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Abstract: To make wind power more competitive, it is necessary to reduce turbine downtime and
reduce costs associated with wind turbine operation and maintenance (O&M). Incorporating machine
learning in the development of condition-based predictive maintenance methodologies for wind
turbines can enhance their efficiency and reliability. This paper presents a monitoring method that
utilizes Density Based Support Vector Machines (DBSVM) and the evolutionary Fourier spectra of
vibrations. This method allows for the smart monitoring of the function evolution of the turbine.
A complex optimal function (FO) for 5-degree order has been developed that will be the boundary
function of the DBSVM to be timely determined from the Fourier spectrum through the magnitude–
frequency and place of the failure occurring in the wind turbine drivetrains. The trend of the failure
was constructed with the maximal values of the optimal frequency function for both yesthe cases of
the upwind and downwind parts of the gearbox.

Keywords: wind turbine; monitoring; wear trend; Fourier vibration spectrum; support vector
machine; base density of the collected data; machine learning

MSC: 37M10

1. Introduction
1.1. The Future of Wind Turbines and the Novelty of the Paper

Wind energy has seen remarkable growth over the past decade and continues to be on
an upward trend in the power generation industry. In the current context of the reduction
in and even abandonment of conventional energy sources, wind energy has become a basic
energy source, along with nuclear and hydro energy. In these conditions, the reliability
and stability of the operation are necessary to maintain the production capacity for the
longest possible periods and with the best possible predictability [1]. With the rapid
development of wind turbine technology and in accordance with a higher demand for
renewable energy, the number of wind turbine (WT) units has experienced a major increase,
but under these conditions, the failure rate has also increased [2]. Power transmission is
influenced by all components in the kinematic chain, rotor, gearbox, and generator. After
an experience of over 20 years, both in operation and research, it can be concluded that
the wind turbine component with the highest level of vulnerability is the gearbox, with
a very high failure rate and downtime [1–3]. To make wind power more competitive, it
is necessary to reduce turbine downtime and increase reliability. Condition monitoring
can help reduce the chances of catastrophic failures, enabling cost-effective operation and
maintenance practices. Compared to other applications, the representatives of the wind
industry were quite late to recognize the benefits and importance of monitoring operating

Mathematics 2024, 12, 1307. https://doi.org/10.3390/math12091307 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091307
https://doi.org/10.3390/math12091307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6062-4657
https://doi.org/10.3390/math12091307
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091307?type=check_update&version=2


Mathematics 2024, 12, 1307 2 of 23

status through the use of artificial intelligence (AI) and vibration analysis [4]. Substantial
research has been conducted to establish algorithms based on a large volume of data that
train based on specific moments of failure, through machine learning, to obtain specific
failure models [4,5].

This paper presents a method that leverages Fourier spectrum analysis and machine
learning-based data extraction techniques for predicting wear in wind turbine operation.
The novelty of the applied method lies in its utilization of unlabeled and uncategorized data
to infer meaningful results for the predictive maintenance of wind turbines. In this study,
functions representing the vibration trends of turbines across certain speed parameters,
power levels, and wind flow conditions have been constructed. Furthermore, a density-
based data filtering technique drawn from a machine learning-based method, Density
Based Support Vector Machines (DBSVMs), has been employed at the data acquisition
stages of the experiments.

The research was carried out over a period of about two months. The Fourier spectra
were analyzed at different points in time while maintaining regulated and controlled
parameters. With the help of at least five points from the Fourier spectra, the objective
functions were defined. The evolution over time of these Fourier spectra’s maximum points
(amplitude–frequency) offers an effective approach to ensuring predictive maintenance.
The established objective functions can be utilized to determine the wear evolution in
both the low-frequency and high-frequency areas of a wind turbine. As a result of the
experiments, the envelope of normal operation and the envelope of the maximum limit
of operation are obtained for the gearbox, which is the most vulnerable part of the wind
turbine. The envelope of the maximum limit of operation refers to wind turbine operation
until the appearance of a defect. These experiments define the frequency–amplitude
limits, which allow for the predictive maintenance of turbine components by setting the
intervention thresholds without the need for extensive data collection.

The organization of the paper is as follows. Section 1 includes the details of the current
scenario of the predictive maintenance of wind turbines and the state-of-the-art methods
used for the condition monitoring of wind turbines. The research methods and experiments
conducted in this study are discussed in Section 2. The results of the experiments and their
interpretations are presented in Section 3, and the conclusion and future work are briefed
in Section 4.

1.2. Overview of Wind Turbine Condition Monitoring and Its Need

Wind energy has seen remarkable growth over the past decade and continues to be
on an upward trend in the power generation industry [3]. In the current context of the
reduction in and even abandonment of conventional energy sources, wind energy emerges
as a primary source, along with nuclear energy and hydropower [5]. In these conditions, the
reliability and stability of wind turbine operations are crucial to maintaining the production
capacity for prolonged periods and with optimal predictability [1].

