
Citation: Hamzat, J.O.; Oluwayemi,

M.O.; Oladipo, A.T.; Alb Lupas, A. On

α-Pseudo Spiralike Functions

Associated with Exponential Pareto

Distribution (EPD) and Libera

Integral Operator. Mathematics 2024,

12, 1305. https://doi.org/10.3390/

math12091305

Academic Editor: Jay Jahangiri

Received: 27 February 2024

Revised: 12 April 2024

Accepted: 18 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On α-Pseudo Spiralike Functions Associated with Exponential
Pareto Distribution (EPD) and Libera Integral Operator
Jamiu Olusegun Hamzat 1,†, Matthew Olanrewaju Oluwayemi 2,3,*,† , Abiodun Tinuoye Oladipo 4,†

and Alina Alb Lupas 5,†

1 Department of Mathematics, University of Lagos, Akoka 101017, Nigeria; jhamzat@unilag.edu.ng
2 Department of Mathematics and Statistics, Margaret Lawrence University, Galilee 321108, Nigeria
3 SDG 4 (Quality Education Research Group), Landmark University, Omu-Aran 251103, Nigeria
4 Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology,

Ogbomoso 212102, Nigeria; atoladipo@lautech.edu.ng
5 Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street,

410087 Oradea, Romania; dalb@uoradea.ro
* Correspondence: oluwayemimatthew@gmail.com or matthew.oluwayemi@mlugalilee.edu.ng
† These authors contributed equally to this work.

Abstract: The present study aims at investigating some characterizations of a new subclass Gα(µ, τ)

and obtaining the bounds on the first two Taylor–Maclaurin coefficients for functions belonging to
the newly introduced subclass. In order to achieve this, a compound function Lσ

x,n(z) is derived from
the convolution of the analytic function f (z) and a modified exponential Pareto distribution G(x) in
conjunction with the famous Libera integral operator L(ζ). With the aid of the derived function, the
aforementioned subclass Gα(µ, τ) is introduced, while some properties of functions belonging to this
subclass are considered in the open unit disk.
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1. Introduction

Let Ω denote the class of analytic functions f (ζ) such that

f (ζ) = ζ +
∞

∑
k=2

akζk (1)

and be normalized with f ′(0) = 0 and f ′(0) = 1 in the open unit disk D = {ζ : |ζ| < 1}.
The single-valued function f (ζ) is said to be univalent in D if it never takes on the same
value twice. In other words, if f (ζ1) = f (ζ2) for ζ1, ζ2 ∈ D, then ζ1 = ζ2. Also, let A
denote the class of all univalent functions that are in Ω. In 1973, Singh [1] examined a
subclass of A (known as Bazilevic functions of type λ) denoted by B1(λ)(λ > 0) satisfying
the condition

ℜ
{

f (ζ)λ−1 f ′(ζ)
ζλ−1

}
> 0, λ > 0, ζ ∈ D.

Letting λ = 0 and 1, respectively, the said class, B1(λ), yields the well-known subclasses of
starlike and bounded turning functions satisfying the geometric conditions

ℜ
{

ζ f ′(ζ)
f (ζ)

}
> 0, ζ ∈ D

and {
f ′(ζ)

}
> 0, ζ ∈ D.
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In the present study, for function f (ζ) ∈ Ω, we say that B1(λ, τ) is the class of Bazilevic
functions of type λ, order τ provided that

ℜ
{

f (ζ)λ−1 f ′(ζ)
ζλ−1 ,

}
> τ, λ > 0, 0 ≤ τ < 1, ζ ∈ D.

Furthermore, in [2], Al-kadim and Bashi defined the cumulative probability function
of the exponential Pareto distribution (EPD) as

G(x) = 1 − e−γ( x
n )

σ
; x > 0, (2)

where γ, σ > 0 are shape parameters and n > 0 is a scale parameter.
The concept of the aforementioned distribution G(x)was first initiated by Gupta et al. [3]

in 1998, with its probability density function (pdf) expressed as

G(x, γ, θ) = γθ(1 + x)−γ+1[1 − (1 + x)−γ]θ−1,

where θ and γ are two shape parameters.
One major advantage of the exponential Pareto distribution (EPD) is the scaling pa-

rameter, which can be applied to different areas in real life situation. The distribution has
the ability to capture the long-tailed nature of many real-world data sets, identify patterns
and trends in data, and due to the importance of the exponential Pareto distribution in ana-
lyzing lifetime data FC, various applications of the distribution have been considered and
studied in the literature. For example, Al-Kadim and Boshi in [2] discussed exponential and
Pareto distributions and presented some properties which include the moment generated
function, mean, mode, median, variance, the r-th moment about the mean, the r-th moment
about the origin, reliability, hazard functions and coefficients of variation, of skweness
and of kurtosis and estimated the parameter. Haj Ahmad et al. [4] used a unit exponential
Pareto distribution to model the recovery rate of COVID-19; Idowu and Ajibode in [5]
considered the use of the exponential Pareto distribution to improve raw material quality in
cement production and for drawing control charts. See also [6,7] among others, for details.

