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Abstract: The reentry trajectory planning problem of hypersonic vehicles is generally a continuous
and nonconvex optimization problem, and it constitutes a critical challenge within the field of
aerospace engineering. In this paper, an improved sequential convexification algorithm is proposed
to solve it and achieve online trajectory planning. In the proposed algorithm, the Chebyshev pseudo-
spectral method with high-accuracy approximation performance is first employed to discretize the
continuous dynamic equations. Subsequently, based on the multipliers and linearization methods,
the original nonconvex trajectory planning problem is transformed into a series of relaxed convex
subproblems in the form of an augmented Lagrange function. Then, the interior point method is
utilized to iteratively solve the relaxed convex subproblem until the expected convergence precision
is achieved. The convex-optimization-based and multipliers methods guarantee the promotion of
fast convergence precision, making it suitable for online trajectory planning applications. Finally,
numerical simulations are conducted to verify the performance of the proposed algorithm. The
simulation results show that the algorithm possesses better convergence performance, and the
solution time can reach the level of seconds, which is more than 97% less than nonlinear programming
algorithms, such as the sequential quadratic programming algorithm.

Keywords: reentry trajectory planning; improved sequential convexification; hypersonic vehicle;
pseudo-spectral method; method of multipliers

MSC: 49M37

1. Introduction

Hypersonic vehicles generally refer to near-space vehicles with flight speeds greater
than Mach 5. They possess the advantages of strong maneuverability, flexible trajectory,
they are difficult to intercept, and so on, and they have been increasingly valued by the
major space powers due to their high flight speeds and vast airspace coverage. Among the
related technologies, trajectory planning technology can provide important support for
performance analysis regarding flight range, maneuverability, and ballistic characteristics.
The hypersonic vehicle trajectory planning problem typically involves solving a nonlinear
optimal control problem with various state and control constraints, including boundary
conditions, no-fly-zone constraints, path constraints, etc. [1–3].

In this regard, many scholars and engineers have carried out a series of in-depth
studies, and the proposed trajectory planning algorithms generally include indirect and
direct methods. The indirect methods transform the trajectory planning problem into a
Hamiltonian boundary value problem based on the Pontryagin maximum principle and
solves it by employing the gradient method and other algorithms. On the other hand,
many scholars have proposed and developed the collocation method, pseudo-spectral
method, and other methods [4–7], demonstrating the advantages of direct methods in
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solving trajectory optimization problems. However, the direct methods still have some
shortcomings under the requirement of rapid trajectory planning, such as high sensitivity
to initial guess value and uncertain solving time and convergence, which restrict their
efficient solving ability [8].

In recent years, convex-optimization-based methods have effectively met the demand
for efficient solutions and attracted more and more attention in terms of spacecraft tra-
jectory optimization. When a problem can be formulated within a convex optimization
framework, its complexity is low and can be reliably solved to global optimality in the poly-
nomial time by the primal-dual interior point method. The upper bound of the number of
iterations required for convergence is also determined. Moreover, the primal-dual interior
point method can be adopted to solve the convex problem without the initial guess value.
Motivated by these preponderances, the convex-optimization-based methods have been ap-
plied to different aerospace problems, such as planetary reentry trajectory optimization [9],
ascent trajectory optimization [10,11], Mars-landing trajectory planning [12,13], low-thrust
orbit transfer [14], spacecraft rendezvous and proximity operations [15,16], and trajectory
planning for satellite cluster reconfigurations [17].

Most aerospace problems are limited by nonlinear, nonconvex dynamics and path
constraints, so they cannot be solved directly under the convex optimization framework.
Therefore, convexification technologies that make the approximate error as small as possible
are a significant research direction [18]. Among them, the two mainstream convexifica-
tion methods include lossless convexification and sequential convexification methods.
In Refs. [12,13], Ackimese et al. employed the lossless convexification method to solve
the Mars-landing trajectory planning problem by replacing nonconvex constraints with
relaxed convex constraints without a loss of accuracy. But the lossless convexification
method is only suitable for a few constraints with particular forms, which limits its wide
application. On the other hand, the sequential convexification method can conduct highly
nonlinear complex problems. The basic idea is to obtain a series of convex subproblems by
approximating the nonlinear terms and then solve them iteratively until it converges to the
expected precision [19,20].