The monitoring of wind turbine (WT) conditions is defined as a complex process
of monitoring the parameters of the state of the machine so that a significant change is
detected, which indicates a possible developing fault [6]. This can potentially help in
different stages of wear: the early detection of incipient failures, thus reducing the chances
of catastrophic failures; accurately assessing the proper functioning of the components
and reducing maintenance costs; the analysis of the fundamental causes of the occurrence
of defects, which can ensure the optimal determination of the input parameters for an
improved operation of the turbine; the establishment of the control strategy and the optimal
design of the components [7–10]. In a broad sense, the CMS of a wind turbine can target
almost all of its major subsystems, including the blades, nacelle, power transmission, tower,
and foundation [9]. This paper presents a method that focuses on the monitoring of wind
turbines and can be applied to the different components of the wind turbine: the rotor shaft
with main bearings, the gearbox, and the generator. From a CMS perspective, the three major
monitored transmission components are the rotor shaft, the gearbox, and the generator. Of
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these three components, the gearbox causes the longest downtimes [11–13]. For this reason,
the gearbox was chosen as the main subsystem targeted in this study. In detail, this paper
will cover the typical practices, challenges, and future research opportunities related to CM
wind turbine drivetrains [14].

To understand the dynamic behavior of a WT and especially of a planetary gearbox,
a number of techniques have been used in research and in the industrial field: vibration
analysis, oil condition analysis, thermography, acoustic measurement, boroscopic inspec-
tion, electrical parameters effects, the self-diagnostic of sensors, etc. [15]. In order to ensure
the optimal conditions for predictive maintenance, a combination of different techniques is
needed. Even if the vibration technique has a dominant proportion, it is supported in the
decision by the other specific technologies.

However, a vibration analysis on component fault diagnosis in wind turbines is
a hard challenge due to the complex mechanical conditions of the power transmission
kinematic chain, the variable operating conditions with transient phenomena, and the
speed differences between the different elements of the gearbox [15–17]. In the use of
vibration transducers specifically, piezoelectric accelerometers are the most used method,
with different sensitivities depending on the speed and with a rigid fixation on the structure
of the components [7–9]. The repartition of the sensors in the monitoring process of the
wind turbine from the actual stage of the research is shown in Figure 1 and Table 1.
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Figure 1. The position of the sensors for the monitoring process.

Table 1. Sensor notation and position on the wind turbine.

Sensor Label Description

B1-MB-RS Main bearing accelerometer—rotor side
B2-MB-GS Main bearing accelerometer—generator side

B3-LSS Gearbox accelerometer—low-speed shaft
B4-IS Gearbox accelerometer—intermediary shaft

B5-HSS Gearbox accelerometer—high-speed shaft
B6-G-DE Generator accelerometer—drive end side

B7-G-NDE Generator accelerometer—non-drive end side
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In this paper, the focus is on the monitoring of wind turbine drivetrains. The drive-
trains consist of the main bearing, main shaft, gearbox, brake, generator shaft, and generator.
From a CM perspective, the three major monitored transmission components are the main
bearing, the gearbox, and the generator. Of these three components [6], the gearbox causes
the longest downtimes. Other research has also shown that the gearbox is the most expen-
sive subsystem to maintain during the 20-year operating life of a turbine [1–7]. For this
reason, the gearbox was chosen as the main subsystem targeted in this study.

1.3. State of the Art in Turbine Wear Monitoring and Trend Analysis

Current research has led to the identification of the following monitoring techniques
and directions, which can be applied to wind turbines [14,15]: vibration analysis; oil condi-
tion analysis; the thermography of important elements in the turbine structure (gearbox);
the analysis of the physical condition of the materials; the measurement of elastic yielding
and deformation of various components; acoustic measurements in various sensitive areas
of the turbine; the measurement of various electrical effects; process parameter measure-
ment; visual inspection; performance monitoring by comparing output sizes for the same
input data; the use of self-diagnostic sensors (Figure 1).

(a) Vibration analysis—Vibration analysis is the most well-known technology for monitor-
ing working conditions, especially for rotating equipment [15]. The type of sensors
used depends on the frequency range used for monitoring, the position of transducers
on the transmission chain for the low-frequency range, the velocity sensor in the
5–1000 Hz frequency domain, the accelerometers for the high-frequency range, and
the acoustic sensor for gearbox monitoring or blades.

(b) Oil analysis—Oil analysis is another evaluation technique, which, coupled with vibra-
tion analysis, contributes to decision-making in predictive maintenance. Oil analysis
is mostly conducted offline via sampling and also ensuring the quality of the oil. The
contamination with dirt from the turbine parts in contact, the moisture, the degrada-
tion of additives, and the maintenance of the oil filter are also aspects of this method.
However, to protect oil quality, the application of online sensors is used more and
more often, especially for particle counters. In addition, protecting the condition of
the oil filter is currently mainly applied to both hydraulic oil and lubricating oil. In
the case of the excessive pollution of the filter, or a change in the characteristics of the
oil, this leads to excessive wear [15].

(c) Thermography—Thermography is often applied for the monitoring and fault identi-
fication of electrical and electronic components [15]. Hot spots due to component
degeneration or poor contact can be identified in a simple and fast way using cameras
and diagnostic software. Mainly, they are used in generator and power converter
monitoring but also for thermal gear contact.

