:

1. To understand the dynamic relationships of these sequences over time;
2. To enhance the accuracy of individual sequence forecasts by utilizing additional

information provided by related sequences in each prediction.
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Figure 1. System diagram of LRE [22]. (1. Fuel pre-pressurization turbopump; 2. oxidizer pre-
pressurization turbopump; 3. gas generator; 4. main turbine; 5. oxidizer pump; 6. fuel primary
pump; 7. fuel secondary pump; 8. thrust chamber; 9. throttle valve; 10. flow regulator; 11. starter box;
12. ignition duct).

The vector autoregressive (VAR) model has been extensively applied to achieve these
objectives, such as in [23,24]. Initially proposed by Christopher Sims [25], this model
offers a flexible approach, reducing reliance on the numerous inherent assumptions of
structural models. Building on the VAR model, the integration of moving averages led
to the creation of VARMA, which was an extension of the foundational work on ARMA
models [26]. Although the VAR is a critically important class of models in multivariate
time series analysis, allowing each variable to be a linear function of past values (including
its own past values and those of other variables), it requires extensive data to estimate all
parameters, especially when involving multiple variables and longer lags. The VARMA, by
integrating the AR part and the MA part, can capture the dynamic characteristics of time
series more effectively. Additionally, the class of VARMA is closed under marginalization
and linear transformations [27].

2.2. VARMA and Its Identification Problem

In a VARMAd(p, q) model, a stationary d-dimensional mean-zero vector time series yt
is modeled as a function of its own p past values and q lagged error terms,

yt =
p

∑
ℓ=1

Φℓyt−ℓ +
q

∑
m=1

Θmat−m + at (1)

where
{

Φℓ ∈ Rd×d
}p

ℓ=1
are AR part matrices,

{
Θℓ ∈ Rd×d

}q

m=1
are MA part matrices,

and at represents a time series of white noise vectors in d dimensions, each with a mean
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of zero and characterized by a nonsingular d × d contemporaneous covariance matrix,
denoted as Σa. We define the AR and MA operators, respectively, as Φ(L) = I − Φ1L −
Φ2L2 − · · · − ΦpLp and Θ(L) = I + Θ1L + Θ2L2 + · · · + ΘqLq, where Lℓ represents the
lag operator, indicating a lag of ℓ time periods. Then, the model can be written in more
compact notation as

Φ(L)yt = Θ(L)at (2)

The matrix polynomials in (2) are assumed to satisfy{
det{Φ(z)} ̸= 0, |z| ≤ 1
det{Θ(z)} ̸= 0, |z| ≤ 1

forz ∈ C. (3)

The first of these conditions ensures that the AR operator is stable and the process is
stationary. The second part is the usual invertibility condition for the MA operator, which
implies the existence of a pure VAR representation of the process. This denotes that {yt}
can be expressed as

Π(L)yt = at (4)

where Π(L) = Θ−1(L)Φ(L) = I − Π1L − Π2L2 − · · · . The Π matrices can be com-
puted recursively from {Φℓ} and {Θm} [28]. The VARMA is distinctly characterized by the
operator Π(L) rather than generally by the AR and MA operators Φ(L) and Θ(L). That
is, for the same Π(L), p, and q, an equivalent data-generating process can be executed.
Consequently, the VARMA representation of {yt} is not unique.

This lack of uniqueness presents challenges in parameter identification. To address
this issue, researchers and practitioners have adopted several strategies: [29] discussed
in detail the use of identification constraints in multivariate linear time series models,
including VARMA models; [30] proposed LASSO regularization methods for parameter
estimation and the selection of high-dimensional models; [31] provides an application
of Bayesian methods in the estimation of VARMA models; and [32] describes the use of
regularization methods in large VAR models, and these techniques can also be extended to
VARMA models.

3. Methodology
3.1. Model Identification

In traditional VARMA, the parameter coefficients are typically dense, reflecting that
each time series is related to the past values of other time series, with the majority of
elements in the coefficient matrices being non-zero. However, in the context of online
monitoring, the model utilized should fulfill the following criteria:

1. High storage and computational efficiency;
2. Enhanced model interpretability;
3. Low computational costs;
4. Increased robustness, augmenting resistance to noise and outliers.