However, the sequential convexification method can be further improved in terms
of discretization and accelerating convergence. Firstly, the traditional trapezoidal discrete
method [3,19,20] is often chosen to discretize the continuous optimization problem, which
leads to a large deviation between the approximate model used in the solution procedure
and the actual one. To obtain a precise-enough solution, the equidistant discrete nodes
should be sufficiently numerous. Nevertheless, it also results in a dramatic increase in
the number of optimization variables and takes lots of time to solve. In contrast, the
pseudo-spectral discretization methods offer higher accuracy under the same number
of discrete nodes and have been widely employed for solving the optimal control prob-
lem [5,8]. Among the pseudo-spectral methods, the Chebyshev pseudo-spectral discretiza-
tion method [21,22] is a special category, which can minimize the Runge phenomenon and
supply the best polynomial approximation under the minimax norm. On the other hand,
“artificial infeasibility” [23,24] caused by the convexification errors occurs when the original
problem is feasible but the convex subproblem is not. Researchers address this issue by
introducing slack variables to relax the feasible domain limited by various constraints, with
large constant penalty parameters added to penalize these slack variables. As a result, the
“artificial infeasible” gradually disappears and the slack variables tend towards zero as the
iterative solution converges. Unfortunately, the fixed penalty parameters could cause the
solution to converge to a stagnation point of the penalty problem rather than the original
problem, according to Ref. [25].

To address the aforementioned issues, an improved sequential convexification algo-
rithm is proposed to improve the performance of solving the trajectory planning problem
of hypersonic vehicles in this paper. Firstly, the Chebyshev pseudo-spectral method with
higher approximation precision is employed to discretize the continuous optimal control
problem. And the flight terminal time is designed as an optimization variable, so that it can
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be applied to the optimal control problem with a fixed initial state and free terminal state.
Then, by introducing automatically updated penalty parameters and Lagrange multipliers,
the relaxed convex subproblem in the form of the augmented Lagrange function is con-
structed to improve the convergence and computational properties based on the method of
multipliers (or the augmented Lagrange method). And it is solved iteratively by the interior
point method in the framework of the improved sequential convexification algorithm.

The rest of this paper is organized as follows. In Section 2, the reentry trajectory
optimization problem is formulated. In Section 3, the improved sequential convexification
algorithm is detailed. In Section 4, numerical simulations are presented to verify the
performance of the algorithm. Finally, the conclusion and discussion are provided in
Section 5.

2. Problem Formulation
2.1. Reentry Dynamics

In view of the dynamics characteristics of the reentry flight of hypersonic vehicles, the
dimensionless three-degrees-of-freedom augmented dynamics model is established in the
half-velocity coordinate system without considering Earth’s flatness and rotation:

.
r = v sin γ
.
θ = v cos γ sin ψ/(r cos ϕ)
.
ϕ = v cos γ cos ψ/r
.
v = −D − sin γ/r2
.
γ = L cos σ/v + (v2 − 1/r) cos γ/(vr)
.
ψ = L sin σ/(v cos γ) + v cos γ sin ψ tan ϕ/r
.
σ = u

, (1)

where r is the radial distance from the Earth center to the vehicle, θ and ϕ are the longitude
and latitude, respectively, v is the velocity, γ is the flight path angle, ψ is the heading angle,
and σ is the bank angle. The above variables are defined as system state variables, i.e.,
x = [r, v, θ, ϕ, γ, ψ, σ]T , and the control variable is the bank angle rate u ∈ R. The variables r,
v and time are scaled by R0,

√
R0g0 and

√
R0/g0, respectively, where R0 = 6371 km is the

Earth radius and g0 = 9.8 m/s2 is the gravitational acceleration at sea level. Dimensionless
lift and drag accelerations L and D are scaled by g0 and calculated as:

L = R0ρv2SCL
2m

D = R0ρv2SCD
2m

, (2)

where m is the vehicle mass, S is the reference area of the vehicle, and ρ is the atmospheric
density, ρ = ρ0e−H/Hs , where H = rR0 − R0 is the height, Hs is the atmospheric density
scale height, and ρ0 is the atmospheric density at sea level. Moreover, CL and CD are lift
and drag coefficients, respectively. For reference to the aerodynamic parameters of the
vehicle in [9], the aerodynamic coefficient can be expressed as:{

CL = −0.041065 + 0.016292α + 0.0002602α2

CD = 0.080505 − 0.03026CL + 0.86495C2
L

, (3)

in which the angle of attack α is in degree and expressed as a function of velocity. The
angle-of-attack velocity profile is preset as follows:

α =

{
40, v

√
R0g0 > 4570 m/s

40 − 0.20705
(v
√

R0g0−4570)
2

3402 , otherwise
. (4)

In general, the design of the bank angle is the main means to change the trajectory of
the vehicle when the angle of attack is preset. However, the bank angle rate is adopted
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here as the new control variable for the following reasons. Firstly, boundary constraints are
applied to make the bank angle profile smoother. Secondly, the current system dynamics are
transformed into affine control form, which expedite subsequent convexification operations
and alleviate the high-frequency fluctuations in the bank angle [9].