(d) Inspection of component condition—This type of monitoring mainly focuses on detecting
and tracking the evolution of wear using a boroscope device. This method is normally
offline and is a very important decision criterion for stopping, limiting, or planning a
repair [15,16].

(e) Deformation measurement—Deformation measurement using manometers is a common
technique but is not often applied in the case of wind turbine monitoring. Strain
gauges are not robust in the long term [15–17]. For wind turbines, deformation mea-
surement can be very useful for life prediction and stress level protection, especially
for blades [18] but also for the main shaft.

(f) Acoustic monitoring—Acoustic monitoring is related to vibration monitoring using
noise measurement. Acoustic monitoring technology can be used for blade condition
monitoring using an acoustic microphone or for bearing and gearbox monitoring
using acoustic emission sensors fixed directly to the housing [15].

(g) Electrical effects—The electrical parameter monitoring of a generator represents a
mandatory condition in based condition maintenance (CBM). The analysis of electrical
parameters, such as electrical current, voltage, insulation, power, etc., allows for both
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the evaluation of the quality of the generated power and the analysis of the potential
faults [17].

(h) Process parameters—Condition monitoring systems (CMSs) are becoming more sophis-
ticated, and their diagnostic capabilities are improving. However, protection is mostly
based on level detection or signal comparison, which directly leads to alarm when the
signals exceed predefined threshold values. The integration of machine learning is
still in the beginning stages, but in the future, solutions using AI will be sought for
large-scale development [15].

(i) Performance monitoring—Wind turbine performance is often gauged through the rela-
tionship between power, wind speed, rotor speed, and blade angle, and in the case
of large deviations, an alarm sounds or a stop is even initiated [15]. The detection
of margins is important to prevent false alarms [19]. Similar to process parameter
estimation, more sophisticated methods like performance evolution monitoring are
still not a common practice.

Thus, to obtain reliable predictive maintenance results, a combination of different
techniques is needed. While vibration analysis may hold a predominant role, it is comple-
mented by other specific technologies to perform decision-making accurately (Figure 1).

2. Applied Research Methods
2.1. Condition Monitoring System

In this research, the experimental protocol is based on the Condition Monitoring
System (CMS). The data used are part of the online data protocol regarding the wind
turbines’ state of operation. The recorded data are analyzed using signal evaluation both in
the time domain and in the frequency domain. The CMS provides all datasets as originally
optimized for all turbines. The data are collected from a wind turbine gearbox. The
repartition of the sensors in the monitoring process of the wind turbine from the actual
stage of the research is shown in Figure 2.
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Figure 2. Schema of the experimental stand with the position of the used sensors.

The analysis is centered on the gearbox, examining the vibrations at three specific
points of the gearbox: the low-speed shaft (LSS), the intermediary shaft (IS), and the
high-speed shaft (HSS). The data acquisition is conducted using vibration sensors fixed on
the bearings of the kinematic chain, starting from the input, which is the rotor side, and
extending to the output, which is the generator side.
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The data transmission and processing chain is illustrated in Figure 3. The online
acquisition system allows the data to be recorded according to the original settings, thus
capturing signals along with their speed and power readings. In this way, the evolution of
vibrations can be determined specific to certain values of speed and power [20]. The system
allowed the definition of parameters in the frequency domain both in the acquisition and
analysis phases. The selected frequency range is according to ISO 10816-21 standards [21],
including the rotor, gearbox, generator, and tower/nacelle. Figure 3 shows the datasets
according to CMS, for the gearbox in the 3 entry points: LSS, IS, and HSS.
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In these experiments, the data from the input of the gearbox, the acceleration in the
frequency domain at LSS, and the data of the gearbox output, in the frequency domain at
HSS, are taken into account, Figure 4.
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2.2. Signal Processing and Defect Detection

The experiment is based on real-time vibration monitoring, using National Instrument
equipment cRIO-9076 (Austin, TX, USA), with 12 input channels, a 24-bit resolution, and
a 50 k samples/s/ch. max. speed; see Figure 5. The real-time monitoring data are set on
a 25 k samples/s speed, a buffer size of 32,768 samples, and a block size of 10 k samples.
The vibration monitoring provides the signal data from the 3 accelerometers fixed on the
3 gearbox points: the LSS with the 1–2 stages, the IS with the 3 stages, and the HSS with
the spur gear stage. The accelerometers used have a 100 mV/g sensitivity for the IS and
HSS points and a 500 mV/g sensitivity for the LSS point. For a precise synchronization
between vibration signals and speed signals, a laser speed sensor fixed at the generator
side was used.
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Signal analysis was performed via numerical processing, taking into account the pa-
rameters (frequency and amplitude) being monitored. Thus, Figure 6 shows the waveforms
obtained with the help of the monitoring software both in the time domain and in the
frequency domain; Figures 7 and 8 show the acceleration signal in the case of the gearbox
wear. The vibration parameters are set according to the ISO 10816-21 standard, specifying
acceleration in m/s2 RMS, vibration velocity in mm/s RMS, and demodulated acceleration
in m/s2E. With the bearing frequency data, the characteristic frequency of the bearing
defect can be identified. The structure of the vibration parameters is complex and based
on the vibration defect theory [5,22]. The vibration limits for wind turbines, provided by
the ISO 10816-21 standard, present an integrated base defining the recommended state of
operation [23–25]. Even in this situation, many specific cases of the vibration of the wind
turbine components are difficult to classify according to this standard [26]. For this purpose,
it is proposed to develop a model that can interpret the state of operation in real operating
conditions using data provided via the CMS.