All the aforementioned requirements point towards sparsity. When Φ(L) and Θ(L)
are sparse matrices, the model’s characteristics include:

1. The ability to conserve significant memory space, reducing computation time by
bypassing zero elements;

2. The retention of only salient features and relationships, which aids in comprehending
the operating principles of the model;

3. The exclusive transmission and processing of non-zero elements, thereby enhancing
computational efficiency;

4. The diminution of noise impact through sparsification.

In order to facilitate coefficient sparse identification in VARMA models, this study
initially derives the Yule–Walker equations for the VARMA model. This equation embodies
a method for representing stochastic processes, with its core essence residing in establish-
ing a linkage between the parameters and the autocorrelation function. For a pth-order
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stationary series xt = φ1xk−1 + φ2xk−2 + · · ·+ φpxk−p + at, the autocorrelation function at

lag k is defined as ρx =
E[(xt−µ)(xt−k−µ)]

γ0
, where γ0 is the variance and µ is the mean of the

time series. The Yule–Walker equations can be derived by considering the autocovariance
of both sides of the model at lag k:

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p, for k = 1, 2, . . . , p (5)

As mentioned above, the VARMA can be reformulated into the form as presented in (4),
and it is noteworthy that the parameter pairs (Φ, Θ) satisfying the same transformation
equation are not unique. Define, for a certain Π(L), p, and q, the equivalence class, which can
be characterized as: εp,q(Π(L)) = {(Φ, Θ) : Φ(L) = Θ(L)Π(L)}, where Φ =

[
Φ1 · · ·Φp

]
and

Θ =
[
Θ1 · · ·Θq

]
. Subsequently, one defines zt =

[
yT

t−1 : . . . : yT
t−p : aT

t−1 : . . . : aT
t−q

]T
and

β =
[
Φ1 : . . . : Φp : Θ1 : . . . : Θq

]T. Consequently, Equation (1) can be expressed as:

yt = βTzt + att ∈ Z (6)

Therefore, E
[
ytzT

t
]
= βTE

[
ztzT

t
]
+ E

[
atzT

t
]
. Given that at represents white noise, its

expected value is zero, which implies that E
[
ytzT

t
]
= βTE

[
ztzT

t
]
; that is to say:

ρT
zy = βTΣz (7)

Hence, the Yule–Walker-type equation for the VARMA is derived. Clearly, β is the
solution to the equation. It is evident that the equation (7) is a system of non-chiral linear
equations, so the solution takes from β = β∗ + δ, where β∗ is a particular solution and
δ represents a specific solution to the system of chi-square linear equations and satisfies
∑zδ = 0. Through this process, the parameter identification problem has been transformed
into a problem of solving equations.

In order to identify a solution that meets the criteria from the multitude of available
solutions, an additional penalty term has been incorporated into the objective function of
the model optimization. This term is designed to facilitate the measurement of parameter
sparsity and the identification of uniqueness. In this regard, a combination of the ℓ1-norm
and Frobenius norm has been selected for addition to the model. The ℓ1-norm of a matrix
is defined as the sum of the absolute values of its elements. Employing L1 regularization
tends to yield sparse models characterized by the estimation of numerous parameters as
zero. However, the ℓ1-norm lacks strong convexity. Thus, the research incorporate the
Frobenius norm, known for its strong convexity, to ensure the uniqueness of parameter
identification.