2.2. Constraint Conditions

The trajectory planning problem of hypersonic vehicles belongs to a class of optimal
control problems, and its purpose is to determine the optimal control variables and optimize
the performance index function under various constraints.

Generally, the vehicle must meet different constraints, such as heat rate, dynamic
pressure, load, and control margin, during the ultra-high-speed flight to ensure the safety
of the vehicle structure, thermal protection, guidance, and control systems. To meet the
mission requirements, the initial conditions and terminal states of the vehicle also need to
be limited. In addition, the vehicle should avoid certain no-fly zones due to radar detection,
geopolitics, or other considerations. In summary, all of these constraint conditions can be
divided into two categories: equality constraints and inequality constraints.

First of all, the equality constraints mainly include dynamic equations and initial and
terminal constraints. Here, the system dynamics Equation (1) is abstractly expressed as

.
x = f (x, u, t) = f0(x, t) + Bu, (5)

where t is the system time variable, and f (·, ·, ·) is the right function of the dynamic equa-

tions. And f0(x, t) =



v sin γ
v cos γ sin ψ/(r cos ϕ)
v cos γ cos ψ/r
−D − sin γ/r2

L cos σ/v + (v2 − 1/r) cos γ/(vr)
L sin σ/(v cos γ) + v cos γ sin ψ tan ϕ/r
0

, B = [0, 0, 0, 0, 0, 0, 1]T .

The initial and terminal constraints are determined by the flight mission, which
contains the requirements of the reentry start point and the target point, and they can be
represented as follows:

Φ(x(t0), x0) = 0
Ψ(x(t f ), x f ) = 0 , (6)

where t0 and t f are the initial and terminal time, respectively. Φ(·, ·) and Ψ(·, ·) are the
initial and terminal state constraints, respectively.

Then, inequality constraints can be divided into the following three categories. First,
the path constraints, including the maximal heat rate, dynamic pressure, and load, are
expressed as:

p(r, v) =

 .
Q −

.
Qmax

q − qmax
n − nmax

 =

 KQρ0.5(v
√

R0g0)
3.15 −

.
Qmax

0.5ρ(v
√

R0g0)
2 − qmax√

L2 + D2 − nmax

 ≤ 0, (7)

where
.

Qmax, qmax and nmax are the corresponding maximum values, respectively.
Second, the bounded constraints about the state and control variables are given by:

xmin ≤ x ≤ xmax
umin ≤ u ≤ umax

, (8)

where ·min and ·max are the lower and upper bound values, respectively.
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The last class of inequality constraints is the no-fly-zone (NFZ) constraint. In general,
an NFZ is modeled as a circular exclusion zone in the horizontal place with infinite height
and limits the longitude and latitude of the flight trajectory by

(θ − θc)
2 + (ϕ − ϕc)

2 ≥ d2, (9)

where θc and ϕc are the longitude and latitude at the center of the NFZ, and d is the radius.

2.3. Optimal Control Problem

In the trajectory optimization problem, the performance indexes can be reasonably
selected according to the different flight tasks and design requirements. Common perfor-
mance indexes include minimum flight time, maximum range, minimum heat load, etc. In
this paper, the minimum flight time is chosen as the performance index, considering that
the vehicle needs to reach the anticipative target point quickly. Henceforth, the original
reentry trajectory optimization problem can be formulated as a highly constrained optimal
control problem:

P0 : min J =
∫ t f

0 1 dt
s.t. Eq. (5), (6), (7), (8), (9)

.

3. Improved Sequential Convexification Algorithm

In this section, an augmented Lagrange-based Chebyshev pseudo-spectral form im-
proved sequential convexification (AL-CP-ISC) algorithm is proposed to solve the above
continuous and nonlinear reentry trajectory optimization problem. The advantages of
the pseudo-spectral method with high discrete accuracy and the method of multipliers
with good convergence performance and stable numerical computation are synthesized to
empower the AL-CP-ISC algorithm. Firstly, the discretization and convexification process
of the vehicle’s nonlinear system are given on the strength of the Chebyshev pseudo-
spectral method and first-order Taylor expansion. Subsequently, the original problem is
transformed into a series of relaxed convex subproblems by introducing the slack variables,
penalty parameters, and Lagrange multipliers. Finally, an algorithm solution procedure
is presented.