Mathematics 2024, 12, 1307 8 of 23Mathematics 2024, 12, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 6. Signal processing and defect detection from the CMS. 

 
Figure 7. Acceleration signal in the case of gearbox wear. 

Figure 6. Signal processing and defect detection from the CMS.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 6. Signal processing and defect detection from the CMS. 

 
Figure 7. Acceleration signal in the case of gearbox wear. Figure 7. Acceleration signal in the case of gearbox wear.



Mathematics 2024, 12, 1307 9 of 23
Mathematics 2024, 12, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 8. Envelope acceleration in the case of gearbox wear. 

The processing data and analysis approach for bearing detection are also applied for 
gear characterization using the gear mesh frequency data according to the kinematic chain 
of the gearbox [9–12]. The signal processing and analysis are performed with Fastview 
software (v300124), which allows for the use of both vibration monitoring and analysis in 
real time. The software allows for the identification of the specific failure frequencies of 
the gear and bearings through the method of vibration demodulating using the envelope 
function [27] with the dynamic filtering of the specific domain frequencies (Figure 7). 

A novelty in the evaluation analysis of the gearbox wear condition is the envelope 
method using the Hilbert transform [27] with sideband energy coefficient integration, 
called SER coefficient (Sideband Energy Ratio™, a patent-pending algorithm utilized in 
the General Electric) [28–32], so that the impact energy generated by the defect can be 
quantified (Figure 8). 

Figure 8 shows the spectrum of the acceleration envelope in the case of the gearbox 
defect. The quantification of the defective condition is evaluated by means of the gear 
mesh frequency presence (GMF) in relation to the sidebands, as well as its harmonics. 
According to the quantification of the level of sidebands in relation to the amplitude of 
the GMF frequency, it can be found that the ratio is less than one, which means that the 
defect in the HSS stage is present and is in an advanced state. 

2.3. Using DBSVM-Based Data Extraction Technique 
The Base density of the Support Vector for Machine Learning (DBSVM) [30] has been 

beneficial in establishing the basic data for neural network learning. In any monitoring 
activity, it is more efficient to train the neural network using DBSVM as it reduces the 
learning input data (decreasing computational complexity) and determines the resulting 
weights matrices to identify a mechanical failure without being impacted by the outliers. 
This study exploits this method to find the most relevant data points and establish the 
objective function (FO). 

This data extraction method is based on the filtering of data points based on their 
population density. The population density of data points refers to the correlation be-
tween the population size and the space they occupy. The rationale behind this data fil-
tering is to deal with the data points that are influenced by random noises or gross errors. 

Figure 8. Envelope acceleration in the case of gearbox wear.

The processing data and analysis approach for bearing detection are also applied for
gear characterization using the gear mesh frequency data according to the kinematic chain
of the gearbox [9–12]. The signal processing and analysis are performed with Fastview
software (v300124), which allows for the use of both vibration monitoring and analysis in
real time. The software allows for the identification of the specific failure frequencies of
the gear and bearings through the method of vibration demodulating using the envelope
function [27] with the dynamic filtering of the specific domain frequencies (Figure 7).

A novelty in the evaluation analysis of the gearbox wear condition is the envelope
method using the Hilbert transform [27] with sideband energy coefficient integration,
called SER coefficient (Sideband Energy Ratio™, a patent-pending algorithm utilized in
the General Electric) [28–32], so that the impact energy generated by the defect can be
quantified (Figure 8).

Figure 8 shows the spectrum of the acceleration envelope in the case of the gearbox
defect. The quantification of the defective condition is evaluated by means of the gear mesh
frequency presence (GMF) in relation to the sidebands, as well as its harmonics. According
to the quantification of the level of sidebands in relation to the amplitude of the GMF
frequency, it can be found that the ratio is less than one, which means that the defect in the
HSS stage is present and is in an advanced state.

2.3. Using DBSVM-Based Data Extraction Technique

The Base density of the Support Vector for Machine Learning (DBSVM) [30] has been
beneficial in establishing the basic data for neural network learning. In any monitoring
activity, it is more efficient to train the neural network using DBSVM as it reduces the
learning input data (decreasing computational complexity) and determines the resulting
weights matrices to identify a mechanical failure without being impacted by the outliers.
This study exploits this method to find the most relevant data points and establish the
objective function (FO).