The model parameters were estimated in two stages, adhering to the methodologies
outlined in [33,34]. Firstly, we converted the fundamental VARMA equation into an infinite-

order VAR yt =
p̃
∑

τ=1
Πτyt−τ + at to approximate the unobservable errors ât. Following the

estimation of the unobservable error terms, the model yt =
p
∑
ℓ=1

Φℓyt−ℓ +
q
∑

m=1
Θm ât−m + ut

was derived, where ut is the vector error series. We then rewrote the equation in compact
matrix notation as Y = ΦZ + ΘX + U. The estimates for the regularized VARMA were
acquired as follows:(

Φ̂(α), Θ̂(α)
)
= arg min

Φ,Θ

{
1
2
∥Y − ΦZ − ΘX∥2

F + ∥Φ∥1 +∥Θ∥1 +
α

2

(
∥Φ∥2

F +
α

2
∥Θ∥2

F

)}
(8)

During the parameter estimation process, we first defined three hyperparameters: p̃, p,
and q, where p̃ represents the order of the VAR to which the VARMA equation is converted
in the first stage of parameter estimation and p and q are the maximum lag orders for
establishing the VARMA, respectively. We then defined the length of the series chosen
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for modeling as N and took p̃ = 1.5
√

N and p = q = 0.75
√

N. Thus, the scVARMA was
obtained.

In the framework of the scVARMA model, the value of each time series at a given
time is influenced not only by its own past values and those of other series but also
by historical error terms. This structural characteristic allows the model to capture and
articulate the complex dynamic interactions and dependencies among the time series.
By integrating these relationships, the scVARMA model excels in delineating how each
variable within the multivariate dataset influences others over time. The introduction
of sparsity through regularization techniques aids in refining the model by emphasizing
only the most significant links among the time series variables. These connections are not
arbitrary; instead, they are determined based on their ability to explain the variance and
co-movements in the dataset effectively. By acknowledging and modeling these intricate
dependencies, the scVARMA model offers a profound understanding of the underlying
processes governing the system’s behavior, thereby facilitating more accurate predictions
and strategic insights into the time series data interaction patterns.

3.2. Strategies for Online Monitoring

The transition of an LRE system from a state of normal operation to complete failure is
typically not instantaneous. There exists an intermediate transitional process as the system
progresses from normal functionality to a state of total failure. When parameter indices
deviate from normal benchmarks but remain within acceptable limits, the parameters are
considered anomalous. A system is deemed to have malfunctioned when at least one
characteristic index strays beyond these acceptable boundaries. Failure is defined as the
state wherein the system irreversibly loses the capacity to perform its intended function. In
Figure 2, the interval T1 − T2 represents the system in an anomalous state. As the severity
of the malfunction progresses, it transitions into the interval T2 − T3, which is indicative of
a state of malfunction. To enable the prediction of potential malfunctions when the LRE
exhibits anomalous behavior, the scVARMA is utilized for fault forecasting.

Figure 2. Schematic Diagram of System Failure Progression.

The operational conditions of LREs are typically categorized into three stages: the
startup phase, the main stage, and the shutdown phase. A majority of studies indicate
that during the startup and shutdown phases, the data measured by sensors exhibit highly
non-stationary and transient characteristics [35–38]. Conversely, during the main stage, the
engine operates stably, and the sensor measurements are either inherently stationary or can
be rendered stationary through normalization, differencing, and similar procedures.

When setting threshold values, a larger range decreases the sensitivity of fault de-
tection, leading to an increased incidence of missed warnings. On the other hand, a
narrower range may result in a higher frequency of false alarms. Both missed warnings
and false alarms are undesirable outcomes in the context of engine fault diagnosis. For
each monitored parameter yi, i = 1, . . . , d that is stationary, its mathematical variance



Mathematics 2024, 12, 1304 8 of 14

and expectation are, respectively, defined as σ2 = constant ≤ ∞, and µ. According to
Chebyshev’s inequality, for any bandwidth coefficient n > 0, the following holds:

P(|yi − µ| ≥ nσ) ≤ 1
n2 (9)

For any given false detection probability α, the upper and lower threshold limits are
defined as {

upper = µ + nσ
lower = µ − nσ

n =
1√
α

(10)

The normal operating range for the monitored parameter is thus defined as [µ− nσ, µ+ nσ].
Given that Chebyshev’s inequality is applicable to any random variable with finite mathematical
expectation and finite variance, the largest normal range is within the interval [µ− nσ, µ+ nσ],
constituting a finite range. For fault prediction parameters that follow a normal distribution, the
probability of their values falling within the interval [µ− nσ, µ+ nσ] is 99.74% [39]. Hence, it is
feasible to set n as 3 or adjust n based on the actual performance of fault prediction.