3.1. Discretization and Convexification

The Chebyshev pseudo-spectral discretization method with unique time-domain
mapping is adopted to discretize the continuous reentry trajectory optimization problem P0
with the free terminal time. In the Chebyshev pseudo-spectral discretization method, the
domain of the Chebyshev–Gauss–Lobatto (CGL) points is τ ∈ [−1, 1], but the flight time
interval is t ∈ [t0, t f ] in the practical problem. Hence, the time variable is transformed into

τ =
2t

t f − t0
−

t f + t0

t f − t0
. (10)

The CGL points are unevenly distributed on the interval [−1, 1]:

τk = cos
(

πk
N

)
k = 0, . . . , N. (11)

Taking the real state and control variables at N + 1 nodes above, the Lagrange interpo-
lation polynomials are constructed, respectively, as approximations of continuous state and
control variables. The approximate expressions of the real state variable x and the control
variable u are

x(τ) ≈ xN(τ) =
N
∑

j=0
xjϕj(τ)

u(τ) ≈ uN(τ) =
N
∑

j=0
ujϕj(τ)

, (12)
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where ϕj(τ) is the Nth Lagrange interpolation basis function

ϕj(τ) =
(−1)j+1

N2cj

(
1 − τ2) .

TN(τ)

τ − τj
, (13)

where TN(τ) is the Nth − order Chebyshev polynomial and

cj =

{
2, j = 0, N
1, 1 ≤ j ≤ N − 1

. (14)

Deriving the approximate expression for the state variables x(τ) yields:

.
x(τk) ≈

.
xN

(τk) =
N

∑
j=0

xj
.
ϕj(τk) =

N

∑
j=0

Dkjxj (15)

where Dkj is the kth row and jth column element of the differential matrix D(N+1)×(N+1) of
the Chebyshev pseudo-spectral discretization method, and the calculation of each element’s
value of the matrix D is shown in Ref. [21].

The derivatives of the state variables in the dynamic equations are replaced using the
right-hand term in Equation (15) and discretized at the nodes, so that the original differential
dynamic equation constraints are transformed into discrete algebraic constraints:

2
N

∑
j=0

Dkjxj + (t0 − tk
f ) f (xk, uk, tk) = 2

N

∑
j=0

Dkjxj + (t0 − tk
f ) f0(xk, tk) + (t0 − tk

f )Buk = 0 k = 0, 1, · · · , N. (16)

Next, the above nonlinear algebraic constraints are linearized based on first-order
Taylor expansion as follows:

2
N

∑
j=0

Dkjxj + A(x∗, t f
∗)x + (t0 − t f

∗)Bu + [T(x∗, t f
∗)− Bu∗]t f + C = 0, (17)

where x∗, u∗ and t∗f are the reference values of the optimization variables [x, u, t f ], respec-
tively, and

A(x∗, t f
∗) =

∂[(t0 − t f ) f0(x, t)]
∂x

|x=x∗ ,t f =t f
∗ = (t0 − t f

∗)
∂ f0(x, t)

∂x
|x=x∗ , (18)

(t0 − t f
∗)B = [0, 0, 0, 0, 0, 0, (t0 − t f

∗)]T , (19)

T(x∗, t f
∗) =

∂[(t0 − t f ) f0(x, t)]
∂t f

|x=x∗ ,t f =t f
∗ = − f0(x, t)|x=x∗ , (20)

C = (t0 − t∗f ) f ∗0 − A(x∗, t∗f )x∗ − T(x∗, t∗f )t
∗
f + Bu∗t∗f . (21)

One can see Appendix A for more details on the matrix A. Similarly, the nonlinear
path constraints are given by:

p(x) =

 .
Q(x)−

.
Qmax

q(x)− qmax
n(x)− nmax

 ≈

 .
Q(x∗) +∇

.
Q(x∗)(x − x∗)−

.
Qmax

q(x∗) +∇q(x∗)(x − x∗)− qmax
n(x∗) +∇n(x∗)(x − x∗)− nmax

 ≤ 0, (22)
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where

∇
.

Q(x∗) = [ ∂
.

Q
∂r , ∂

.
Q

∂v ] = [−0.5kQ(v
√

R0g0)
3.15

√
ρ

Hs
, 3.15kQ(

√
R0g0)

3.15v2.15√ρ]|x=x∗

∇q(x∗) = [ ∂q
∂r , ∂q

∂v ] = [−0.5(v
√

R0g0)
2 R0ρ

Hs
, (
√

R0g0)
2
ρv]|x=x∗

∇n(x∗) = [ ∂n
∂r , ∂n

∂v ] = [−0.5R2
0S

√
C2

L + C2
D

ρv2

mHs
, R0S

√
C2

L + C2
D

ρv
m ]|x=x∗

. (23)

The NFZ constraint is a nonconvex function and also needs to be convexified by the
first-order Taylor expansion, as shown below:

2(θ∗ − θc)θ + 2(ϕ∗ − ϕc)ϕ ≥ d2 + d̃, (24)

where
d̃ = −(θ∗ − θc)