This data extraction method is based on the filtering of data points based on their
population density. The population density of data points refers to the correlation between
the population size and the space they occupy. The rationale behind this data filtering is to
deal with the data points that are influenced by random noises or gross errors. These data
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points do not accurately represent the general trend. These points are considered outliers
and can affect the accuracy of the established objective functions and, subsequently, the
analysis. The densely populated areas in the input space are determined by calculating the
Mahalanobis distance (1). The points lying in this region are considered meaningful points
while the points lying outside of this region are considered outliers.

The Mahalanobis distance is calculated from the quantity µ which represents the
average of the points’ distances, to each point. The cov−1 represents the inverse covariance
matrix. This distance is explained in [33,34]. The Mahalanobis distance takes into account
the correlation of the dataset and does not depend on the measurement scale [34–36]. The
population variance is calculated with a variance–covariance matrix [35]. The Mahalanobis
distance from the point to the mean of the distribution µ can be calculated by (1), and the
Mahalanobis distance from one point to another can be calculated by (2):

d =

√
(x − µ)Tcov−1(x − µ) (1)

d =

√
(x − y)Tcov−1(x − y) (2)

where the population variance is calculated with [12]

var(xn) =
∑n

1 (x − µ)2

n
(3)

and population covariance with

cov(xn, yn) =
∑n

1 (xi − µx)
(
yi − µy

)
n

(4)

If cov(xi) and cov(yi) > 0
both of them increase or decrease;
If cov(xi) and cov(yi) < 0
when xi increases, yi decreases, or vice versa;
If cov(xi) and cov(yi) = 0
no relation exists between xi and yi;
If var(xi) > var(yi)
xi increases or decreases faster than yi;
End.

The average of d is

average_d =
∑n

1

√
(xi − µ)Tcov−1(xi − µ)

n
(5)

where di is the distance between the points and d is the average of these distances

If di > d,
the point i is in the outlier group;
Else
the point i will be considered an important (meaningful) point in DBSVM;
End.

2.4. Objective Functions

The optimization function (FO) was proposed as a polynomial function of the fifth
order with real coefficients that will be constructed using the data from the acquisition of
Fourier spectra of the vibrations:

FO = a1 × x5 + a2 × x4 + a3 × x3 + a4 × x2 + a5 × x + a6 (6)
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where ai will be determined using the matrix equation:
a1
a2

. . .
a6

 =


x5

1 · · · x1 1
...

. . .
...

x5
5 · · · x5 1


x5

1 · · · x1 1
...

. . .
...

x5
5 · · · x5 1


T


−1FO1
. . .

FO5

 (7)

with the following constraints:

- xi > 0;
- xi must be meaningful points, xi ∈ group 1;
- xi ∈ DBSVM;

where FOi is the amplitude of the vibration evolution in time where the defect will
appear and xi is the frequency in time. To define the FO, 5 boundary points (xi, FOi)
∈ DBSVM will be used for each moment of time vs. frequency points but under the same
conditions of forced vibration and for the same wind turbine. The DBSVM points must
strictly adhere to the condition of belonging to DBSVM, which is that

di < average_d. (8)

The boundary of the FO will be the limit of the optimal functioning of the wind turbine.
In this way, the moment of time for the intervention on the gearbox will be determined to
eliminate the danger of an imminent defect.

2.5. The Used Proper LabView Virtual Instrumentation for FO

To solve the objective function FO, proper LabView virtual instrumentation was used,
and the block schemas are shown in Figures 9–11.
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2.6. Description of the Used Algorithm

The used algorithm includes the following stages, as depicted in Figures 12 and 13:
(i) the acquisition of data at different moments of time for the same parameters of wind,
power, and speed; (ii) the application of relation (4) for calculating the distances between
points di (max. amplitude and frequency of the Fourier spectra acquired); (iii) applying
relation (5) to determine the average distance, d; (iv) defining group 1 of the DBSVM after
checking the condition di < d; (v) establishing the boundary curve of DBSVM; (vi) analysis
of Fourier spectra from group 1; (vii) defining the 5 maximum points from the Fourier
spectra both for the upwind position and for the downwind position of the sensors; (viii) the
use of LabView virtual instrumentation to determine the 5th-order objective functions;
(ix) plotting multiple objective functions for Fourier spectra acquired during three months of
operation, under the same conditions of wind, power, and speed; (x) defining the maximum
points of the objectively drawn functions in order to determine the trend; (xi) determining
the coefficients of the 5th-order objective functions of the trend for both low and high
frequencies, as well as for upwind and downwind of the gearbox sensors positions.
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3. Results and Analysis
3.1. Establishing FO Boundary of Fourier Spectrum

If the operational limit of the turbine is set at a specific FO, a defect can be easily
detected through control at each frequency. This can be performed by checking if the
operational point (frequency, magnitude) is in the normal functioning area or outside
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of this. In this way, it is possible to determine the maximum permissible magnitude
of vibration.

In this case, the equation of the FO will be

FO = −6.043x5 + 2.233x4 + 0.0005x3 − 0.04x2 + 0.74x + 0.225 (9)

For predictive maintenance, the following relation would be applied:

FOi( fi) < FOj(xi) (10)

where xi is the frequency for the imposed five points ∈ DBSVM, the points from the
boundary limits, and f i represents all the current frequencies that must be checked. If this
condition is false, the respective points could be the potential mechanical wear.