It is, however, observed that there are no known applications of the exponential and
Pareto distribution in geometric function theory in the literature now. Hence, the authors
intend to investigate some relevant connections of this distribution (EPD) in geometric
function theory in this study. Consequently, we let ζ = γ + ϵi for ϵ ≥ 0 such that G(x) is
now defined as

G(x) = 1 − e−ζ( x
n )

σ
; x, n, σ > 0, ζ ∈ C. (3)

Remark 1. If we set ϵ = 0, then (3) reduces to the usual exponential Pareto distribution
given by (2).

Equation (3) can be normalized such that

(−1)−(k+1)
( x

n

)−σ
G(x) = ζ +

∞

∑
k=2

( x
n

)σ(k−1)
ζk. (4)

In view of (1) and (4), we can say that

h(ζ) = (−1)−(k+1).
( x

n

)−σ
G(x) ∗ f (ζ).

That is,

h(ζ) = ζ +
∞

∑
k=2

b(k−1)akζk, (5)

where for convenience we let b =
( x

n
)σ.
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Furthermore, in 1965, Libera [8] defined an integral operator L(ζ) as

L(ζ) =
2
ζ

∫ ζ

0
f (t)dt; (6)

see also [9,10], among others.

It is worthy to note that the Libera integral operator defined in (6) maps each of the
subclasses of starlike, convex and close-to-convex functions into itself, which makes the
operator symmetric in nature. It converges uniformly, which makes it asymptotic in nature.
Since (5) and (6) converge uniformly, in this study, we can replace f (t) in (6) with the
function h(ζ) derived in (5), such that

Lb(ζ) =
2
ζ

∫ ζ

0
h(t)dt.

It is trivial to see that

Lb(ζ) = ζ +
∞

∑
k=2

(
2

k + 1

)( x
n

)σ(k−1)
akζk. (7)

It is imperative to note that the series derived in (7) is uniformly convergent for

|ζ| < |nδ |
p|xδ | . If p ̸= 0, then the radius of convergence R is given by R = |nδ |

p|xδ | , while for p = 0,
R = ∞.

Given the series

Lb(ζ) = ζ +
∞

∑
k=2

(
2

k + 1

)( x
n

)σ(k−1)
akζk

as a convolution of f (ζ) defined by (1) and g(ζ) defined as follows:

g(ζ) = ζ +
∞

∑
k=2

(
2

k + 1

)( x
n

)σ(k−1)
ζk, (8)

so that Lσ
x,n(ζ) = f (ζ) ∗ g(ζ) = Lb(ζ), Now let

bk =

(
2

k + 1

)( x
n

)σ(k−1)
,

which implies that

bk+1 =

(
2

k + 2

)( x
n

)kσ
.

By the ratio test of convergence,

lim
k→∞

∣∣ bk+1
bk

∣∣ = lim
k→∞

∣∣ 2xkσ

(k + 2)nkσ
× (k + 1)nkσ−σ

2xkσ−σ

∣∣
= lim

k→∞

∣∣ (k + 1)xσ

(k + 2)nσ

∣∣ = ∣∣ xσ

nσ

∣∣ lim
k→∞

∣∣ k + 1
k + 2

∣∣ = xσ

nσ
< 1

for a convergence series. Hence, the series converges for xσ < nσ and diverges for nσ < xσ.
The test fails for nσ = xσ. For the purpose of this study, therefore, we assume xσ < nσ, since
the series converges with the radius of convergence xσ

nσ and the interval of convergence
− xσ

nσ <
∣∣ζ∣∣ < xσ

nσ . We remark that since x, n and σ are greater than zero or non-negative, the
parameters xσ

nσ is such that xσ

nσ ∈ (0, 1), the unit disc.
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Using (7), therefore, we give the following definition:

Definition 1. Let the functions f (ζ) and Lb(ζ) be defined, respectively, by (1) and (7). Then,
Lb(ζ) belongs to the class Gα(τ, µ) of α-pseudo-spiralike functions of order τ (associated with the
exponential Pareto distribution and Libera integral operator), provided

Re

eiµ
ζ
(

L′
b(ζ)

)α

Lb(ζ)

 > τ cos µ, ζ ∈ D, (9)

where α > 0, 0 ≤ τ < 1, |µ| < π
2 , x, n, σ > 0.