2 − (ϕ∗ − ϕc)
2 + 2(θ∗ − θc)θ

∗ + 2(ϕ∗ − ϕc)ϕ
∗. (25)

Finally, to place limits on the deviation of the state variables between the linearized
and original system, a trust region constraint is introduced, so as to reduce the linearization
error and improve the convergence of the sequential linear approximation, denoted as

∥x − x∗∥ ≤ δ, (26)

where δ ∈ R7 is a constant vector, and the inequality is expressed in components. This is a
second-order conic constraint that is, itself, convex. Adding the trust region constraint is
necessary to guarantee the linearized constraints to legitimately approximate the original
constraints. Meanwhile, proposition 2 in Ref. [9] theoretically explains that a feasible
solution of the linearized problem satisfies the linearized path constraints, and it also
satisfies the original path constraints.

Up to now, all the continuous and nonconvex functions in the trajectory optimization
problem have been discretized and convexified, and the problem P0 is converted into a
discretized convex problem:

DCP0 : min J =
∫ τf

0 1 dt
s.t. Eq. (6), (8), (17), (22), (24), (26)

.

3.2. Problem Transformation

Combining the discretization and convexification processes, the original problem
is transformed into an augmented Lagrange formal convex problem. The AL-CP-ISC
algorithm can profit from this conversion, resulting in convergence-rate promotion and
numerical difficulty avoidance according to the following analysis [26–28].

The linearized error causes the feasible region of the original problem to shrink to a cer-
tain extent in the process of convexification, resulting in the “artificial infeasible” situation
in which the original problem is feasible but the linearized problem is not feasible. Hereon,
slack variables are introduced to relax the “hard constraints”, such as dynamic equations,
path constraints, and terminal conditions, to compensate for the linearization errors [8,18].
In the meantime, penalty parameters are introduced to punish the slack variables. When
the iterative solution converges, the slack variables also gradually approach zero due to the
penalty imposed. However, the penalty parameters are usually selected as a larger constant
value in many studies of spacecraft trajectory optimization. Unfortunately, the constant
penalty parameters can cause the iterative solution to converge to the stationary point of
the penalty problem instead of the original problem [25].

Therefore, to resolve this matter, the slack variables are penalized by penalty parame-
ters, which are automatically updated incrementally. Meanwhile, to prevent the condition
number of the Hessian matrix from getting worse and worse when the penalty parameters
are updated to infinity, which leads to numerical difficulties in the algorithm, Lagrange
multipliers are introduced to transform the penalty function problem into the augmented
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Lagrange function one. According to the augmented Lagrange function method, by em-
bedding the multiplier update mechanism, the satisfaction degree of constraints and the
optimization of the objective function can be considered in each iteration, thus reducing the
number of iterations required to achieve the same precision. Additionally, the augmented
Lagrange function method can also effectively control the condition number of the Hessian
matrix through its unique construction, which avoids the instability of numerical compu-
tation. In short, the iterative solution of the algorithm can converge to the solution of the
original problem, and the penalty parameters do not need to go to infinity.

Here, the original problem is abstracted into a general nonlinear programming prob-
lem form to illustrate the relaxed convex problem of an augmented Lagrange form, as
shown below:

P1 min J =
∫ τf

0 1 dt = τf

s.t. hi(x̂) = 0, i ∈ E

gi(x̂) ≤ 0, i ∈ I

si(x̂) ∈ K, i ∈ C

,

where x̂ = [x, u, t f ]
T are augmented optimization variables, all equality constraints are

denoted as h(x̂), all inequality constraints are expressed as g(x̂), and s(x̂) represents the
second-order cone constraints. And E, I, and C are the corresponding feasible domain
sets, respectively.

Then, the slack variables ζh, ζg, penalty parameters p, and Lagrange multipliers µ, λ
are introduced to construct the relaxed problem of augmented Lagrange function form
as follows:

P2 min J̃(x̂, ζh, ζg) = τf + λTζh + p|ζh|+ µTζg + p
∣∣ζg

∣∣
s.t. hi(x̂) = ζi,h, i ∈ E

gi(x̂) ≤ ζi,g, ζi,g ≥ 0, i ∈ I

si(x̂) ∈ K, i ∈ C

,

where, for further transformation, the penalty term of the inequality function is not treated
as a standard cutoff function because the slack variables ζg are nonnegative but as an
absolute value term. The similar treatment method can also be found in Ref. [25].