Using the Fourier spectra, the objective functions (FOi) were constructed the objective
functions (FOi) for each of these datasets. All these FOs are shown in Figures 12–15, for
upwind and downwind sensors from the wind turbine gearbox. All objective functions,
FOs, were determined using the maximal values of magnitude from each of the used
Fourier spectra; see the table of each acquisition Fourier spectrum.
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Figure 14. The acquisition data distribution and the establishment of boundary values for group 1,
representing meaningful points of DBSVM, occur under similar dynamic conditions of speed and
power. This characteristic is constructed by applying the DBSVM algorithm.
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Figure 15. Fourier spectrum from data acquisition between December 2023 and February 2024, in 
an upwind and downwind position of the sensors in the gearbox of WTs. (a) Fourier spectrum at 
1514 RPM and 1037.4 kW on 25 December 2023, in an upwind position. (b) Fourier spectrum at 1577 
RPM and 1169.4 kW on 18 January 2024, in an upwind position. (c) Fourier spectrum at 1492 RPM 
and 1027.6 kW on 26 January 2024, in an upwind position. (d) Fourier spectrum at 1552 RPM and 
1158 kW, on 30 January 2024, in an upwind position. (e) Fourier spectrum at 1523 RPM and 1054 
kW on 25 December 2023, in a downwind position. (f) Fourier spectrum at 1455 RPM and 971.4 kW 
on 11 January 2024, in a downwind position. (g) Fourier spectrum at 1471 RPM and 982 kW on 18 
January 2024, in a downwind position. (h) Fourier spectrum at 1481 RPM and 1006.5 kW on 26 Jan-
uary 2024, in a downwind position. 
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To construct the FO for the data acquisition and establish the trend of the maximum 

values of the vibration magnitude vs. frequency, four Fourier spectra were used for the 
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Figure 15. Fourier spectrum from data acquisition between December 2023 and February 2024, in
an upwind and downwind position of the sensors in the gearbox of WTs. (a) Fourier spectrum at
1514 RPM and 1037.4 kW on 25 December 2023, in an upwind position. (b) Fourier spectrum at
1577 RPM and 1169.4 kW on 18 January 2024, in an upwind position. (c) Fourier spectrum at 1492 RPM
and 1027.6 kW on 26 January 2024, in an upwind position. (d) Fourier spectrum at 1552 RPM and
1158 kW, on 30 January 2024, in an upwind position. (e) Fourier spectrum at 1523 RPM and 1054 kW
on 25 December 2023, in a downwind position. (f) Fourier spectrum at 1455 RPM and 971.4 kW on 11
January 2024, in a downwind position. (g) Fourier spectrum at 1471 RPM and 982 kW on 18 January
2024, in a downwind position. (h) Fourier spectrum at 1481 RPM and 1006.5 kW on 26 January 2024,
in a downwind position.

3.2. Construct the Objective Functions FO for All Selected Fourier Spectra

To construct the FO for the data acquisition and establish the trend of the maximum
values of the vibration magnitude vs. frequency, four Fourier spectra were used for the
upwind and downwind bearings; see Figure 15. The results of FOi are shown in Figures 16–19.
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To validate the mathematical vibration model proposed (Figure 13), the vibration data
are obtained from the CMS of a 2.0 MW industrial WT gearbox, based on the acceleration
position and data acquisition shown in Figures 2 and 5. The gearbox is a planetary type with
a transmission ratio of 116. This model was applied to synthesize the data acquisition of the
wind turbine in the period between December 2023 and February 2024. The conditions that
were imposed are the following: (i) the data acquisition was for the same, or very similar,
wind turbines; (ii) the data acquisition was carried out from the sensors on the gearbox,
B3-LSS and B5-HSS, with upwind LSS bearing radial and similarly downwind HSS bearing
radial; (iii) the data acquisition was performed in the similar dynamic conditions of wind
intensity, speed, and power; (iv) the acquisition data that was synthesized are the data that
fall under the condition to be classified as a meaningful point, xi ∈ group 1, xi ∈ DBSVM;
see Figure 14.

Using the data from the column matrices ai, the fifth-order equation for FOi will be
determined. The FOi for the upwind position of the sensor is shown in relation (11) and for
the downwind position in relation (12).

FO = 6.64x5 − 0.00017x4 + 0.017x3 − 0.0668x2 + 8.84x + 2.473 (11)

FO = 7.44x5 − 0.0002x4 + 0.019x3 − 0.762x2 + 10.368x + 2.921

FO = 9.291x5 − 0.00025x4 + 0.00246x3 − 0.969x2 + 13.1305x + 3.664

FO = 8.28x5 − 0.00022x4 + 0.02x3 − 0.762x2 + 9.781x + 2.735

FO = −3.745x5 + 5.323x4 − 0.00025x3 + 0.045x2 − 2.447x − 0.054 (12)

FO = −1.494x5 + 1.68x4 − 0.00062x3 + 0.08x2 − 1.056x − 0.04

FO = 5.902x5 − 5.157x4 + 0.00014x3 − 0.171x2 + 7.366x + 0.25

FO = 7.391x5 − 6.068x4 + 0.00161x3 − 0.161x2 + 5.767x + 0.234

All determined FOs represent different stages of the mechanical condition of the
turbine gearbox assembly.