Once the threshold strategy is determined, the scVARMA is employed to predict parame-
ters, thereby enabling fault prognosis. The comprehensive process is depicted in Figure 3. Data
are first collected from sensors in the engine. Upon retrieval, an initial check is performed to
determine the operational status of each sensor. If a sensor is found to be faulty, its data are
discarded. For sensors operating normally, their data are used for predictive analysis. The
scVARMA model predicts future parameter performance based on this data. Simultaneously,
thresholds are calculated to determine if the predicted values fall within acceptable ranges. If a
predicted value lies outside these thresholds, an alarm is triggered indicating a potential fault.
Otherwise, the sensor parameters are considered normal, and monitoring continues. During the
real-time input of time series data, the threshold is computed, and the established scVARMA
model is utilized to predict future parameter performance. If the predicted values exceed the
threshold range, a fault alarm is issued.

Input time series

scVARMA

Prediction

Within the 

threshold range.

Calculation of 

Threshold

Y

Issue a fault alarm

N

Sensor is 

faulty or not
Sensor failure

Y

N
Sensor Data Collection

Figure 3. Online monitoring process.

While establishing the model, typical historical data from engines of the same model
are selected, and pre-processing is performed to stabilize the data, thereby fulfilling the
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application conditions for the scVARMA. For an established scVARMA, the predictive
formula is expressed as follows:

ŷT
n

ŷT
n−1
...

ŷT
1

 =


yT

n−1 · · · yT
n−p ε̂T

n−1 · · · ε̂T
n−q

yT
n−2 · · · yT

n−1−p ε̂T
n−2 · · · ε̂T

n−1−q
...

...
...

...
...

...
yT

0 · · · yT
1−p ε̂T

0 · · · ε̂T
1−q

×
[

ΦT

ΘT

]
(11)

4. Experimental Validation

To evaluate the effectiveness of the scVARMA model in a real-world application, we
conducted a two-fold experimental study. The first part of the study focused on online
monitoring trials using a proprietary dataset from LRE, while the second part tested the
predictive capabilities on both the proprietary dataset and a public dataset from the Case
Western Reserve University Bearing Dataset.

4.1. Online Monitoring with Proprietary Data

The online monitoring experiment utilized real-time sensor data from the LRE to
detect anomalies and predict potential failures. The dataset was derived from the results of
a specific test run on an LRE. The sampling frequency of the sensors was uniformly 100 Hz.
This research selected eleven parameters for analysis, each accompanied by its respective
unit to ensure clarity and precision in data interpretation:

1. Turbopump rotational speed (nt), unit: R/min;
2. Kerosene primary pump discharge pressure (Pepf1), unit: MPa;
3. Kerosene primary pump inlet pressure (Pipf1), unit: MPa;
4. Oxygen pump discharge pulsation pressure (Pepo), unit: MPa;
5. Oxygen pump inlet pressure (Pipo), unit: MPa;
6. Pre-injector fuel pressure in the generator (Pihfg), unit: MPa;
7. Pre-injector oxidizer pressure in the generator (Pohfg), unit: MPa;
8. Flow regulator chamber pressure (Pitj), unit: MPa;
9. Fuel throttle valve outlet pressure (PevjL), unit: MPa;
10. Secondary and tertiary cooling band collector pressure (Pcj23), unit: MPa;
11. Turbopump inlet temperature (Tit), unit: K.

All data were subjected to first-order differencing and normalization processing to
ensure data stationarity, thus meeting the data requirements for constructing the models.
This experiment selected a segment of typical stable continuous data with 200 sample
points for model construction. Here, we chose for p and q to be 11, respectively, for the
scVARMA. The established coefficient lag matrix is illustrated in Figure 4. From the figure,
it can be observed that many of the lag coefficients for pairs of parameters are zero, which
greatly reduces the computational burden on the computer. When using scVARMA for
one-step-ahead predictive online monitoring, taking the kerosene primary pump discharge
pressure as an example, the results are illustrated in Figure 5, with the results under normal
conditions on the right and the results under abnormal conditions on the left.
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(a) (b)

Figure 4. (a) AR-lag matrix and (b) MA-lag matrix of the estimated VARMA.