Finally, the problem P2 is convexified by the first-order Taylor expansion:

P3 min J̃(∆x̂, ζk
h, ζk

g) = τf + (λk)
T

ζk
h + pk

∣∣∣ζk
h

∣∣∣+ (µk)
T

ζk
g + pk

∣∣∣ζk
g

∣∣∣
s.t. hi(x̂k) +∇hi(x̂k)∆x̂ = ζk

i,h, i ∈ E

gi(x̂k) +∇gi(x̂k)∆x̂ ≤ ζk
i,g, ζk

i,g ≥ 0, i ∈ I

si(x̂k + ∆x̂) ∈ K, i ∈ C

.

The objective function of the problem P3 contains an absolute value term, so it is not
a convex second-order cone problem. For this purpose, auxiliary control variables η can
be introduced to convert the objective function with absolute values into a combination
of the linear objective function and the second-order cone constraints [29]. Specifically, an
equivalent unconstrained optimization problem is given below

min ∑ p|x|, p > 0.

The minimization problem is equivalent to

min ∑ pη
s.t. |x| ≤ η

,

in which the constraint condition is a second-order cone function, and it is naturally convex.
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At this point, a standard convex second-order cone problem PSOCP is represented as:

PSOCP min f T
0 x̃

s.t. Fx̃ = g0

∥Mi x̃ + ni∥2 ≤ cT
i x̃ + di, i = 1, 2, . . . , (NC + NI) (∗)

in which it contains linear objective function, affine equality constraints, and second-order
cone constraints. And x̃ = [x̂, ζh, ζg, η]T is the set of the augmented optimization variables,
slack variables, and auxiliary control variables. Suppose Nx is the dimension of x̃ after
the discretization. The variables NC and NI are the number of the second-order cone and
inequality constraints, respectively, and let NE be the number of the equality constraints.
The parameters f0 ∈ RNx×1, F ∈ R(NC+NE+NI)×Nx , g0 ∈ R(NC+NE+NI)×1, Mi ∈ RNxi×Nx ,
ni ∈ RNxi×1, ci ∈ RNx×1, and di ∈ R are calculated based on the previous iteration solution

x̃k−1 = [x̂k−1, ζk−1
h , ζk−1

g , ηk−1]
T

. It should be noted that the linear inequality constraints
can be included in equation (*) because it is a particular case of the second-order cone
constraints. And the final convex subproblem PSOCP can be solved iteratively by the
advanced interior point method.

For the penalty parameters and Lagrange multipliers in a discrete convex problem P3,
the specific updating methods are as follows:

pk = ρp pk−1, (27)

λk
i = λk−1

i + 2pk−1hi(x̂k−1), (28)

µk
i = max

{
µk−1

i + 2pk−1gi(x̂k−1), 0
}

, (29)

where ρp > 1 is the update multiple of the penalty parameters.
Additionally, to accelerate the convergence of the algorithm, an update approach is

designed for the trust region radius in the second-order cone constraints. Let k be the
number of iterations and ksc > 1 be the number of iterations in which the trust region
starts to update. When k ≥ ksc, if J̃(k) ≤ J̃(k − 1), δk = b0δk−1; otherwise, δk = b1δk−1,
where 0 < b0 < 1 < b1 are the trust region contraction factors. Hereon, the trust region is
updated in the middle step of the iterations, rather than in the first step. It is to ensure that
there is a large manually set scope of trust regions in the early iterations when the system
has a certain approximation error. In this way, the algorithm can easily find a feasible
optimization direction and perform continuous iterations.

3.3. Solution Procedure

The solution procedure of the AL-CP-ISC to find the solution to the original problem
is given. As shown in Figure 1, the convex subproblem can be solved iteratively until
predetermined convergence precision is reached.
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A more detailed solution procedure of the AL-CP-ISC algorithm is shown as follows
(Algorithm 1):

Algorithm 1. AL-CP-ISC

1. Let k = 0, set the initial reference trajectory x̂0 by propagating the dynamical Equation (1) with
the fixed control variables.
2. Assign initial values to the following parameters: penalty parameters p0, penalty parameter
update multiple ρp > 1, initial Lagrange multipliers λ0, µ0, initial trust region radius δ0, the
iteration number of the trust region starts to update ksc, the trust region contraction factor
0 < b0 < 1 < b1, and the number of discrete points N.
3. k ≥ 1, solve the convex subproblem PSOCP by the interior point method, and find solution

pairs: x̂k = [xk, uk, tk
f , ζk

h, ζk
g]

T
.

4. Define the value of constraint violation v:

vk =

√
∑ ζk

i,h·ζ
k
i,h + ∑

∣∣∣max
(

ζk
i,g,−µk−1

i /pk−1

)∣∣∣ (30)

When vk ≤ κ, go to 6, otherwise, go to 5, where κ is a sufficiently small positive number.
5. Update penalty parameters pk and Lagrange multipliers λk, µk.
Then, k = k + 1, and go to 3.
6. Obtain the optimal solution of the original problem:

x̂∗ = [x∗, u∗, t∗f , ζ∗h , ζ∗g ]
T = [xk, uk, tk

f , ζk
h, ζk

g]
T

.