Remark 2. (i.) Firstly, we note that if we set τ = 0 in (9), then we write Gα(µ) in place of
Gα(0, µ).

(ii.) Setting α = 1 in (9), we obtain the class G1(τ, µ) of 1-pseudo-spiralike functions of order
τ, or simply the class of spiralike functions of order τ.

(iii.) If we let α = 2 in (9), then we obtain the class G2(τ, µ) given by

Re
{

eiµ ζL′
b(ζ)

Lb(ζ)

[
L′

b(ζ)
]}

> τ cos µ,

which is the product combination of geometric expressions for spiralike and bounded turning
functions of order τ.

(iv.) Letting α = 1 and µ = 0 in (9), we obtain the class G1(τ, 0) of 1-pseudo-starlike
functions of order τ, or simply the class of starlike functions of order τ.

(v.) If we let α = 2 and µ = 0 in (9), then we obtain the class G2(τ, 0) given by

Re
{

ζL′
b(ζ)

Lb(ζ)

[
L′

b(ζ)
]}

> τ cos µ,

which, obviously, is the product combination of geometric expressions for starlike and bounded
turning functions of order τ.

Next, we show that Gα(τ, µ) is a subclass of B1(λ, τ) and, therefore, α-pseudo-spiralike
functions are Bazilevic and univalent in D. Also, we obtain some characterizations as well
as integral representations of these new classes of functions. Furthermore, we consider
the coefficient estimates and Fekete functional for the functions belonging to the newly
defined class Gα(τ, µ). At this juncture, it is noted that though for α > 1, the classes of
α-pseudo-spiralike functions have similar traits as the analytic representation of spiralike
functions, the likely inclusion relations between them is an open problem. The Libera
integral operator as a tool for investigating the geometric function is used in this study
because of its useful properties, such as preservation properties and conformal mapping
properties, among others.

2. Some Characterizations for the Class Gα(τ, µ)

Before proceeding to the results and their proofs, the following well-known Lemmas
shall be considered.

Let Pτ denote the class of analytic functions p(ζ) in D, given by

p(ζ) = 1 + p1ζ + p2ζ2 + . . . = 1 +
∞

∑
k=1

pkζk (ζ ∈ D),

and satisfy the condition
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Re
[
p(ζ)

]
> τ cos µ, 0 ≤ τ < 1, |µ| < π

2
. (10)

The class Pτ is the class of Caratheodory functions of order τ. For the case τ = 0, we simply
write P instead of Pτ .

Lemma 1 ([11]). Let ζ be a complex number with positive real part. Then, for t > 0, t ∈ [0, 1], we
have Reζt ≥ [Reζ]t.

Lemma 2 ([11–13]). Let the function p ∈ P (class of Caratheodory functions) be given by

p(ζ) = 1 +
∞

∑
k=1

pkζk (ζ ∈ D); (11)

then
|pk| ≤ 2 (k ∈ N = {1, 2, . . .}), (12)

where
p(0) = 1 and Re(p(ζ)) > 0 (ζ ∈ D), 0 ≤ τ < 1, |µ| < π

2
.

Lemma 3 ([11–13]). Let p ∈ Pτ . If

ψ(ζ) = [p(ζ)]t, t ∈ [0, 1],

then
ψ(0) = 1 and ℜ

[
ψ(ζ)

]
> (τ cos µ)t.

Proof. We observe that ψ(0) = 1. By applying (10) and Lemma 1, we can say that

Re
[
ψ(ζ)

]
= Re

[
p(ζ)

]t,

which implies that

Re
[
ψ(ζ)

]
>

(
Re

[
p(ζ)

])t
.

Therefore,

Re
[
ψ(ζ)

]
>

(
τ cos µ

)t

and this obviously completes the proof.

Lemma 4 ([11–13]). If p(ζ) = 1 + p1ζ + p2ζ2 + . . . is an analytic function with positive real
part and v is a complex number, then

|p2 − vp2
1| ≤ 2max{1; |2v − 1|}.

The result is sharp for the functions given by

p(ζ) =
1 + ζ2

1 − ζ2 and p(ζ) =
1 + ζ

1 − ζ
.

Lemma 5 ([14]). Let q(ζ) be analytic in D with q(0) = 1 and suppose that

Re
{

1 + ζ
q′(ζ)
q(ζ)

}
>

4βρ + 8β − ρ − 1
4β(ρ + 1)

, (ζ ∈ D).