(a) (b)

Figure 5. One-step Predictive Online monitoring results for rotational speed: (a) Normal data and
(b) Failure data.

4.2. Predictive Performance on Proprietary and Public Data

The second part of the experiment evaluated the predictive performance of the sc-
VARMA model. The experimental validation involved a detailed comparison with tradi-
tional ARMA and VARMA models across various sensors for predicting different system
parameters. Table 1 presents the mean and standard deviation of the residuals from the
in-sample data fitting. The scVARMA model exhibits mean residuals close to zero and
consistently lower standard deviations across most sensors, indicating better fitting to the
in-sample data compared to both the ARMA and VARMA models. To further compare the
predictive power, Table 2 presents the mean absolute error (MAE) and root-mean-square
error (RMSE) for both models at 3-step and 5-step predictions, highlighting the predictive
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accuracy across different future intervals. As shown in Table 3, the MAE and RMSE metrics
of the scVARMA model have smaller values than the ARMA and VARMA models for most
of the sensor data at 3 and 5 steps ahead of prediction.

Table 1. Mean and standard deviation of model in-sample fitting residuals.

Parameter ARMA ARMA_std scVARMA_mean scVARMA_std

nt −0.0183 0.7018 −2.1164 × 10−11 0.7342
Pihfg 0.0126 0.6325 3.1746 × 10−11 0.5711
Pihog −0.0042 0.5715 1.5873 × 10−11 0.5832
Pipf1 1.1000 × 10−10 1 5.2910 × 10−11 0.4193
Pepf1 0.0111 0.4966 −1.0582 × 10−11 0.4271
Pepo −0.0166 0.6513 −1.5273 × 10−17 0.5856
Pipo −0.0122 0.3755 1.5873 × 10−1 1 0.3936
PevjL −0.0221 0.3569 −1.5873 × 10−11 0.3971
Pcj23 −0.0056 0.6032 3.7037 × 10−11 0.5809

Ptj 0.0079 0.4466 1.0582 × 10−11 0.4119
Tit −0.0185 0.4297 −5.2910 × 10−12 0.4694

Table 2. MAE and RMSE comparisons between ARMA, VARMA, and scVARMA models.

Sensor Steps
= 3

Steps
= 5

ARMA VARMA scVARMA ARMA VARMA scVARMA
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

nt 1.2488 0.4006 1.7797 0.4801 1.3117 0.4207 1.2190 0.4476 1.8639 0.4954 1.2599 0.4707
Pihfg 1.7167 0.7380 1.6594 0.7033 1.2203 0.6875 1.4510 0.6782 2.6932 0.6925 1.1725 0.6565
Pihog 1.6776 0.2555 1.1833 0.2152 0.2926 0.1925 2.1530 0.6805 2.4862 0.3841 0.4381 0.2042
Pipf1 0.5872 0.2646 0.7227 0.3259 1.3699 0.3648 0.4476 0.2717 1.2957 0.3601 1.0004 0.3863
Pepf1 1.4346 0.6650 1.3982 0.5017 0.7554 0.5147 1.7040 0.6010 1.9584 0.5233 0.9110 0.5018
Pepo 1.4330 0.8168 0.8688 0.8507 0.9232 0.7954 1.9060 0.9798 1.0446 0.8707 1.4425 0.9001
Pipo 0.8184 0.3496 0.3970 0.3304 0.2484 0.3167 0.6887 0.4531 0.4021 0.3197 0.3160 0.3913
PevjL 0.3277 0.1681 0.1878 0.2277 0.5236 0.2563 0.4234 0.3064 0.2212 0.3634 0.6109 0.3267
Pcj23 1.2339 0.9378 1.1325 0.9110 0.9680 0.8702 1.5379 0.8542 1.1468 0.8411 0.9882 0.8468

Ptj 1.6394 1.0069 1.1053 0.8013 1.1790 0.8337 1.9350 0.8513 1.1697 0.8120 1.3576 0.7966
Tit 0.1045 0.0748 0.7950 0.3281 0.7983 0.2601 0.1606 0.1267 0.8001 0.2917 0.8516 0.3145

mean 1.1111 0.5162 1.0209 0.5159 0.8719 0.5011 1.2387 0.5682 1.3711 0.5413 0.9408 0.5269

Table 3. MAE and RMSE comparisons using the CWRU Bearing dataset.