Remark 1. In Step 1, the initial reference trajectory generated by the numerical integration method
meets the dynamic constraints, and the change in the bank angle and its rate are smooth. It is benefi-
cial to enable linearization and facilitate the iteration. Nevertheless, notice that the quality of this
initial trajectory may affect the convergence effect, such as the number of iterations and convergence
accuracy. Therefore, taking into account factors such as the flight time, mission characters, and
other constraint conditions, it is necessary to judiciously select the fixed control variable.

4. Numerical Verification

In this section, numerical simulations are employed to testify the effectiveness and
convergence of the AL-CP-ISC algorithm. To compare with the simulation results of the
AL-CP-ISC algorithm, CPM and P-CP-ISC algorithms are used to solve the same reentry
trajectory optimization problem of the hypersonic vehicle. The CPM is the Chebyshev
pseudo-spectral method that transforms the original problem into a general nonlinear



Mathematics 2024, 12, 1306 11 of 17

programming problem and adopts the sequential quadratic programming algorithm to
solve the problem. The difference between P-CP-ISC and AL-CP-ISC lies in different
transformation approaches, and the objective function of the P-CP-ISC algorithm adopts
the form of a penalty function without Lagrange multipliers.

According to Ref. [30], it is considered that the mass of the reentry vehicle is m = 104,035 kg,
and the aerodynamic reference area is S = 391.22 m2. In this paper, the fight mission of
the vehicle is to plan an optimal trajectory with the minimum flight time under various
constraints. Correspondingly, the initial and terminal constraints are: h0 = 100 km, θ0 = 0◦,
ϕ0 = 0◦, V0 = 7450 m/s, γ0 = −0.5◦, ψ0 = 0◦, σ0 = 1◦, h f = 25 km, θ f = 12◦, ϕ f = 72◦,
500 ≤ Vf ≤ 1500 m/s, γ f = −10◦, ψ f = 90◦. The maximum values of the path constraints

are
.

Qmax = 1500 kW/m2, qmax = 18, 000 N/m2, and nmax = 2.5g0, respectively. In
addition, to keep enough control margin, the magnitude of the bank angle and bank angle
rate are limited by 80 ◦ and 10 ◦/s. The longitude and latitude of the center of the NFZ
constraint are θc = 2◦ and ϕc = 50◦, respectively, and the radius is about 222 km. The initial
trust region size in Equation (26) is given as:

δ0 = [
15000

R0
,

25π

180
,

25π

180
,

500
V0

,
25π

180
,

25π

180
,

25π

180
]
T

.

In the solution procedure of the AL-CP-ISC algorithm, the termination condition is set
to be vk ≤ 10−9, and the number of CGL points is 80. In Step 1 of the algorithm procedure,
the initial reference trajectory is generated by the numerical integration method, in which
the fixed control variable is set to 0.015 ◦/s, and the estimated terminal time is 1610 s. All
optimization algorithms in this section are implemented by MATLAB 2020b on a desktop
computer equipped with Intel Core i7-10700K/3.80 GHz CPU. For the convex subproblems
PSOCP, the professional software MOSEK (Version 9. 3. 7.) [31] is used to solve them.

First, Figures 2–7 present the trajectories of the vehicle obtained by the three algorithms,
and Table 1 shows all the optimal solutions and solve time of each algorithm. The solid
red curves are the solution of the AL-CP-ISC, the blue double lines represent the results
of the CPM, and the other black dotted lines are the ones of the P-CP-ISC. In Figure 2, the
profiles of each iteration of the AL-CP-ISC algorithm are depicted in different colors, from
dark blue to warm red, to make the progression of the convergence clearer. The sequence
solution converges in the 25th iteration, and the corresponding minimum flight time is
1636.68 s, which is quite close to the optimal solution from the other two algorithms. The
trajectory curves almost overlap and are hard to distinguish in late iterations according
to the zoom-in view. Moreover, Figures 3–6 show a comparison of results between state
variables and control variables, including altitude, velocity, longitude, latitude, flight-path
angle, heading angle, bank angle, and its rate. It is obvious that all state and control
profiles tend to be relatively consistent, and the initial, terminal, and bounded conditions
required by the original problem are satisfied. In particular, it can be seen from Figure 4
that the trajectory of the vehicle successfully evades the no-fly zone. Meantime, the vehicle
trajectories obtained by the three algorithms all meet the conditions of path constraints in
Figure 7. In Table 1, in addition to the similar optimal solutions, it is worth noting that the
solve time of AL-CP-ISC and P-CP-ISC is only 4.20 s and 5.30 s, far less than the solve time
required by CPM. Given these analyses, it can be fully explained that the improvement
measures of the sequential convexification algorithm do not affect the optimal solution, and
the AL-CP-ISC algorithm can vastly reduce the computational cost; that is, the effectiveness
and efficiency of the proposed algorithm are verified.
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Then, the state trajectories of the AL-CP-ISC and P-CP-ISC algorithms are almost the
same, and some slight differences are seen in the optimal flight time and the solve time. This
shows that both algorithms can solve the approximate convex problem well. However, the
number of iterations required by both algorithms is quite different according to Figures 8
and 9, and they converge at the 25th and 32th iterations, respectively. Both figures are the
value of constraint violations and the terminal flight time in each iteration, respectively.
The only difference between the two algorithms is the form of the objective function. In a
numerical sense, it indicates that the AL-CP-ISC algorithm with the augmented Lagrange
function formal cost function has better convergence properties by comparing the trajectory
results of these two algorithms.
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Table 1. Comparison of the simulation results.