Then Re
[
q(ζ)

]
> β for 1

4 ≤ β < 1 and 0 < ρ ≤ 1.
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Theorem 1. Let Lb(ζ) be of the form (7) and belongs to Gα(µ). Then, for α ≥ 1, |µ| < π
2 ,

0 ≤ τ < 1 and ζ ∈ D, Gα(τ, µ) ⊂ B1(1 − 1/α, τ
1
α cos

1
α µ).

Proof. Suppose that Lb(ζ) ∈ Gα(µ). Then for some p ∈ Pτ , we set

p(ζ) = eiµ
ζ
(

L′
b(ζ)

)α

Lb(ζ)
. (13)

Obviously, (13) can be expressed as

p(ζ) = eiµ


ζ

1
α L′

b(ζ)(
Lb(ζ)

) 1
α


α

. (14)

From (14), we obtain (
p(ζ)

) 1
α
=

(
eiµ

) 1
α

ζ
1
α

(
L′

b(ζ)
)

(
Lb(ζ)

) 1
α

. (15)

In view of Lemma 3, we obtain

Re

[
eiµ/α ζ1/α

(
L′

b(ζ)
)(

Lb(ζ)
)1/α

]
>

(
τ cos µ

)1/α

and, taking λ = 1 − 1
α , we obtain the required result.

Theorem 2. Let Lb(ζ) be of the form (7) and belongs to Gα(µ). Then Lb(ζ) can be represented by
the following integral:

Lσ
b (z) =

[ ζ∫
0

(α − 1
α

)
e−i µ

α

( p(t)
t

) 1
α

dt

] α
α−1

, i f α > 1.

Proof. Since Lb(ζ) ∈ Gα(τ, µ), there exists p in Pτ such that

(
p(ζ)

) 1
α
=

(
eiµ

) 1
α

ζ
1
α

(
L′

b(ζ)
)

(
Lb(ζ)

) 1
α

. (16)

Then, taking λ = 1 − 1
α , we have

(
p(ζ)

)1−λ
=

(
eiµ

)1−λ ζ
1
α

(
L′

b(ζ)
)

(
Lb(ζ)

)1−λ

such that (
eiµ

)λ−1(
p(ζ)

)1−λ
ζλ−1 =

(
L′

b(ζ)
)

(
Lb(ζ)

)1−λ
. (17)
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Since

L′
b(ζ)(

Lb(ζ)
)1−λ

=
[

Lb(ζ)
]λ−1[

L′
b(ζ)

]
=

[(
Lb(ζ)

)λ]′
λ

,

therefore, [(
Lb(ζ)

)λ]′
= λ

(
eiµ

)λ−1(
p(ζ)

)1−λ
ζλ−1. (18)

Simple computation of (18) yields

Lb(ζ) =

[(
eiµ

)λ−1
ζ∫

0

λtλ−1
(

p(t)
)1−λ

dt

] 1
λ

,

which yields the required result.

Remark 3. (i) If α = 1 in (12), we have the integral representation of the spiralike function given

Lb(ζ) = exp
ζ∫

0

e−iµ p(t)
t

dt.

(ii) If α = 1 and µ = 0 in (12), then the integral representation of the starlike function given by

Lb(ζ) = exp
ζ∫

0

p(t)
t

dt, i f α = 1

is well-known.

Theorem 3. Let Lb(ζ) be of the form (7) and satisfy the condition that

Re

{
eiµ

[
α

ζ
(

L′′
b (ζ)

)(
L′

b(ζ)
) −

ζ
(

L′
b(ζ)

)(
Lb(ζ)

) ]}
>

4β − (ρ + 1)
(

1 + 4β cos µ
)

4β(ρ + 1)
. (19)

Then, Lb(ζ) ∈ Gα(µ) for 1
4 ≤ β < 1, 0 < ρ ≤ 1, α ≥ 1, |µ| < π

2 and σ, x, n are as earlier defined.

Proof. Define

p(ζ) = eiµ
ζ

[
L′

b(ζ)

]α

Lb(ζ)
.

Taking logarithm differentiation of both sides, we obtain

p′(ζ)
p(ζ)

= αeiµ

(
L′′

b (ζ)
)

(
Lb(ζ)

)′ −
(

L′
b(ζ)

)
(

Lb(ζ)
) + eiµ. (20)

Now, using Lemma 5 in (20), we have

Re
{

1 + ζ
p′(ζ)
p(ζ)

}
= Re

(
1 + eiµ)+ eiµ

[
αζ

(
L′′

b (ζ)
)

(
L′

b(ζ)
) − ζ

(
L′

b(ζ)
)

(
Lb(ζ)

)]


>
4βρ + 8β − ρ − 1

4β(ρ + 1)
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and this completes the proof. If we set β = 1
4 in Theorem 3, we obtain the following

corollary.