Data ARMA VARMA scVARMA
MAE RMSE MAE RMSE MAE RMSE

normal_0 0.1775 0.1230 0.1352 0.1218 0.1132 0.1164
normal_1 0.0086 0.0064 0.0081 0.0051 0.006‘3 0.0035
normal_2 0.0406 0.0241 0.0457 0.0356 0.0494 0.0299
normal_3 0.0485 0.0361 0.0493 0.0371 0.0323 0.0293

To substantiate the universality of the proposed scVARMA model, we extended
our evaluation to include the well-regarded Case Western Reserve University Bearing
dataset. This dataset is a benchmark in the field of condition monitoring and predictive
maintenance, consisting of vibration signal data that capture bearing performance under
various conditions. For this phase of testing, this research specifically focused on the
dataset’s normal operation conditions to align with the baseline comparisons established in
earlier experiments. This analysis applied the ARMA, VARMA, and scVARMA models to
predict the future states of the bearings and used the MAE and RMSE as metrics to assess
the accuracy of these predictions. The outcomes are shown in Table 3.
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5. Discussion

The results of our experiments on both proprietary and public datasets present a
compelling case for the scVARMA model’s applicability in predictive maintenance and
real-time monitoring. The improved prediction accuracy on both datasets when using the
scVARMA model compared to the ARMA and VARMA models underscores the importance
of considering cross-channel interactions.

In the experimental results, the scVARMA model shows the smallest increase in error
as the prediction step increases from 3 to 5. This suggests that the scVARMA model is
not only more accurate but also more stable over longer prediction horizons, likely due
to its ability to effectively capture and utilize the interdependencies among multiple time
series data. Additionally, by comparing the results of VARMA and scVARMA, although
this study performs a sparse operation in identifying the parameters of the VARMA model,
this rather leads to an increase in the predictive power. This may be due to the fact that the
original VARMA model introduces redundant information when establishing relationships
between different sequences. Performing a sparse operation can reduce the introduction of
redundant information to some extent, which can improve the performance of the model
to some extent.

6. Conclusions

In current engineering practices, ARMA models are predominantly used for online
monitoring due to their simple structures, which meet the requirements for real-time pro-
cessing. However, these models typically consider each channel independently, neglecting
the interdependencies among various channels, which can be critical in complex system
monitoring. Acknowledging this limitation, this study turned to the use of VARMA mod-
els, which are capable of capturing the dynamic interactions between multiple time series.
Nevertheless, the extensive number of parameters in VARMA models poses a significant
challenge for real-time forecasting due to their computational burden.

To mitigate this issue and pave the way for future real-time monitoring applications,
the research introduced a sparsity-constrained approach to the VARMA structure. By
enforcing sparsity, this method aimed to reduce model complexity without compromising
the ability to model inter-channel dependencies. This adaptation of VARMA models not
only makes real-time computation more feasible but also retains the essential characteristics
needed for accurate monitoring and prediction in engineering systems.

The scVARMA model demonstrates promising results, offering a more sophisticated
yet computationally efficient alternative to traditional ARMA models. It represents a step
forward in the real-time health monitoring of complex systems, providing a foundation
upon which future monitoring strategies can be developed to harness the full potential of
multivariate time series analysis.
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Abbreviations
The following abbreviations are used in this manuscript:

LREs Liquid rocket engines
HMS Health monitoring systems
AR Autoregressive model
MA Moving average model
ARMA Autoregressive moving average model
VARMA Vector autoregressive moving average
VAR Vector autoregressive
scVARMA Sparsity-constrained vector autoregressive moving average
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