Algorithm Flight Time hf θf ϕf Vf γf ψf Solve Time

CPM 1638.91 s 25 km 12 deg 72 deg 892.71 m/s −10 deg 90 deg 287.8 s
AL-CP-ISC 1636.68 s 25 km 12 deg 72 deg 899.36 m/s −10 deg 90 deg 4.20 s
P-CP-ISC 1638.94 s 25 km 12 deg 72 deg 892.63 m/s −10 deg 90 deg 5.30 s
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5. Conclusions

In this paper, an improved sequential convexification algorithm is proposed to effi-
ciently solve the trajectory planning problem of hypersonic vehicles based on the Cheby-
shev pseudo-spectral method and the method of multipliers. By employing the Chebyshev
pseudo-spectral discretization method, the differential dynamical equations are trans-
formed into the algebraic equation constraint. The original problem is then discretized
into a finite-dimensional nonlinear programming problem. Next, through linearization
and relaxation techniques, the slack variables, penalty parameters, and multipliers are
introduced to transform the discrete problem into a series of relaxed convex subproblems in
the form of the augmented Lagrange function, which are iteratively and efficiently solved
by the MOSEK solver until the expected convergence precision is satisfied. The numerical
simulation results verify the effectiveness, efficiency, and convergence performance of the
proposed AL-CP-ISC algorithm. In the future, the proposed algorithm will be competitive
for use in realizing onboard optimization due to its excellent optimization efficiency after
code optimization.
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Appendix A

All elements of the matrix A in Equation (17) are given as follows.

A = (t0 − t f )
∂ f0(x, t)

∂x
= (t0 − t f )



0 0 0 a14 a15 0 0
a21 0 a23 a24 a25 a26 0
a31 0 0 a34 a35 a36 0
a41 0 0 a44 a45 0 0
a51 0 0 a54 a55 0 a57
a61 0 a63 a64 a65 a66 a67
0 0 0 0 0 0 0


where

a14 = sin γ, a15 = v cos γ

a21 = − v cos γsinψ

r2 cos ϕ
, a23 = v cos γ sin ψ sin ϕ

r cos2 ϕ
, a24 = cos γ sin ψ

r cos ϕ ,

a25 = − v sin γsinψ
r cos ϕ , a26 = v cos γ cos ψ

r cos ϕ

a31 = −v cos γ cos ψ

r2 , a34 =
cos γ cos ψ

r
, a35 = −v sin γ cos ψ

r
, a36 = −v cos γ sin ψ

r

a41 = −Dr +
2 sin γ

r3 , a44 = −Dv, a45 = −cos γ

r2

a51 = Lr cos σ
v − v cos σ

r2 + 2 cos γ
r3v , a54 = Lv cos σ

v − L cos σ
v2 + cos γ

r + cos γ
v2r2

a55 = − v sin γ
r + sin γ

vr2 , a57 = − L sin σ
v

a61 =
Lr sin σ

v cos γ
− v cos γ sin ψ tan ϕ

r2 +
2 cos γ

vr3 , a63 =
v cos γ sin ψ

r cos2 ϕ

a64 = Lv sin σ
v cos γ + cos γ sin ψ tan ϕ

r , a65 = L sin σ sin γ
v cos2 γ

− v sin γ sin ψ tan ϕ
r

a66 = v cos γ cos ψ tan ϕ
r , a67 = L cos σ

v cos γ

Dr =
∂D
∂r

= −
R2

0ρv2SCD

2mhs
= −R0

hs
D, Dv =

∂D
∂v

=
R0ρvSCD

m

Lr = −R0

hs
L, Lv =

R0ρvSCL
m
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