Theorem 4. Let Lb(ζ) be of the form (7). If Lb(ζ) belongs to the class Gα(µ, τ) of order τ, type
α, then ∣∣a2

∣∣ ≤ 3
(

eiµ − τ cos µ
)

(
2α1 − 1

)( x
n

)σ (21)

and ∣∣a3
∣∣ ≤ 4

(
eiµ − τ cos µ

)
(
3α1 − 1

)( x
n

)2σ
.max

{
1;
∣∣∣∣1 + 2

(
4α2 − 2α1 + 1

)(
eiµ − τ cos µ

)(
2α1 − 1

)2

∣∣∣∣
}

. (22)

Proof. From (9), we have

ℜ

eiµ
ζ
([

L′
b(ζ)

])α

Lb(ζ)

 > τ cos µ.

Now, set

eiµ
ζ

([
L′

b(ζ)
])α

Lb(ζ)
− τ cos µ

eiµ − τ cos µ
= p(ζ).

Then

eiµ
ζ
([

L′
b(ζ)

])α

Lb(ζ)
= τ cos µ +

(
eiµ − τ cos µ

)
p(ζ). (23)

This implies that

eiµζ +
4
3

eiµα1

( x
n

)σ
a2ζ2 +

[
3
2

α1a3 + eiµ 16
9

α2a2
2

]( x
n

)2σ
ζ3 + . . .

= eiµζ +

[(
eiµ − τ cos µ

)
p1 +

2
3

eiµ
( x

n

)σ
a2

]
ζ2

+

[(
eiµ − τ cos µ

)
p2 +

2
3
(
eiµ − τ cos µ

)( x
n

)σ
p1a2 +

1
2

( x
n

)2σ
eiµa3

]
ζ3 + . . . .

By comparing the coefficients of both sides, we obtain

a2 =
3
(

eiµ − τ cos µ
)

2eiµ
(
2α1 − 1

)( x
n

)σ p1 (24)

and

a3 =
2
(
eiµ − τ cos µ

)
(
3α1 − 1

)( x
n

)2σ
eiµ

{
p2 −

(
4α2 − 2α1 + 1

)(
eiµ − τ cos µ

)(
2α1 − 1

)2eiµ
p2

1

}
. (25)

Applying Lemma 2 in (24) and Lemma 4 in (25), we obtain the required results, as seen in
(21) and (22), respectively.
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Theorem 5. Let Lb(ζ) be of the form (7). If Lb(ζ) belongs to the class Gα(µ, τ) of order τ, type
α, then ∣∣a3 − va2

2
∣∣

≤
4
(
eiµ − τ cos µ

)
(
3α1 − 1

)( x
n

)2σ
.max

{
1;
∣∣∣∣1 +

(
eiµ − τ cos µ

)
4
(
2α1 − 1

)2

[
8
(
4α2 − 2α1 + 1

)
+ 9v(3α1 − 1)

]∣∣∣∣
}

.

Proof. Using (24) and (25) for any complex number v, we have

a3 − va2
2 =

2
(
eiµ − τ cos µ

)
eiµ

(
3α1 − 1

)( x
n

)2σ

{
p2 −

(
eiµ − τ cos µ

)
8eiµ

(
2α1 − 1

)2

[
8
(
4α2 − 2α1 + 1

)
+ 9v(3α1 − 1)

]
p2

1

}
.

In view of Lemma 4, we obtain the desired result.

3. Conclusions

The present study is primarily concerned with a new function Lb(ζ), derived through
Hadamard product/convolution, modified exponential Pareto distribution (EPD), Libera
integral operator and differential calculus. Using the new function with the help of the
subordination principle, a new subclass Gα(µ, τ), associated with modified EPD and the
Libera integral operator is introduced. In view of the newly defined subclass, some char-
acterizations as well as coefficient bounds for functions belonging to the aforementioned
subclass are investigated using a succinct mathematical approach, while several other corol-
laries follow as simple consequences. Interestingly, it is worthy to note that the exponential
Pareto distribution (EPD) is a great tool in analyzing many lifetime data and the symmetric
properties are due to the involvement of the Libera integral operator and convolution
transform. Finally, it is noted here that the bounds obtained in this work could be used in
the future to study bi-univalent problems as well as Hankel determinants and these are left
has open problems.
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