3.3. Determine the FO for the Trend

With the help of these functions, the trend of potential defects in the turbine gearbox
area can be assessed. The characteristic frequencies of the WT gearbox in the damage case
are presented in Figures 20 and 21, corresponding to LSS-upwind and HSS-downwind. The
frequency spectrum of acceleration for the LSS-upwind position shows the fundamental
frequency of the planet pin (Figure 20) and the frequency spectrum of the HSS-downwind
position shows the existence of the gear mesh frequency (GMF) generated by the HSS pin
gear and planet pin gear. In the case of a faulty gear, the amplitude is much higher, reaching
up to 10 times higher than in the normal condition case.

At any given moment, it is possible to check whether the function is approaching the
period close to the appearance of a defect or not [4,37]. Throughout this timeframe, it will
be possible to examine whether the points (frequency, magnitude) fall within the first or last
FO or between them, providing information on the proximity of a potential defect, as per
relations (11) and (12). The trends of these functions are depicted in Figure 22, represented
by the maximum of the FO for each of the cases.



Mathematics 2024, 12, 1307 20 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 25 
 

 

𝐹𝑂 = 7.391𝑥 − 6.068𝑥 + 0.00161𝑥 − 0.161𝑥 + 5.767𝑥 + 0.234 

All determined FOs represent different stages of the mechanical condition of the tur-
bine gearbox assembly. 

3.3. Determine the FO for the Trend 
With the help of these functions, the trend of potential defects in the turbine gearbox 

area can be assessed. The characteristic frequencies of the WT gearbox in the damage case 
are presented in Figures 20 and 21, corresponding to LSS-upwind and HSS-downwind. 
The frequency spectrum of acceleration for the LSS-upwind position shows the funda-
mental frequency of the planet pin (Figure 20) and the frequency spectrum of the HSS-
downwind position shows the existence of the gear mesh frequency (GMF) generated by 
the HSS pin gear and planet pin gear. In the case of a faulty gear, the amplitude is much 
higher, reaching up to 10 times higher than in the normal condition case. 

 
Figure 20. The frequency spectrum at the LSS position in the case of gearbox defect. Figure 20. The frequency spectrum at the LSS position in the case of gearbox defect.

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 21. The frequency spectrum at the HSS position in the case of gearbox defect. 

At any given moment, it is possible to check whether the function is approaching the 
period close to the appearance of a defect or not [4,37]. Throughout this timeframe, it will 
be possible to examine whether the points (frequency, magnitude) fall within the first or 
last FO or between them, providing information on the proximity of a potential defect, as 
per relations (11) and (12). The trends of these functions are depicted in Figure 22, repre-
sented by the maximum of the FO for each of the cases. 

 
(a) 

 
(b) 

Figure 21. The frequency spectrum at the HSS position in the case of gearbox defect.

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 21. The frequency spectrum at the HSS position in the case of gearbox defect. 

At any given moment, it is possible to check whether the function is approaching the 
period close to the appearance of a defect or not [4,37]. Throughout this timeframe, it will 
be possible to examine whether the points (frequency, magnitude) fall within the first or 
last FO or between them, providing information on the proximity of a potential defect, as 
per relations (11) and (12). The trends of these functions are depicted in Figure 22, repre-
sented by the maximum of the FO for each of the cases. 

 
(a) 

 
(b) 

Figure 22. Cont.



Mathematics 2024, 12, 1307 21 of 23
Mathematics 2024, 12, x FOR PEER REVIEW 22 of 25 
 

 

 
(c) 

Figure 22. The trend of the magnitude–frequency points from the FO. (a) Trend of the FO in the 
upwind position of the gearbox sensor in a low frequency. (b) Trend of the FO in the upwind posi-
tion of the gearbox sensor in a high frequency. (c) Trend of the FO in the downwind position of the 
gearbox sensor. 

The trend functions are the following: 
- for the low frequency in the upwind position,  𝐹𝑂 = 5.6234𝑥 − 205.21𝑥 + 2779.11𝑥 − 16307.64𝑥 + 32142.12𝑥 + 20071.2 (13)

- for high frequency in the upwind position, 𝐹𝑂 = 4.306𝑥 − 0.0096𝑥 + 0.7267𝑥 − 18.112𝑥 − 0.9755𝑥 − 0.0328 

- for high frequency in the downwind position, 𝐹𝑂 = −1.0703𝑥 + 0.0086803𝑥 − 2.6357𝑥 + 355.109𝑥 − 17907.9𝑥 − 451.047 

(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)    ∈ 𝐹𝑂    (14)

If the first FO objective function is defined after an intervention when the gearbox is 
working correctly, and the last function is determined close to the appearance of a defect, 
the position of any point (frequency, amplitude) can be determined between these limits. 
Intermediate FOs define the intermediate limits. Using this method, it will be possible to 
implement preventive maintenance and also monitor the normal operation of the gearbox 
of the wind turbine. The validation of this developed method can be carried out by check-
ing whether the maximum points (frequency, magnitude) from the Fourier spectrum be-
longing to a certain trend as identified by the objective functions, correspond to any 
known instances of gearbox malfunction or failure in wind turbines. This would be per-
formed through a collaboration with a wind turbine expert. 

4. Conclusions and Future Work 
This paper presents a novel approach to addressing the complexities of vibration 

monitoring and analysis in wind turbine gearboxes. By leveraging mathematical model-
ing and AI techniques, we have developed a method for evaluating gearbox conditions 
during operation that can help make meaningful interpretations from uncategorized vi-
bration data from wind turbines. After analyzing the obtained results, the objective func-
tions, and the trend of the monitoring results, we can make the following remarks: (i) the 
applied method is general and can be applied to many other dynamic monitoring pro-
cesses; (ii) the designed LabView instrumentation for the synthetic analysis of the 

Figure 22. The trend of the magnitude–frequency points from the FO. (a) Trend of the FO in the
upwind position of the gearbox sensor in a low frequency. (b) Trend of the FO in the upwind position
of the gearbox sensor in a high frequency. (c) Trend of the FO in the downwind position of the
gearbox sensor.

The trend functions are the following:

- for the low frequency in the upwind position,

FO = 5.6234x5 − 205.21x4 + 2779.11x3 − 16307.64x2 + 32142.12x + 20071.2 (13)

- for high frequency in the upwind position,

FO = 4.306x5 − 0.0096x4 + 0.7267x3 − 18.112x2 − 0.9755x − 0.0328

- for high frequency in the downwind position,

FO = −1.0703x5 + 0.0086803x4 − 2.6357x3 + 355.109x2 − 17907.9x − 451.047

(Magnitude, f requency)icatastrophic wearupwind or downwind
∈ FOtrendupwind or downwind

(14)

If the first FO objective function is defined after an intervention when the gearbox
is working correctly, and the last function is determined close to the appearance of a
defect, the position of any point (frequency, amplitude) can be determined between these
limits. Intermediate FOs define the intermediate limits. Using this method, it will be
possible to implement preventive maintenance and also monitor the normal operation of
the gearbox of the wind turbine. The validation of this developed method can be carried
out by checking whether the maximum points (frequency, magnitude) from the Fourier
spectrum belonging to a certain trend as identified by the objective functions, correspond
to any known instances of gearbox malfunction or failure in wind turbines. This would be
performed through a collaboration with a wind turbine expert.

4. Conclusions and Future Work

This paper presents a novel approach to addressing the complexities of vibration
monitoring and analysis in wind turbine gearboxes. By leveraging mathematical modeling
and AI techniques, we have developed a method for evaluating gearbox conditions during
operation that can help make meaningful interpretations from uncategorized vibration data
from wind turbines. After analyzing the obtained results, the objective functions, and the
trend of the monitoring results, we can make the following remarks: (i) the applied method
is general and can be applied to many other dynamic monitoring processes; (ii) the designed
LabView instrumentation for the synthetic analysis of the obtained acquisition data opens
the way to applying more virtual instrumentation in monitoring the dynamic behavior
across various mechanical fields; (iii) using DBSVMs to filter out the meaningful data adds
a new front to applying machine learning in monitoring processes; (iv) establishing the
trend of the FO for each position of the gearbox sensors ensures the design of an intelligent
monitoring system for predictive maintenance; (v) the trend for the low frequency in
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the upwind sensor position is a decrease in frequency and an increase in magnitude;
(vi) conversely, the trend involves an increase in both frequency and magnitude for the
high frequency; and (vii) in the downwind sensor position, the trend is characterized by an
increase in frequency and a decrease in magnitude.

In future work, we propose the generalization of this method and leveraging of neural
networks for the rapid establishment of weight matrices, objective functions, and wear
trends in wind turbines across all sensors. This will be integrated into a comprehensive
matrix comprising objective functions, alongside a monitoring and trend matrix.

In the next stage of this research, SVM Regression analysis will be implemented to
predict the magnitude of vibrations based on various input features (e.g., frequency, time).
This information will help obtain a quantitative measure of potential defects. Upon a
further assessment of the FFT spectra of vibrations leading up to failures or defects, we
also aim to study and explore other features (fluctuations in phase, etc.) that could indicate
upcoming defects. This condition-based maintenance strategy can also be further enhanced
by incorporating supervised classification. We plan to label the datasets indicating dif-
ferent points (labeled points) in time leading up to the developing fault. This would be
conducted through collaboration with industry specialists. The classification algorithm can
be employed to identify the definite states of the system (normal operation, potential fault,
critical fault). The combination of regression and classification would allow for a more
comprehensive predictive maintenance approach.

The proposed method is intended to be applied in other industrial applications in the
case of condition monitoring of machine tool spindles.
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